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ARTICLE INFO ABSTRACT

Keywords:
Multiple sclerosis

In subjects with multiple sclerosis (MS), pathology is more frequent near the inner and outer surfaces of the
brain. Here, we sought to explore if in subjects with primary progressive MS (PPMS) cortical lesion load is
MRI selectively associated with the severity of periventricular normal appearing white matter (NAWM) damage, as
assessed with diffusion weighted imaging.

To this aim, twenty-four subjects with PPMS and twenty healthy controls were included in the study. Using
diffusion data, skeletonized mean diffusivity (MD) NAWM maps were computed excluding WM lesions and a
2 mm-thick peri-lesional rim. The supra-tentorial voxels between 2 and 6 mm of distance from the lateral
ventricles were included in the periventricular NAWM mask while the voxels between 6 and 10 mm from the
lateral ventricles were included in the deep NAWM mask; mean MD values were then computed separately for
these two masks. Lastly, cortical lesions were assessed on phase-sensitive inversion recovery (PSIR) images and
cortical thickness was quantified on volumetric T1 images.

Our main result was the observation in the PPMS group of a significant correlation between periventricular
NAWM MD values and cortical lesion load, with a greater cortical lesion burden being associated with more
abnormal periventricular NAWM MD. Conversely, there was no correlation between cortical lesion load and
deep NAWM MD values or periventricular WM lesions.

Our data thus suggest that a common — and relatively selective - factor plays a role in the development of both
cortical lesion and periventricular NAWM abnormalities in PPMS.

1. Introduction

Although multiple sclerosis (MS) affects the entire brain, lesions are
more extensive and extra-lesional pathology more intense in the white
matter (WM) and grey matter (GM) adjacent to the outer (i.e. subpial)
and inner (i.e. ventricular) surfaces of the brain (Brownell and Hughes,
1962; Pardini et al., 2016).

Cortical lesions, for example, are frequently found near the subpial
brain surface and are reported to be present in > 80% of subjects with
primary progressive MS (PPMS) (Choi et al., 2012). In all MS subtypes,
the presence of subpial cortical lesions has been linked with meningeal

inflammation, hinting a role for soluble inflammatory factors in mod-
ulating the spatial distribution of tissue damage. Moreover, while a
periventricular predilection for lesion formation has been recognised
for some time, (Adams et al., 1987) it has recently been shown in
subjects with relapse-onset MS that extra-lesional WM abnormalities
are also greater with proximity to the ventricles, even if the patholo-
gical bases of the latter observation are presently unknown (Brown
et al., 2017; Liu et al., 2015; Pardini et al., 2016).

Previous studies in subjects with relapse-onset MS have shown that
periventricular WM lesions are associated with the extent of cortical
atrophy (Jehna et al., 2015) and that a declining gradient of damage
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severity from the brain surface inwards is present both in deep and in
cortical GM, (Pardini et al., 2016) thus suggesting that a common factor
is involved in modulating cortical and periventricular pathology. Con-
versely, the association between tissue damage in these different tissue
compartments in PPMS remains not characterized.

Here, given the wealth of information regarding cortical lesions
pathophysiology (Calabrese et al., 2010; Choi et al., 2012; Sethi et al.,
2013), we sought to explore the association, if any, between cortical
lesions and periventricular normal appearing (NA) WM abnormalities
as measured by (i) diffusion tensor imaging and (ii) periventricular WM
lesion volume in subjects with PPMS. Moreover, to better characterise
the relationship between cortical pathology and structural damage, we
also computed thickness of the cortical mantle.

2. Methods
2.1. Subject selection

Twenty-four subjects who met the modified McDonald diagnostic
criteria and were running a PPMS course were prospectively enrolled as
described elsewhere (Petracca et al., 2017). Twenty sex- and age-mat-
ched healthy subjects served as controls. Inclusion criteria for PPMS
patients were (i) age between 25 and 65 years, (ii) an Expanded Dis-
ability Status Scale (EDSS) equal or lower than 6.5 at screening visit,
and (iii) disease duration lower than 15 years. The use of immuno-
modulatory drugs was allowed but, if treated, patients had to be on
current treatment for at least 1 year. In the US it is not uncommon for
patients with PPMS to be tried on one of the approved im-
munomodulatory treatments despite the lack of Phase III clinical trials
evidence. Therefore, although our sample is not universally re-
presentative, it is representative of the US practice. Exclusion criteria
were (i) neuropsychiatric disorders other than MS, (ii) history of al-
cohol or drug abuse, and (iii) contraindications to MRI. Clinical and
demographical information are reported in Table 1.

2.2. MRI acquisition

MRI was performed using a 3.0 T scanner (Philips Achieva, The
Netherlands) with an 8-channel SENSE phased-array head coil (Philips
Achieva, The Netherlands) as previously described (Petracca et al.,
2017). The MRI protocol included the following sequences: (i) axial
dual echo/turbo spin echo sequence: repetition time (TR) = 2500 ms,
echo time (TE1l) = 10ms, TE2 = 80ms, field of view, FoV)
= 230 mm X 230 mm, matrix size = 512 X 512, 46 contiguous 3-
mm-thick slices; (ii) sagittal 3D T1-weighted turbo field echo sequence:
TR/TE = 7.5/3.5 ms, inversion time (TI) = 900 ms, flip angle = 8°,-
voxel-size = 1 x 1 x 1 mm?, 172 contiguous slices; (iii) axial double
inversion recovery (DIR) sequence: TR/TE = 11,000/25 ms,
TI = 3400 ms; (iv) phase-sensitive inversion recovery (PSIR) sequence:
TR/TE/TI = 4500/8/400 ms and (v) single-shot EPI for diffusion
weighted imaging: TR/TE = 8550/89.5 ms b-values: 0,1000,2000 s/
mm? 32 non-collinear directions; voxel size 2 x 2 x 2 mm?>. Both DIR
and PSIR were acquired with 46 contiguous 3-mm-thick slices with in-

Table 1
Clinical, demographic and conventional MRI data for the primary progressive multiple
sclerosis (PPMS) and healthy controls (HC) groups.

PPMS HC
Age (range, years) 50.8 (32-65) 51.1 (34-63)
Gender (M/F) 12/12 9/11
Disease duration (years) 9 *+ 438 -
Median EDSS (range) 4 (1.5-6) -
Normalized brain volume (mL) 1368.5 + 59.1 1434.1 + 53.6
Normalized grey matter volume (mL) 721.8 = 37.5 757.3 = 39.0
White matter T2 lesion volume (mL) 59 * 7.7 -
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plane reconstructed resolution of 0.5 mm X 0.5 mm.

2.3. MRI analysis

Cortical lesions were identified according to published criteria, on
PSIR images using DIR and T1 images as reference (Sethi et al., 2013). A
single observer blinded to clinical information and subject's identity,
under the supervision of a senior investigator performed all the lesion
loads. Intracortical (IC) lesions were defined as lesions that were con-
fined to the cortex, while lesions that involved both cortex and juxta-
cortical white matter (WM) were identified as leucocortical lesions
(LC). Juxtacortical lesions (JC) were differentiated from LC lesions
based on preservation of normal cortical contour and absence of cor-
tical involvement. Particular care was paid to exclude cortical vessels,
Virchow Robin spaces and artefacts. JC lesions, involving only WM,
were not included in further analysis, while LC and IC lesion volumes
were summed to quantify total cortical lesion volume. WM lesions were
identified on PD/T2 sequences and were then co-registered to diffusion
data using a linear transformation. All lesions were marked using Jim
version 6 (Xinapse Systems, Northants, England), using a semi-auto-
mated edge-finding tool based on local thresholding technique. FDT,
included in the FSL toolbox, was used to perform eddy-current cor-
rection on diffusion data and to fit the diffusion tensor (Smith et al.,
2004). Mean diffusivity (MD) NAWM maps were created excluding WM
lesions and a 2 mm-thick peri-lesional rim as previously described (Liu
et al.,, 2015). Mean diffusivity (MD) NAWM maps were created ex-
cluding WM lesions ). Skeletonized NAWM MD maps, normalized to a
common space, were then computed using the TBSS pipeline (Smith
et al., 2006). In each skeletonized NAWM MD map, those supra-ten-
torial voxels with a distance from the lateral ventricles between 2 and
6 mm were included in the periventricular NAWM mask while those
voxels of skeletonized WM with a distance from the lateral ventricles
between 6 and 10 mm were included in the deep NAWM mask. Thus all
NAWM voxels with a distance from the ventricles > 10 mm were not
included neither in the periventricular NAWM mask nor in the deep
NAWM mask (Fig. 1). For these two regions, both mean MD and per-
centage of lesioned WM were computed. Moreover, whole brain nor-
malized grey matter (nGMV) volume and normalized brain volume
(nBV), were computed using Sienax (Smith et al., 2002) on lesion-filled
volumetric T1 images.

Lastly, cortical thickness was measured with the Freesurfer (version
v5.3.0) pipeline using lesion-filled volumetric T1 images. After
Freesurfer analysis, all images were reviewed by two experienced op-
erators.

2.4. Confirmatory analysis: FA data

Using the same pipeline described above, we also computed mean
FA both in the skeletonized periventricular NAWM mask and the ske-
letonized periventricular NAWM mask. To take into account the re-
gional differences in WM architecture, which could impact on FA va-
lues, we used control data to convert raw FA values to z scores using the
following  formula  (FA_patient mean_FA_control_group)/
standard_deviation_FA_control_group.

2.5. Confirmatory analysis: Deep NAWM parcellation from the cortical
ribbon inward

Lastly, we decided to confirm our findings using an alternative ap-
proach to create the deep NAWM mask, to try to accommodate for the
convoluted architecture of the cortex. Firstly, we computed the distance
from the cortical grey matter of all supratentorial voxels not previously
included in the periventricular mask, and then included in the deep
NAWM mask those voxels included in the farthest 4 mm from the cortex
(in line with the previous parcellation in 4 mm-wide regions).
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Fig. 1. Periventricular (represented in light grey) and deep (represented in dark grey)
WM masks.

2.6. Statistical analysis

Independent-samples t-tests and paired-sample t-tests were used to
compare NAWM MD values between PPMS subjects and controls and, in
the PPMS group, between periventricular and deep NAWM.

Associations between cortical lesion load and tissue abnormalities
were assessed with Pearson's correlations. Three subjects, for whom no
cortical lesions were reliably identified, were excluded from the main
correlation analyses only, however their inclusion in confirmatory
analyses did not lead to significant changes in the results. Confirmatory
analyses correcting for whole brain WM lesion load, nBV and nGMV
were also performed using a partial correlations approach. Statistical
significance was set at p < 0.05, uncorrected. However for all non-
confirmatory analyses, we also computed pFDR-corrected values based
on the Benjamini-Hochberg methods. Statistical analysis was run with
SPSS software version 20.0 (SPSS Inc., Chicago, IL, USA).

2.7. Ethics

Written informed consent was obtained from all participants ac-
cording to the Declaration of Helsinki. The protocol was approved by
the Institutional Review Board of the Icahn School of Medicine at
Mount Sinai.

3. Results
3.1. Evaluation of periventricular NAWM abnormalities

Compared to controls, PPMS subjects had higher MD values in
periventricular (0.75 + 0.06 mm®/1073 vs 0.83 + 0.09 mm®/
10~ 3, p = 0.01, pFDR (corrected multiple comparisons) = 0.03) and
deep NAWM regions (0.73 = 0.05mm®/10" 3 Vs
0.77 + 0.06 mm>®/10~ 3 p = 0.01, pFDR (corrected multiple com-
parisons) = 0.03)). Moreover, in the PPMS group, MD values were
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Fig. 2. Correlations between cortical lesion load and periventricular NAWM MD values
(panel A), and deep NAWM MD values (panel B). All data refer to primary progressive
multiple sclerosis (PPMS) subjects. PPMS subjects (n = 3) without clearly evident cortical
lesions were not included in these graphs.

significantly higher in periventricular than deep NAWM (t = 3.43,
p = 0.002, pFDR (corrected multiple comparisons) = 0.01)).

3.2. Association between periventricular abnormalities and cortical lesion
volume

A significant, direct correlation was observed between periven-
tricullar NAWM MD values and cortical lesion volume in the PPMS
group (r = 0.65 p = 0.001, pFDR (corrected multiple comparisons) <
0.01); Fig. 2-A), conversely there was no association between peri-
ventricular WM lesion load (percentage of lesioned WM: 5.3% = 5.9)
and cortical lesion volume (r = —0.18, p = 0.43). Correction with
whole brain WM lesion load, nBV or nGMV did not significantly alter
the results.

3.3. Association between deep white matter abnormalities and cortical
lesion volume

There was no association between deep NAWM MD values and
cortical lesion volume in the PPMS group (r = 0.14, p = 0.54, Fig. 2-
B), nor between deep WM lesion load and cortical lesion volume
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(r = —0.11, p = 0.59).
3.4. Association between periventricular and deep WM measures and
cortical thickness

There was no association between cortical thickness (mean thick-
ness 2,5 *+ 0,3 mm) and periventricular or deep NAWM MD values in
the PPMS group (r = —0.17, p = 0.473, r = — 0.04, p = 0.875).
Cortical thickness did not correlate with periventricular and deep WM
lesion load (r = —0.20, p = 0.320, r = —0.18, p = 0.379), or with
whole brain WM lesion load (r = —0.19, p = 0.363). Whole brain WM
lesion load correlated with cortical lesions (r = 0.52, p = 0.02, pFDR
(corrected multiple comparisons) = 0.06)), this correlation, however,
did not survive an FDR-correction for multiple comparison.

3.5. Confirmatory analysis: FA

In the PPMS group z-scores converted FA data were significantly
lower in the periventricular than deep NAWM (—0.97 + 0.3 vs.
-0.79 = 0.4, p = 0.003). The correlation between z-converted FA va-
lues and cortical lesion load was significant taking into account peri-
ventricular NAWM (r = —0.56 p = 0.003), but not deep NAWM
(p = 0.43).

3.6. Confirmatory analysis: Deep NAWM parcellation from the cortical
ribbon inward

Using the confirmatory parcellation of deep NAWM, there was no
association between deep NAWM MD values and cortical lesion volume
(r = 0.16, p = 0.50), nor between deep WM lesion load and cortical
lesion volume (r = — 0.14, p = 0.48).

4. Discussion

In this work, we showed that cortical lesions load was positively
associated with periventricular NAWM abnormalities, but not with
deep NAWM alterations nor with periventricular WM lesion load. These
findings suggest that, at least in PPMS, cortical lesions accrual could
share a common pathophysiological mechanism with periventricular
NAWM abnormalities development but not with WM lesion formation
or with deep NAWM alterations.

WM lesions nearly always form around veins and while some GM
lesions also appear to do so, subpial cortical GM lesions (the most
abundant type of GM lesion in progressive MS) do not follow the same
pattern (Bo et al., 2003), and have instead been linked with overlying
meningeal inflammation (Choi et al., 2012). The absence of a clear
association between cortical and WM lesion loads could be due to the
different roles played by veins in cortical and WM lesions formation and
by the high density of veins in the periventricular region. This finding is
in line with previous work on relapse-onset MS (Pardini et al., 2016),
where it was showed that NAWM alterations, but not WM lesion den-
sity, were consistently inversely proportional to the distance from the
tissue/CSF boundary.

The pathological bases of gradients in periventricular NAWM ab-
normalities, observed in people with relapse-onset MS (Liu et al., 2015;
Pardini et al., 2016) and with clinically isolated syndrome (Brown
et al., 2017) is unknown, and speculation on possible mechanisms that
may link NAWM abnormalities and cortical lesions is therefore difficult.
From an anatomical point of view, proximity of cortical lesions and
periventricular NAWM abnormalities to the surface of the brain raises
the possibility of a common factor surrounding the brain being relevant.
While meningeal inflammatory changes have been observed in MS, and
linked with demyelination and neuronal loss in underlying cortical GM,
(Bo et al., 2003; Choi et al., 2012) ependymal abnormalities described
as ‘granular ependymitis’ have only been seen in one study (Adams
et al., 1987). Proximity to CSF could also offer a possible explanation
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for our findings, as there is in vitro evidence that CSF in MS is neuro-
toxic (Vidaurre et al., 2014).

The lack of correlation between periventricular damage and cortical
thickness, on the other hand, is not in line with a previous study on
RRMS and CIS subjects, where an association between cortical thickness
and periventricular lesions was observed (Jehna et al., 2015). Com-
pared to the RRMS/CIS subjects, however, our patients probably pre-
sent with more marked structural alterations, together with a longer
disease duration. Moreover our patient group was smaller when com-
pared to the aforementioned RRMS/CIS study, even if probably less
heterogeneous. Future studies are needed to shed more light on the
possible differences in the association between cortical thickness and
white matter lesions across the different disease subtypes.

To try to reduce partial volume effects from CSF and WM lesions, we
excluded all WM voxels within 2 mm of the ventricles or WM lesions.
However, as periventricular NAWM abnormalities are more marked
close to the ventricles, it is likely that this will have reduced sensitivity
to periventricular NAWM abnormalities and lead us to underestimate
the strength of associations with cortical lesions. Moreover, to control
for a possible confounding effect due to inter-subject differences in
ventricular volume, we used a non-linear registration to a common
space, included in the TBSS pipeline, and we verified that correcting for
nBV did not significantly change the results.

Multiple correlations have been undertaken, and so it is possible
that some of the associations found may be spurious, however the
correlation between periventricular NAWM abnormalities and cortical
lesion load would survive a Bonferroni correction, if applied, and all
key results survive a FDR-correction for multiple comparisons. In ad-
dition, the moderate sample size counsels caution when seeking to
generalise the present findings, which however, are consistent with
recent observations in relapse onset MS.

In conclusion, our findings suggest that there is an association be-
tween cortical lesion load and periventricular NAWM abnormalities,
and so potentially a shared factor contributes to these two facets of MS
pathology in PPMS.

Disclosures

Dr. Pardini received research support from Novartis. Drs Petracca,
Harel, Fleysher, Oesingmann, Bommarito and Fabian have nothing to
disclose. Dr. Chard has received honoraria (paid to his employer) from
Ismar Healthcare NV, Swiss MS Society, Excemed (previously Serono
Symposia International Foundation), Merck, Bayer and Teva for faculty-
led education work; Teva for advisory board work; meeting expenses
from Merck, Teva, Novartis, the MS Trust and National MS Society; and
has previously held stock in GlaxoSmithKline. Dr. Lublin sources of
funding for research include: Acorda Therapeutics, Inc.; Biogen Idec;
Novartis Pharmaceuticals Corp; Teva Neuroscience, Inc.; Genzyme;
Sanofi; Celgene; NIH; NMSS; Consulting Agreements/Advisory Boards/
DSMB: Bayer HealthCare Pharmaceuticals; Biogen Idec; EMD Serono,
Inc.; Novartis; Teva Neuroscience; Actelion; Sanofi-Aventis; Acorda;
Questcor; Roche, Genentech; Celgene; Johnson & Johnson; Revalesio;
Coronado Bioscience, Genzyme, MedImmune; Bristol-Myers Squibb,
Xenoport, Receptos; Forward Pharma; Co-Chief Editor: Multiple
Sclerosis and Related Diseases; Stock Ownership: Cognition
Pharmaceuticals, Inc. Dr. Inglese has received research grants from
NIH, NMSS, Novartis Pharmaceuticals Corp., and Teva Neuroscience
and is a consultant to Vaccinex Inc.

Contributorship statement

M. Pa. and M.I. designed the study. M.Pe, A.H., L.F., N.O.,M.F.,
contributed to data acquisition. M.Pa. ran the statistical analysis and
takes full responsibility for the results. All authors contributed to the
planning of the statistical analysis, the interpretation of the results, the
preparation and the critical revision of the manuscript. All authors



M. Pardini et al.

approved the manuscript. M.I. coordinated the study.
Acknowledgments

This study was supported in part by Novartis Pharmaceuticals
(CFTY20DUSNC15T), National Multiple Sclerosis Society (NMSS RG
5120A3/1) and the Noto Foundation to MI and by a research fellowship
from Fondazione Italiana Sclerosi Multipla (2013/B/7) to Dr. Petracca.

References

Adams, C.W., Abdulla, Y.H., Torres, E.M., et al., 1987. Periventricular lesions in multiple
sclerosis: their perivenous origin and relationship to granular ependymitis.
Neuropathol. Appl. Neurobiol. 13 (2), 141-152.

Bo, L., Vedeler, C.A., Nyland, H.L, et al., 2003. Subpial demyelination in the cerebral
cortex of multiple sclerosis patients. J. Neuropathol. Exp. Neurol. 62 (7), 723-732.

Brown, J.W., Pardini, M., Brownlee, W.J., et al., 2017. An abnormal periventricular
magnetization transfer ratio gradient occurs early in multiple sclerosis. Brain 140 (Pt
2), 387-398. http://dx.doi.org/10.1093/brain/aww296.

Brownell, B., Hughes, J.T., 1962. The distribution of plaques in the cerebrum in multiple
sclerosis. J. Neurol. Neurosurg. Psychiatry 25, 315-320.

Calabrese, M., Rocca, M.A., Atzori, M., et al., 2010. A 3-year magnetic resonance imaging
study of cortical lesions in relapse-onset multiple sclerosis. Ann. Neurol. 67 (3),
376-383. http://dx.doi.org/10.1002/ana.21906.

Choi, S.R., Howell, O.W., Carassiti, D., et al., 2012. Meningeal inflammation plays a role
in the pathology of primary progressive multiple sclerosis. Brain 135 (Pt 10),

Neurolmage: Clinical 16 (2017) 111-115

2925-2937. http://dx.doi.org/10.1093/brain/aws189.

Jehna, M., Pirpamer, L., Khalil, M., et al., 2015. Periventricular lesions correlate with
cortical thinning in multiple sclerosis. Ann. Neurol. 78 (4), 530-539. http://dx.doi.
org/10.1002/ana.24461.

Liu, Z., Pardini, M., Yaldizli, O., et al., 2015. Magnetization transfer ratio measures in
normal-appearing white matter show periventricular gradient abnormalities in
multiple sclerosis. Brain 138 (Pt 5), 1239-1246. http://dx.doi.org/10.1093/brain/
awv065.

Pardini, M., Sudre, C.H., Prados, F., et al., 2016. Relationship of grey and white matter
abnormalities with distance from the surface of the brain in multiple sclerosis. J.
Neurol. Neurosurg. Psychiatry 87 (11), 1212-1217. http://dx.doi.org/10.1136/jnnp-
2016-313979.

Petracca, M., Cordano, C., Cellerino, M., et al., 2017. Retinal degeneration in primary-
progressive multiple sclerosis: a role for cortical lesions? Mult. Scler. 23 (1), 43-50.
http://dx.doi.org/10.1177/1352458516637679.

Sethi, V., Muhlert, N., Ron, M., et al., 2013. MS cortical lesions on DIR: not quite what
they seem? PLoS One 8 (11), e78879. http://dx.doi.org/10.1371/journal.pone.
0078879.

Smith, S.M., Zhang, Y., Jenkinson, M., et al., 2002. Accurate, robust, and automated
longitudinal and cross-sectional brain change analysis. Neurolmage 17 (1), 479-489.

Smith, S.M., Jenkinson, M., Woolrich, M.W., et al., 2004. Advances in functional and
structural MR image analysis and implementation as FSL. NeuroImage 23 (Suppl. 1),
S$208-S219. http://dx.doi.org/10.1016/j.neuroimage.2004.07.051.

Smith, S.M., Jenkinson, M., Johansen-Berg, H., et al., 2006. Tract-based spatial statistics:
voxelwise analysis of multi-subject diffusion data. Neurolmage 31 (4), 1487-1505.
http://dx.doi.org/10.1016/j.neuroimage.2006.02.024.

Vidaurre, O.G., Haines, J.D., Katz Sand, I., et al., 2014. Cerebrospinal fluid ceramides
from patients with multiple sclerosis impair neuronal bioenergetics. Brain 137 (Pt 8),
2271-2286. http://dx.doi.org/10.1093/brain/awul39.


http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0005
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0010
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0010
http://dx.doi.org/10.1093/brain/aww296
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0020
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0020
http://dx.doi.org/10.1002/ana.21906
http://dx.doi.org/10.1093/brain/aws189
http://dx.doi.org/10.1002/ana.24461
http://dx.doi.org/10.1002/ana.24461
http://dx.doi.org/10.1093/brain/awv065
http://dx.doi.org/10.1093/brain/awv065
http://dx.doi.org/10.1136/jnnp-2016-313979
http://dx.doi.org/10.1136/jnnp-2016-313979
http://dx.doi.org/10.1177/1352458516637679
http://dx.doi.org/10.1371/journal.pone.0078879
http://dx.doi.org/10.1371/journal.pone.0078879
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0060
http://refhub.elsevier.com/S2213-1582(17)30166-3/rf0060
http://dx.doi.org/10.1016/j.neuroimage.2004.07.051
http://dx.doi.org/10.1016/j.neuroimage.2006.02.024
http://dx.doi.org/10.1093/brain/awu139

	The relationship between cortical lesions and periventricular NAWM abnormalities suggests a shared mechanism of injury in primary-progressive MS
	Introduction
	Methods
	Subject selection
	MRI acquisition
	MRI analysis
	Confirmatory analysis: FA data
	Confirmatory analysis: Deep NAWM parcellation from the cortical ribbon inward
	Statistical analysis
	Ethics

	Results
	Evaluation of periventricular NAWM abnormalities
	Association between periventricular abnormalities and cortical lesion volume
	Association between deep white matter abnormalities and cortical lesion volume
	Association between periventricular and deep WM measures and cortical thickness
	Confirmatory analysis: FA
	Confirmatory analysis: Deep NAWM parcellation from the cortical ribbon inward

	Discussion
	Disclosures
	Contributorship statement
	Acknowledgments
	References




