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Abstract

We present a detailed response to Professor Pernicka’s critique of our paper entitled “Iridium to

provenance ancient silver”. We have concluded that Pernicka’s hypothesis, which suggests that

elevated levels of iridium in ancient silver artefacts is a consequence of silver deriving from the

cementation (parting) process, does not account for the available evidence and that his critiques of

the analyses we presented seem misplaced. We offer a simpler solution and show that the structure

of our transformed data is founded on logical reasoning which is borne out by the empirical results.

Essentially, this response supports our view reported in the original paper that the variation in

iridium in ancient silver is largely geological rather than a consequence of de-silvering gold.
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Introduction

We realise that our paper “Iridium to provenance ancient silver” offers new ideas that need

discussion and we are very grateful to Professor Pernicka for his critical insight. In fact, we are

pleased that our assessment of data which has been in the archaeological literature for about 30

years, has prompted him to re-evaluate his position on iridium and the significance of gold parting

more explicitly than in his recent review articles on provenancing of ancient silver and gold

(Pernicka, 2014a; Pernicka, 2014b).



At its core, our paper is an empirical reassessment of some of the compositional data in the

literature where iridium was reported. Our aim was to show that there is structured variation in the

gold and iridium levels in ancient silver which can, with due critical consideration, be used to

investigate the provenance of the silver. We are very grateful for Pernicka’s detailed geological

analysis of platinum group elements (PGE), and we recognise its merit. However, what our reanalysis

of the legacy data shows is that both gold and iridium are useful for discriminating silver objects,

regardless of the mechanism – and this is unchallenged by his comment.

Iridium and gold-silver parting

Pernicka has attempted to explain some of the iridium concentrations we presented as a

consequence of argentiferous gold being de-silvered using the cementation parting process that was

initiated at Sardis, the Lydian capital, in the sixth century BC. In his view, the only way to explain high

iridium levels in archaeological silver would be as a result of contamination from the gold during this

reaction, by (partial) chlorination of the iridium and subsequent deposition in the cement together

with the silver chloride. This is an interesting proposal and Pernicka may be correct, but his

hypothesis is at present unsubstantiated by the data, and it makes more assumptions than ours. The

initial discussion of the NAA elemental analyses conducted on the silver from Sardis maintained that

the silver most likely derived from cerussite ores in Anatolia and stated explicitly: “silver metal could

in theory have been recovered from the cementation process… However, there is no evidence either

directly or from archaeological finds or literary sources or indirectly from elemental compositions of

Anatolian silver, that silver was produced in this manner” (Meyers, 1983: 188). The evidence

subsequently presented by Ramage and Craddock (2000) showed that parting did take place, and

highlighted that the main evidence for recovery of silver from parting vessels and furnace fragments

were the numerous small hollows scooped in the dust at the site, some of which had high lead in the

clay linings (Craddock, 2000a: 208-209). We are not saying that silver recovery from parting vessels

did not happen in antiquity, but we are questioning whether the evidence supports its existence at



the scale required by Pernicka to supply the corpus of Byzantine and Sasanian silver we reanalysed.

The reason we focus on Sardis in this reply is that silver recovered there is potentially recovered

from parted gold (which is why we excluded it from our reanalysis), and gold and iridium data are

available (Meyers, 1983). Thus, we can use this silver to evaluate Pernicka’s hypothesis.

Let us start with some implications of Pernicka’s hypothesis as they relate to mining activity, the

composition of silver, and technological trajectories. As we noted in our Table 1 (Wood et al., 2017),

75% of our Near Eastern silver group has elevated iridium levels. If we believe Pernicka’s claim that

all of this silver was generated by parting, then it would follow that only the remaining 25% of Near

Eastern silver was produced by mining (even less if we adopt his suggestion of 33ppb Ir as the cut

off, rather than our median value of 44ppb). Considering that there is three times as much gold than

silver in alluvial gold, but that silver is a much more common metal than gold, this seems a lot of

silver coming from parting compared to mining, and such intensity should leave an observable

archaeological trace.

Furthermore, Pernicka claims that silver obtained from the parting process “should contain in the

order of 1% gold”. If we assume that the nine Sardis silver objects analysed (eleven measures in

total) derive from cementation parting, it is worth noting that they have only moderately high levels

of gold (mean=0.26 wt%, s=0.14), i.e. lower than the gold levels of the Sasanian and Byzantine silver

(mean=0.6 wt%, s=0.17) and well below Pernicka’s indicative figure. This would imply that the

parting process was less efficient in later periods than at its inception. While possible, this pattern

suggests a trend opposite to most technological systems and requires an alternative sociocultural

explanation. For now, we believe our hypothesis of a unique, as yet unidentified Ir-rich silver deposit

offers a more elegant and parsimonious explanation of the observed phenomenon.

Pernicka correctly points out that the lead isotope analysis (LIA) signature from silver recovered from

parting vessels would be influenced by exogenous lead used in the process. As far as we know, no

LIA analyses have been conducted on the Sardis silver, so it is not possible to determine whether



there are any mixing lines (as we have done using Pb crustal ages and the iridium concentrations of

the silver objects in our paper, which we attributed to exogenous lead during smelting). The iridium

range for silver objects at Sardis analysed is between 0.78ppb-280ppb, providing a wide spread of

data which lays below the Sasanian objects in the log-ratio plot (Figure 1, below). If Pernicka’s

interpretation is correct that the iridium is enriched together with silver in the cementation material,

then the spread of iridium values would presumably be due to variations in the amount of iridium

forming a chloride during cementation and ending up as traces in the silver. Without more data or

an understanding of how iridium partitions during cementation, this is difficult to ascertain.

However, the evidence currently available would seem to argue against his proposal. First, it is not

clear whether iridium would form a chloride under such conditions. According to Ogden (1977), PGE

inclusions in gold are not affected by the modern chlorination refining process, and experiments

suggest that only some inclusions are attacked by chlorine at temperatures over about 650oC.

However, iridium chloride decomposes to metal with continued heating (Leddicotte, 1961: 6) with a

decomposition temperature of 763oC or lower (Newkirk and McKee, 1968), i.e. below 800oC, the

holding temperature proposed by Pernicka for cementation. This suggests that conditions were not

favourable for iridium chloride to be stable during the cementation process, if it formed at all. In a

review of the behaviour of PGE inclusions in gold during parting, Craddock (2000: 239) noted that

these are largely unaffected by solid-state cementation, and cited iridium in particular as an element

whose presence decreased the susceptibility of PGE inclusions to halogen attack. As he notes, the

survival of iridium-rich PGE inclusions in Lydian coins made of refined gold corroborates the fact that

elements such as iridium would generally not be affected by salt cementation. In sum, while we

acknowledge the worth of Pernicka’s hypothesis, it seems unlikely that partitioning of iridium during

the cementation process would explain all the high iridium concentrations in archaeological silver. In

fact, high levels of iridium (up to 900ppb) and other PGE have been reported for South American

silver coins (Guerra, 2004), which derive from silver mines rather than de-silvered gold. We would



also like to highlight that high levels of gold have been found in Bronze Age silver thought to derive

from cerussite ores (e.g. Meyers, 2003: Table 3), i.e. predating the inception of cementation parting.

This leads us to maintain our view that variation in the iridium levels of ancient silver is in many

cases a consequence of geological variability of the ore from which the silver derived. Even if human

technological processes such as mixing may be at play and obscure these patterns, the evidence

makes it unlikely that iridium content is primarily a side-effect in silver recovered from cementation

parting.

Lead isotope data, log-ratios and correlations

Pernicka also takes issue with our use of Pb crustal ages based on lead isotope data, as it “does not

provide any additional information” (Pernicka 2017). It is perhaps necessary to reiterate the point

made in the original paper, where we clearly state that this approach “is not considered as a

replacement for traditional lead isotope plots (which may allow variability in specific ratios to

identify differences between objects and ores) but as an alternative that allows presenting on one

plot the variability within lead isotope measurements alongside trace element data.” (Wood et al.

2017:5). As a matter of fact, we use this not only in conjunction with elemental concentrations but

also with the traditional lead isotope plots that Pernicka favours (e.g. Wood et al. 2017: Figure 11).

Significantly, Pernicka uses the Orrescii coins as a case in point to argue the alleged flaws in our

approach, but he is compelled to concede that his conclusion is the same as ours: that the signature

of these coins is different from that of the Laurion ores (Wood et al. 2017: 6). If anything, the

agreement between his conclusion and ours validates our approach, with the advantage that ours

considers both isotopic and trace element data, as recommended by most studies on metal

provenance (e.g. Pernicka 2014a). To say it once again: we are not advocating the replacement of

traditional LIA plots. What we do argue is that using the crustal age on the same plot as

compositional data is a way to visualise patterns that may not be otherwise apparent, as

demonstrated in our paper.



We also appreciate that we could have used several parameters to represent the skewed

distribution of the iridium levels in our geographically and chronologically disparate data set. We

chose the median to represent the data because it is a more robust measure of central tendency

amongst skewed distributions and in the presence of outliers. Pernicka suggests using the log-scaled

distribution but he also rightly points out that it makes very little difference.

Perhaps more importantly, we believe Pernicka is wrong in his dismissal of our use of log-ratio plots

as a “flawed application of statistical packages”. His argument is that the correlations we observe in

ratios “are to be expected” and that “plotting the silver versus gold… will always result in a spurious

correlation” (Pernicka, 2017; his emphasis). He then refers to his Figure 2 (a plot of silver versus gold,

which is incorrectly captioned as double logarithmic), presumably as proof of this correlation.

Eyeballing this graph might lead one to the false impression that it does show a correlation, but a

more objective calculation of the correlation matrix shows that this is not the case. Tables 1 and 2

show correlation matrices of all the raw, transformed and ratio measures for the entire dataset and

for the Sasanian subset, respectively. They clearly demonstrate that there is no such correlation

between gold and silver. Conversely, elemental ratios and, especially, log-ratios, are strongly

correlated – i.e. exactly as we claim in our original article.

While the above demonstrates, in practice, the usefulness of our approach, in our paper we also lay

out the fundamental principles that justify its use: namely, that this plot is a way of handling the

constant sum constraint. The rationale has been made many times (e.g. Aitchison 1986) that the

resulting linear and clustering patterns (like the Sasanian Royal silver) are more meaningful, at least

with respect to provenance, than auto-correlated raw compositional data. Furthermore, as also

mentioned in our paper, a further reason for using log-ratios is that they deal with relative rather

than absolute magnitudes and variations of the components. We believe that this is a more

consistent way of dealing with compositional data, especially when it is highly unlikely that the

amounts of all components are known.



Two predictions derived from regionalised variable theory are: 1) that features of local geological

formation processes will be positively correlated with one another and; 2) the functions that define

the correlated phenomena will differ between locations as a consequence of varying geological

histories. We argue that the data which lies on lines on these log-ratio plots reflects this regionalised

tendency, i.e. silver from the same deposit. We appreciate that this may be debatable, but less so

than Pernicka’s claims. If most of the gold in the silver was “a remnant of the cementation process”

(Pernicka 2017), variations in the degree to which gold was purified (and, presumably, in the extent

to which iridium would contaminate the silver) would affect the log-ratio plot. We can again use the

Sardis data for illustrative purposes, assuming that it derives from parted silver (Figure 1): on the log-

ratio plot, this dataset appears scattered and does not lay on a particularly straight line; this raises

the question of why Sasanian data is relatively linear if most of it is also supposed to derive from

parted silver. In other words, we are not claiming that there is no parting in the silver we re-

analysed, but we question its prevalence and maintain that the variation in iridium levels is more

likely to be geological, even though the mechanism for its enrichment in the silver metal is

unspecified.

Concluding remarks

Overall, we really appreciate that Pernicka has taken time to re-evaluate our reanalysis of the

iridium data from the archaeological literature. We tend to side with the view in our paper, that the

variation in iridium is largely geological rather than a consequence of de-silvering gold, and that it

can be useful as a complementary proxy for provenancing. Pernicka’s attempt to find a metallurgical

mechanism to explain the elevated gold and iridium levels in Sasanian and Byzantine silver is worthy

of further consideration, and it should warrant additional research. We are very happy that we have

contributed to providing a forum for this open exchange of ideas.



Figure 1 Log-ratio plot showing the compositional data from the Sasanian silver (Harper and Meyers,

1981) and the silver recovered at Sardis (Meyers, 1983).



Ag Au Ir Ag/Ir Au/Ir log (Ag) log (Au) log (Ir) log (Ag/Ir) log (Au/Ir)

Ag 1.00 0.07 -0.08 0.09 0.17 1.00 0.04 -0.12 0.17 0.17

Au 0.07 1.00 0.34 -0.45 -0.14 0.08 0.86 0.50 -0.49 -0.19

Ir -0.08 0.34 1.00 -0.21 -0.27 -0.07 0.27 0.69 -0.69 -0.70

Ag/Ir 0.09 -0.45 -0.21 1.00 0.61 0.08 -0.66 -0.69 0.69 0.51

Au/Ir 0.17 -0.14 -0.27 0.61 1.00 0.15 -0.14 -0.68 0.68 0.75

log (Ag) 1.00 0.08 -0.07 0.08 0.15 1.00 0.04 -0.11 0.15 0.15

log (Au) 0.04 0.86 0.27 -0.66 -0.14 0.04 1.00 0.58 -0.58 -0.22

log (Ir) -0.12 0.50 0.69 -0.69 -0.68 -0.11 0.58 1.00 -1.00 -0.92

log (Ag/Ir) 0.17 -0.49 -0.69 0.69 0.68 0.15 -0.58 -1.00 1.00 0.92

log (Au/Ir) 0.17 -0.19 -0.70 0.51 0.75 0.15 -0.22 -0.92 0.92 1.00

Table 1. Correlation matrix for Ag, Au, Ir and relevant ratios and log-ratios for the entire dataset used
in Wood et al. (2017). Correlation coefficients ≥0.65 are highlighted. 

Ag Au Ir Ag/Ir Au/Ir log (Ag) log (Au) log (Ir) log (Ag/Ir) log (Au/Ir)

Ag 1.00 0.25 -0.31 0.27 0.26 1.00 0.21 -0.29 0.35 0.34

Au 0.25 1.00 0.21 -0.05 0.07 0.27 0.97 0.23 -0.21 -0.05

Ir -0.31 0.21 1.00 -0.43 -0.41 -0.28 0.23 0.79 -0.80 -0.77

Ag/Ir 0.27 -0.05 -0.43 1.00 0.97 0.24 -0.06 -0.80 0.80 0.81

Au/Ir 0.26 0.07 -0.41 0.97 1.00 0.23 0.06 -0.78 0.78 0.81

log (Ag) 1.00 0.27 -0.28 0.24 0.23 1.00 0.23 -0.26 0.32 0.31

log (Au) 0.21 0.97 0.23 -0.06 0.06 0.23 1.00 0.24 -0.22 -0.06

log (Ir) -0.29 0.23 0.79 -0.80 -0.78 -0.26 0.24 1.00 -1.00 -0.98

log (Ag/Ir) 0.35 -0.21 -0.80 0.80 0.78 0.32 -0.22 -1.00 1.00 0.98

log (Au/Ir) 0.34 -0.05 -0.77 0.81 0.81 0.31 -0.06 -0.98 0.98 1.00

Table 2. Correlation matrix for Ag, Au, Ir and relevant ratios and log-ratios for the Sasanian silver
data used in Wood et al. (2017). Correlation coefficients ≥0.65 are highlighted. 
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