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Abstract 

		Degradable phosphate-based glasses that contain strontium, zinc and calcium were 

investigated to examine its function as an osteoconductive material. Glass beads of the 

general formula of (P2O5)–(Na2O)–(TiO2)–(CaO)–(SrO) or (ZnO) were prepared by 

melt quench technique followed by milling and spheroidisation. Glass bead size 

distribution was initially measured by SEM. Then, some of these samples were 

immersed in deionized water to evaluate both the surface changes and measure the ion 

release rate, whereas other glass beads samples were incubated in culture media to 

determine pH changes. Furthermore, human osteoblast-like osteosarcoma cells MG-63 

and human mesenchymal stem cells were seeded on the glass beads to determine its 

cytocompatibility via applying CCK assay, ALP assay and Ca assay. SEM images and 

fluorescence images of confocal microscopy were performed for the cellular studies. 

While mass degradation and ion release results displayed a significant increase with 

zinc and strontium incorporation within time, pH results showed an initial increase in 

pH followed by a decrease. Cellular studies emphasised that all formulations enhanced 

cellular proliferation. Phosphate glass with zinc content 5 mol% and strontium content 

of 17.5 mol%, (ZnO5) and SrO17.5 respectively, displayed more promising results 

although they were insignificantly different from that of control (p>0.05). This may 

suggest their applicability in hard tissue engineering.  
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Introduction 

    Nowadays the high rate of bone fractures, as a result of pathological bone diseases 

and trauma, necessitates an effort to create a new generation of biomaterials for bone 

tissue regeneration. In fact, there are various treatment options for bone defects, which 

vary from conservative therapy to radical orthopedic surgeries. The latter may require 

the use of bone grafts, mainly autogenous graft. This may associate with much 

morbidity such as blood loss, pain and sepsis. This pushed to develop other options of 

synthetic grafts to reduce such side effects (1). Phosphate-based glass is one of these 

synthetic options that studied as osteoconductive biomaterials for bone treatment 

application. This may be related to its degradable nature and ion releasing that may 

have a positive role not only on bone growth but also on bone cell responses (2). 

Various studies were carried out on different phosphate glass systems starting from the 

basic tertiary glass and ending in the complex glass structure. Studies on the former 

were limited only to the (P2O-CaO-Na2O) system and most of these were basically on 

glass discs, and these studies showed that calcium oxide incorporation can decrease 

glass degradation rate (3, 4). The more advanced glass systems (P2O5–SiO2–CaO–

MgO–Na2O–K2O) were investigated also where phosphate glass was produced in 

highly porous form scaffold that was resembling the cancellous bone. These scaffolds 

exhibited acceptable metabolic activity for hMSCs (5).Other attempts used different 

technique in the production of multi metal oxides (P2O-CaO-Na2O-K2O) phosphate 

glass scaffold. These produced scaffolds believed to have both  the biodegradation and 

bioactivity properties(6). However, all these varieties in glass composition may lead to 

different glass degradation rates. Hence further attempts were carried out to produce a 

glass composition with the optimum degradation rate. Multiple important studies were 

performed for achieving this purpose by adding titanium dioxide to glass composition; 

this resulted in lower degradation rates and better cytocompatibility (7, 8). The addition 

of various proportions of both zinc and strontium to the tertiary phosphate glass was 

also studied. It was found in previous study that compensating (0-10 mol %) of CaO 

with ZnO did not have any significant effect on mass loss in comparison with >10 mol% 

replacement of CaO of which it had a higher mass loss (9). As a result of this mass loss, 

zinc release was enhanced giving rise to a decrease in biocompatibility of these 

particular glasses (10). Other experiments aimed to determine the effect of inclusion of 

strontium in phosphate glasses taking into consideration that strontium has a well-

known role in bone tissue growth and bone density enhancement (11). One of these 



experiments investigated the physical and biological properties of different strontium 

silicate glasses (SiO2)46.5–(P2O5)1–(Na2O)26.4–(CaO)(23.1-x) –(SrO)x (x= 0, 2.3, 11.5 or 

23.1) (mol%) and revealed that increasing strontium may improve cell proliferation and 

enhance the anabolic activity of alkaline phosphatase (ALP) in Saos-2 osteoblast like 

cells. This may be due to the fact that strontium has a dual action of preventing 

resorption of calcium phosphate by the osteoclasts cells and decreasing phosphatase 

protein activity (12). These results were further confirmed by the addition of strontium 

to borate–based glasses which enhanced both glass degradation and formation of an 

apatite layer encouraging Saos-2 osteoblast like cells to adhere to the glass surface (13). 

Another trial investigated the addition of strontium to phosphate based glass discs in 

different percentages (P2O5)–(Na2O)–(CaO)–(SrO) and found that strontium additives 

can lead to enhancement in degradation more than that of strontium free glass discs. It 

can also give a slightly positive outcome in regards to cell culture (14). Later on, other 

attempts were performed to investigate quaternary strontium phosphate glasses which 

involved the development of four different compositions (P2O)50-(TiO2)3-(Na2O)17-

(CaO)(30-x)-(SrO)x (x=0,1,3,5) and showed that despite the rise of degradation rate as 

strontium oxide increased, cell proliferation of MG63 cells was not affected  and 

showed no significant differences compared to SrO0 and SrO5 (15).  Two recent studies 

examined four different compositions of both strontium and zinc based phosphate 

glasses and revealed that SrO17.5 and SrO35 were suitable for MG63 cells growth, 

whereas ZnO15 showed a degree of cytotoxicity in comparison to both ZnO5 and 

ZnO10 as both of them exhibited acceptable results of biocompatibility and metabolic 

activity (16, 17). Although these have shown some cellular promising results of adding 

zinc and strontium to phosphate glass, they were only performed on glass discs, as a 

primary step toward creating scaffolds, as they did not have the full requirements of a 

scaffold. The main aim of this study was to develop glass in a more useful format i.e. 

glass beads, of previous compositions that had clinical potential in addition to further 

assessment of these compositions aiming to apply phosphate glasses in clinical related 

bone repair treatment. 

 

 

 

 



Materials and methods 

Glass preparation  

   Four different compositions of phosphate glass beads were developed to check their 

cellular biocompatibility and the ability of cells to both penetrate through and adhere 

to them. This was performed using the following precursors: phosphorus pentoxide 

(P2O5 98%, VWR, Lutterworth, UK), sodium dihydrogen phosphate (NaH2PO4, 99%, 

VWR), titanium dioxide (TiO2, 99%, VWR), calcium carbonate (CaCO3, 98.5%, 

VWR), strontium carbonate (SrCO3, 99.9% Sigma-Aldrich Gillingham, UK) and zinc 

oxide (ZnO, 99.95%, Sigma-Aldrich Gillingham, UK). The glass compositions were 

spitted into zinc and strontium groups. While zinc group was 50 P2O5 - 10Na2O - 5TiO2 

– (35-x) CaO – x ZnO   (mol %) where x (zinc oxide) was 5% mol and 10% mol, 

strontium was 50 P2O5 - 10Na2O - 5TiO2 – (35-x) CaO – x where x (strontium oxide) 

was 17.5% mol and 35% mol.  Electronic balance (Sartorius) was used for weighing 

precursors powder (Table 1) followed by blending using Stomacher 400 

blender/Seward. Following mixing of the precursors, the mixture was then placed into 

a 200 ml volume Pt/10%Rh crucible type 71040 (Johnson Matthey, Royston, UK) 

which was subsequently placed in a furnace (Carbolite) at 1350oC for four hours, then 

the melted glass was quenched on metal plate. The quenched glass was broken into 

small pieces then further milled by (MM 301 Mixer Mill, Retsch GmbH and Hope, 

UK). Afterwards, glass beads were produced by flame spheriodisation apparatus 

following the method performed previously by Lakhkar et al (8) and were collected in 

4 different glass containers which were primarily visualised under light microscope to 

confirm their production. 

 phosphate glass composition 

Glass name and composition   Amount (grams) 

P2O5 Na2O TiO2 CaO Sr ZnO 
SrO17.5% P50Na10Ti5Ca17.5Sr17.5 56.8 24 4 17.5 25.8 0 

SrO35% P50Na10Ti5Sr35 56.8 24 4 0 51.6 0 

ZnO10% P50Na10Ti5Ca25Zn10 56.8 24 4 25   0 8.14 

ZnO15% P50Na10Ti5Ca20Zn15 56.8 24 4 20   0 12.21 

	

Table 1:  phosphate glass beads composition	



XRD. 

 The next step after glass preparation was evaluation of glass structure crystallinity by 

using x-ray diffractometer XRD (D8 Advance Diffractometer,Bruker, Coventry, UK) 

to ensure that our sample were not crystalised. Specimens of all glass powder were 

positioned in a flat plate geometry, and Ni-filtered Cu Ka radiation was used. Data were 

collected using a Lynx Eye detector with a step size of 0.02o over an angular range of 

2θ=10–100o and a count time of 12 seconds.  

Glass Beads distribution 

  About 50 mg was taken from each of the synthesized glass beads; this was distributed 

on sticky dark tabs which were placed on an SEM stub for particle size measurement. 

The powder was slightly blown by compressed air to ensure its retention on the dark 

tabs. Following this, coating with gold and visualization under scanning electron 

microscope (SEM) (Philips XL30 FEGSEM) was performed. Five SEM images were 

chosen from various sites from stub (center, left, right, up and down), the diameter size 

in microns for each bead was determined using Saturn software to measure the 

frequency distribution of the produced glass beads . 													

Glass degradation 

  Glass degradation study was performed by incubating 200 mg of each composition 

of glass beads in 2 ml of ultrapure 18M W/cm2 water at 37oC for (day 1, 4, 7, 14). 

About 50 mg was taken out at each time interval to be visualized under SEM to assess 

the degradation and the surface changes. 

Ion release  

  Ion release study aimed to calculate the concentration of different ions as this might 

be helpful in understanding the link between ions concentration and the cellular 

response. This was done by using triplicates of 100 mg of each glass beads composition; 

these triplicates were immersed in 1ml of ultrapure 18M W/cm2water and incubated at 

37oC  for four time points (1, 4, 7 and 14 days). At each time point, the de ionized water 

was stored for ion release study and replaced with fresh for the next time point. Then 

ion analysis was carried out for the anions (PO4
3-, P2O7

4-, P3O9
4-, P3O10

5-) and cations 

(Na+, Ca2+, Zn2+,Sr2+) using the ion chromatography systems (ICS1000, ICS 2500, 



Dionex, Thermo Scientific, Hemel Hempstead, UK). For the cation measurements all 

the samples were filtered prior to measurement to remove the anions (OnGuard IIa, 

Dionex). The ions concentration was calculated at each time point and accumulated to 

the previous time point. 

 

pH study 

 pH measurement was determined by using triplicates of 200 mg glass beads in 2ml 

culture media in 24 well plates for (day 1, 4, 7, 14). The glass beads were incubated at 

37oC for the whole time period and changed every two days to mimic the cell culture 

study environment. At each point, the culture media pH was measured with an Orion 

star A111 PH meter (Thermo scientific, Hemel Hempstead, UK) and then replaced by 

fresh media for the next day point. Culture media alone was used as control for the 

whole time course. 

 

Cell Culture Studies  

    Both human osteoblast-like osteosarcoma cell line (MG63, European Collection of 

Cell Cultures, Porton Down, UK) and human mesenchymal stem cells (hMSCs) 

(passage 3) were used for cell studies in which they were incubated in standard 

conditions (37°C, 95% air, 5% CO2, 95 % relative humidity) in Dulbecco’s modified 

Eagle medium (DMEM, Gibco, Life Technologies, Paisley, UK). MG63 cells were 

selected as they have been commonly used to establish the preliminary aspects of 

biocompatibility for a wide range of phosphate glasses, whereas hMSCs are considered 

the gold standard for such studies. By the time of reaching 80% confluence, cells were 

trypisinzed to allow seeding onto glass beads. The glass beads were sterilised by 

immersion in ethanol then dry heat at 180OC for 1 hour. 

 

The seeding procedure was similar for both cell types which was performed firstly by 

coating 100 mg of glass beads with bovine fibronectin in PBS (10 ug .mL-1) for one 

hour to aid initial cell attachment and then these glass beads were placed in a 24 

ultralow attachment well plate (Corning, USA) in which the plate bottom surface was 

covered with beads completely. Later on, these glass beads were incubated in culture 

media overnight at 37oC. The next day, the culture media was taken out and cell seeding 

was performed on the glass beads according to the preferred seeding density in which 



cells were left for 30 minutes in an incubator to allow cell attachment. After that the 

glass beads were transferred into 6.5 mm inserts in 24 well plates. 

   

Two types of culture media were used, (1) Dulbecco’s modified Eagle medium (Gibco, 

Life Technologies, Paisley, UK) supplemented with 10% fetal bovine serum (Gibco) 

and 1% penicillin/streptomycin (PAA Laboratories, GE Healthcare, Chalfont St. Giles, 

UK) that was used for the MG63 cells study, while (2) osteogenic medium (OM) for 

hMSCs studies and was prepared as the previous work (18) by using low glucose 

Dulbecco’s modified eagle medium (DMEM) , supplemented with fetal bovine serum 

, penicillin/streptomycin 1% , dexamethasone (0.1 µM), ascorbic acid 2-phosphate (0.2 

mM), and glycerol 2-phosphate (10 mM; last three chemicals procured from	Sigma–

Aldrich, UK). Both of these culture media were replaced by half every 3 days.	

Commercial silica based glass microspheres (Polyscience Inc., USA) were used as a 

control for all the cell culture studies. 

 

CCK assay 

   Following the seeding of MG63 cells at a density of 3000 cells per trans-well insert 

in 24 well plates, the 24 well tissue culture test plate was left in a 37°C/ 5% CO2 

incubator for 1, 4 and 7 days. In parallel, cells were seeded in a second test plate at 

different densities for calibration. At each time point, CCK8 (Cell Counting Kit 8, 

Sigma-Aldrich) was added to each well in a 10% proportion of the culture media then 

incubated for 3 hours. Afterwards, fluorescence measurement was performed for each 

well plate in triplicate by using a plate reader (Infinite® M200, Tecan) at 450 nm 

wavelengths. 

 

Alkaline phosphatase Assay 

  hMSCs were used for this assay, which were seeded at a density of 25000 cells per 

trans-well insert and incubated at 37°C/ 5% CO2 for 7 and 14 days. Subsequent dilutions 

of ALP standard reagent were performed for calibration. In all time points, the culture 

media was removed following the company protocol (Alkaline Phosphatase Assay, 

SensoLyte® pNPP) followed by cells washing with 1X assay buffer and cells 

permeabilising by Triton X-100. Afterwards, the glass beads were pipetted vigorously 

for 1 minute to aid in cell permeabilisation, then cells were lysed further by two cycles 

of freeze-thaw cycles (- 20oC for 20 min, followed by 37oC for 12 min) followed by 



subsequent centrifugation at 4°C for 10 minutes at 2500 rpm Then, 50 𝜇𝑙  of the 

supernatant was added to 50 𝜇𝑙 of pNPP in 96 well plate and kept for 4 hours in a 

37°C/5% CO2 incubator. Finally, a stopping reagent was added into each well before 

taking triplicate fluorescence measurements of each transwell using a plate reader 

(Infinite® M200, Tecan) at 405 nm wavelengths.  

 

Ca assay 

   Mesenchymal stem cells were used again for the Ca assay at a cell density of 25000 

cell/ Trans-well and were incubated with the supplement of (OM) for 14 and 21 days. 

At each time point, the culture media was taken out and the glass beads were washed 

with phosphate buffered saline (PBS) three times then the cells were lysed by 1M HCl 

and placed on a shaker for ≃ 40 minutes. After that, triplicates of 5ul of each trans well 

aliquot was transferred to 96 well plate and about 200ul of prepared Ca working agent 

was added to each triplicate then fluorescence measurement at wavelength 612 nm 

(Infinite® M200, Tecan) was performed. Various gradual dilutions of Ca standard 

(100uL- 0uL) were made for calibration following the protocol (QuantichromTM, Calcium 

Assay Kit (DICA-500), Bioassay System). Other triplicates of 100 mg of each 

composition were incubated alone without seeding cells to deduce the effect of glass 

composition on the final results. 

 

Cell imaging 

  For MG63 SEM imaging was performed for each time point by removing the culture 

media then fixing cells initially in 3% glutaraldehyde followed by dehydration through 

graded ethanol (50, 70, 90, and 100 %) then drying by hexamethyldisilazane (Aldrich, 

UK). While for hMSCs, imaging was done by fluorescence microscopy using 

phalloidin for cytoskeletal staining and propidium iodide for nucleus staining. The first 

step of this procedure was cell fixation in 3.7% formaldehyde followed by cell 

permeabilization by using 0.5% triton X-100 then finally cellular staining by both 

phalloidin (Alexa Fluor® 488 Phalloidin, Sigma-Aldrich Gillingham, UK) and 4ug/ 

mL propidium iodide ( Propidium iodide, Sigma-Aldrich Gillingham, UK). 

	

Statistical analysis 



      Cell data for both cell counting and metabolic activity measurements were 

statistically assessed by Kruskal–Wallis where p<0.05 has been used as a significance 

degree estimation.	

Results 

XRD 

XRD spectra of the glasses showed a broad peak at 2θ values of ≃ 20–40°. This 

emphasized the all the prepared glass samples were amorphous and were free 

crystallinity as shown in figure1. 

 

 
Figure1: XRD spectrum for glass 

 

Glass beads distribution 

  The assessment of the different SEM images of the beads showed that the majority of 

glass beads produced were between 63um-106um; therefore, these sizes were used for 

the subsequent studies. Figure 2 demonstrates this as well as the picture of glass beads 

under SEM . 
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    Figure (2):  A-SEM picture of glass beads   B- frequency distribution of glass beads  

Mass loss 

 As shown in (figure 3), the images taken to visualise the glass bead surface changes 

showed that the amount of surface changes increased with time. These changes were at 

their highest range on day 14 after immersion in deionized water in comparison with 

images from the previous days beads immersion samples. Regarding day 1, there were 

no clear surface changes in comparison with day 0. On day 7, there was a clear 

difference and prominent wear on the glass beads surface in the zinc oxide groups 

which revealed groups of pits formed while strontium oxide glass showed lower levels 

of changes than the zinc oxide groups with the least change seen with SrO17.5. 

However, on day 14 the glass degradation increased clearly with an increase in pits and 

the presence of small cracks in the zinc oxide glass with the presence of more surface 

wear in SrO35 and small pits in SrO17.5. These results showed that the ZnO10 glass 

was the most vulnerable to surface changes followed by ZnO5 then SrO35 and finally 

SrO17.5, which revealed the lowest level of surface changes. 
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 Figure 3: SEM pictures for glass beads after incubation in de ionized water 

showing the least degradation was with ZnO10 in day 14.  

 

Ion release 

  Anion and cation release data revealed a gradual increase in the different ions released 

for all the compositions over the whole time frame. While the trend of ion release for 

the anions (P2O7
4-, P3O9

4-, P3O10
5-) was (ZnO10> ZnO5> SrO17.5> SrO35), it was for 

PO4
3- as (ZnO5> ZnO 10> SrO17.5> SrO35). For all anions, SrO35 glass release of 

anions was significantly lower compared to the other compositions. Over the whole 

study, the anion release for both zinc containing glass compositions were close to each 

other and were significantly higher in comparison to the ion release for the strontium 

containing glasses (figure4). 

 



  Similarly, the cation release showed the same trend as the anions in which the zinc 

based glass showed higher release of Na+ and Ca2+ compared to the strontium based 

glasses. ZnO5 showed the maximum release of both Na+ and Ca2+; 106-ppm and 92-

ppm respectively, which was double the value of SrO17.5. The latter was followed by 

SrO35 with the lowest level of release with less than 10 ppm for Na+ and lower than 5 

ppm for Ca2+(figure 5 a&b).  

 

 Concerning zinc ion release, ZnO10 exhibited more Zn+2 ion release than ZnO5. 

Despite Zn+ ions release was quite similar on day 1 at about 35 ppm, ZnO10 glass 

clearly released more Zn+ ions over the time points after day 1 to stand at around 385 

ppm after two weeks that was about 100 ppm/mg more than that of ZnO5 which ended 

at 280 ppm on the same day point (figure 5 c). 

 

Sr2+ ion release was around 3 ppm for both SrO17.5 and SrO35 on day 1. As the study 

continued for the next time points, SrO35 tended to release more Sr 2+ ion than that of 

SrO17.5 A linear trend was seen, to end around 33 ppm on day 14 which was 

significantly higher than that of SrO17.5 at around 25 ppm (figure 5 d). 
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Figure4:  Anion release showing higher release of phosphates ions (PO4
3-, P2O7

4-
 , 

P3O9
4-, P3O10

5-) by zinc based glass in comparison to strontium glass.	 
 

 

 
Figure 5: Cation release (a) Na+ release, (b) Ca2+ release, (c) Zn+ release (d) Sr 2+ 

release 

 

pH Measurement 

  pH data revealed a significant variation in pH level over the time course of the study. 

pH readings were around 8.7 at the beginning of the study, however, it rose on day 1 to 

reach around 9.2-9.3 for all groups. This rise was sustained at the same level until day 

4 of which a slight decline was noticed for all the other time points in comparison to 

the control, which remained stable for the whole experiment period except for the 

ZnO10. Surprisingly, ZnO10 decreased significantly after day 4 and showed the lowest 

pH level for the whole period until the end of the study finishing just slightly higher 

than 8.2. These results were demonstrated in figure 6. 
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Figure 6: pH level showing that ZnO10 was with the least pH level in comparison to 

the control which remained steady. 

 

Cell Assays 

1- CCK Measurement 

  CCK data revealed that the number of cells increased gradually over time. Initially 

cells were seeded as 3000 cells per trans-well. This number had reached 13000 cells on 

day 1 for ZnO5 and SrO17.5. The former was with insignificantly higher than control 

and ahead of both ZnO10 and SrO35 at around 7000 cells. On day 4, cells number in 

both ZnO5 and SrO17.5 were around 34000 cells. This was significantly lower in 

comparison to the control that was about 38000 cells. At the last time point, cellular 

growth continued to increase and ended at around 40000 cells for ZnO5 and SrO17.5, 

which was about 5000 less than that of the control. 

In general, SrO35 and ZnO10 showed the lowest cell numbers for all three times points. 

Whereas SrO17.5 and ZnO5 displayed more promising results in the same time frame. 

Figure 7 shows the biocompatibility of different compositions in compare to control in 

different time points. 
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Figure 7: CCK assay for MG63 cells showing that both ZnO5 and SrO17.5 have good 

biocompatibility in comparison with the control. ZnO5 and SrO35 displayed less  

 

2-Alkaline phosphatase Measurement: 

  Figure 8 summarises the alkaline phosphatase results after one and two weeks. At day 

7, all compositions showed an enzyme concentration that was similar to the control 

(6.5ug/ trans-well) except ZnO5 and SrO35 which were statistically slightly higher than 

control. On day 14, there was an increase in enzyme levels for all prepared glass types 

with the highest levels being shown for glasses ZnO5 and SrO17.5 (17.5ug/ trans-well). 

This was slightly less than the control (20ug/ trans-well). SrO35 displayed the lowest 

enzyme levels (13ug/ trans-well). 
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Figure 8: Alkaline phosphatase for hMSCs measured by ug/ trans-well, displaying an 
acceptable enzyme activity in ZnO5 and SrO17.5 in relation to the control.	

	

3-Mineralization Measurement (Ca assay) 

  Figure 9 displays the Ca assay for day 14 and 21. At the first time point all glass 

compositions seemed to stimulate cells to produce calcium at levels higher than that of 

control. ZnO5 and SrO17.5 values were higher than that of ZnO10 and SrO35 while 

the control showed the lowest concentration (2ug/ trans-well). Although the control 

data showed a 4-fold increase on day 21 in compare to day 14, it showed the lowest 

concentration compared to the zinc and strontium-based glasses. ZnO5 and Sr17.5 

results were highly significant (28 ug/ transwell) than the other compositions and the 

control. 
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Figure 9: Ca concentration   for hMSCs measured by ug/ transwell for day 14 and 21, 
revealing that ZnO5 and SrO17.5 have the highest calcium concentration.	

4- Cell imaging 

SEM pictures of MG63 showed the ability of the cells to attach to the glass beads.  Figure 

10a displays the attachment of cells on strontium based glass day on day 1, while figure 10 b 

shows the ability of MG63 to proliferate trying to make a continuous layer of cells among the 

beads on day 7. 

									 						 	

Figure 10: SEM pictures of MG63 on SrO17.5 strontium glass beads. a- day1, b- day7 

Similarly, confocal images for hMSCs showed that these cells could attach to the beads and 

even encapsulate these beads and take on their spherical morphology as shown in figure 11. 
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Figure 11: Confocal images of hMSCs showing the cellular attachment on beads 

 

 

 

 

 

 

 

 

 

 

 



Discussion :  

    The aim of this study was to determine the role of zinc and strontium in phosphate-

based glasses for hard tissue (bone) engineering application. According to previous 

studies, calcium, zinc and strontium were proven to play a pivotal role in bone growth 

and development (19-22). Various earlier studies were carried out within our 

department assessing different properties of zinc and strontium phosphate glass. These 

studies were performed by preparing different phosphate glass compositions that are 

(P2O5-Na2O-CaO-TiO2 -(ZnO or SrO) based and showed that ZnO5, ZnO10, SrO17.5 

and SrO35 had an acceptable physical, chemical and biological properties (16). This 

was the main reason of this present study to focus on such glass compositions. 

Furthermore, the other aim was to develop the glass in a form that may be more 

accessible for cells to penetrate and colonise inside it rather than the use of glass discs 

as performed in the previous studies. Hence, phosphate glasses in this study were 

produced in the form of beads by using a spheriodisation method (8). 

  Qualitative assessment of bead degradation by imaging was adopted due to the 

difficulty and unreliability of making quantitative mass loss measurements. The images 

obtained gave us a general idea about the mechanical surface changes of glass beads 

after immersion in deionized water. These images showed that there were no major 

changes after day 1, however, as the incubation persisted for 1 week the erosion effect 

started to appear. This was more noticeable in both compositions of zinc based glasses 

and was in the form of pores and faint cracks which were more pronounced in ZnO10 

phosphate glass in comparison to the less changed strontium compositions. Zinc 

phosphate glass was affected further on day 14 as more deep cracks started to appear 

with the formation of more pits. The strontium glasses, in turns, started to show few 

pits with few surface changes on day 14.  

  In general, ZnO10 tended to be the most susceptible to degradation followed by ZnO5 

and SrO35 followed finally by SrO17.5. These results were concurrent with previous 

findings of mass loss trend. This can be explained by knowing that both zinc and 

strontium attach to phosphate glass network via ionic bonds with oxygen. The Zn-O 

bond has bond dissociation energy (284 Kj. mol-1) that is lower than that of the Sr-O 

bond (454 Kj. mol-1). This makes the zinc phosphate glass more vulnerable to 

hydrolysis as a result of its weaker bond strength. Moreover, our previous differential 



thermal analysis findings confirmed the current results via the thermal variables (Tg, 

Tc, Tm) which has followed the trend of (ZnO10 < ZnO5 < SrO35 < Sr 17.5) (16, 23). 

  The anion and cation release results for zinc phosphate glasses were concurrent with 

the mass degradation data in which higher levels of phosphate ions occurred with the 

more surface degraded glass. This can be explained by identifying the bond dissociation 

energies for both CaO and ZnO; 383 Kj. mol-1 and 284 Kj. mol-1 respectively. 

Consequently, when ZnO replace CaO, there are higher numbers of weaker bonds, and 

hence more degradation and more ions are released. These results followed the pattern 

of previous data (17). Conversely, anion and cation release from the strontium 

containing samples did not follow the mass degradation pattern as the more degradable 

SrO 35 phosphate glass released fewer ions than that of SrO 17.5. These surprising 

results were actually similar to a previous study (16), the only exception was the Sr2+  

ion release which was higher with SrO35 as it had double the amount of  strontium than 

that of SrO17.5. Actually, this may give us a justification to interpret such unexpected 

results. Although SrO35 had more surface loss and higher degradation rate than 

SrO17.5, the majority of the released ions were Sr2+ which has a molecular weight of 

87 more than other ions such as Na+, Ca 2+ and P5- that have molecular weight of 22, 40 

and 30 respectively.  

Dulbecco Modified Eagles Medium (DMEM) with pH 8.4±  0.1 was used as an 

immersion liquid for glass beads in pH studies to mimic the same condition for cell 

culture studies. Data showed an irregular trend in which there was a rise on the first day 

then a period of stability followed by a slow decline of pH level. The control and all 

the compositions showed an initial increase in pH after one day which remained stable 

until day 4 as a result of gas absorption effects (24). This rise in pH was higher for the 

control group in comparison to the glass beads group. On day 7, however, there was a 

gradual continuous decline in pH until day 14 for all glass beads. The control, however, 

remained at the same level for the rest of the study period. Surprisingly, ZnO10 showed 

the lowest pH change followed by SrO35, which was slightly less than the other two 

groups. It appeared that the pH level was inversely related to the ion release, which was 

higher with ZnO10.  This may be as a result of the increase of phosphate ions release 

that might form phosphoric acid in the solution and hence increase the culture media 

acidity.  



In general, cell culture studies displayed quite similar trends. In other words, the CCK 

results displayed that there was less metabolic activity in ZnO10 glass beads group than 

that in ZnO5 and SrO17.5 which were close to control. Furthermore, alkaline 

phosphatase for hMSCs acted similarly after 1 and 2 weeks as ZnO5 and SrO17.5 

exhibited insignificant difference of enzyme levels from control. On the other hand, Ca 

assay demonstrated higher mineralisation rates in ZnO5 and SrO17.5 that were greater 

than remaining groups of ZnO10 and SrO35, control group had the lowest 

mineralization level.                               

  Overall, cell studies gave an initial view about the role of zinc and strontium 

concentrations in phosphate glass and showed that ZnO5 and SrO17.5 phosphate glass 

beads have the most significantly positive effect on cells in compare to ZnO10 and 

SrO35.  The interpretation of these result depends mainly on the relation between the 

released ions and their biological effect as shown by other studies (2). The current study 

measurements showed that the maximum released concentration of calcium and sodium 

among all glass compositions was about 95 ppm and 106 ppm respectively, which is 

below the cytotoxic concentration suggested in previous studies (i.e. for Ca2+ =400 

ppm, Na+= 220 ppm) (25, 26). Consequently, the release of Ca2+ and Na+ ions from 

these glass systems should not have any harmful impact on cell function. Although 

phosphate ions can play an important role in cell proliferation and metabolism, it was 

difficult to investigate their actual effect due to the presence of high phosphate contents 

ions in the medium thus they were not quantified in the medium. Regarding the 

strontium-containing glass beads, it was found that its Sr2+ release was about 30 ppm 

and 25ppm for SrO35 and SrO17.5 respectively. In a previous study, the optimum 

concentration of SrCl2 to induce calcified matrix deposition was 5ug/ml, however, data 

showed that concentration of 10 to 20 ug/ml could also stimulate ALP and matrix 

deposition. There is a decline in the positive effect of Sr2+ions as the concentration 

increase from 10 to 20 ug/ml. Bearing this in mind, the actual Sr2+ions concentration in 

the cell culture study is around half that of the data shown in the ion release results 

because of the frequent culture media change, so the real concentration of strontium in 

culture media is probably about 15 ppm and 12.5 ppm for SrO35 and SrO17.5 

respectively. This was within an acceptable range and following the same pattern of 

cellular activity as discussed previously (27). Whereas for the zinc ion release, the 

current results confirmed previous findings that showed substitution of calcium with 



zinc by 10 mol% can result in unfavorable and cytotoxic effects. Hence, adding more 

than 10 mol% ZnO may cause catastrophic effects as it can increase the release of 

lactate dehydrogenase and induce oxidative stress (10, 28).  

 

Conclusion  

  The current study showed that glass beads were successfully produced in different 

compositions. It revealed also that ZnO5 and SrO17.5 phosphate glass beads exhibited 

better results regarding cellular studies that were significantly better than ZnO10 and 

SrO35 glass beads concluding that ZnO5 and SrO17.5 are more suitable for bone tissue 

engineering. These results could be further studied in future to assess their impact on 

bone tissue engineering aspects by performing other cell culture studies and use these 

types of phosphate glass as scaffold materials for bone repair. 
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