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Abstract

Functional data analysis is a fast-growing research area in statistics, dealing with

statistical analysis of infinite-dimensional (functional) data. For many pattern

recognition problems with finite-dimensional data there usually exists a solid theo-

retical foundation, for example, it is known under which assumptions various classi-

fiers have desirable theoretical properties, such as consistency. Therefore, a natural

interest is to extend the theory to the setting of infinite-dimensional data.

The thesis is written in two directions: one is when we observe full curves,

and the other is when we observe sparse and irregular curves. In the first direc-

tion, the main goal is to give a justification for a logistic classifier, where only the

projection of the parameter function on some subspace is estimated via maximum

quasi-likelihood and the rest of its coordinates are set to zero. This is preceded with

studying the problem of detecting sample point separation in logistic regression–the

case in which the maximum quasi-likelihood estimate of the model parameter does

not exist or is not unique. In the other direction, a problem of extending sparsely and

irregularly sampled functional data to full curves is considered so that potentially

the theory from the first research direction could be applied in the future.

There are several contributions of this thesis. First, it is proved that the separat-

ing hyperplane can be found from a finite set of candidates, and an upper bound of

the probability of point separation is given. Second, the assumptions under which

the logistic classifier is consistent are established, although simulation studies re-

veal that some assumptions are not necessary and may be relaxed. Thirdly, the

thesis proposes a collaborative curve extension method, which is proven to be con-

sistent under certain assumptions.



Acknowledgements

After having red the masterpiece acknowledgement section of Francesco Donat’s

PhD thesis, I had a feeling that I do not want to write my acknowledgements at

all–there is no chance I can put together something as poetic as that! But then I had

a second thought on it. Aknowledgements are the only part of the thesis that is not

examined and the only part that myself I will be reading ten years from now. It does

not have to be perfect, it simply has to be worth remembering.

My first thank you goes to Dr Giampiero Marra. That was summer of 2013 that

I came to UCL to talk about my MSc grades when I accidentally bumped into Dr

Giampiero in the corridor and ended up in his office talking about possible funding

for a PhD. What a day! It may sound unbelievable but it is absolutely true: if you

had not encouraged me to apply for a PhD, I would have never applied for it.

My second thank you goes to Dr Jinghao Xue. First of all, for selecting me for

the PhD even though I may have been the only candidate in the set of candidates

for you to choose from (probably nobody wanted to go to Singapore). Second,

for providing me with extensive criticism on my work throughout the PhD which

caused me at least one heart attack every time I red an e-mail message from you

and an increased blood pressure for at least six remaining days (until your next

e-mail message). On the other hand, I must admit that this pushed me to work

harder, perform better and write less nonsense in my weakly reports. Third, for

allowing me to study mathematical statistics even though this was not your main

research interest and for referring me to several books on functional data analysis.

Fourth, for polishing every sentence of this thesis and especially for helping me to

put together a great abstract.



Acknowledgements 5

Here I want to squeeze a brief thank you note also for prof. Simon Arridge and

Dr Ben Cox with whom I worked in the first year of my PhD studies. I still remem-

ber the quite impressive meeting with prof. Simon Arridge during which he spotted

my mistake in 5 seconds without even looking at my code. Even though I have

changed my research topic both of your inputs to my work at that time have helped

me to pass the PhD upgrade exam without which I would have died in London.

My third huge thank you goes to prof. Malini Olivo. The support you have

given me during my attachment with A*STAR is tremendous. You gave me all

the time in the world to work on my PhD project but at the same time I had the

possibility to be involved into interdisciplinary collaborations, team projects, team

training and various company events, seminars, talks and meetings. You have sup-

ported me throughout my first paper, my first conference and on whatever decision

I made. You have personally supported me both through the sad times and through

the happy times. You basically were my family when I was far away from mine. I

do not know a better leader than you are.

I also would like to thank prof. Tom Fearn for visiting me in Singapore and

for telling me that nobody can forbid me from trying to prove theorems, if I want

to, and for telling me that you do not see the reason why I could not submit my

thesis on time which at that time seemed a big issue for me. Also, for caring about

my research progress and even calling me over Skype despite the eight-hour time

difference and technical sound issues which you have originally solved by using

your landline telephone.

I would also like to acknowledge my A*STAR colleague Dr Chris Jun Hui

Ho for supporting me with real data and proofreading my first-ever paper on pho-

toacoustic imaging which later became my proof to myself that I am capable of

achieving something and proof to others that sometimes even incremental contri-

butions can be published in good journals. Also for inviting me to participate in

hackathons which has broaden my horizons and awaken my entrepreneurship spirit.

Finally I would like to thank the sharpest mind I have ever met and my biggest

mathematical authority my father prof. Vytautas Kazakevicius for referring me to



Acknowledgements 6

many useful books and teaching me that writing a single correct sentence is more

than writing several wrong ones. People consider you a mathematician but to me

you are more than that, you are an artist, a philosopher. If I have ever learned to

see objects through numbers like in The Matrix movie, I learned it from you. I

remember you told me there exist structures walking through which you become a

reversed version of yourself. I also remember you told me that if God spoke any

language that language would be mathematics. You are the reason why up to this

day I still hold a passion and admiration for mathematics–the world of ideas and the

world of truth.

I remember in the beginning of my PhD (and later in Singapore) I saw a very

funny illustrated guide to a PhD by Matt Might, where he described a PhD as the

following: during your PhD studies you keep moving to the boundary of knowledge

in your research area, then you push at the boundary for a few years and that small

dent that you make after those years is called a PhD. I do not know how it worked

out for him but myself I have never reached that boundary. It seems that the bound-

ary kept moving away from me faster than I moved towards it. In fact, after all these

years instead of having a small dent I ended up with a very scary question whether

or not that boundary exists in the first place. So what do we actually call a PhD?



Contents

1 Introduction 12

1.1 Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 The nature of functional data . . . . . . . . . . . . . . . . . . . . . 13

1.3 Binary classification for functional data . . . . . . . . . . . . . . . 15

1.4 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Probability of Point Separation in Logistic Regression for Functional

Variables 19

2.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Logistic estimate in abstract Hilbert spaces . . . . . . . . . . . . . . 21

2.3 Separability of sample points . . . . . . . . . . . . . . . . . . . . . 24

2.4 Probability that sample is separable . . . . . . . . . . . . . . . . . 28

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Consistency of Logistic Classifier in Abstract Hilbert Spaces 30

3.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 An Approach to Extending Sparsely and Irregularly Sampled Func-

tional Data 42

4.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



Contents 8

4.3 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 All assumptions hold . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Other than strictly positive functions . . . . . . . . . . . . . 55

4.4.3 Other multiplicative models . . . . . . . . . . . . . . . . . 55

4.5 Real data example . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusions and Future Work 60

Appendices 64

A Proofs for Chapter 2 64

A.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 64

A.2 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Proof of Corollary 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . 68

B Proofs for Chapter 3 70

B.1 Facts from probability theory . . . . . . . . . . . . . . . . . . . . . 70

B.2 The function M(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . 71

B.3 The function Mn(θ) . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.4 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.5 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 91

C Proofs for Chapter 4 94

C.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 94

C.2 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 103

C.3 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography 107



List of Figures

1.1 Structure of the main body of the thesis. . . . . . . . . . . . . . . . 16

2.1 Conceptual illustration of Theorem 2.1, where k = 2. If sample

points are k-separable by some vector a, there exists vector a′ that

passes through k− 1 sample points and also separates the sample

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Illustration of simulated data for Example 1. (a)-(c) Simulated data

for n = 300,1000 and 2000, respectively. (d)-(f) True conditional

probability p0 and estimated conditional probability p̂, evaluated

for the generated observations. . . . . . . . . . . . . . . . . . . . . 39

3.2 Illustration of simulated data for Example 2. (a)-(c) Simulated data

for n = 300,1000 and 2000, respectively. (d)-(f) True conditional

probability p0 and estimated conditional probability p̂, evaluated

for the generated observations. . . . . . . . . . . . . . . . . . . . . 40

4.1 Data measurements of spinal bone mineral density for 153 females.

Measurements taken for the same individual are joined by a curve.

The data are described in [1] and provided by prof. James Gareth. . 44

4.2 Data measurements of spinal bone mineral density for 153 females:

(a)-(d) observed data measurements for Asian, Black, Hispanic and

White females, respectively; (e)-(h) extended data measurements

using local CEint approach for Asian, Black, Hispanic and White

females, respectively; (i)-(l) extended data measurements using DH

approach for Asian, Black, Hispanic and White females, respectively. 58



List of Figures 10

B.1 Conceptual illustration of ideas from Theorem 5.42 in [2] that

solves the well-known problem in statistics: by Law of Large Num-

bers, empirical expectation tends to true expectation. How to prove

that the θ̂kn that minimizes the empirical expectation tends to θk that

minimizes the true expectation? As van der Vaart suggests, if the

distance between gradients of empirical and true expectations are

bounded by δk, then the distance between θ̂kn and θk is bounded by

dk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



List of Tables

3.1 Numerical results for Example 1, averaged over 100 independent runs 39

3.2 Numerical results for Example 2, averaged over 100 independent runs 41

4.1 The values of d̂(X̂ ,X) (±sd) for different methods, averaged over

1000 independent runs. Here d̂Int(X̂ ,X) and d̂DH(X̂ ,X) denote the

distance (4.10) where X̂n are obtained by using proposed method or

the method of [3], respectively. . . . . . . . . . . . . . . . . . . . . 54

4.2 The values of d̂Int(X̂ ,X) (±sd), averaged over 1000 independent

runs. Here d̂Int(X̂ ,X) denotes the distance (4.10) where X̂n are ob-

tained by using the proposed method. . . . . . . . . . . . . . . . . 55

4.3 The values of d̂Int(X̂ ,X) (±sd), averaged over 1000 independent

runs. Here d̂Int(X̂ ,X) denotes the distance (4.10) where X̂n are ob-

tained by using the proposed method. . . . . . . . . . . . . . . . . 56

4.4 Average distance (4.11) (± std) calculated using local CEint ap-

proach and DH approach. For each of the four datasets, the average

is taken over all fragments that were considered for extension in that

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



Chapter 1

Introduction

1.1 Prologue
This thesis concerns challenges arising when classifying functional data both in the-

ory and in practice. The main goal of the thesis is to investigate which assumptions

lead to consistent classification of functional data. Based on this, two directions are

investigated in the thesis: one is on assuming that we observe full curves and the

other is on assuming that we observe curves sparsely and irregularly.

In the first direction, the main goal is to give a justification for a logistic clas-

sifier, where data come from an abstract Hilbert space but only the projection of

the parameter function on some subspace is estimated via maximum-likelihood and

the rest of the coordinates of the parameter function are set to zero. The goal is

achieved in two steps. The first step involves calculating the probability that a max-

imum quasi-likelihood estimate exists and is unique and investigating under which

assumptions this probability tends to 1. This is shown to be deviating to another

research area of sample point separation in logistic regression. The second step in-

volves investigating assumptions on the distribution of data and on the dimension

for projection that are needed to obtain a consistent resulting logistic estimate of

the parameter function. The subspaces in this step are assumed to be non-random,

even though some guidelines on how they should look like to yield consistency are

given, based on the distribution of data which in practice is unknown. Based on

these guidelines, the subspaces could be selected adaptively (that is, depending on
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data) in the future, potentially by using principal component analysis (PCA).

In the second direction, I study a common case of functional data appearing

in practice, where the data are sampled sparsely and irregularly. To link the two

directions of this thesis, I investigate the ways of extending observed data to full

curves so that theoretical results from the first research direction could be applied in

the future. I propose a consistent way to estimate the reference maximum and min-

imum curves in a collaborative fashion and then to predict the unobserved function

values by interpolation shifted vertically. Under certain assumptions, I then prove

the consistency of the proposed curve extension approach.

This Introduction is structured as follows. I first discuss the meaning of func-

tional data and its differences to vectorial data in Section 1.2. I then describe the

binary classification task in Section 1.3. Finally, I state the contributions and struc-

ture of this thesis in Section 1.4.

1.2 The nature of functional data
In the functional data setting, the data come from a functional space E instead of

a finite-dimensional space Rk. In this thesis I will discuss the case where the sam-

ple data are independent identically distributed observations drawn from the same

distribution as some E-valued random element X .

There are two common choices for functional space E [4]:

1. A separable Banach space (complete normed vector space). For example,

C[0,1] – the space of real continuous functions x : [0,1]→ R endowed with

the norm ‖x‖= sup
t
|x(t)|.

2. A separable Hilbert space (an abstract vector space with the defined in-

ner product and complete with respect to the induced norm). For example,

L2[0,1] – the space of square integrable real functions on [0,1] endowed with

the usual inner product 〈x1,x2〉 =
∫ 1

0
x1(t)x2(t)dt. Note, however, that any

Hilbert space is also a Banach space with the norm ‖x‖=
√
〈x,x〉. For exam-



1.2. The nature of functional data 14

ple, the norm in L2[0,1] space is defined by

‖x‖2
L2

=
∫ 1

0
x2(t)dt.

In this thesis, I will refer to the data from E as curves, functions, functional observa-

tions or elements of functional space E, while the data from the finite-dimensional

Rk space as finite-dimensional vectors, vectorial observations or elements of Rk. I

will say that functional observations are observations of the process in time and that

vectorial observations are observations of variables, even though this is only for the

differentiation of the two.

Sometimes, we can borrow techniques from the Rk setting and apply them

to solve related problems in the functional data setting. In theory, we can always

assume that we observe full curves Xi(t), i = 1, . . . ,n. Then the only fundamen-

tal difference between a functional observation and a vectorial observation is that

the functional observation is infinite-dimensional, while the vectorial observation

is finite-dimensional. In the Rk setting, a special attention is recently given to the

so-called high-dimensional case where the number of observations n in the sample

is less than the number of variables k. Therefore, in high-dimensional case, various

pattern recognition tasks, such as classification, involve estimating the parameter

vector whose length k is greater than the number of observations n. From general

algebra, it is known that any system of equations has a non-unique solution if the

number of variables is larger than the number of equations. That is, estimating

parameter vector in high-dimensional case results in non-uniqueness of the solu-

tion. Moreover, a curse of dimensionality and overfitting are also common problems

when working with high-dimensional data [5]. To avoid these problems, usually a

dimensionality reduction step is included which projects the high-dimensional ob-

servation into some kn-dimensional subspace, where kn < n. The open problem is

then how to select good dimensions and to select a good kn for projection. The same

principle can be used also for functional data, where the same problem needs to be

tackled.
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In practice, however, we never observe full curves as we observe them at some

finite number of time points. Moreover, the time points are likely to differ from ob-

servation to observation, that is, we observe Xi(Ti1), . . . ,Xi(TiMi), i = 1, . . . ,n, where

Mi are, for example, independent copies of some random variable M. Depending

on how data come to a researcher, the functional data are usually classified into

densely observed curves, where the distribution of M does depend on n in a way

that the number of time points at which we observe the ith function diverges to-

gether with n, and sparsely observed curves, where the distribution of M does not

depend on n [6]. The problem is then how to process such data as we cannot apply

the standard techniques used in Rk.

1.3 Binary classification for functional data
In this thesis I study the logistic classifier which is a binary classifier. A task of

binary classification is to attach every x from a functional space E to one of the

two groups, 0 or 1 (sometimes, −1 and 1). Formally, a binary classifier is a Borel

function h : E→{0,1} [7]. The requirement of h to be a Borel function guarantees

that h(X) is a random variable. The pair (x,y), where y ∈ {0,1} is the true group of

x, is considered as a realization of a random vector (X ,Y ). Suppose the distribution

of X is µ , and the conditional probability of Y = 1, given X = x, is p(x). The func-

tion p is an element of L1(E,µ), the space of all µ-integrable functions (meaning

that such a function is measurable and that the integral of the function w.r.t. µ is

defined) endowed with the semi-metric

d(p1, p2) =
∫

E

∣∣p1(x)− p2(x)
∣∣dµ. (1.1)

Naturally, semi-metric (1.1) tells us how distant the functions p1 and p2 are in the

space L1(E,µ).

Choosing this semi-metric is a common practice and was previously used for

classification of functional data (see, e.g. [8]). Choosing this semi-metric is also

common for theoretical inference, e.g. to measure how close or far the estimated

conditional probability p̂ is, when compared with the true conditional probability
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p0. However, in practice, the distribution µ of X and the true conditional probability

p0 are unknown. They can be estimated either parametrically or non-parametrically

from the training set (X1,Y1), . . . ,(Xn,Yn). Each estimator p̂ induces a class (u-class)

of classifiers of the form

ĥu(x) =

1, if p̂(x)> u,

0, if otherwise,
(1.2)

where u is a pre-selected threshold. In other words, different values of a threshold

u induce different classifiers ĥu. The choice of u depends on a researcher’s needs

to control Type I and Type II errors (a.k.a. false positives and false negatives) with

the usual choice being u = 1/2 which means that the cost of making Type I error

is the same as that of making Type II error. However, other choices for u are also

possible, such as that of setting u to be the rate of responses Y = 0 in the training

set [9].

1.4 Epilogue

Figure 1.1: Structure of the main body of the thesis.

There are several contributions of this thesis that can be outlined (see Figure

1.1). The thesis begins with investigating what is the probability that the maximum

quasi-likelihood estimate of the parameter function in logistic regression exists and

is unique. Since it is already known that it exists and is unique if and only if there
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is no separation of sample points, this leads to investigating the probability of point

separation in logistic regression for functional variables in Chapter 2. Here two

contributions are made. The first involves proving that the separating hyperplane

can be found from a finite set of candidate hyperplanes, a result that has not yet

been proved in literature. The second contribution involves giving an upper bound

of the probability that a sample is separable in expression of which the dimension

for projection kn is included. This allows to directly derive the assumption on kn so

that the upper bound tends to 0.

In Chapter 3 I investigate under which assumptions on the distribution of X and

on the dimension for projection kn the logistic estimate is consistent which is the

open problem described in Section 1.2. The consistency for generalized linear mod-

els when data come from the Hilbert space was already investigated in [10]. How-

ever, one of their assumptions in proving consistency of maximum quasi-likelihood

estimate of model parameters is not valid in the case of logistic regression model.

The main contribution of this Chapter is therefore proving the consistency of a lo-

gistic classifier for Hilbert space-valued random variables.

Finally, in Chapter 4 I study a common situation of functional data appearing

in practice, where data are observed sparsely and irregularly as described in Sec-

tion 1.2. I propose a consistent way to estimate reference maximum and minimum

curves in a collaborative fashion, similarly as the mean function was estimated in

[11]. I then propose a method for predicting unobserved function values by in-

terpolation shifted vertically based on the estimated reference functions. The main

contribution of this Chapter is that, under certain data model, I prove the consistency

of the proposed method.

To conclude, the contributions of this thesis are summarized in the following

papers:

• ‘Point Separation in Logistic Regression on Hilbert Space-Valued Variables’,

Published in Statistics & Probability Letters (with prof. M. Olivo).

• ‘Consistency of Logistic Classifier in Abstract Hilbert Spaces’, To be submit-

ted (with prof. M. Olivo).
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• ‘Extending Sparsely and Irregularly Sampled Functional Data Using Collab-

orative Prediction’, To be submitted.



Chapter 2

Probability of Point Separation in

Logistic Regression for Functional

Variables

We study point separation for the logistic regression model for Hilbert space-valued

variables. It is known that in the case of sample point separation, the maximum

quasi-likelihood estimate of parameter function does not exist or exists but is not

unique. As a consequence, there is no strict definition for the logistic estimate for

such data arrangement which leads to problems when proving its consistency. To

mitigate the negative effects of such data arrangement, we investigate assumptions

under which the probability of point separation tends to 0. We achieve this by prov-

ing that the separating hyperplane can be found from a set containing a finite number

of candidates and giving an upper bound for the probability of point separation.

2.1 Introduction to the problem
The problem of point separation in logistic regression has been studied since as early

as in [12] and more than 700 papers have cited [12] since then. In [12] the authors

established the conditions on the maximum-likelihood estimate of the parameter

vector in logistic regression model to exist when data come from the Rk space.

Three scenarios of the arrangement of the data points were introduced: complete

separation, quasi-complete separation and overlap. The authors proved that in the
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first two scenarios, the maximum-likelihood estimate of parameter vector does not

exist, or exists but is not unique, while in the third (overlap) scenario the maximum-

likelihood estimate exists and is unique. The authors also suggested an iterative

algorithm to be used when checking, whether or not the data points are in quasi-

complete separation. Other methods on detecting overlap have been established as

well (see, e.g. [13]).

The majority of papers in this research area are devoted to proposing new pa-

rameter estimates that would exist and would have desirable theoretical properties in

the case where the data are already known to be in complete or quasi-complete sep-

aration. For example, the penalized maximum-likelihood estimator was introduced

by [14] and asymptotically investigated by [15], while [16] proposed a hidden logis-

tic regression model to overcome the problem of non-uniqueness of the parameter

estimate. Based on the recent activity in the field (see, e.g. [17] or [18], where they

investigated which methods work well in quasi-complete separation, or [19], where

they proposed adaptive prior weighting to avoid complete separation), we believe

that various results on the problem of point separation in logistic regression in the

Rk setting are still of a great interest.

Moreover, with the recent expansion of functional data analysis (FDA) (see

[20], [21] for an overview of the topic), the functional logistic regression models

have been widely studied. The logistic estimate in abstract Hilbert spaces can be

called a naı̈ve approach because the dimensionality reduction is achieved by simply

cutting the infinite-dimensional observation after some kn < n time point, where n

is the number of sample points. In such a way the first kn parameter values are

estimated via maximum-likelihood and the rest are set to zero. This approach is

avoided in literature for various reasons. For example, [22] argued that the naı̈ve

approach in the context of functional data introduces multicollinearity (strong de-

pendence among predictors) which in turn causes inaccurate parameter estimates

and increases their variance. Therefore, the standard approaches include dimen-

sionality reduction based on Principal Component Analysis (PCA) or Partial Least

Squares (PLS) (see, e.g. [23], [24], [25], [26]) or by basis expansion with some
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added penalty (see e.g. [27] or [28]). In none of these cases the consistency of

functional logistic regression model parameter was established, mainly because the

optimal rule for selecting the number of principal components or basis functions

has not been established. The closest attempt to provide the theoretical justification

of such a rule was done in [10]. However, in their work the authors approximated

infinite-dimensional model by a finite-dimensional one without proving that the er-

ror of such an approximation tends to 0.

There are two theoretical contributions of this Chapter. First is that we provide

a theorem which transforms the problem of finding the separating hyperplane from

the set of infinitely many elements into a feasible problem of finding it from the

finite set of candidate hyperplanes and we describe how to construct such a set. We

believe this theorem could speed up various established algorithms used by prac-

titioners for determining whether or not a maximum-likelihood estimate exists or

is unique for given datasets. The second contribution is that we provide an upper

bound of the probability of the event that a sample is in quasi-complete separation.

As a corollary of the latter result, we derive the minimal requirements on the selec-

tion of the dimension kn for projection of the data such that the consistency of the

resulting functional logistic estimate could be expected. We will use this result in

Chapter 3.

2.2 Logistic estimate in abstract Hilbert spaces
Let E be a separable Hilbert space with the inner product 〈·, ·〉. Let X ∈ E be a

Hilbert space-valued random variable and Y a random variable, gaining values −1

and 1, with conditional probabilities (w.r.t. X), 1− pθ0(X) and pθ0(X), respectively.

Here θ0 ∈ E is an unknown parameter and

pθ (x) =
1

1+ e−〈θ ,x〉
, θ ,x ∈ E.

For example, if E = `2, the space of all square-summable sequences, then 〈θ ,x〉=
∞

∑
k=1

θkxk. If E = L2([0,1]), then 〈θ ,x〉=
∫ 1

0
θ(t)x(t)dt. Since E can be any Hilbert

space, we will work with the general notation 〈θ ,x〉 instead.
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Let (X1,Y1), . . . ,(Xn,Yn) be a random sample from the distribution of (X ,Y ).

For θ ,x ∈ E and y ∈ {−1,1} define

mθ (x,y) = log(1+ e−y〈θ ,x〉)

and denote

Mn(θ) = mθ (X ,Y ) =
mθ (X1,Y1)+ · · ·+mθ (Xn,Yn)

n
, M(θ) = Emθ (X ,Y ).

Note that

Mn(θ) =
1
n

n

∑
i=1

log(1+ e−Yi〈θ ,Xi〉) =
1
n

log
n

∏
i=1

(1+ e−Yi〈θ ,Xi〉) =−1
n

log
n

∏
i=1

qθ (Xi,Yi),

where

qθ (Xi,Yi) =
1

1+ e−Yi〈θ ,Xi〉
.

Obviously, qθ (Xi,1) = pθ (Xi) and qθ (Xi,−1) = 1− pθ (Xi). Also, for any bounded

f ,

E f (X ,Y ) =
∫

f (x,y)qθ (x,y)µ(dx)ν(dy) =
∫

f (x,1)qθ (x,1)µ(dx)

+
∫

f (x,−1)qθ (x,−1)µ(dx),

where ν is a counting measure in the set {−1,1}. Therefore qθ (x,y) is a density

of (X ,Y ) w.r.t. the measure µ × ν . Hence, since µ is unknown, Mn(θ) can be

interpreted as the logarithm of the quasi-likelihood function, multiplied by −1/n.

Naturally, for various practical tasks it is of great interest to provide an estimate

of pθ .

Let (Ek) be some fixed sequence of the linear subspaces of the space E such

that the following conditions are satisfied: (1) dimEk = k for all k, (2) Ek ⊂ Ek+1

for all k, and (3)
⋃
k

Ek = E. For any k and n define

θ̂kn = arg min
θ∈Ek

Mn(θ). (2.1)
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Note that taking θ ∈ Ek in the above expression introduces some approximation

error. To force this error to tend to 0 as n diverges, fix some sequence (kn) and set

θ̂ = θ̂knn and p̂ = p
θ̂
. (2.2)

We will call p̂ the logistic estimate of the conditional probability pθ0 . For example,

let E = L2(T ) with the usual inner product

〈θ ,x〉=
∫

T
θ(t)x(t)dt,

where T ⊂R is an interval and L2 is defined in Section 1.2. The standard method for

obtaining logistic estimate from a given sample (X1,Y1), . . . ,(Xn,Yn) is expanding

X and θ via selected basis functions {e j}

Xi(t) =
∞

∑
j=1

Xi je j(t), θ(t) =
∞

∑
j=1

θ je j(t),

choosing k = kn and then using (2.1), where

Ek =

{
k

∑
j=1

c je j | c1, . . . ,ck ∈ R

}
.

The number kn of basis functions to be used is usually selected less than n so

that the parameter vector could be estimable. However, there are two open prob-

lems. First is that (as discussed before) the estimate (2.1) does not exist or is not

unique, if sample points are separable. This results in convergence to a false es-

timate which causes biased results. Second problem is that it is not clear how to

select kn with respect to n so that the resulting estimate would be consistent, for ex-

ample. In Section 2.3 we solve the first problem, where we describe how separation

of points can be checked against in practice. In Section 2.4 we partially solve the

second problem, where we give the minimal requirements for kn so that consistency

of the resulting estimate (2.1) could be expected.

Remark 2.1. If θ ∈ Ek, then 〈θ ,X〉 = 〈θ ,X (k)〉, where X (k) is the orthogonal pro-
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jection of X on the space Ek. Therefore, θ̂kn is obtained only from X (k)
i , i = 1, . . . ,n.

One could get a wrong idea that then the data are from Rk and we do not need

to consider the general case when calculating the probability of point separation.

However, the situation is more difficult than this. While the conditional probability

of Y = 1, w.r.t. X , is denoted by pθ (X) and has a nice expression, the same con-

ditional probability w.r.t. X (k) is not pθ (X (k)) but EX (k)
pθ (X), where EX (k)

is the

conditional expectation w.r.t. X (k).

2.3 Separability of sample points
Let (x1,y1), . . . ,(xn,yn) be n vectors from Ek×{−1,1}. We will call them sample

points. Let a 6= 0 be another vector from Ek. We will say that a vector a separates

sample points if, for all i,

yi〈a,xi〉 ≥ 0.

We say that sample points are separable, if there exists some a 6= 0 that separates

them. Note that this definition is equivalent to the definition of quasi-complete

separation in the Rk case, established by [12].

Obviously, if some vector a separates sample points, then vector ca with any

c > 0 also separates them. However, −ca with any c > 0 does not separate them.

The separability of sample points has also a geometric interpretation. Any nonzero

vector a corresponds to a hyperplane Ha which is defined by the equation 〈a,x〉= 0

(note that 0 is used in this equation due to the fact that in this thesis we consider the

logistic model without an intercept term). The vector a is then a normal of a hyper-

plane Ha. The subsets of E, defined by inequalities 〈a,x〉 ≥ 0 and 〈a,x〉 ≤ 0, are then

called half-spaces of E. If we change a to ca with c > 0, the associated hyperplane

as well as the associated half-spaces will not change. If we change a to −ca with

c > 0, the associated hyperplane will not change but the associated half-spaces will

have the reversed order. If a′ is not proportional to a, the associated hyperplanes

differ. Therefore, a hyperplane defines a normal to a precision up to a constant c.

Moreover, a hyperplane uniquely defines the pair of half-spaces, rather than indi-

vidual half-spaces. If we want a hyperplane to define a normal to a precision up



2.3. Separability of sample points 25

to a positive constant c, we have to introduce an oriented hyperplane. Formally

speaking, an oriented hyperplane is a hyperplane with a fixed unit length normal.

An oriented hyperplane uniquely defines individual half-spaces, and we can call

one of the two half-spaces an upper half-space, and another one a lower half-space.

For example, the upper half-space is defined by the equation 〈a,x〉 ≥ 0, where a is

that fixed normal. If a separates sample points and H is the corresponding hyper-

plane, we can say that points from different groups fall into different half-spaces.

Of course, one has to keep in mind that those half-spaces overlap, that is, points on

the hyperplane belong to both half-spaces. If H is an oriented hyperplane and a/‖a‖

is its fixed normal, then points from the group y = 1 belong to the upper half-space,

while the rest belong to the lower half-space.

Denote by X (k)
i the projection of the point Xi on the space Ek. We will say

that the sample (X1,Y1), . . . ,(Xn,Yn) is k-separable, if the random sample points

(X (k)
1 ,Y1), . . . ,(X

(k)
n ,Yn) are separable. The latter definition defines some subset of

the event space Ω that consists of ω ∈Ω for which the sample points

(X (k)
1 (ω),Y1(ω)), . . . ,(X (k)

n (ω),Yn(ω)) (2.3)

are separable. It is well-known that if the sample is k-separable, then the maximum

quasi-likelihood estimate of θ does not exist or is not unique [12].

When searching for a separating hyperplane, there are infinitely many candi-

date hyperplanes to consider. This fact makes the theoretical investigation of the

probability that the sample is separable harder since the sums of infinitely many

possible separating hyperplanes are involved in the calculations. In practice the

search area of an algorithm for finding the possible separating hyperplane is re-

stricted to some set of finite number of candidate hyperplanes that is guaranteed to

contain the true separating hyperplane. However, this has not been proved yet. In

the following Section, we give a proof for this.

Let (e1, . . . ,ek) be the orthonormal basis in Ek. For any x1, . . . ,xk ∈ Ek, we will
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denote

det[x1, . . . ,xk] =

∣∣∣∣∣∣∣∣∣
c11 . . . ck1
... . . . ...

c1k . . . ckk

∣∣∣∣∣∣∣∣∣ ,
where ci j is the jth coordinate of the ith covariate, that is,

xi = ci1e1 + · · ·+ cikek.

. Obviously, det is a k-linear antisymmetric form.

Since det[x1, . . . ,xk−1,x] is a linear function w.r.t. x, it is of the form 〈a,x〉

with some a. In other words, there exists a unique a such that, for all x,

det[x1, . . . ,xk−1,x] = 〈a,x〉. Obviously, a is a function of x1, . . . ,xk−1.

If x1, . . . ,xk−1 are linearly dependent, the determinant is equal to 0 for all x, that

is, a = 0. Conversely, if a = 0, then x1, . . . ,xk−1 are linearly dependent (otherwise

we could find xk for which x1, . . . ,xk are linearly independent which would imply

that the determinant is nonzero, that is, a 6= 0).

There is an intrinsic relationship between a determinant and a hyperplane. If

x1, . . . ,xk−1 are linearly independent, then a 6= 0 defines some hyperplane Ha. This

hyperplane has the special property that points x1, . . . ,xk−1 belong to it (because

determinant is equal to 0 when any two columns in it are equal). In fact, it is the

unique hyperplane that contains these points because all a that are perpendicular to

all x1, . . . ,xk−1 are proportional.

Suppose n ≥ k. We will prove that when checking the separability of sample

points it is enough to sort out a finite number of potential vectors a that possibly

separate the sample. This will allow us the correct use of (A.1) in Appendix A.2.

Note that the set of such possible vectors is random. For any family of distinct

indexes (i1, . . . , ik−1)⊂ {1, . . . ,n} denote by Zi1...ik−1 a random vector from Ek such

that, for all x ∈ Ek,

det[X (k)
i1 , . . . ,X (k)

ik−1
,x] = 〈Zi1...ik−1,x〉.
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Let

S = {±Zi1...ik−1 | (i1, . . . , ik−1)⊂ {1, . . . ,n}}.

Note that the set S is finite and the number of elements in it is

|S|= 2
(

n
k−1

)
.

Theorem 2.1: Separability criteria

If n≥ k, then the sample is k-separable if and only if the points X (k)
1 , . . . , X (k)

n

can be separated by some vector from the set S.

Remark 2.2. If n ≤ k, the points are always k-separable. If n = k, any properly

oriented hyperplane passing through k− 1 point separates the sample points. If

n = k− 1, there is only one hyperplane passing through all the sample points, and

it separates the sample points, regardless of its orientation. If n < k−1, then there

are infinitely many hyperplanes passing through the sample points, and all of them

separates the sample points, regardless of their orientation.
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Figure 2.1: Conceptual illustration of Theorem 2.1, where k = 2. If sample points are k-
separable by some vector a, there exists vector a′ that passes through k− 1
sample points and also separates the sample points.

2.4 Probability that sample is separable
Theorem 2.1 implies that the sample is k-separable if and only if, for some distinct

i1, . . . , ik−1,

∀i Yi det[X (k)
i1 , . . . ,X (k)

ik−1
,X (k)

i ]≥ 0 (2.4)

or

∀i Yi det[X (k)
i1 , . . . ,X (k)

ik−1
,X (k)

i ]≤ 0. (2.5)

Let qkn be the probability that sample is k-separable. We will need the following

assumption on the distribution of X :

(FR) We will say that the distribution of X is of full rank, if P(〈θ ,X〉= 0) = 0,

for all θ 6= 0.
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Theorem 2.2: Probability of point separation

If (FR) holds and n≥ k, then with some q < 1 that does not depend on n or on

k,

qkn ≤ 2
(

n
k−1

)
qn−k+1.

Theorem 2.2 gives an upper bound of the probability that sample points are

k-separable. It may not be the lowest upper bound but it gives a good understanding

about what sequence (kn) should be chosen for projection of X so that we could

expect estimate (2.1) to be consistent. The following Corollary summarizes this.

Corollary 2.1: Existence/uniqueness of maximum-likelihood estimate

If kn/n→ 0, then qknn→ 0.

For example, if we take kn = b
√

nc, the probability that the logistic estimate

exists and is unique is close to 1, for n large enough.

2.5 Discussion
The results presented in this Chapter can be directly used for the theoretical in-

vestigations of the properties of logistic classifier in abstract Hilbert spaces, such

as consistency in Chapter 3, for example. When working with functional data, an

infinitely-dimensional parameter vector cannot be uniquely estimated only from the

finite number of observations. Therefore, a common practice is to ‘cut’ the param-

eter vector θ after, say, the kth coordinate, and set the remaining coordinates to

zero. However, this approach is avoided in literature, mainly due to the fact that

the quantitative rule of selecting such k in a way that the resulting estimate would

have desirable theoretical properties has not been established yet. Theorem 2.2 con-

tributes to the understanding of what a good rule for selecting k could possibly be.

Corollary 2.1 tells us that at least kn/n→ 0 should be required so that we could ex-

pect a maximum quasi-likelihood estimate in logistic regression models in abstract

Hilbert spaces to have desirable theoretical properties.



Chapter 3

Consistency of Logistic Classifier in

Abstract Hilbert Spaces

We study the asymptotic behavior of the logistic classifier in an abstract Hilbert

space and require realistic conditions on the distribution of data for its consistency.

The number kn of estimated parameters via maximum quasi-likelihood is allowed

to diverge so that kn/n→ 0 and nτ
4
kn
→ ∞, where n is the number of observations

and τkn is the variance of the last principal component of data used for estimation.

This is the only result on the consistency of the logistic classifier we know so far

when the data are assumed to come from a Hilbert space.

3.1 Introduction to the problem
Most of classifiers assign an observation to the class with the largest estimated pos-

terior probability. Consistency of such a classifier is then implied by the consistency

of the estimate of that probability. If it depends on a finite number of unknown pa-

rameters, as in the logistic model in Rk, then it suffices to consistently estimate all

the parameters. For example, in the Rk case the logistic classifier has been proved

to be consistent, strongly consistent (see, e.g. [29]) and even uniformly consistent

[30].

The situation becomes more complicated if conditional probability is mod-

elled by the infinite number of parameters, as in the logistic model in an infinite-

dimensional Hilbert space E. In this case we are given independent observa-
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tions (X1,Y1), . . . ,(Xn,Yn) of (X ,Y ), where X is E-valued random variable and

Y ∈ {−1,1} is its associated class label. Usually, then the following 3-step pro-

cedure is used: (1) some orthonormal basis in E is chosen and the observations are

replaced by their coefficients in that basis (a finite number, say, l of coefficients are

retained), (2) the principal component analysis of the obtained n× l array of data

is performed and the first k principal components are retained, (3) the usual logistic

regression on the new n×(k+1) array of data is performed. From the mathematical

point of view this means that we replace the original observations by their orthog-

onal projections in some k-dimensional subspace Ek ⊂ E and find the estimate θ̂kn

of the unknown parameter θ0 ∈ E, which maximizes the quasi-likelihood over all

θ ∈ Ek. Of course, if we want to analyze asymptotic properties of such an estimator

(and of the corresponding classifier, based on that estimator), we should also as-

sume that k depends on n, that is, the final estimator to be analyzed is θ̂knn for some

sequence kn→ ∞.

Note that if Ek is obtained by the procedure described above, then it is a ran-

dom subspace of E (it depends on data). This makes the analysis of θ̂knn rather

complicated. Therefore in this Chapter we will analyze the simpler case where Ek

are non random. Formally, this means that we omit the step of principal compo-

nent analysis. This approach (call it naı̈ve) is also known in the literature, but in

some cases is not recommended for practical use. For example, [22] argued that the

naı̈ve approach in the context of functional data introduces multicollinearity (strong

dependence among predictors) which in turn causes inaccurate parameter estimates

and increases their variance. However, the asymptotic results in the case where Ek

are non random in some situations are good, as we show later. Moreover, they show

what can be expected in the general case because some required assumptions are

likely to remain also in the general setting.

In this Chapter we establish the consistency of the logistic classifier under the

two sets of conditions. The first set consists of three conditions on the distribution of

X that are rather simple and, nevertheless, sufficiently general. All three conditions

are satisfied if X has a normal distribution in Hilbert space with zero mean and posi-
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tive definite covariance form. The second set of conditions bound the growth rate of

kn: we require that kn/n→ 0 and nτ
4
kn
→ ∞, where τk = minθ∈Ek,‖θ‖=1C(θ ,θ) and

C is the moment form of X defined by (3.1). As we later discuss, τk can be inter-

preted as the variance of the kth theoretical principal component. The first condition

requires k to be asymptotically less than n diverges which is almost necessary. The

second condition suggests that the variance of the last theoretical principal com-

ponent tends to 0 slower than 1/n−1/4, as n→ ∞. However, this condition can be

relaxed, as our simulation study shows.

In the literature, there are limited attempts to study asymptotic behavior of lo-

gistic estimate when dimensionality kn of data used for estimation diverges together

with the sample size. For example, [31], [32] and [33] studied related but slightly

different problems, that is, models that include some kind of penalty on parame-

ter vector, such as lasso. At first look it could seem that a very close attempt to

solve the described problem was the one of [34], where asymptotic normality of

the parameter estimate under mild conditions is proved. However, the fundamental

difference between their work and ours is that they did not consider covariates X

to be random, while we do. In principle, the results for the model with nonrandom

data can be applied also to the case where the data are random, provided that the

assumptions used for nonrandom data are satisfied for each realization of random

data. However, we cannot apply their result to solve our problem because one of

their assumptions translates as infk τk > 0 which is not the case if data come from a

Hilbert space and follow normal distribution in Hilbert space. In such situation we

can always select basis system {e j} such that the coordinates of X are uncorrelated.

Then
∞

∑
j=1

C(e j,e j) =
∞

∑
j=1

EX2
j = E‖X‖2 < ∞. If Ek are such as required in Chapter

2, then τk =C(ek,ek) and thus inf
k

τk = 0.

The results nearest to ours are achieved in [10]. In the paper, the authors stud-

ied generalized linear models with no penalty and established asymptotic normality

for a properly scaled distance between the estimated and the true parameters. How-

ever, they assume (see assumption (M1)) that if VarXY = σ
2(EXY ) (where EX , VarX

denote the conditional mean and variance, given X) then the function σ is bounded
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away from 0: σ
2(µ) ≥ δ > 0 for all µ . This is not the case for logistic regres-

sion model, where σ
2(µ) = µ(1− µ). This means that the results in [10] cannot

be applied to prove consistency of logistic classifier as considered in this Chapter.

Moreover, [10] approximated infinite-dimensional model by a finite-dimensional

one, that is they assumed that the distribution of Y depends on the projection of

θ0 onto some subspace Ek rather than on full θ0 ∈ E, and assumed that the error of

such an approximation tends to 0. However, we could not find any proof of the latter

rather complicated statement. No such approximation is involved in this Chapter.

This Chapter is organized as follows. In Section 3.2 we describe the statistical

problem considered in this Chapter, explicitly state the assumptions, give some dis-

cussion on them, and state our main result. In Section 3.3 we provide a simulation

study and we end this Chapter with a brief discussion in Section 3.4.

3.2 Consistency
Let E be a separable infinite-dimensional Hilbert space with the inner product 〈·, ·〉.

Let X be a random vector from E, and Y a random variable, gaining values −1

and 1, with conditional probabilities (w.r.t. X) 1− pθ0(X) and pθ0(X), respectively.

Here θ0 ∈ E is an unknown parameter and

pθ (x) =
1

1+ e−〈θ ,x〉
for θ ,x ∈ E.

We consider the following statistical task. We want to estimate the unknown con-

ditional probability pθ0 , given the sample (X1,Y1), . . . ,(Xn,Yn) from the distribution

of (X ,Y ). The quality of the estimate p̂ is assessed by the risk E|p̂(X)− pθ0(X)|.

If the risk tends to 0, the estimate p̂ is called consistent. It is well known that if p̂

is consistent, then the empirical classifier, which assigns x to the class 1 whenever

p̂(x)> 1/2, is also consistent (see, e.g., [7]). Here we will consider the same logis-

tic estimate (2.2) as in Chapter 2, where we suppose θ̂kn = 0 if the minimum is not

attained or is not unique.

Recall that any family of random variables (Zs) is called uniformly integrable,
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if

sup
s
E|Zs|1{|Zs|>c} −−−→c→∞

0.

The consistency of the logistic estimate will be proved under the following assump-

tions on the distribution of X :

(FR) The distribution of X is of full rank.

(M) E‖X‖4 < ∞.

(UI) The family of random variables (〈θ ,X〉2/E〈θ ,X〉2 | ‖θ‖ = 1) is uniformly

integrable.

Assumption (M) implies that the mean of X and the second moment form of X

are correctly defined. The mean is the only such vector EX from E that 〈θ ,EX〉 =

E〈θ ,X〉 for all θ ∈ E. The second moment form is defined by

C(θ1,θ2) = E〈θ1,X〉〈θ2,X〉. (3.1)

If EX = 0 it is called the covariance form. For example, if E = L2([0;1]), then

C(θ1,θ2) = E
∫ 1

0
θ1(s)X(s)ds

∫ 1

0
θ2(t)X(t)dt =

∫ 1

0
ds
∫ 1

0
θ1(s)θ2(t)C̃(s, t)dt,

where C̃(s, t) = EX(s)X(t) is a covariance function of the process X . If E = `2 and

xi denote the coordinates of x ∈ `2, then

C(θ1,θ2) = E
∞

∑
i=1

θ1iXi

∞

∑
j=1

θ2 jX j = ∑
i, j

θ1iθ2 jci j,

where (ci j) is a covariance matrix of the random vector X . Since E can be any

abstract Hilbert space, we will work with the general notation C(θ1,θ2).

The second moment form is a continuous bilinear form on E. Moreover, it is

symmetric and positive semi-definite, that is, for all θ ,

C(θ ,θ) = E〈θ ,X〉2 ≥ 0.
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Obviously, C(θ ,θ)= 0 if and only if P(〈θ ,X〉= 0)= 1. This implies that C(θ ,θ)>

0 if and only if P(〈θ ,X〉= 0)< 1. Recall that assumption (FR) is P(〈θ ,X〉= 0)= 0.

Hence assumption (FR) is slightly stronger than requirement of C being positive

definite.

The conditions we require are realistic and hold for a variety of real-life set-

tings. For example, all three assumptions hold, if X is a normally distributed ran-

dom vector with zero mean and positive definite covariance form. Indeed, then

E‖X‖s < ∞, for all s, and

sup
‖θ‖=1

E
〈θ ,X〉2

E〈θ ,X〉2
1{ 〈θ ,X〉2

E〈θ ,X〉2
>c
} = EZ21{Z2>c} −−−→c→∞

0.

Here Z is a random variable with the standard normal distribution.

Denote

τk = min
θ∈Ek
‖θ‖=1

C(θ ,θ). (3.2)

Here C is the moment form of X , defined by (3.1). For example, if E = `2, Ek

are as defined in Chapter 2, EX = 0, the coordinates of X are uncorrelated and the

variances of them decrease, then τk is the variance of the kth coordinate. In other

words, τk is the variance of the kth theoretical principal component.

Our main result is the following Theorem.

Theorem 3.1: Consistency of logistic estimate (no intercept)

Suppose that assumptions (FR), (M) and (UI) hold. Moreover, suppose

kn→ ∞,
kn

n
→ 0 and nτ

4
kn
→ ∞.

Then the logistic estimate is consistent.

Note that the condition nτ
4
kn
→ ∞ requires that the data are such that the vari-

ance of the last principal component tends to 0 slower than 1/n−1/4, as n→∞. This

in turn suggests that the data need to be such that it cannot be sufficiently explained
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only by a few principal components. For example, if data are such that 99% of its

first 3 dimensions are explained by the first 2 principal components and adding ev-

ery other dimension does not influence the cumulative variance explained by these

first 2 principal components, then the theoretical results will not be valid for such

data. Of course, such example is only an interpretation of the theoretical asymptotic

result.

In statistics, the logistic model with an intercept is usually preferred over the

one without it because useful model information might be incorporated in the inter-

cept term. Theorem 3.1 implies the analogous result on the logistic estimate, when

the model with an intercept is considered, that is, when the conditional probability

that Y = 1, given X = x, is defined by

pα,θ (x) =
1

1+ e−α−〈θ ,x〉 for α ∈ R and θ ,x ∈ E. (3.3)

In this case, the assumption (FR) should be changed to

(FR’) P(〈θ ,X〉= α) = 0 for all θ 6= 0 and α ∈ R.

We call p
α̂,θ̂ the logistic estimate of (3.3), if

(α̂, θ̂) = arg min
(α,θ)∈R×Ekn

Mn(α,θ), (3.4)

where

Mn(α,θ) = mα,θ (X ,Y ), mα,θ (X ,Y ) = log(1+ e−Y (α+〈θ ,X〉)).

We say that the logistic estimate is consistent, if E|p
α̂,θ̂ (X)− p0(X)|→ 0, as n→∞,

where p0(x) = pα0,θ0(x) in this case. As before, τk is defined by (3.2), where C is

the covariance form of X . Our last result is the following Theorem.
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Theorem 3.2: Consistency of logistic estimate (with intercept)

Suppose assumptions (FR’), (M) and (UI) hold, and EX = 0. Moreover, sup-

pose

kn→ ∞,
kn

n
→ 0 and nτ

4
kn
→ ∞.

Then the logistic estimate is consistent.

3.3 Simulation study
To illustrate the established assumptions, we conducted a simulation study. We will

give the two examples: one, where all assumptions hold, and another one, where

the assumption nτ
4
k → ∞ does not hold.

Example 1. Since Xi(t) =
∞

∑
j=1

Ci je j(t) for any selected basis system, it is

enough to generate coefficients Ci j. To go in line with the (UI) assumption, we

will generate Ci j as independent and normally distributed variables with zero mean

and variance σ
2
j = 1/(1.1 j). Then τk = σ

2
k . If we want that nτ

4
k = n1.1−4k tend to

∞, we have to take k = dc logne with c < 1/(4log1.1)≈ 2.62. In this example, we

will take c = 2, so that nτ
4
k → ∞ and all assumptions hold.

We took θ0 with θ0i = 1/(1.1i) and calculated pθ0(Xi) up to precision ε = 10−4.

To this end we generated additional coordinates Xi j for j ≤ l, where l was the first

index with |θ0lXil|< ε .

We generated 300,500,1000,1500 and 2000 observations, respectively, over

100 independent runs for each setting, and each time we approximated the distance

d(p̂, p0) = f (θ̂ ,θ0),

where

f (θ ,θ0) = E|1/(1+ e−U1)−1/(1+ e−U2)|

with U = (U1,U2) distributed according to the normal law with zero mean and
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covariance matrix

Σ =

 ∑
i

θ
2
i σ

2
i ∑

i
θiθ0iσ

2
i

∑
i

θiθ0iσ
2
i ∑

i
θ

2
0iσ

2
i

 .

We calculated f using the Monte Carlo method. We simulated 10000 inde-

pendent copies of U , which gives, as preliminary testing shows, approximate 0.01

precision for d. We also reported misclassification rate

MCR =
1
n

n

∑
i=1

1{ŷi 6=yi},

where we set ŷi = 1, if p̂(xi)>= 1/2. Moreover, we reported the Bayes risk, where

the probability of misclassification was calculated by

Emin(p0(X),1− p0(X)) = E
1

1+ e|U |
, (3.5)

where U ∼ N(0,1/(1.13− 1)). Again, we used Monte Carlo method to calculate

(3.5). Figure 3.1 illustrates the simulated data as well as the true and estimated

conditional probabilities. The x axis in plots (a)-(c) in Figure 3.1 represents the

coefficient number j which stops after the kth value is generated. The y axis in plots

(a)-(c) in Figure 3.1 represents the values of Ci j. As we can see from plots (a)-(c) the

Ci j are distributed normally with mean 0 and their variance decreases as j increases.

Plots (d)-(f) in Figure 3.1 shows the true and estimated conditional probabilities p0

and p̂, respectively, as functions of x. The x axis represents the observation number

i and the y-axis shows the values of p0 and p̂ at the x = xi, i = 1, . . . ,n. We can see

that the true and estimated conditional probabilities are close to each other for every

observation suggesting that the average difference between the two is small. This is

further confirmed by d̂(p̂, p0) values in Table 3.1. Numerical results, averaged over

100 independent runs, are displayed in Table 3.1. As we can see from Table 3.1, the

assumption nτ
4
k → ∞ holds and d̂(p̂, p0)→ 0, as expected.
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(a) (d)

(b) (e)

(c) (f)

Figure 3.1: Illustration of simulated data for Example 1. (a)-(c) Simulated data for n =
300,1000 and 2000, respectively. (d)-(f) True conditional probability p0 and
estimated conditional probability p̂, evaluated for the generated observations.

Table 3.1: Numerical results for Example 1, averaged over 100 independent runs

n 300 500 1000 1500 2000
k 12 13 14 15 16

nτ
4
k 3.1 3.5 4.8 4.9 4.5

d̂(p̂, p0) (± sd) 0.095 (± 0.017) 0.078 (± 0.013) 0.061 (± 0.008) 0.054 (± 0.007) 0.048 (± 0.007)
MCR (%, ± sd) 26.08 (± 2.7) 26.35 (±1.8) 26.33 (± 1.41) 26.76 (± 1.15) 26.55 (± 0.91)
Bayes (%, ± sd) 24.32 (± 0.16) 24.32 (± 0.16) 24.32 (± 0.16) 24.32 (± 0.16) 24.32 (± 0.16)
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Example 2. Let us consider the same settings as for Example 1, except that

now we will take c = 6, so that nτ
4
k → 0 and even nτ

2
k → 0. Figure 3.2 illustrates the

simulated data as well as the true and estimated conditional probabilities. Numerical

(a) (d)

(b) (e)

(c) (f)

Figure 3.2: Illustration of simulated data for Example 2. (a)-(c) Simulated data for n =
300,1000 and 2000, respectively. (d)-(f) True conditional probability p0 and
estimated conditional probability p̂, evaluated for the generated observations.
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results, averaged over 100 independent runs, are displayed in Table 3.2.

Table 3.2: Numerical results for Example 2, averaged over 100 independent runs

n 300 500 1000 1500 2000
k 18 19 21 22 23

nτ
2
k 0.3 0.4 0.3 0.3 0.3

nτ
4
k 5∗10−4 2.5∗10−4 1.1∗10−4 7.8∗10−5 4.2∗10−5

d̂(p̂, p0) (± sd) 0.127 (± 0.024) 0.102 (± 0.015) 0.082 (± 0.014) 0.069 (± 0.011) 0.065 (± 0.01)
MCR (%, ± sd) 24.56 (± 2.31) 25.35 (± 1.94) 26.01 (± 1.28) 26.49 (± 1.21) 26.55 (± 0.94)
Bayes (%, ± sd) 24.32 (± 0.16) 24.32 (± 0.16) 24.32 (± 0.16) 24.32 (± 0.16) 24.32 (± 0.16)

As we can see from Table 3.1, the assumption nτ
4
k → ∞ (and even weaker as-

sumption nτ
2
k → ∞) is violated but d̂(p̂, p0)→ 0. This suggests that the assumption

nτ
4
k → ∞ might be not needed to establish the consistency of logistic estimate and

could be relaxed in future investigations.

3.4 Discussion
As we noted in the previous Section, assumption nτ

4
kn
→ ∞ does not seem to be

necessary for our main result to hold. It is interesting that the analogous assumption

(M3) in [10] translates into nτ
2
kn
/k2

n → ∞. However, our simulation study shows

(see Example 2) that even assumption nτ
2
kn
→ ∞ is not necessary. At the moment it

is not clear what is the true asymptotic lower bound for τkn , and how Theorem 3.1

can be proved under assumption, weaker than nτ
2
kn
→ ∞.



Chapter 4

An Approach to Extending Sparsely

and Irregularly Sampled Functional

Data

We consider a problem of extending sparsely and irregularly sampled functional

data to a common time interval. We suggest a consistent way to construct two

reference functions from the data which are then used to predict missing values by

using interpolation shifted vertically. Under certain assumptions, we establish the

consistency of the proposed curve extension method which is then illustrated on real

and simulated data.

4.1 Introduction to the problem
In Chapter 3 the consistency of logistic classifier for functional data was estab-

lished. However, in Chapter 3 observing full functional data was assumed which

is the case that exists only in theory. As discussed in Introduction of the thesis, in

practice functional data can be observed only at some finite number of time points.

Moreover, those time points as well as the number of them can differ amongst obser-

vations. This makes the application of the logistic classifier in Chapter 3 to practical

classification of functional data difficult.

In this Chapter, we consider a problem of extending sparsely and irregularly

sampled curves which can then be used for statistical analysis such as, for exam-
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ple, classification. We are given a collection of (random) curves Xi, i = 1, . . . ,n

observed at (random) time points Ti1, . . . ,TiMi , where Mi is the (random) number of

time points for the ith curve. In this Chapter, Mi is allowed to be as small as 1.

We call the collection of points {Xi(Ti1), . . . ,Xi(TiMi)} a fragment of the ith function

and we call a collection of points {Ti1, . . . ,TiMi} time points for the ith fragment. We

consider a task of extending curve fragments to the (random) interval T = [T1;Tm],

where

T1 = min
i
{Ti1, . . . ,TiMi}, (4.1)

Tm = max
i
{Ti1, . . . ,TiMi}. (4.2)

The spinal bone mineral density in individuals in [1] is the example of a prac-

tical situation, where such data type occurs (see Figure 4.1). As we can see from

Figure 4.1, the measurements were taken irregularly across individuals. Moreover,

not only the number of repeated measurements for an individual differs across indi-

viduals but is also very small for all individuals.

Suppose we put all time points for all fragments into the ordered vector

[T1,T2, . . . ,Tm]
T , where Tj ∈ {Ti1, . . . ,TiMi}, and T1 < T2 < · · · < Tm, keeping only

unique time points, and convert each fragment into an m-vector Xi = [Xi1, . . . ,Xim]:

Xi j =

Xi(Ti j), if Xi(Ti j) exists,

∅, otherwise,

where ‘∅’ denotes a missing value. We can then see that the resulting design matrix

X = [X1, . . . ,Xn]
T is extremely sparse and that the problem of extending curves to the

interval T can then be also understood as a matrix completion problem. The sparsity

of the design matrix X creates problems when we want to use the observed data for

further statistical analysis, such as classification to different groups. Therefore,

there is a need to predict, in some way, the missing values for each fragment.
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Figure 4.1: Data measurements of spinal bone mineral density for 153 females. Measure-
ments taken for the same individual are joined by a curve. The data are de-
scribed in [1] and provided by prof. James Gareth.

The popular methods for predicting missing values could be linear interpola-

tion/extrapolation or filtering (smoothing splines). However, as was discussed in

[35], these methods fail for such type of data. Even though many reasons were

discussed in [35], the main reason seems to be the fact that we do not have any

reference measurements for extrapolation or filtering to work at the both ends of the

observed fragment.

To make the idea clearer, let us make an example. Suppose the ith fragment

contributes to the design matrix as [∅,∅,∅,Xi(T4),∅,Xi(T6),∅,∅]. Let us call

Li = [∅,∅,∅] the region to the left, by Ri = [∅,∅] the region to the right and

Ci = [Xi(T4),∅,Xi(T6)] the central region of the contribution of the ith fragment

to the design matrix X . Then, we can clearly see that both methods, interpolation

and filtering, would work only in the central region Ci, where predicting the miss-

ing value is relatively easy, given the two endpoints. However, regions Li and Ri

do not have any references except the neighboring Xi(T4) and Xi(T6), respectively.

Therefore, if we applied extrapolation to regions Li and Ri, our prediction would
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be something like a straight line L̂i = [Xi(T4),Xi(T4),Xi(T4)], R̂i = [Xi(T6),Xi(T6)].

If we applied filtering, we would have infinitely many possible solutions to predict

entries for both Li and Ri.

Therefore, more sophisticated methods to extend sparse functional data have

been proposed. If we assume that a random curve Xi ∈ L2[0,1], we can express

it via selected basis functions and the coefficients next to basis functions will be

random. Naturally, we can always select such basis system so that the coefficients

are uncorrelated. We will call such data model a multiplicative model to relate

to the fact that the selected basis functions are multiplied by coefficients. This

model was used, for example, in [36] and [37], where the curves were modeled by

B-splines with random coefficients. These coefficients were assumed to follow a

multivariate normal distribution and were then estimated using the EM algorithm

with the constraints that reduced the number of parameters that had to be estimated.

However, no asymptotic results on such extension were established. As discussed

in [11] this is probably due to the fact that it is impossible to think of a consistent

extension method in such a case, unless the distribution of Mi is assumed to depend

on n in a way that Mi → ∞ in probability or almost surely. We will call such an

assumption by the dense fragment setting and we will refer to the situations, where

such assumption is not made, as to the sparse fragment setting. Dense fragment

setting was considered in the work of [11] and later in the works of [38], [39]

and [40]. In the former, the curves were expressed through their Karhunen-Loève

expansions, where the means and covariances were estimated through borrowing

strength from all data points by kernel smoothers. As a result, consistency of the

estimated mean, covariance functions as well as principal component scores was

proved. However, as discussed in [3], the mean and covariance smoothers do not

perform well in the context of sparse fragment setting, that is, when the distribution

of Mi does not depend on n. A fully non-parametric approach was proposed by

[3], where extensions of fragments were achieved by adjoining, to each fragment,

shifted versions of other observed fragments. However, their approach forces each

of the reconstructions to have exactly the shape of an observed fragment. The most
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recent approach in [6] proposes the extension of sparse functional data based on

the combination of Markov chains and nonparametric smoothing techniques which

is specially designed for extending short fragments. For monotone functions, their

approach had similar performance compared to the one of [3].

The main idea in this Chapter is to borrow the information from all ob-

served fragments to predict the missing values for the ith curve. This is achieved

by constructing consistent maximum and minimum reference functions borrowing

strength from all the fragments (similarly as was done in [11] for the estimation

of the mean curve) and then for each curve predicting the missing values by inter-

polation shifted vertically. We therefore call such an approach to inputing missing

values the collaborative prediction. The key point is that we concentrate on the

sparse fragment setting as in [3], even though our results are applicable also in the

dense fragment setting. In the sparse fragment setting we cannot use the multi-

plicative model, where all coefficients are random, as in such a case the consistent

extension method does not seem to exist. Therefore, in this Chapter we consider

the simpler case where only one of the coefficients in the multiplicative model is

random, and we prove the consistency of our proposed collaborative prediction.

There are some theoretical contributions of this Chapter as compared to other

works. First, in the work of [6], the consistency is established for model parameters

(transition probabilities in Markov chains) which is a traditional way of thinking

about consistency. However, as discussed in [11], a more interesting and useful

way is to establish consistency for extended functions X̂ni rather than for model

parameters. In their work, consistency was established for each extended curve

separately. However, they worked in the dense fragment setting and their proof is

not valid in the sparse fragment setting which is considered in this Chapter. In fact,

in sparse fragment setting it is impossible to prove the consistency of extension for

a fixed curve i because we cannot use the fact that the number of time points Mi

diverges in probability or almost surely together with the sample size. Therefore,

consistency can be proved only for an average X̂ni, using the fact that the sum of

all Mi diverges together with the sample size. Second, in the work of [11], several
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assumptions on the rate of growth of data in the local window of bandwidth hn were

used, including that of nh4
n → ∞ which was used to establish the consistency of

the estimated mean curve. As mentioned in [11], they expected that in future such

assumption could be possibly reduced to the optimal one of nhn/ logn→ ∞ which

is exactly the assumption in this Chapter.

This Chapter is organized as follows. In Section 4.2 we describe in details the

proposed method. In Section 4.3 we establish assumptions under which we prove

the consistency of the proposed curve extension method. We provide a reader with

a simulation study in Section 4.4, where we compare the proposed method with the

method in [3] as well as study the limitations of our method. Finally, in Section

4.5 we illustrate our proposed method on the spine mineral density data mentioned

earlier. The discussion is left for Section 4.6.

4.2 Proposed methods
From the theoretical point of view, the task of proposing the consistent extension of

sparsely and irregularly sampled functional data in the sparse fragment setting can

be shortly summarized as the following:

• X1, . . . ,Xn are independent random functions from C[0,1], where C[0,1] is the

space of all continuous functions on [0,1].

• We observe the values of the function Xi at some random time points 0 <

Ti1, . . . ,TiMi < 1, where Mi is the number of observed time points for the ith

function.

• Based on the data, we have to construct new functions X̂n1, . . . , X̂nn such that

1
n

n

∑
i=1
‖X̂ni−Xi‖ −−−→

n→∞
0,

in probability or almost surely, where ‖·‖ is the sup-norm:

‖X‖= sup
t∈[0,1]

|X(t)|. (4.3)
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Note that we used X̂ni to underline the fact that the new functions are the es-

timates of the true functions that depend on (random) data. The main challenge of

such a task is that as n approaches infinity, the dataset expands only vertically, that

is, the number of observations increases together with n and not horizontally, that is

the distribution of Mi does not depend on n in a way that Mi→ ∞, as n diverges.

The proposed curve extension method using interpolation shifted vertically (we

will call it CEint) can be described by the following 5-step procedure:

Step 1. Divide the interval [0,1] into ln equal parts and denote hn = 1/ln.

Step 2. Define the two (random) reference functions:

X̂∗n (t) = max
1≤i≤n, 1≤ j≤Mi
shn≤Ti j<(s+1)hn

Xi(Ti j), for shn ≤ t < (s+1)hn, (4.4)

X̂∗n(t) = min
1≤i≤n, 1≤ j≤Mi
shn≤Ti j<(s+1)hn

Xi(Ti j), for shn ≤ t < (s+1)hn. (4.5)

If t ∈ [shn;(s+ 1)hn) but there is no Ti j in that interval such that 1 ≤ i ≤ n and

1≤ j ≤Mi, we will suppose that X̂∗n (t) = X̂∗n(t) = 0.

Step 3. For every i = 1, . . . ,n, find Ti,(1) = min
1≤ j≤Mi

Ti j and then α̂ni ∈ [0,1] such

that

Xi(Ti,(1)) = (1− α̂ni)X̂∗n(Ti,(1))+ α̂niX̂∗n (Ti,(1)).

Remark 4.1. In principle, any time point T̄ni from the set {Ti1, . . . ,TiMi} could be

used instead of Ti,(1). If X̂∗n (T̄ni)−X̂∗n(T̄ni)= 0, α̂ni could be any number: in this case

the value of X̂ni does not depend on α̂ni and is equal to X̂∗n (T̄ni) = X̂∗n(T̄ni) = Xi(T̄ni).

For the sake of completeness of the argument, we will suppose that in such a case

α̂ni = 0.

Step 4. Finally, define

X̂ni(t) = (1− α̂ni)X̂∗n(t)+ α̂niX̂∗n (t). (4.6)

Step 5. The reference functions X̂∗n (t) and X̂∗n(t) as well as the resulting X̂ni

are piecewise constant. Even though this does not make much difference in theory,
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for practical applications of the proposed methods smooth reference functions may

be preferred. We can obtain smooth functions X̃ni(t) from the piecewise constant

functions X̂ni(t) in two different ways. The first way involves using the usual basis

expansion, where the final (smooth) estimated functions are defined by

X̃ni(t) =
K

∑
k=1

ĉikek(t),

where {ek(t)}k is the chosen basis system and ĉik are such that they minimize the

following functional:

1
m

m

∑
j=1

(
X̂ni(Ti j)−

K

∑
k=1

ĉikek(Ti j)

)2

.

However, obtaining smooth functions in such a way requires defining the value of

parameter K which complicates the theoretical analysis. Therefore, in this Chap-

ter we use another non-parametric approach, where we define the final (smooth)

estimated functions by

X̃ni(t) =

(1−α)X̂ni(shn)+αX̂ni((s+1)hn), for shn ≤ t < (s+1)hn,s < ln−1,

X̂ni, for shn ≤ t < (s+1)hn,s = ln−1,

(4.7)

where α is obtained by solving the following equation:

t = (1−α)shn +α(s+1)hn.

Also note that for certain data models CEInt method slightly changes the func-

tion values at observed time points (to be more precise, CEInt changes function

values at all observed time points, except which was used to calculate α̂ni). There-

fore, in some practical applications, where we believe the data were observed with-

out noise or where we are not sure how to model the data, one can prefer using

a modification of CEInt approach which would keep the observed function values
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unchanged. To this end, instead of only one α̂ni value for the ith curve, we can

calculate Mi values of α̂ni, one for each Ti j, j = 1, . . . ,Mi, and each time use exactly

that α̂ni for the extension of the ith curve in the interval ‘to the left’ with respect to

that Ti j. For example, if Ti j is the minimal time point at which we observed the ith

curve, that is, Ti j = Ti,(1), then the interval ‘to the left’ w.r.t. Ti j is [0;Ti,(1)]. If Ti j is

not the minimal time point, then the interval ‘to the left’ is (Ti j−1,Ti j]. If Ti j is the

maximum time point at which we observed the ith curve, then the extension is done

also in the ‘interval to the right’ [Ti j,Tm]. In other words, for each Ti j, j = 1, . . . ,Mi,

we calculate α̂ni j such that

Xi(Ti j) = (1− α̂ni j)X̂∗n(Ti j)+ α̂ni jX̂∗n (Ti j).

Then, for each t ∈ Tleft, where Tleft ⊂ T is the respective interval ‘to the left’,

X̂ni(t) = (1− α̂ni j)X̂∗n(t)+ α̂ni jX̂∗n (t).

Again, if smooth function estimates are preferred, they can be obtained from X̂ni(t)

by (4.7). We will call the latter approach the local CEInt approach.

4.3 Consistency
Recall that c∗ is called essential infimum and c∗ is called essential supremum of a

random variable C, if for any ε > 0

P(C ≥ c∗) = 1, P(C > c∗+ ε)< 1,

P(C ≤ c∗) = 1, P(C < c∗− ε)< 1.

In this Section we will establish the consistency of our proposed CEint approach

under certain assumptions:

(A) Xi =Cia+b. Here a and b are unknown but fixed nonrandom functions from

C[0,1] and Ci are independent copies of a random variable C ∈ R.

(B) The function a gains only positive values.
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(C) If c∗ = ess infC and c∗ = esssupC, then 0 < c∗ < c∗ < ∞.

(D) Mi are independent copies of a random variable M. The random variable M

gains values that are only positive integers.

(E) (Ti j | i, j ≥ 1) are independent copies of a random variable T . For simplicity,

we assume that T is distributed uniformly in the interval [0,1]. However, in

general, it would be enough to require that T has a density that is bounded

away from zero.

(F) The families (Ci), (Mi) and (Ti j) are mutually independent.

Remark 4.2. Note that if we consider the multiplicative model discussed in Intro-

duction of this Chapter, where only one of the coefficients is random, the ith curve

can be expressed via selected basis functions {e j} in the following way:

Xi(t) =Cie1(t)+
∞

∑
j=2

c je j(t), c j ∈ R.

In fact, assumption (A) refers to this situation, where we have a instead of e1 and b

instead of
∞

∑
j=2

c je j.

Denote by

x∗(t) = c∗a(t)+b(t), x∗(t) = c∗a(t)+b(t)

the true reference functions. We will first prove that the estimated reference func-

tions X̂∗n and X̂∗n are consistent, that is they tend to the true reference functions x∗

and x∗, as n→∞. Denote by ‖·‖L2 the usual L2-norm and recall that ‖·‖ denotes the

sup-norm, that is

‖X‖2
L2

=
∫

t∈[0,1]
X2(t)dt,

‖X‖= sup
t∈[0,1]

|X(t)|.



4.3. Consistency 52

Theorem 4.1: Consistency of reference functions

Let X̂∗n and X̂∗n be the reference functions obtained by (4.4)-(4.5). Let assump-

tions (A)-(F) hold and let hn→ 0. If furthermore

nhn

logn
→ ∞, (4.8)

then almost surely

‖X̂∗n − x∗‖→ 0 and ‖X̂∗n− x∗‖→ 0.

The main result is the following Theorem.

Theorem 4.2: Consistency of piecewise constant extended functions

Let X̂ni be the extended functions obtained by (4.6). Let assumptions (A)-(F)

hold and let hn→ 0. If furthermore

nhn

logn
→ ∞,

then almost surely
1
n

n

∑
i=1
‖X̂ni−Xi‖→ 0.

Because L2-norm is weaker (‖·‖L2 ≤ ‖·‖) and all the values of all the functions

do not exceed c∗‖a‖+‖b‖,

‖X̂ni−Xi‖2
L2
≤ ‖X̂ni−Xi‖2 ≤ 2 [c∗‖a‖+‖b‖]‖X̂ni−Xi‖.

Therefore, Theorem 4.2 implies consistency also w.r.t. the norm in L2. Moreover,

Theorem 4.2 implies also analogous results, if piecewise linear function estimates

are used. Therefore, we can add the following Theorem.
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Theorem 4.3: Consistency of piecewise linear extended functions

Let X̃ni be the piecewise linear extended functions obtained by (4.7). Let as-

sumptions (A)-(F) hold and let hn→ 0. If furthermore

nhn

logn
→ ∞,

then almost surely
1
n

n

∑
i=1
‖X̃ni−Xi‖→ 0.

4.4 Simulation study

4.4.1 All assumptions hold

Here we implemented our proposed method in the case where all the assumptions

needed for its consistency hold. To this end, we considered the following multi-

plicative model:

Xi(t) =Cia(t),

where a(t) = exp(−t) and Ci ∼U(0.5,1). Note that for simplicity, we took b(t) =

0. We took hn = 1/
√

n. For each curve i = 1, . . . ,n, we generated the Mi ∼ 2+

Poiss(λ ) time points Ti1, . . . ,TiMi at which we calculated the function values. We

then passed those values to algorithms for curve extension to a common interval

[T1;Tm], where T1,Tm are defined by (4.1)-(4.2). We considered various simulation

settings with λ ∈ {5,10,30} and n ∈ {10,50,100,300,500}. As the method in [3]

does not provide extensions of fragments for those time points at which there are no

observations, for each (λ ,n) setting, we approximated the distance

d(X̂ ,X) = exp

(
−

[
1
n

n

∑
i=1
‖X̂ni−Xi‖

])
(4.9)
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by

d̂(X̂ ,X) = exp

(
−

[
1
n

n

∑
i=1

max
t∈{T1,...,Tm}

∣∣X̂ni(t)−Xi(t)
∣∣])∗100 (%). (4.10)

Note that we took exponential here so that numerical results would nicely lie

between 0 and 100, where 0 indicates that curves were extended extremely poorly

and 100 means that they were extended perfectly. We compared the proposed

method with the curve extension approach proposed by Delaigle and Hall in [3]

for which we will use letters DH. For the latter, we used MATLAB code provided

by prof. Delaigle. This included extending curves with the nearest-neighbor method

described in [3], where gaps were filled by copying the mean curve estimated by the

method of [11]. The results are in Table 4.1.

Remark 4.3. Note that our proposed method works even if some realization of Mi

is equal to 1. Therefore we could have taken Mi = 1+Poiss(λ ) instead. However,

here we took Mi = 2+Poiss(λ ) because the method of [3] did not work when some

realization of Mi was equal to 1.

Table 4.1: The values of d̂(X̂ ,X) (±sd) for different methods, averaged over 1000 inde-
pendent runs. Here d̂Int(X̂ ,X) and d̂DH(X̂ ,X) denote the distance (4.10) where
X̂n are obtained by using proposed method or the method of [3], respectively.

n 10 50 100 300 500
λ = 5

d̂Int(X̂ ,X) (±sd) 85.34 (±1.66) 92.18(±0.74) 94.16 (±0.49) 96.28 (±0.28) 97.06(±0.15)
d̂DH(X̂ ,X) (±sd) 92.82(±0.89) 95.58(±0.24) 96.61(±0.13) 97.72(±0.03) 98.1(±0.02)

λ = 10

d̂Int(X̂ ,X) (±sd) 84.34 (±1.9) 92.24 (±0.62) 94.36(±0.4) 96.5(±0.21) 97.19(±0.16)
d̂DH(X̂ ,X) (±sd) 92.8 (±0.74) 95.56 (±0.19) 96.67(±0.1) 97.88(±0.03) 98.31(±0.02)

λ = 30

d̂Int(X̂ ,X) (±sd) 82.52(±1.47) 92.05(±0.67) 94.38(±0.4) 96.61(±0.15) 97.41(±0.07)
d̂DH(X̂ ,X) (±sd) 92.85(±0.47) 95.65(±0.13) 96.72(±0.07) 97.93(±0.02) 98.36(±0.01)

As we can see from Table 4.1, for all (λ ,n) settings d̂Int tends to 100 as n in-

creases which suggests that the proposed method is consistent for all (λ ,n) settings.

Moreover, for all settings the proposed method is comparable to that of [3], even
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though the method of [3] works a bit better for these data. This might be because

of the small variance of coefficients Ci in which case all Ci are close to each other

across observations i = 1, . . . ,n which in turn causes the potential errors from using

nearest neighbor method in [3] being small.

4.4.2 Other than strictly positive functions

To study the limitations of the proposed method, we tested them in the case where

function a gains not necessary positive values. To this end, we generated the data

from the following model:

Xi(t) =Cia(t),

where a(t) = 2t − 1 and Ci ∼U(0.5,1). Again, we took b(t) = 0, for simplicity.

Here we used distance (4.9). The other settings were left as before. The results are

presented in Table 4.2. As we can see from Table 4.2, CEInt method seems to have a

poor convergence rate for all the settings. More optimistic results are seen for CEInt

approach for settings with λ = 30. This suggests that the assumption of a gaining

positive values may be indeed needed.

Table 4.2: The values of d̂Int(X̂ ,X) (±sd), averaged over 1000 independent runs. Here
d̂Int(X̂ ,X) denotes the distance (4.10) where X̂n are obtained by using the pro-
posed method.

λ/n 10 50 100 300 500
5 60.04(±3.34) 66.34(±2.13) 67.42(±1.61) 68.54(±0.96) 68.83(±0.78)
10 61.29(±2.5) 69.82(±1.52) 71.31(±1.15) 72.7(±0.73) 73.11(±0.58)
30 60.18(±2.19) 71.15(±1.31) 73.24(±1) 75.17(±0.6) 75.74(±0.49)

4.4.3 Other multiplicative models

To study the extensions beyond the multiplicative model, where only one coefficient

is random, we generated the data from the following model:

Xi(t) =Cia(t)+Dib(t),

where Ci,Di ∼ U(0.5,1),a(t) = exp(−t),b(t) = cos(t). Here we used distance

(4.9). The other settings were left as before. The results are presented in Table
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4.3. Again, as we can see from Table 4.3, CEInt method does not seem to perform

consistently also in this case, except for the settings with λ = 30. This reflects the

limitations of the proposed approach.

Table 4.3: The values of d̂Int(X̂ ,X) (±sd), averaged over 1000 independent runs. Here
d̂Int(X̂ ,X) denotes the distance (4.10) where X̂n are obtained by using the pro-
posed method.

λ/n 10 50 100 300 500
5 76.9(±2.81) 83.19(±2.05) 84.31(±1.8) 85.34(±1.34) 85.6(±1.26)
10 78.34(±2.05) 87.31(±1.2) 88.8(±1.07) 90.12(±0.87) 90.48(±0.85)
30 77.75(±1.47) 89.44(±0.79) 91.73(±0.58) 93.65(±0.41) 94.21(±0.38)

4.5 Real data example
We tested CEint approach on spinal bone mineral density data mentioned in Intro-

duction and compared with the approach of [3] which we will label as DH. There

are four groups in the dataset: Asian females, Black females, Hispanic females

and White females. We considered each group as a separate dataset and performed

extension to each dataset independently. This involved constructing four differ-

ent grids, each of which contained unique sorted time points ti j, i = 1, . . . ,n, j =

1, . . . ,mi, separately for each dataset. Here, unlike in the simulation study, we were

interested to measure the distance between the true and predicted function values

not only at the ends of each interval but also at each grid point.

Since the full ground true data is not available, we performed leave-one-out

cross-validation (LOOCV) to access the performance of the methods. To this end,

for each fragment i, each time we left out its value at one of the time points (say,

Ti j) and performed the extension of that fragment without using its value at time

point Ti j. We then calculated the distance between the predicted function value at

that point X̃i(Ti j) with the true value Xi(Ti j):

exp(−|X̃ni(Ti j)−Xi(Ti j)|).

We repeated this procedure for all time points Ti j for the ith fragment and calculated
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Table 4.4: Average distance (4.11) (± std) calculated using local CEint approach and DH
approach. For each of the four datasets, the average is taken over all fragments
that were considered for extension in that dataset.

Method Asian Black Hispanic White
Local CEint 96.21±2.86 95.61±4.98 96.37±2.24 97.53±1.72

DH 97.62±1.65 92.44±18.45 91.88±22.98 94.64±16.55

the final distance measure for that fragment

d̂(X̃ ,X) = max
j

exp(−|X̃ni(Ti j)−Xi(Ti j)|). (4.11)

Note that X̃ni notation is used here because we used local CEInt approach with

piecewise linear estimated functions.

Remark 4.4. Since the DH approach did not work for fragments that were observed

at only 1 time point, we performed LOOCV only for those fragments which were

observed at more than 2 time points.

For our approach, for each point to be predicted we used the best-case-scenario

value for hn. To this end, for each point to be predicted we generated 100 values

for hn, equally spaced in the interval [0.05,0.5], and selected that hn value which

resulted in the highest distance value d̂(X̃ ,X), where d̂(X̃ ,X) was calculated con-

sidering the training set of all observed points except for which the extension was

done. This resulted in the following average hn values: hn = 0.0933 for Asian

females, hn = 0.1111 for Black females, hn = 0.1364 for Hispanic females and

hn = 0.1608 for White females. Numerical results are presented in Table 4.4, while

the visual performance is displayed in Figure 4.2, where extension for all datasets

was performed using all data points and reported average hn values for each dataset.

As we can see from Table 4.4, the accuracy of the extensions of Asian female

fragments is comparable for both local CEInt method and the DH method. How-

ever, the extensions of Black, Hispanic and White female fragments have a better

accuracy when using local CEInt approach. DH method for these data had very

wide standard deviation which suggests that the prediction at some time points in

LOOCV process deviated highly from the the true values at those time points. In
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

Figure 4.2: Data measurements of spinal bone mineral density for 153 females: (a)-(d)
observed data measurements for Asian, Black, Hispanic and White females,
respectively; (e)-(h) extended data measurements using local CEint approach
for Asian, Black, Hispanic and White females, respectively; (i)-(l) extended
data measurements using DH approach for Asian, Black, Hispanic and White
females, respectively.
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fact, those points were the first or the last time points in the respective grids. For

some reason in those cases the DH method makes very poor predictions which we

think may be a programming error. On the other hand, even though local CEInt ap-

proach works better, we can also see its limitations. For example, plot (f) in Figure

4.2 reflects the strong dependence of local CEInt approach on the data, where there is

somewhat unnatural pattern around age 19-22 for Black females caused mainly due

to the lack of data in that time interval. It seems that some conditions required for

consistency is not satisfied for Black female data such as, perhaps, the distribution

of time points Ti j at which we observe the curves are not distributed uniformly in

the time grid T . In fact, there seem to be much less time points between age 19 and

22 when compared to other intervals which suggests that the underlying distribution

of Ti j for these data might have different weights for different time intervals.

4.6 Discussion
We have proposed a consistent method for the estimation of the reference func-

tions using which curve extension can be performed by using interpolation shifted

vertically. As simulation study revealed, despite being quite simple, the proposed

method seems to work well in certain situations. We believe that the reason for the

good performance of the proposed method is the quite narrow multiplicative model

that we considered, where only one random coefficient is involved. This is also the

main limitation of this Chapter. An interesting task would be to investigate how

consistent extension can be achieved also in more general cases such as multiplica-

tive models with at least two random coefficients. Possibly, the expansion of curves

via principal components could be used, similarly as was done in [11]. However, the

theoretical contributions in [11] are valid only in dense fragment setting. It would

be therefore interesting to extend the ideas in [11] to fit the sparse fragment setting.

We leave this for future investigations.



Chapter 5

Conclusions and Future Work

Chapter 2 considered the problem of point separation in logistic regression. Even

though the Chapter explicitly considers functional observations, it is easy to see

that the results in this Chapter are valid also for data from Rk. One of the two

contributions of this Chapter involved proving that a separating hyperplane of data

points can be found from a finite set of candidate hyperplanes, where candidate

hyperplanes were those passing through k− 1 projected sample point. Therefore,

this result can be interpreted as a new general procedure of determining whether

or not sample points are separable (and thus whether or not maximum-likelihood

estimate of the parameter vector exists and is unique) in practice.

Future work in this research direction could therefore be comparing the pro-

posed procedure with other state-of-the-art procedures of detecting sample point

separation for both functional and vectorial observations. For this matter, the the-

oretical results should be first implemented in practice. It is truth that Theorem

2.1 can be easily implemented by using brute force. However, such implementa-

tion is not optimal as the computational time increases dramatically only with an

incremental increase of the sample size because the calculations of the binomial co-

efficient are involved. For example, if n = 100 and k = 10, there are approximately

17∗1012 potential hyperplanes to consider. Therefore, some more theoretical work

has to be done first that further reduces the set of potential hyperplanes. It is likely,

that such theoretical work would override the work done in this thesis.

Chapter 3 involved determining assumptions on the distribution of function X
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as well as the dimension for projection kn so that the resulting logistic classifier

in functional space is consistent. The main contribution was in achieving consis-

tency for logistic regression with Hilbert space-valued random variables. This is

not the only achievement of this Chapter. As we can see from the proofs of Chap-

ter 3, the main difference between this Chapter and the work in [10] in a special

case of logistic regression is in the strategy of proving the consistency. In [10], by

assuming that the distribution of Y depends not on θ0 itself but rather on its pro-

jection on some subspace Ek, the authors approximated infinite-dimensional model

by the finite-dimensional one by assuming under the assumption that the error of

such approximation tends to 0 as the sample size diverges. However, this rather

complicated statement was not proved in [10] and left an open question whether

or not it holds true. On the contrary, no such assumption was made in Chapter 3,

where a different strategy was employed based on the ideas in [2], which included

several tricks based on inverse function as well as Brouwer’s fixed point theorems.

Another conclusion of this Chapter is that the assumption nτ
4
kn
→ ∞ appeared not

to be necessary for consistent classification as suggested by the simulation study.

Moreover, neither appeared to be necessary the weaker assumption nτ
2
k →∞ which

was used in [10] for other models. Therefore, the true asymptotic lower bound for

τkn is still not known.

The future work in this research direction could be therefore investigating what

the true asymptotic bound could really be. One could proceed with further simu-

lation studies that consider weaker than nτ
2
k → ∞ assumptions. However, the real

question is how to prove the consistency using asymptotic results obtained in this

thesis with weaker requirement than that of nτ
4
k → ∞. A good starting point could

be investigating the proof of Theorem 3.1, namely inequality (B.5). There, more

precise estimates could be given to the three probabilities which may influence the

ultimate result. Also, τk depends only on X and not the label information Y . A

more precise estimate could be therefore achieved, if Y was incorporated into the

definition of τk. For example, τk could be defined as min
dθ∈Ek,‖dθ‖=1

M′′(θ0)(dθ ,dθ).

Finally, Chapter 4 considered a common situation in practice, where we ob-
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serve functional data sparsely and irregularly. As discussed in this Chapter, the

main difficulty and the difference from the work of [11] is that sparse fragment set-

ting was considered, that is, the distribution of observed time points for the ith curve

Mi does not depend on the number of observations n. The main limitation of this

Chapter is that the consistency is proved under a somewhat narrow multiplicative

data model, where only one random coefficient is involved in the basis expansion.

One way for the future work in this research direction could be therefore in-

vestigating possible ways to extend the results of this Chapter allowing more com-

plicated models. Another way for future work could be providing the link between

the results in this Chapter and the results in Chapter 3 by proving that the logistic

classifier with the extended full curves is consistent. Establishing this link is more

difficult than it may seem at first look. The main challenge is that extended curves

based on the data imply that the subspaces Ek in Chapter 3 become random. This

in turn imply that results of Chapter 3 must be extended to fit the scenario where Ek

are random and some advanced probabilistic techniques must be applied in dealing

with such randomness. For this reason this task was left out of the scope of this

thesis.

Secondly, consistency for the proposed curve extension method CEInt was es-

tablished under somewhat restrictive model Xi =Cia+b and we proposed a modi-

fication of CEInt method that recalculates α values which we named local CEInt ap-

proach. Naturally, local CEInt approach should not perform worse than the original

CEInt method. On the contrary, we believe that local CEInt approach has a poten-

tial to be consistent even for less restrictive models. Therefore, future work could

be extending the theory in Chapter 4 for local CEInt method under less restrictive

models.

Moreover, consistency of the proposed method was established requiring that

the time points Ti j follow uniform distribution (or any other distribution with the

density that is bounded away from 0). As results on Black female data suggests,

the situation, where such assumption is violated, may be quite common in prac-

tice. Therefore, another way of future work could be towards obtaining consis-
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tency for the scenarios, where the distribution of T depends on n. For example,

the situation of Black female data might be well represented by T = T (n) such that

P(T (n) ∈ [19,22]) � 1/n. Then, the number of time points in the interval [19,22]

does not diverge, as n→∞. To overcome such data arrangement scenario, one could

investigate a method based on partition of interval [0,1] in the intervals of different

sizes. Moreover, partition could be done in a data-driven fashion. For example, if

the number of time points Ti j is 100 and we decided to divide interval [0,1] into

10 parts, the data-driven fashion would be to choose the partition so that in each

interval there are exactly 10 time points Ti j.

Lastly, extending sparsely and irregularly sampled functional data to full

curves was chosen purely for reasons to provide (even if in the future) the link

to the results in Chapter 3. One could, of course, question whether such extension

is at all needed for classification of functional data in practice. Some arguments

favoring extension were given in [3] and [6], where they also considered extension

for practical classification of functional data. However, no theoretical proofs were

given to support such arguments. Therefore, extending functional data to full curves

officially has not been proved to enhance the classification performance yet. For this

reason it is natural that good classification performance can be expected also when

it is performed based purely on the observed data, using techniques similar to [35].



Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1

Proof. Fix ω and denote xi = X (k)
i (ω),yi =Yi(ω) and bi1,...,ik−1 = Zi1,...,ik−1(ω). Let

a be some vector separating the sample points. First we will prove that there exists

a vector a′ that also separates the sample points and is perpendicular to at least k−1

vector xi. Let i1, . . . , il be all the indices that 〈a,xi〉= 0. If l ≥ k−1, we can simply

take a′ = a. If l < k− 1, then k ≥ 2 and it is enough to construct a vector a′ that

separates the sample points and is perpendicular to vectors xi1 , . . . ,xil , as well as to

one other vector xi. This is because we can always repeat the same procedure until

we reach l = k−1.

Because l < k− 1 ≤ n− 1 < n, there exists at least one i that differs from

i1, . . . , il . For any such i, 〈a,xi〉 6= 0. Let

xi = c1xi1 + · · ·+ clxil + zi,

with some zi perpendicular to xi1, . . . ,xil . If i 6= i1, . . . , il , then zi 6= 0 because other-

wise 〈a,xi〉= 0 and we would get a contradiction. Moreover, 〈a,xi〉= 〈a,zi〉, for all

i.

Find i 6= i1, . . . , il such that for all j 6= i1, . . . , il ,

|〈a,zi〉|
‖zi‖

≤
|〈a,z j〉|
‖z j‖

.
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Denote

ε =
〈a,zi〉
‖zi‖2 and a′ = a− εzi.

Obviously, a′ is perpendicular to all xi1, . . . ,xil . Moreover, it is perpendicular also

to xi because

〈a′,xi〉= 〈a,xi〉− ε〈zi,xi〉= 〈a,zi〉− ε〈zi,zi〉= 0.

Let j 6= i1, . . . , il, i. Then

∣∣〈a′,z j〉
‖z j‖

−
〈a,z j〉
‖z j‖

∣∣= |ε〈zi,z j〉
‖z j‖

|= |〈a,zi〉|
‖zi‖

|〈zi,z j〉|
‖zi‖‖z j‖

≤ |〈a,zi〉|
‖zi‖

≤
|〈a,z j〉|
‖z j‖

and therefore

〈a,z j〉− |〈a,z j〉|
‖z j‖

≤
〈a′,z j〉
‖z j‖

≤
〈a,z j〉+ |〈a,z j〉|

‖z j‖
,

〈a,z j〉− |〈a,z j〉| ≤ 〈a′,z j〉 ≤ 〈a,z j〉+ |〈a,z j〉|.

This implies that 〈a′,z j〉 is equal to 0, or it is of the same sign as 〈a,z j〉. Be-

cause 〈a,z j〉 = 〈a,x j〉 and 〈a′,z j〉 = 〈a′,x j〉, all 〈a′,x j〉 are equal to 0, or are of the

same sign as 〈a,x j〉. This means that a′ separates the sample points.

We proved that there exists a vector a′ that separates sample points and that

is perpendicular to some xi1, . . . ,xik−1 . Vector bi1...ik−1 is also perpendicular to

xi1, . . . ,xik−1 , therefore a′ = εbi1...ik−1 with some ε 6= 0. Obviously, vector a′/|ε|

belongs to the set S and separates the sample points.

A.2 Proof of Theorem 2.2
We begin with the following Lemma.

Lemma A.1. Suppose (FR) holds. Then almost surely

det[X (k)
1 , . . . ,X (k)

k ] 6= 0.
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Proof. From linear algebra we know that det[X (k)
1 , . . . ,X (k)

k ] = 0 if and only if

X (k)
1 , . . . ,X (k)

k are linearly dependent. We will prove that the probability of such

event is 0. Let Pk−1 denote the conditional probability w.r.t. (X1, . . . ,Xk−1), and let

Z be a random vector from Ek such that

det[X (k)
1 , . . . ,X (k)

k−1,x] = 〈Z,x〉.

Obviously, Z is some function of (X1, . . . ,Xk−1). Therefore,

Pk−1(det[X (k)
1 , . . . ,X (k)

k ] = 0) = Pk−1(〈Z,X (k)
k 〉= 0)

= Pk−1(〈Z,Xk〉= 0) = 1{Z=0}.

and

P(X (k)
1 , . . . ,X (k)

k are linearly dependent)

= P(det[X (k)
1 , . . . ,X (k)

k ] = 0) = EPk−1(det[X (k)
1 , . . . ,X (k)

k ] = 0)

= E1{Z=0} = P(Z = 0) = P(X (k)
1 , . . . ,X (k)

k−1are linearly dependent)

≤ P(X (k−1)
1 , . . . ,X (k−1)

k−1 are linearly dependent).

Now, by induction and assumption (FR),

P(X (k)
1 , . . . ,X (k)

k are linearly dependent)≤ P(X (k−1)
1 , . . . ,X (k−1)

k−1 are linearly dependent)
...

≤ P(X (1)
1 is linearly dependent)

= P(X (1)
1 = 0) = P(〈e1,X1〉= 0) = 0,

where e1 is the basis of E1.

We are now ready to prove Theorem 2.2.

Proof. By letters I we will denote the subsets of {1, . . . ,n} that contain (k− 1)

elements. If I = {i1, . . . , ik−1} with i1 < · · · < ik−1, let WI and W ′I denote events,
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defined by equations (2.4) and (2.5) in Chapter 2, respectively. Then

qkn = P

(⋃
I

WI ∪
⋃
I

W ′I

)
≤∑

I
P(WI)+∑

I
P(W ′I ). (A.1)

Let I = {i1, . . . , ik−1} with i1 < · · · < ik−1 and let PI denote the conditional proba-

bility w.r.t. Xi1, . . . ,Xik−1 . Then

PI(WI) =
[
α(Xi1 , . . . ,Xik−1)

]n−k+1 and PI(W ′I ) =
[
β (Xi1, . . . ,Xik−1)

]n−k+1
,

where

α(x1, . . . ,xk−1) = E1{det[x1,...,xk−1,X ]≥0}pθ0(X)+E1{det[x1,...,xk−1,X ]≤0}(1− pθ0(X)),

β (x1, . . . ,xk−1) = E1{det[x1,...,xk−1,X ]≤0}pθ0(X)+E1{det[x1,...,xk−1,X ]≥0}(1− pθ0(X)).

By Lemma A.1 we get that almost surely

α(Xi1, . . . ,Xik−1)≤ q and β (Xi1, . . . ,Xik−1)≤ q,

where

q = Emax
(

pθ0(X),1− pθ0(X)
)
< 1.

In other words, almost surely,

PI(WI)≤ qn−k+1.

Therefore, for all I,

P(WI) = EPI(WI)≤ qn−k+1

and, analogously, P(W ′I )≤ qn−k+1. The statement of the theorem is now implied by

the fact that there are exactly
(

n
k−1

)
distinct sets I.
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A.3 Proof of Corollary 2.1
Proof. It is enough to prove that

log

 n

kn−1

= o(n).

If k < (n−1)/2, then

 n

k+1


n

k

 =
n!k!(n− k)!

(k+1)!(n− k−1)!n!
=

n− k
k+1

> 1.

Therefore, the sequence

n

k

 is increasing until k < (n− 1)/2. Fix ε < 1/2 and

denote ln = bεnc. Then for n large enough

 n

kn−1

≤
n

ln

 .

By Stirling’s formulan

ln

=

√
2πne−nnn

√
2πlne−lnlln

n
√

2π(n− ln)e−(n−ln)(n− ln)n−ln
(1+o(1)).
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Therefore,

log

n

ln

= O(logn)+n logn− ln log ln− (n− ln) log(n− ln)

= O(logn)− ln log
ln
n
− (n− ln) log

n− ln
n

= O(logn)− ln log(ε +O(1/n))− (n− ln) log(1− ε +O(1/n))

= O(logn)− ln logε− (n− ln) log(1− ε)

= O(logn)− εn logε− (1− ε)n log(1− ε)

and

lim
n→∞

1
n

log

 n

kn−1

≤ lim
n→∞

1
n

log

n

ln

=−ε logε− (1− ε) log(1− ε).

It is enough to note that

−ε logε− (1− ε) log(1− ε)→ 0,

as ε → 0.



Appendix B

Proofs for Chapter 3

B.1 Facts from probability theory
Further in this Section, →p and →d denote convergence in probability and con-

vergence in distribution, respectively, while → is used for the usual convergence

in R, or convergence in norm in E. For convenience of reference we recall some

well-known facts about convergence and uniform integrability of random variables.

Proposition B.1.1 (Continuous mapping theorem, see [41], Theorem 3.7). Let Un

and U be random elements of some metric space S, P(U ∈C) = 1, T another metric

space, and fn, f measurable functions from S to T . If un→ u ∈C implies fn(un)→

f (u), then Un→d U implies fn(Un)→d f (U).

Proposition B.1.2 (Subsequence criterion, see [41], Lemma 3.2). Let Un and U

be random elements of some metric space S. Then Un →p U if and only if each

subsequence of (Un) has a further subsequence which converges in probability to

U.

Proposition B.1.3 (see [41], Lemma 3.10). If (Zn) is a uniformly integrable se-

quence of random variables, then sup
n
E|Zn|< ∞ and P(Wn)→ 0 implies EZn1Wn →

0.

Proposition B.1.4 (see [41], Lemma 3.11). If (Zn) is a uniformly integrable se-

quence of random variables, then Zn→d Z implies EZn→ EZ.
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Proposition B.1.5 (Weak convergence version of Fatou’s lemma, see [41],

Lemma 3.11). If (Zn) is a sequence of positive random variables, then Zn →d Z

implies lim
n→∞

EZn ≥ EZ.

B.2 The function M(θ)

We begin by establishing some properties of the function M(θ). Recall that θ0

denotes the ”true” value of parameter θ .

Proposition B.2.1. 1. If E‖X‖< ∞, then, for all θ ,

0 < M(θ0)≤M(θ)< ∞.

2. If E‖X‖< ∞, then θn→ θ implies M(θn)→M(θ).

3. If M(θn)→M(θ0), then 〈θn,X〉 →p 〈θ0,X〉.

Proof. 1. Inequality M(θ)> 0 is implied by the fact that mθ (x,y)> 0 for all x and

y. Because log function is increasing,

M(θ) = E log(1+ e−Y 〈θ ,X〉)≤ E log(1+ e‖θ‖‖X‖)

≤ E log(2e‖θ‖‖X‖) = log2+‖θ‖E‖X‖< ∞.

Finally, convexity of the function − log yields

M(θ)−M(θ0) =−E log
1+ e−Y 〈θ0,X〉

1+ e−Y 〈θ ,X〉 ≥− logE
1+ e−Y 〈θ0,X〉

1+ e−Y 〈θ ,X〉

=− logE

(
1+ e〈θ0,X〉

1+ e〈θ ,X〉
(1− pθ0(X))+

1+ e−〈θ0,X〉

1+ e−〈θ ,X〉
pθ0(X)

)

=− logE
(

1
1+ e〈θ ,X〉

+
1

1+ e−〈θ ,X〉

)
=− log1 = 0.

2. The statement follows from the dominated convergence theorem, because

θn→ θ implies that

mθn(X ,Y )→ mθ (X ,Y )
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and

mθn(X ,Y )≤ log(1+ e‖θn‖‖X‖)≤ log2+‖θn‖‖X‖ ≤ log2+ c‖X‖

with c = sup
n
‖θn‖< ∞.

3. Let M(θn)→ M(θ0). By Proposition B.1.2, we have to prove that any

subsequence (〈θnk ,X〉) contains a further subsequence that tends in probability to

〈θ0,X〉. Note that M(θnk)→ M(θ0), therefore, for ease of notation, we omit the

index k.

The sequence of random vectors (〈θn,X〉,〈θ0,X〉) is tight in the space R̄×R.

Indeed, if K ⊂ R is a compact interval such that P(〈θ0,X〉 ∈ K) ≥ 1− ε (and we

can always find such K), then the set R̄×K is also compact and for all n

P((〈θn,X〉,〈θ0,X〉) ∈ R̄×K) = P(〈θ0,X〉 ∈ K)≥ 1− ε.

By the Prokhorov’s theorem (see [41], Theorem 14.3), there exists a subsequence

(〈θnk ,X〉,〈θ0,X〉), which converges in distribution in the space R̄×R to some ran-

dom vector (U1,U2).

By Proposition B.1.5,

E

(
log(1+ eU1)

1+ eU2
+

log(1+ e−U1)

1+ e−U2

)
≤ lim

k→∞

E

(
log(1+ e〈θnk ,X〉)

1+ e〈θ0,X〉
+

log(1+ e−〈θnk ,X〉)

1+ e−〈θ0,X〉

)
= lim

k→∞

M(θnk) = M(θ0).

Obviously, U2 is distributed identically to 〈θ0,X〉. Hence

M(θ0) = E

(
log(1+ e〈θ0,X〉)

1+ e〈θ0,X〉
+

log(1+ e−〈θ0,X〉)

1+ e−〈θ0,X〉

)

= E

(
log(1+ eU2)

1+ eU2
+

log(1+ e−U2)

1+ e−U2

)

and therefore

E

(
log(1+ eU1)

1+ eU2
+

log(1+ e−U1)

1+ e−U2

)
≤ E

(
log(1+ eU2)

1+ eU2
+

log(1+ e−U2)

1+ e−U2

)
.
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Let V be a random variable gaining values −1 and 1 with (conditional w.r.t.

(U1,U2)) probabilities
1

1+ eU2
and

1
1+ e−U2

. Then the above inequality can be

re-written as

E log(1+ e−VU1)≤ E log(1+ e−VU2).

This yields

0≤ E log
1+ e−VU2

1+ e−VU1
≤ logE

1+ e−VU2

1+ e−VU1

= logE
(

1
1+ eU1

+
1

1+ e−U1

)
= log1 = 0.

Therefore, both inequality signs can be replaced by equalities. However, Jensen’s

inequality becomes equality if and only if the variable that is being integrated almost

surely is a constant. In this case that constant is 0, that is, almost surely

log
1+ e−VU2

1+ e−VU1
= 0

and U1 =U2.

Hence (〈θnk ,X〉,〈θ0,X〉)→d (U2,U2) and therefore 〈θnk ,X〉−〈θ0,X〉→d U2−

U2 = 0. When the limit random variable is 0 (or a constant), convergence in dis-

tribution is equivalent to convergence in probability ([41], Lemma 3.7). Therefore,

〈θnk ,X〉−〈θ0,X〉 →p 0 and 〈θnk ,X〉 →p 〈θ0,X〉.

For any f ∈ Cr(Ek) we assume that its rth derivative at the point θ ∈ Ek is a

symmetric r-linear form on Ek defined by

f (r)(θ)(dθ1, . . . ,dθr) = Ddθr · · ·Ddθ1 f (θ),

where Ddθ stands for the directional derivative along dθ ∈ Ek. Its norm is defined

by

‖ f (r)(θ)‖= sup
‖dθ1‖≤1,...,‖dθr‖≤1

| f (r)(θ)(dθ1, . . . ,dθr)|.

The function dθ 7→ f (r)(θ)(dθ , . . . ,dθ) is called the rth differential of f and is
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denoted by dr f (θ). For example, d2 f (θ) is a quadratic form associated with the

bilinear form f ′′(θ).

For any x∈E and y∈{−1,1}, function θ 7→mθ (x,y) is infinitely differentiable

on Ek and

m′θ (x,y)dθ =
e−y〈θ ,x〉

1+ e−y〈θ ,x〉 (−y〈dθ ,x〉),

m′′θ (x,y)(dθ1,dθ2) =
e−y〈θ ,x〉

(1+ e−y〈θ ,x〉)2
〈dθ1,x〉〈dθ2,x〉,

m′′′θ (x,y)(dθ1,dθ2,dθ3) =
e−y〈θ ,x〉− e−2y〈θ ,x〉

(1+ e−y〈θ ,x〉)3
〈dθ1,x〉〈dθ2,x〉(−y〈dθ3,x〉).

It is obvious that

|m′θ (X ,Y )dθ | ≤ ‖dθ‖‖X‖,

|m′′θ (X ,Y )(dθ1,dθ2)| ≤ |〈dθ1,X〉||〈dθ2,X〉| ≤ ‖dθ1‖‖dθ2‖‖X‖2,

|m′′′θ (X ,Y )(dθ1,dθ2,dθ3)| ≤ ‖dθ1‖‖dθ2‖‖dθ3‖‖X‖3.

Therefore,

‖m′θ (X ,Y )‖ ≤ ‖X‖, ‖m′′θ (X ,Y )‖ ≤ ‖X‖2, ‖m′′′θ (X ,Y )‖ ≤ ‖X‖3,

moreover, ‖X‖,‖X‖2,‖X‖3 are integrable, if E‖X‖3 < ∞. Hence M(θ), as a func-

tion on Ek, belongs to C3(Ek), and

dM(θ) =−E e−Y 〈θ ,X〉

1+ e−Y 〈θ ,X〉Y 〈dθ ,X〉,

d2M(θ) = E
e−Y 〈θ ,X〉

(1+ e−Y 〈θ ,X〉)2
〈dθ ,X〉2,

d3M(θ) =−Ee−Y 〈θ ,X〉− e−2Y 〈θ ,X〉

(1+ e−Y 〈θ ,X〉)3
Y 〈dθ ,X〉3.

If the distribution of X is of full rank, then, for any dθ 6= 0, almost surely

〈dθ ,X〉2 > 0 and therefore d2M(θ) > 0. Hence, for all θ , d2M(θ) is a positive

definite quadratic form. According to [42], M(θ) is strictly convex on Ek.
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Proposition B.2.2. If assumptions (FR) and (M) hold, then, for any k ≥ 1, the

function M(θ) has a unique minimum point in the space Ek. Furthermore, if θk is

that point, then M(θk)→M(θ0), as k→ ∞.

Proof. Step 1: we will prove that sets Aq = {θ ∈ Ek |M(θ)≤ q} are bounded.

Suppose the contrary. Then there exists some set Aq that is not bounded. Find

a sequence (θm)⊂ Ek such that M(θm)≤ q for all m, and ‖θm‖→∞,θm/‖θm‖→ a,

as m→∞. Because ‖a‖= 1 and the distribution of X is of full rank, either 〈a,X〉< 0

or 〈a,X〉> 0 with a positive probability. Since 0 < pθ0 < 1,

0 < P(Y 〈a,X〉< 0)≤ P( lim
m→∞

mθm(X ,Y ) = ∞)

and so E lim
m→∞

mθm(X ,Y ) = ∞. On the other hand, by Fatou’s lemma,

E lim
m→∞

mθm(X ,Y )≤ lim
m→∞

M(θm)≤ q.

A contradiction.

Step 2: the end of the proof.

The existence of θk follows from Proposition 2.1.1 of [42]. Since M(θ) is

strictly convex, the minimum point is unique.

If θ
(k)
0 is the projection of θ0 in the space Ek, then M(θ0)≤M(θk)≤M(θ

(k)
0 ).

From θ
(k)
0 → θ0 we get that M(θ

(k)
0 )→ M(θ0). Therefore, also M(θk)→ M(θ0).

We are now ready to establish the consistency criterion. The following Proposi-

tion provides the consistency conditions for the estimate of the type p̂ = p
θ̂n

, where

θ̂n is any estimate of θ . If θ̂n is defined by (2.1)-(2.2), we get the consistency crite-

rion for the logistic estimate.

Proposition B.2.3. 1. If M(θ̂n)→p M(θ0), then the estimate p
θ̂n

is consistent.

2. Suppose assumptions (FR) and (M) hold, and θk is the minimum of the

function M in the space Ek. If kn→ ∞ and M(θ̂n)−M(θkn)→p 0, then the estimate

p
θ̂n

is consistent.
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Proof. 1. By Proposition B.2.1, M(θn)→M(θ0) implies 〈θn,X〉 →p 〈θ0,X〉. Then

pθn(X)→p pθ0(X) and, by Proposition B.1.4, E|pθn(X)− pθ0(X)| → 0.

Let now M(θ̂n)→p M(θ0). We have to prove that E|p
θ̂n
(X)− pθ0(X)| → 0. It

is enough to prove that any subsequence E|p
θ̂ns

(X)− pθ0(X)| has a further subse-

quence that tends to 0. Moreover, it is well-known that any sequence that converges

in probability has a subsequence that converges almost everywhere. Therefore, it is

enough to prove that, if almost surely M(θ̂ns)→M(θ0), then E|p
θ̂ns

(X)− pθ0(X)|→

0.

However, if almost surely M(θ̂ns)→ M(θ0), then from the first paragraph of

this proof we get that almost surely

E∗|p
θ̂ns

(X)− pθ0(X)| → 0,

where E∗ denotes the conditional mean w.r.t. sequence ((Xi,Yi) | i≥ 1). It is enough

to use the dominated convergence theorem.

2. The second statement follows from the first one and from Proposition B.2.2.

B.3 The function Mn(θ)

Now suppose that k and n are fixed and consider Mn(θ), as a function on Ek. For all

θ , dθ ∈ Ek,x ∈ E and y ∈ {−1,1},

m
′′
θ (x,y)(dθ ,dθ) =

e−y〈θ ,x〉

(1+ e−y〈θ ,x〉)2
〈dθ ,x〉2 ≥ 0.

Therefore, the function θ 7→mθ (x,y) is convex in Ek. Then also the function Mn(θ)

is convex. We first give conditions for its strict convexity.

Note that if θ ∈ Ek, then 〈θ ,Xi〉= 〈θ ,X (k)
i 〉, where X (k)

i denotes the projection

of vector Xi in the space Ek.

Proposition B.3.1. If n ≥ k and X (k)
1 , . . . ,X (k)

k are linearly independent, then func-

tion Mn(θ) is strictly convex on Ek. If assumption (FR) holds, the probability of

such event is 1.
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Proof. The function Mn(θ) is strictly convex if its second differential d2Mn(θ) is a

positive definite quadratic form. Since

d2Mn(θ) =
1
n

n

∑
i=1

e−Yi〈θ ,Xi〉

(1+ e−Yi〈θ ,Xi〉)2
〈dθ ,X (k)

i 〉
2,

and all summands in the right-hand side are nonnegative, d2Mn(θ) = 0 implies that

dθ is perpendicular to all X (k)
i . If n≥ k and X (k)

1 , . . . ,X (k)
k are linearly independent,

then dθ = 0.

The second statement follows from Lemma A.1.

Recall some notions from Chapter 2. Let (x1,y1), . . . ,(xn,yn) be n vectors from

Ek×{−1,1}, called sample points, and a 6= 0 be another vector from Ek. We say

that the vector a separates sample points if, for all i,

yi〈a,xi〉 ≥ 0.

We say that sample points are separable, if there exists some a 6= 0 that separates

them. Note that this definition is equivalent to the definition of quasi-complete

separation, given by [12]. Next, the statement ”the sample (X1,Y1), . . . , (Xn,Yn) is

k-separable” defines some event, the set of all elementary events ω such that sample

points

(X (k)
1 (ω),Y1(ω)), . . . ,(X (k)

n (ω),Yn(ω)) (B.1)

are separable.

Proposition B.3.2. If the sample (X1,Y1), . . . , (Xn,Yn) is not k-separable then, for

any q > 0, the (random) set Aq = {θ ∈ Ek |Mn(θ)≤ q} is bounded.

Proof. Fix any ω such that the set Aq(ω) is not bounded and denote xi = X (k)
i (ω),

yi = Yi(ω). Find a sequence (θm) ⊂ Aq such that ‖θm‖ → ∞ and θm/‖θm‖ → a.

Then, for all m and all i = 1, . . . ,n,

log(1+ e−yi〈θm,xi〉)≤
n

∑
i=1

log(1+ e−yi〈θm,xi〉)≤ nq.
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But

−yi〈θm,xi〉=−‖θm‖yi

〈
θm

‖θm‖
,xi

〉
→ ∞

if yi〈a,xi〉< 0. Hence yi〈a,xi〉 ≥ 0 for all i, that is, a separates sample points (B.1).

Now suppose n≥ k and let Wkn denote the following event: X (k)
1 , . . . ,X (k)

k vec-

tors are linearly independent and the sample is not k-separable. If ω ∈Wkn then,

by Propositions B.3.1 and B.3.2, the function Mn(θ) is strictly convex and all its

sub-level sets Aq are bounded. As is seen from the proof of Proposition B.2.2, then

Mn(θ) has the unique minimum point, which is, of course θ̂kn(ω). If ω 6∈Wkn, we

suppose that θ̂kn(ω) = 0.

Denote qkn =P(W c
kn). Then, by Proposition B.3.1 and by Corollary 2.1, qknn→

0, provided that assumption (FR) holds and kn/n→ 0.

B.4 Proof of Theorem 3.1
We follow the proof of Theorem 5.42 from [2].

For k ≥ 1 and θ ∈ Ek,x ∈ E,y ∈ {−1,1} let us define

ψk,θ (x,y) =−
e−y〈θ ,x〉

1+ e−y〈θ ,x〉 yx(k),

where x(k) denotes the orthogonal projection of x in the space Ek. It is obvious that

the function θ 7→ ψk,θ (x,y) is the gradient of the restriction of the function mθ (x,y)

on Ek. Also let us define

Ψk,n(θ) = ψk,θ (X ,Y ), and Ψk(θ) = Eψk,θ (X ,Y ).

These functions are the gradients of the functions Mn(θ) and M(θ), as functions on

Ek, respectively. Therefore, both Ψk,n and Ψk are C2-smooth functions from Ek to

Ek. The derivative Ψ
′
k(θ) is the linear operator from Ek to Ek which maps dθ1 ∈ Ek
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to a vector Ψ
′
k(θ)dθ1 ∈ Ek such that, for all dθ2 ∈ Ek,

〈Ψ′k(θ)dθ1,dθ2〉= M′′(θ)(dθ1,dθ2).

Proposition B.4.1. The function Ψk is a diffeomorphism.

Proof. Suppose Ψk(θ1) = Ψk(θ2) and denote dθ = θ2− θ1. Then, for some t ∈

(0,1),

0 = 〈Ψk(θ2),dθ〉−〈Ψk(θ1),dθ〉= M′′(θ1 + tdθ)(dθ ,dθ).

This yields dθ = 0, that is, θ1 = θ2. Therefore, the function Ψk is injective.

Analogously, from Ψ
′
k(θ)dθ = 0 we get that

0 = 〈Ψ′k(θ)dθ ,dθ〉= M′′(θ)(dθ ,dθ)

and dθ = 0. Therefore, the operator Ψ
′
k(θ) is invertible for all θ .

The statement of the theorem now follows from the inverse function theorem.

Proposition B.4.1 implies that the set V = Ψk(Ek) is open. Moreover, 0 ∈ V

because Ψk(θk) = 0. Let us take some δk such that Ū(0,δk) ⊂ V and denote Uk =

Ψ
−1
k (U(0,δk)). Then Uk is the neighborhood of the point θk. Moreover, because

Ψk is a homeomorphism between Ek and V ,

Ψk(Ūk) = Ψk(Uk) =U(0,δk) = Ū(0,δk).

Denote

W
′
kn = { sup

θ∈Ūk

‖Ψk,n(θ)−Ψk(θ)‖ ≤ δk}.

The following reasoning is under the assumption that event Wkn∩W ′kn occurred.

If z ∈ Ū(0,δk), then Ψ
−1
k (z) ∈ Ūk and then

‖z−Ψk,n(Ψ
−1
k (z))‖= ‖Ψk(Ψ

−1
k (z))−Ψk,n(Ψ

−1
k (z))‖ ≤ δk.
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Therefore z 7→ z−Ψk,n(Ψ
−1
k (z)) is a continuous function from Ū(0,δk) to Ū(0,δk).

From the Brouwer’s Fixed Point Theorem we get that, for some z ∈ Ū(0,δk),

z = z−Ψk,n(Ψ
−1
k (z)),

that is, Ψk,n(Ψ
−1
k (z)) = 0. Because the function Mn(θ) is strictly convex, θ̂kn is the

unique zero of the function Ψk,n. Therefore, θ̂kn = Ψ
−1
k (z) ∈ Ūk.

Let dk = diamŪk. Then ‖θ̂kn−θk‖ ≤ dk and

|M(θ̂kn)−M(θk)| ≤ sup
θ

‖Ψk(θ)‖dk ≤ E‖X‖dk.

Figure B.1: Conceptual illustration of ideas from Theorem 5.42 in [2] that solves the well-
known problem in statistics: by Law of Large Numbers, empirical expectation
tends to true expectation. How to prove that the θ̂kn that minimizes the empir-
ical expectation tends to θk that minimizes the true expectation? As van der
Vaart suggests, if the distance between gradients of empirical and true expec-
tations are bounded by δk, then the distance between θ̂kn and θk is bounded by
dk.

Therefore, in order to prove Theorem 3.1 it is enough to choose δk in such a

way that dkn → 0 and P(W ′ckn,n)→ 0.

We now need to evaluate the diameter dk. The following Proposition gives the

necessary result.

Proposition B.4.2. Suppose assumptions (FR), (M) and (UI) are satisfied and δk =

o(
√

τk), as k→ ∞. Then dk = O(δk/τk).

The proof of Proposition B.4.2 is preceded with three lemmas.
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Lemma B.1. Let (Zn) be a sequence of positive integrable variables such that the

sequence (Zn/EZn) is uniformly integrable. Then, for all q < 1,

lim
n→∞

P(Zn ≥ qEZn)> 0.

Proof. Suppose the contrary. Without loss of generality, we can assume that

P(Zn ≥ qEZn)→ 0.

From uniform integrability we get that

E
Zn

EZn
1{Zn≥qEZn}→ 0.

Therefore, there exists n such that

EZn1{Zn≥qEZn} < (1−q)EZn.

But then

EZn = EZn1{Zn≥qEZn}+EZn1{Zn<qEZn} < (1−q)EZn +qEZn = EZn.

A contradiction.

Lemma B.2. Suppose the assumptions (FR), (M) and (UI) hold and δk = o(
√

τk), as

k→∞. Then there exists k0 such that, for all k≥ k0 and all dθ ∈ Ek with ‖dθ‖= 1,

∃t > 0 〈Ψk(θk + tdθ),dθ〉> δk. (B.2)

Proof. Step 1: we prove that if (B.2) fails, for some k≥ 1 and dθ ∈ Ek with ‖dθ‖=

1, then

E(Y 〈dθ ,X〉)− ≤ δk. (B.3)
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If (B.2) fails then, for some tm→ ∞,

δk ≥ 〈Ψk(θk + tmdθ),dθ〉=−E e−Y 〈θk,X〉−tmY 〈dθ ,X〉

1+ e−Y 〈θk,X〉−tmY 〈dθ ,X〉Y 〈dθ ,X〉.

Note that

e−Y 〈θk,X〉−tmY 〈dθ ,X〉

1+ e−Y 〈θk,X〉−tmY 〈dθ ,X〉 −−−→m→∞

0, if Y 〈dθ ,X〉> 0,

1, if Y 〈dθ ,X〉< 0,

Therefore (B.3) follows by dominated convergence.

Step 2: the end of the proof.

Suppose δk = o(
√

τk), as k→∞, but the assertion of the Lemma is false. Then

there exists a sequence km → ∞ and a sequence (dθm) such that, for all m ≥ 1,

dθm ∈ Ekm , ‖dθm‖= 1 and, by the result of Step 1, E(Y 〈dθm,X〉)− ≤ δkm . Hence

E(Y 〈dθm,X〉)−√
τkm

−−−→
m→∞

0.

Then also
E(Y 〈dθm,X〉)−√

C(dθm,dθm)
−−−→
m→∞

0.

But

E(Y 〈dθm,X〉)− =−E〈dθm,X〉1{〈dθm,X〉<0,Y=1}+E〈dθm,X〉1{〈dθm,X〉>0,Y=−1}

= E|〈dθm,X〉|
(
1{〈dθm,X〉<0}

1+ e−〈θ0,X〉
+

1{〈dθm,X〉>0}

1+ e〈θ0,X〉

)
≥ E
|〈dθm,X〉|
1+ e|〈θ0,X〉|

≥
√

C(dθm,dθm)

2
E
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2}

1+ e|〈θ0,X〉|
,

therefore

E
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2}

1+ e|〈θ0,X〉|
→ 0.

This yields
1{|〈dθm,X〉|≥

√
C(dθm,dθm)/2}

1+ e|〈θ0,X〉|
→p 0
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and then

1{|〈dθm,X〉|≥
√

C(dθm,dθm)/2}→p 0,

that is,

P(〈dθm,X〉2 ≥C(dθm,dθm)/4)→ 0.

This contradicts Lemma B.1.

If Z is a positive random variable and EZ = 1, we can consider Z as a density,

that is, with any random vector U there exists a random vector Ũ such that with any

nonnegative or any bounded Borel function f

E f (Ũ) = E f (U)Z.

We need the following property of the transformation U 7→ Ũ .

Lemma B.3. Let (Zn) be a sequence of positive random variables, EZn = 1 for all

n, (Un) be another sequence of random variables and let Ũn be a random variable

such that with any nonnegative or any bounded Borel function f

E f (Ũn) = E f (Un)Zn.

If the sequence (Zn) is uniformly integrable, then Un = Op(1) implies Ũn = Op(1).

Proof. Fix ε and find c1 such that

sup
n
EZn1{Zn>c1} < ε.

Then find c such that

sup
n
P(|Un|> c)< ε/c1.
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Then for all n,

P(|Ũn|> c) = E1{|Ũn|>c} = E1{|Un|>c}Zn

= E1{|Un|>c,Zn≤c1}Zn +E1{|Un|>c,Zn>c1}Zn

≤ c1P(|Un|> c)+E1{Zn>c1}Zn < 2ε.

Therefore, Ũn = Op(1).

Now we are ready to prove Proposition B.4.2.

Proof. Lemma B.2 implies that if k is large enough then, for any dθ ∈ Ek with

‖dθ‖ = 1, at least one of the values of the function f (t) = 〈Ψk(θk + tdθ),dθ〉 is

greater than δk. The function is continuous, strictly increasing and equal to 0, when

t = 0. Therefore, there exists unique t = tk(dθ)> 0 such that 〈Ψk(θk + tdθ),dθ〉=

δk.

Step 1: we will prove that dk ≤ 2αk, where

αk = sup
dθ∈Ek
‖dθ‖=1

tk(dθ).

It is enough to prove that Ψ
−1
k (Ū(0,δk))⊂ Ū(θk,αk). Let θ ∈Ψ

−1
k (Ū(0,δk)), that

is ‖Ψk(θ)‖ ≤ δk. Denote dθ = (θ −θk)/‖θ −θk‖. Then

〈Ψk(θk +‖θ −θk‖dθ),dθ〉= 〈Ψk(θ),dθ〉 ≤ ‖Ψk(θ)‖‖dθ‖ ≤ δk.

Therefore, ‖θ −θk‖ ≤ tk(dθ)≤ αk.

Step 2: transforming the task to a simpler one.

From the result in Step 1 we get that it is enough to prove that αk = O(δk/τk),

that is that αkτk/δk = O(1). Suppose the contrary, that there exists some subse-

quence that is unbounded. Then, without loss of generality, we can assume

αkτk/δk→ ∞
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and we need to get a contradiction.

Let dθk be unit-length vectors from Ek such that tk(dθk)/αk→ 1. Then

τktk(dθk)/δk→ ∞

and so

C(dθk,dθk)tk(dθk)/δk→ ∞. (B.4)

For short, denote

tk = tk(dθk), uk = tk
√

C(dθk,dθk), βk =
δk√

C(dθk,dθk)

and

Z1k = 〈θk,X〉, Z2k =
〈dθk,X〉√
C(dθk,dθk)

.

It is obvious that βk ≤ δk/
√

τk → 0 and from (B.4) we get that uk/βk → ∞.

Moreover,

δk = 〈Ψk(θk + tkdθk),dθk〉= fk(1)− fk(0) =
∫ 1

0
f ′k(t)dt,

where

fk(t) = 〈Ψk(θk + ttkdθk),dθk〉

and

f ′k(t) = tkM
′′
(θk + ttkdθk)(dθk,dθk) = tkE

e−Y 〈θk+ttkdθk,X〉

(1+ e−Y 〈θk+ttkdθk,X〉)2
〈dθk,X〉2

= tkC(dθk,dθk)E
e−Y (Z1k+tukZ2k)

(1+ e−Y (Z1k+tukZ2k))2
Z2

2k.

Therefore,

βk→ 0, βk/uk→ 0, βk = ukE
∫ 1

0

e−Y (Z1k+tukZ2k)

(1+ e−Y (Z1k+tukZ2k))2
dtZ2

2k

and we have to obtain a contradiction.
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Step 3: selecting one more subsequence.

Since EZ2
2k = 1, we can consider Z2

2k as a density. Then there exist random

variables Ỹk, Z̃1k and Z̃2k such that with any Borel function f

E f (Ỹk, Z̃1k, Z̃2k) = E f (Y,Z1k,Z2k)Z2
2k.

As a separate case,

P(|Ỹk|= 1) = E1{|Ỹk|=1} = E1{|Y |=1}Z
2
k = EZ2

k = 1,

that is, almost surely Ỹk ∈ {−1,1}. Moreover,

βk = ukE
∫ 1

0

e−Ỹk(Z̃1k+tukZ̃2k)

(1+ e−Ỹk(Z̃1k+tukZ̃2k))2
dt.

Since Z1k = 〈θk,X〉→p 〈θ0,X〉, we get Z1k = Op(1). Since the sequence (Z2
2k)

is uniformly integrable, Z2
2k = Op(1) and then also Z2k = Op(1). Then from Lemma

B.3 we get that Ỹk = Op(1), Z̃1k = Op(1) and Z̃2k = Op(1). This means that also

(Ỹk, Z̃1k, Z̃2k) = Op(1). From Prochorov’s theorem we get that some subsequence

of that sequence converges in distribution. Therefore we can suppose that uk → u

(where u can be infinite), and (Ỹk, Z̃1k, Z̃2k)→d (Ỹ , Z̃1, Z̃2).

Step 4: the case, where uk→ u < ∞.

Denote

gu(y,z1,z2) =
∫ 1

0

e−y(z1+tuz2)

(1+ e−y(z1+tuz2)2
)
dt.

If (yk,z1k,z2k)→ (y,z1,z2), then for all t,

e−yk(z1k+tukz2k)

(1+ e−yk(z1k+tukz2k))2
→ e−y(z1+tuz2)

(1+ e−y(z1+tuz2))2
.

The sequence on the left is not greater than 1 for all t. Therefore, by the dominated

convergence theorem guk(yk,z1k,z2k)→ gu(y,z1,z2). Then, by Proposition B.1.1,

guk(Ỹk, Z̃1k, Z̃2k)→d gu(Ỹ , Z̃1, Z̃2).
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The sequence of random variables on the left hand side is not greater than 1. There-

fore, by the Proposition B.1.4

Egu(Ỹ , Z̃1, Z̃2) = lim
k→∞

Eguk(Ỹk, Z̃1k, Z̃2k) = lim
k→∞

βk

uk
= 0.

We got a contradiction because gu function is everywhere positive.

Step 5: the case, where uk→ ∞.

From

E
1

Z̃2
2k

= E
Z2

2k

Z2
2k

= 1

we get that the sequence of random variables (1/|Z̃2k|) is uniformly integrable.

Then by Proposition B.1.3

E
1
|Z̃2|

= lim
k→∞

E
1
|Z̃2k|

≤ sup
k
E

1
|Z̃2k|

< ∞.

Therefore almost surely Z̃2 6= 0.

For all u > 0,y ∈ {−1,1},z1 ∈ R and z2 6= 0,

ugu(y,z1,z2) = u
∫ 1

0

e−y(z1+tuz2)

(1+ e−y(z1+tuz2))2
dt =

1
yz2

1
1+ e−y(z1+tuz2)

∣∣1
0

=
1

yz2

(
1

1+ e−y(z1+uz2)
− 1

1+ e−yz1

)
=

e−yz1− e−y(z1+uz2)

yz2(1+ e−y(z1+uz2))(1+ e−yz1)
.

Let uk→ ∞ and (yk,z1k,z2k)→ (y,z1,z2) with z2 6= 0. Then if yz2 < 0, then

ukguk(yk,z1k,z2k)→−
1

yz2(1+ e−yz1)
,

and if yz2 > 0, then

ukguk(yk,z1k,z2k)→
e−yz1

yz2(1+ e−yz1)
.

In other words,

ukguk(yk,z1k,z2k)→
1

|yz2|(1+ e−yz1)
h(y,z1,z2) =

1
|z2|(1+ e−yz1)

h(y,z1,z2),
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where

h(y,z1,z2) =

1, if yz2 < 0,

e−yz1, if yz2 > 0.

By Proposition B.1.1,

ukguk(Ỹk, Z̃1k, Z̃2k)→d
1

|Z̃2|(1+ e−Ỹ Z̃1)
h(Ỹ , Z̃1, Z̃2).

The sequence of random variables on the left hand side is dominated by the se-

quence (1/|Z̃2k|) which is uniformly integrable. Therefore by Proposition B.1.4

E
1
|Z̃2|

h(Ỹ , Z̃1, Z̃2) = lim
k→∞

ukEguk(Ỹk, Z̃1k, Z̃2k) = lim
k→∞

βk = 0.

Again, we got a contradiction because almost surely
1
|Z̃2|

h(Ỹ , Z̃1, Z̃2)> 0.

It remains to estimate the probability P(W
′c
kn). In order to do this, we have to

estimate

sup
θ∈Ūk

‖Ψk,n(θ)−Ψk(θ)‖.

Fix θ ∈ Ūk and denote dθ = θ −θk. By using Taylor’s expansion we get

Ψk,n(θ) = Ψk,n(θk)+Ψ
′
k,n(θk)dθ + rk,n(θ ,dθ),

Ψk(θ) = Ψ
′
k(θk)dθ + rk(θ ,dθ),

where

‖rk,n(θ ,dθ)‖ ≤ sup
0<t<1

‖Ψ
′′
k,n(θk + tdθ)‖‖dθ‖2 ≤ ‖X‖3d2

k ,

‖rk(θ ,dθ)‖ ≤ sup
0<t<1

‖Ψ
′′
k(θk + tdθ)‖‖dθ‖2 ≤ E‖X‖3d2

k .

Therefore,

sup
θ∈Ūk

‖Ψk,n(θ)−Ψk(θ)‖ ≤ ‖Ψk,n(θk)‖+dk‖Ψ′k,n(θk)−Ψ
′
k(θk)‖+d2

k (‖X‖3 +E‖X‖3)
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and

P(W
′c
nk)≤ P(‖Ψk,n(θk)‖> δk/3)+P(dk‖Ψ′k,n(θk)−Ψ

′
k(θk)‖> δk/3)

+P(d2
k (‖X‖3 +E‖X‖3)> δk/3).

(B.5)

The first term on the right hand of (B.5) is estimated as follows. Let (e1, . . . ,ek)

be an orthonormal basis of Ek. Then

E‖Ψk,n(θk)‖2 =
k

∑
j=1

E〈Ψk,n(θk),e j〉2 =
k

∑
j=1

Var〈Ψk,n(θk),e j〉

=
1
n

k

∑
j=1

Var〈ψk,θk(X ,Y ),e j〉=
1
n

k

∑
j=1

E〈ψk,θk(X ,Y ),e j〉2

=
1
n
E‖ψk,θk(X ,Y )‖2 ≤ 1

n
E‖X‖2.

Therefore, the probability that we are interested does not exceed

9E‖X‖2

nδ 2
kn

.

Similarly, we can evaluate the second term of (B.5). Again, we would like to

apply Chebyshev’s inequality and get that

P(Z > δk/3dk)≤
9d2

k

δ 2
k
EZ2,

where Z = ‖Ψ′k,n(θk)−Ψ
′
k(θk)‖. However, since Ψk,n is a vector-valued function,

its derivative is a linear operator which makes the exact computation of its norm

very complex. To make things simpler, here we can use the Hilbert-Schmidt norm
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instead, which is known to be greater than usual norm. Therefore,

E‖Ψ′k,n(θk)−Ψ
′
k(θk)‖2

≤
k

∑
j, j′=1

E(〈Ψ′k,n(θk)e j′,e j〉−〈Ψ′k(θk)e j′,e j〉)2

=
k

∑
j, j′=1

Var〈Ψ′k,n(θk)e j′,e j〉=
1
n

k

∑
j, j′=1

Var〈ψ ′k,θk
(X ,Y )e j′,e j〉

≤ 1
n

k

∑
j, j′=1

E〈ψ ′k,θk
(X ,Y )e j′,e j〉2 =

1
n

k

∑
j, j′=1

E(m
′′
θk
(X ,Y )(e j′,e j))

2

≤ 1
n

k

∑
j, j′=1

E〈X ,e j〉2〈X ,e j′〉2 =
1
n
E

(
k

∑
j=1
〈X ,e j〉2

)2

=
1
n
E‖X (k)‖4

≤ 1
n
E‖X‖4

and the second term on the right hand side of (B.5) does not exceed

9E‖X‖4d2
kn

nδ 2
kn

.

The third term of (B.5) tends to 0, if d2
kn
/δkn → 0.

Therefore, Theorem 3.1 will be proved, if we can select δk such that

dkn → 0, nδ
2
kn
→ ∞,

d2
kn

nδ 2
kn

→ 0,
d2

kn

δkn

→ 0.

Note that the third condition is implied by the first and the second ones. If

we take δk = o(τ2
k ), then the first and the fourth conditions are met because then

dk = O(δk/τk) = o(1) and d2
k/δk = O(δk/τ

2
k ) = o(1). Therefore, it is enough to

select δk = o(τ2
k ) such that nδ

2
kn
→ ∞, that is, in such a way that asymptotically

n−1/2 ≺ δkn ≺ τ
2
kn
,

where a≺ b means that a = o(b). Clearly, we can achieve this, if

n−1/2 ≺ τ
2
kn
,
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that is, if nτ
4
kn
→ ∞ which is exactly the assumption of Theorem 3.1.

B.5 Proof of Theorem 3.2
Proof. Define a new Hilbert space Ē = R×E with the inner product

〈(α,θ),(a,x)〉= αa+ 〈θ ,x〉,

where α,a ∈ R and θ ,x ∈ E, and set X̄ = (1,X) ∈ Ē. Take any θ̄ = (α,θ) 6= 0. If

θ 6= 0, then P(〈θ̄ , X̄〉= 0) = 0 because of (FR’).

If θ = 0, then α 6= 0 and therefore

P(〈θ̄ , X̄〉= 0) = P(α = 0) = 0.

Hence X̄ satisfies condition (FR). Moreover, if X satisfies (M), then

E‖X̄‖4 = E〈X̄ , X̄〉2 = E(1+ 〈X ,X〉)2 = 1+2E‖X‖2 +E‖X‖4 < ∞,

that is, X̄ also satisfies (M). Finally, suppose X satisfies (UI). Fix ε and find c0 such

that for all c > c0 and all θ

E〈θ ,X〉21{〈θ ,X〉2>(cE〈θ ,X〉2)/2} ≤ εE〈θ ,X〉2.

Denote c̄0 = max(c0,2,1/ε). Take c > c̄0 and any θ̄ = (α,θ) with norm equal to 1.

Then by Chebyshev’s inequality

α
2P((α + 〈θ ,X〉)2 > c(α2 +E〈θ ,X〉2))≤ α

2/c≤ α
2
ε



B.5. Proof of Theorem 3.2 92

and

E〈θ ,X〉21{(α+〈θ ,X〉)2>c(α2+E〈θ ,X〉2)} ≤ E〈θ ,X〉21{2α2+2〈θ ,X〉2>c(α2+E〈θ ,X〉2)}

= E〈θ ,X〉21{2〈θ ,X〉2>cE〈θ ,X〉2+(c−2)α2}

≤ E〈θ ,X〉21{〈θ ,X〉2>c/2E〈θ ,X〉2}

< εE〈θ ,X〉2.

Therefore,

E〈θ̄ , X̄〉21{〈θ̄ ,X̄〉2>c(E〈θ̄ ,X̄〉2)}

= E(α + 〈θ ,X〉)21{(α+〈θ ,X〉)2>c(α2+E〈θ ,X〉2)}

≤ 2α
2E1{(α+〈θ ,X〉)2>c(α2+E〈θ ,X〉2)}+2E〈θ ,X〉21{(α+〈θ ,X〉)2>c(α2+E〈θ ,X〉2)}

≤ 2ε(α2 +E〈θ ,X〉2),

that is, X̄ satisfies condition (UI).

Define

C̄(θ̄1, θ̄2) = E〈θ̄1, X̄〉〈θ̄2, X̄〉, τ̄k = min
θ̄∈R×Ek
‖θ̄‖=1

C̄(θ̄ , θ̄).

Note that

C̄(θ̄ , θ̄)=E〈θ̄ , X̄〉2 =E(α+〈θ ,X〉)2 =α
2+2αE〈θ ,X〉+E〈θ ,X〉2 =α

2+E〈θ ,X〉2.

Since C is a bilinear form, for all θ ∈ Ek

α
2 +C(θ ,θ) = α

2 +‖θ‖2C(θ/‖θ‖,θ/‖θ‖)≥ α
2 +‖θ‖2

τk.

Therefore,

τ̄k ≥ min
|α|≤1

(
α

2 +(1−α
2)τk

)
= min(1,τk)
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and

nτ̄
4
kn
= nmin(1,τ4

kn
) = min(n,nτ

4
kn
)→ ∞.

Then, by Theorem 1, the corresponding logistic estimate

θ̃kn = arg min
θ̄∈R×Ek

M̄n(θ̄), (B.6)

where

M̄n(θ̄) = m
θ̄
(X̄ ,Y ), m

θ̄
(x̄,y) = log(1+ e−y〈θ̄ ,x̄〉)

is consistent on Ē = R×E. It remains to note that the logistic estimate (B.6) is the

same as the estimate (3.4).



Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 4.1
With t ∈ [0,1] define

a∗n(t) = inf
shn≤t ′<(s+1)hn

a(t ′), for shn ≤ t < (s+1)hn,

a∗n(t) = sup
shn≤t ′<(s+1)hn

a(t ′), for shn ≤ t < (s+1)hn,

b∗n(t) = inf
shn≤t ′<(s+1)hn

b(t ′), for shn ≤ t < (s+1)hn,

b∗n(t) = sup
shn≤t ′<(s+1)hn

b(t ′), for shn ≤ t < (s+1)hn,

We will proceed with the following Lemma.

Lemma C.1. Suppose assumptions (A)-(F) hold and hn→ 0. Then

sup
t∈[0,1]

∣∣a∗n(t)−a∗n(t)
∣∣→ 0,

sup
t∈[0,1]

∣∣b∗n(t)−b∗n(t)
∣∣→ 0.

Proof. We will prove the first statement and the second can be proved analogously.



C.1. Proof of Theorem 4.1 95

Since function a is continuous on [0,1], it is uniformly continuous on [0,1], that is

∀ε ∃δ ∀t, t ′ ∈ [0,1] (|t− t ′|< δ =⇒ |a(t)−a(t ′)|< ε).

Also, for all t ∈ [0,1],

a∗n(t)≤ a(t)≤ a∗n(t). (C.1)

Fix ε and find δ such that |a(t)− a(t ′)| < ε for all |t− t ′| < δ . Find n0 such

that hn < δ for all n ≥ n0. Take any n ≥ n0 and any t ∈ [0,1]. Let us suppose that

shn ≤ t < (s+1)hn. Since with any t ′ from that interval |t− t ′|< δ ,

a(t ′)> a(t)− ε and a(t ′)< a(t)+ ε.

Then also

a∗n(t)≥ a(t)− ε and a∗n(t)≤ a(t)+ ε.

These inequalities hold for any t. Keeping in mind also (C.1) we get that

sup
t
|a∗n(t)−a(t)| ≤ ε and sup

t
|a∗n(t)−a(t)| ≤ ε.

Therefore we proved that

sup
t
|a∗n(t)−a(t)| → 0 and sup

t
|a∗n(t)−a(t)| → 0,

as n→ ∞. From these we get that

sup
t
|a∗n(t)−a∗n(t)| → 0.

We are now ready to prove Theorem 4.1.
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Proof. Recall that the true reference functions are

x∗(t) = c∗a(t)+b(t), x∗(t) = c∗a(t)+b(t).

Denote

a∗ = inf
t∈[0,1]

a(t)> 0, a∗ = sup
t∈[0,1]

a(t)< ∞,

and with n, i, j ≥ 1 and t ∈ [0,1] denote

Ini j(t) = 1{shn≤Ti j<(s+1)hn}, for shn ≤ t < (s+1)hn,

I∗ni(t) = max
1≤ j≤Mi

Ini j(t).

Obviously, with any t ∈ [0,1],

P(I∗ni(t) = 0) = E(1−hn)
M ≤ (1−hn).

We will suppose that i gains values from 1 to n and for a fixed i, j gains values from

1 to Mi.

1. First we will investigate functions X̂∗n . Fix ε > 0.

Step 1. Find n11 such that for all n≥ n11 and all t ∈ [0,1]

a∗n(t)−a∗n(t)≤
εa∗

3a∗c∗
.

Then for all n≥ n11 and all t ∈ [0,1]

a∗n(t)
a∗n(t)

=
a∗n(t)−a∗n(t)

a∗n(t)
+1≤ a∗n(t)−a∗n(t)

a∗
+1≤ 1+

ε

3a∗c∗

and

c∗a∗n(t)− ε

a∗n(t)
≤ c∗

(
1+

ε

3a∗c∗

)
− ε

a∗n(t)
≤ c∗

(
1+

ε

3a∗c∗

)
− ε

a∗
= c∗−2ε

′,
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where ε
′ = ε/(3a∗). Denote q = P(C < c∗− ε

′). Then q < 1.

Analogously, find n12 such that for all n≥ n12 and all t ∈ [0,1]

b∗n(t)−b∗n(t)≤
εa∗
3a∗

.

Then for all n≥ n12 and all t ∈ [0,1],

b∗n(t)−b∗n(t)
a∗n(t)

≤ b∗n(t)−b∗n(t)
a∗

≤ ε
′.

Take n1 = max(n11,n12). Then for all n≥ n1

P( sup
t∈[0,1]

(x∗(t)− X̂∗n (t))> ε)

= P(∃t ∈ [0,1] X̂∗n (t)< x∗(t)− ε)

= P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Xi(Ti j)< x∗(t)− ε)))

= P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Ci < (c∗a(t)+b(t)−b(Ti j)− ε)/a(Ti j))))

≤ P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Ci < (c∗a∗n(t)− ε)/a∗n(t)+(b∗n(t)−b∗n(t))/a∗n(t))))

= P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Ci < c∗− ε
′)))

= P(∃s (∀i ∀ j (Ini j(shn) = 1 =⇒ Ci < c∗− ε
′)))

≤
ln−1

∑
s=0

P(∀i ∀ j (Ini j(shn) = 1 =⇒ Ci < c∗− ε
′))

=
ln−1

∑
s=0

n

∏
i=1

P(∀ j (Ini j(shn) = 1 =⇒ Ci < c∗− ε
′)).

Let PT M denote conditional probability w.r.t. families (Ti j) and (Mi). Then

PT M(∀ j (Ini j(shn) = 1 =⇒ Ci < c∗− ε
′)) =

q, if ∃ j Ini j(shn) = 1,

1, otherwise.
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Then

P(∀ j (Ini j(shn) = 1 =⇒ Ci < c∗− ε
′)) = EPT M(∀ j (Ini j(shn) = 1 =⇒ Ci < c∗− ε

′))

= P(I∗ni(shn) = 0)+qP(I∗ni(shn) = 1)

= q+(1−q)P(I∗ni(shn) = 0)

≤ q+(1−q)(1−hn)

= 1−hn(1−q).

Thus, for all n≥ n1

P

(
sup

t∈[0,1]
(x∗(t)− X̂∗n(t))> ε

)
≤

ln−1

∑
s=0

[1−hn(1−q)]n ≤ n[1− (1−q)hn]
n.

Step 2. Find n21 such that for all n≥ n21 and all t ∈ [0,1]

a∗n(t)−a∗n(t)≤
εa∗

3a∗c∗
.

Then for all n≥ n21 and t ∈ [0,1]

a∗n(t)
a∗n(t)

= 1− a∗n(t)−a∗n(t)
a∗n(t)

≥ 1− a∗n(t)−a∗n(t)
a∗

≥ 1− ε

3a∗c∗

and

c∗a∗n(t)+ ε

a∗n(t)
≥ c∗

(
1− ε

3a∗c∗

)
+

ε

a∗n(t)
≥ c∗

(
1− ε

3a∗c∗

)
+

ε

a∗
= c∗+2ε

′,

where ε
′ = ε/3a∗. Analogously, find n22 such that, for all n≥ n22 and all t ∈ [0,1],

b∗n(t)−b∗n(t)≤
εa∗
3a∗

.

Then for all n≥ n22 and all t ∈ [0,1]

−b∗n(t)−b∗n(t)
a∗n(t)

≥−b∗n(t)−b∗n(t)
a∗

≥−ε
′.
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Take n2 = max(n21,n22). Then for all n≥ n2

P

(
sup

t∈[0,1]
(X̂∗n (t)− x∗(t))> ε

)
= P(∃t ∈ [0,1] X̂∗n (t)> x∗(t)+ ε)

= P(∃t ∈ [0,1] ∃i ∃ j (Ini j(t) = 1,Xi(Ti j)> x∗(t)+ ε))

≤ P(∃t ∈ [0,1] ∃i Ci > (c∗a∗n(t)+ ε)/a∗n(t)+(b∗n(t)−b∗n(t))/a∗n(t))

≤ P(∃i Ci > c∗+ ε
′) = 0.

Step 3. From the results in Step 1 and Step 2 we get that for all n≥max(n1,n2)

P

(
sup

t∈[0,1]
|X̂∗n (t)− x∗(t)|> ε

)
≤ n(1−hn(1−q))n ≤ elogn−nhn(1−q). (C.2)

If (4.8) holds, then, for n sufficiently large,

n2elogn−nhh(1−q) = e3logn−nhn(1−q) = e−nhn(1−q)(1+o(1)) ≤ e−nhn(1−q)/2 ≤ 1,

that is,

elogn−nhh(1−q) = O(n−2).

Note that the term on the right hand side of (C.2) is summable. Then also

∞

∑
n=1

P

(
sup

t∈[0,1]
|X̂∗n (t)− x∗(t)|> ε

)
< ∞.

Therefore, almost surely sup
t∈[0,1]

|X̂∗n (t)− x∗(t)| → 0.

2. Now we will investigate functions X̂∗n. Fix ε > 0.

Step 1. Find n11 such that for all n≥ n11 and all t ∈ [0,1]

a∗n(t)−a∗n(t)≤
εa∗

3a∗c∗
.
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Then for all n≥ n11 and t ∈ [0,1]

a∗n(t)
a∗n(t)

= 1− a∗n(t)−a∗n(t)
a∗n(t)

≥ 1− a∗n(t)−a∗n(t)
a∗

≥ 1− ε

3a∗c∗

and
c∗a∗n(t)+ ε

a∗n(t)
≥ c∗

(
1− ε

3a∗c∗

)
+

ε

a∗
= c∗+2ε

′,

where ε
′ = ε/3a∗. Analogously, find n12 such that for all n≥ n12 and all t ∈ [0,1]

b∗n(t)−b∗n(t)≤
εa∗
3a∗

.

Then for all n≥ n12 and all t ∈ [0,1],

−b∗n(t)−b∗n(t)
a∗n(t)

≥−b∗n(t)−b∗n(t)
a∗

≥−ε
′.

Denote q = P(C > c∗+ ε
′). Then q < 1. Denote n1 = max(n11,n12).

Then for all n≥ n1

P( sup
t∈[0,1]

(X̂∗n(t)− x∗(t))> ε)

= P(∃t ∈ [0,1] X̂∗n(t)> x∗(t)+ ε)

= P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Xi(Ti j)> x∗(t)+ ε)))

= P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Cia(Ti j)+b(Ti j)> c∗a(t)+b(t)+ ε)))

≤ P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Ci > (c∗a∗n(t)+ ε)/a∗n(t)+(b∗n(t)−b∗n(t))/a∗n(t))))

≤ P(∃t ∈ [0,1] (∀i ∀ j (Ini j(t) = 1 =⇒ Ci > c∗+ ε
′)))

= P(∃s (∀i ∀ j (Ini j(shn) = 1 =⇒ Ci > c∗+ ε
′)))

≤
ln−1

∑
s=0

P(∀i ∀ j (Ini j(shn) = 1 =⇒ Ci > c∗+ ε
′))

=
ln−1

∑
s=0

n

∏
i=1

P(∀ j (Ini j(shn) = 1 =⇒ Ci > c∗+ ε
′)).
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Let PT M denote conditional probability w.r.t. families (Ti j) and (Mi). Then

PT M(∀ j (Ini j(shn) = 1 =⇒ Ci > c∗+ ε
′)) =

q, if ∃ j Ini j(shn) = 1,

1, otherwise.

Then

P(∀ j (Ini j(shn) = 1 =⇒ Ci > c∗+ ε
′)) = EPT M(∀ j (Ini j(shn) = 1 =⇒ Ci > c∗+ ε

′))

= P(I∗ni(shn) = 0)+qP(I∗ni(shn) = 1)

= q+(1−q)P(I∗ni(shn) = 0)

≤ q+(1−q)(1−hn)

= 1−hn(1−q).

Thus, for all n≥ n1

P

(
sup

t∈[0,1]
(X̂∗n(t)− x∗(t))> ε

)
≤

ln−1

∑
s=0

[1−hn(1−q)]n ≤ n[1− (1−q)hn]
n.

Step 2 Find n21 such that, for all n≥ n21 and all t ∈ [0,1]

a∗n(t)−a∗n(t)≤
εa∗

3a∗c∗
.

Then for all n≥ n21 and t ∈ [0,1]

a∗n(t)
a∗n(t)

=
a∗n(t)−a∗n(t)

a∗n(t)
+1≤ a∗n(t)−a∗n(t)

a∗
+1≤ 1+

ε

3a∗c∗

and

c∗a∗n(t)− ε

a∗n(t)
≤ c∗

(
1+

ε

3a∗c∗

)
− ε

a∗n(t)
≤ c∗

(
1+

ε

3a∗c∗

)
− ε

a∗
= c∗−2ε

′,

where ε
′ = ε/3a∗. Analogously, find n22 such that for all n≥ n22 and all t ∈ [0,1]

b∗n(t)−b∗n(t)≤
εa∗
3a∗

.
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Then for all n≥ n22 and all t ∈ [0,1],

b∗n(t)−b∗n(t)
a∗n(t)

≤ b∗n(t)−b∗n(t)
a∗

≤ ε
′.

Take n2 = max(n21,n22). Then for all n≥ n2

P

(
sup

t∈[0,1]
(x∗(t)− X̂∗n(t))> ε

)
= P(∃t ∈ [0,1] X̂∗n(t)< x∗(t)− ε)≤ P(∃t ∈ [0,1] ∀i I∗ni(t) = 0)

+P
(
∃t ∈ [0,1] ∃i ∃ j (Ini j(t) = 1, Xi(Ti j)< x∗(t)− ε)

)
.

Similarly as before, we get that

P(∃t ∈ [0,1] ∀i I∗ni(t) = 0)≤
ln−1

∑
s=0

P(∀i I∗ni(shn) = 0) =
ln−1

∑
s=0

[P(I∗n1(shn) = 0)]n

=
ln−1

∑
s=0

[E(1−hn)
M]n ≤ n(1−hn)

n

and

P(∃t ∈ [0,1] ∃i ∃ j (Ini j(t) = 1, Xi(Ti j)< x∗(t)− ε)

≤P(∃t ∈ [0,1] ∃i Ci < (c∗a∗n(t)−ε)/a∗n(t)+(b∗n(t)−b∗n(t))/a∗n(t))≤P(∃i Ci < c∗−ε
′)= 0.

Therefore, for all n≥ n2

P

(
sup

t∈[0,1]
(x∗(t)− X̂∗n(t))> ε

)
≤ n(1−hn)

n.

Step 3. From Step 1 and Step 2 we get that for all n≥max(n1,n2)

P( sup
t∈[0,1]

∣∣X̂∗n(t)−x∗(t)
∣∣> ε)≤ n[1− (1−q)hn]

n+n(1−hn)
n ≤ 2n[1− (1−q)hn]

n.
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Similarly as before, from here we get that almost surely

sup
t∈[0,1]

∣∣X̂∗n(t)− x∗(t)
∣∣→ 0.

C.2 Proof of Theorem 4.2
Proof. Recall that

X̂ni(t) = (1− α̂ni)X̂∗n(t)+ α̂niX̂∗n (t),

where α̂ni are defined by the following equation:

Xi(T̄ni) = (1− α̂ni)X̂∗n(T̄ni)+ α̂niX̂∗n (T̄ni),

and T̄ni is any time point from the set {Ti1, . . . ,TiMi} (for example, the smallest

element of that set Ti,(1)).

If X̂∗n (T̄ni)− X̂∗n(T̄ni)> 0, that equation uniquely defines α̂ni:

α̂ni =
Xi(T̄ni)− X̂∗n(T̄ni)

X̂∗n (T̄ni)− X̂∗n(T̄ni)
.

Denote

Zni(t) = (1− α̂ni)x∗(t)+ α̂nix∗(t).

Then almost surely

1
n

n

∑
i=1
‖X̂ni−Zni‖ ≤

1
n

n

∑
i=1

(
(1− α̂ni)‖X̂∗n− x∗‖+ α̂ni‖X̂∗n − x∗‖

)
≤ ‖X̂∗n− x∗‖+‖X̂∗n − x∗‖→ 0

and it is enough to prove that

1
n

n

∑
i=1
‖Zni−Xi‖→ 0.
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But

‖Zni−Xi‖=
∣∣(1− α̂ni)c∗+ α̂nic∗−Ci

∣∣‖a‖.
Thus it is enough to prove that almost surely

1
n

n

∑
i=1

∣∣(1− α̂ni)c∗+ α̂nic∗−Ci
∣∣→ 0.

We will prove that this holds with any ω for which

‖X̂∗n (·,ω)− x∗‖+‖X̂∗n(·,ω)− x∗‖→ 0.

In the following, we will assume that such ω is fixed and we will omit it for the

sake of convenience.

Take any δ < (c∗− c∗)a∗. Because

|X̂∗n (T̄ni)− X̂∗n(T̄ni)− x∗(T̄ni)+ x∗(T̄ni)| ≤ ‖X̂∗n − x∗‖+‖X̂∗n− x∗‖→ 0

and

x∗(T̄ni)− x∗(T̄ni)≥ (c∗− c∗)a∗ > δ ,

there exists n0 such that, for all n≥ n0 and all i = 1, . . . ,n

X̂∗n (T̄ni)− X̂∗n(T̄ni)> δ .

Then for all n≥ n0 and all i = 1, . . . ,n

(1− α̂ni)c∗+ α̂nic∗−Ci

=
X̂∗n (T̄ni)−Xi(T̄ni)

X̂∗n (T̄ni)− X̂∗n(T̄ni)
c∗+

Xi(T̄ni)− X̂∗n(T̄ni)

X̂∗n (T̄ni)− X̂∗n(T̄ni)
c∗−Ci

=
X̂∗n (T̄ni)c∗− X̂∗n(T̄ni)c∗+(c∗− c∗)b(T̄ni)

X̂∗n (T̄ni)− X̂∗n(T̄ni)

+
(c∗− c∗)(Xi(T̄ni)−b(T̄ni))−Ci(X̂∗n (T̄ni)− X̂∗n(T̄ni))

X̂∗n (T̄ni)− X̂∗n(T̄ni)
.
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Moreover,

|X̂∗n (T̄ni)c∗− X̂∗n(T̄ni)c∗+(c∗− c∗)b(T̄ni)|
X̂∗n (T̄ni)− X̂∗n(T̄ni)

≤ δ
−1|X̂∗n (T̄ni)c∗−X̂∗n(T̄ni)c∗+(c∗−c∗)b(T̄ni)|

≤ δ
−1(|X̂∗n (T̄ni)− c∗a(T̄ni)−b(T̄ni)|c∗+ |c∗a(T̄ni)+b(T̄ni)− X̂∗n(T̄ni)|c∗)

≤ δ
−1c∗(‖X̂∗n − x∗‖+‖X̂∗n− x∗‖)

and

|(c∗− c∗)(Xi(T̄ni)−b(T̄ni))−Ci(X̂∗n (T̄ni)− X̂∗n(T̄ni))|
X̂∗n (T̄ni)− X̂∗n(T̄ni)

≤ δ
−1|(c∗− c∗)(Xi(T̄ni)−b(T̄ni))−Ci(X̂∗n (T̄ni)− X̂∗n(T̄ni))|

= δ
−1Ci|x∗(T̄ni)− x∗(T̄ni)− X̂∗n (T̄ni)+ X̂∗n(T̄ni)|

≤ δ
−1c∗(‖X̂∗n − x∗‖+‖X̂∗n− x∗‖).

Thus, for all n≥ n0

1
n

n

∑
i=1

∣∣(1− α̂ni)c∗+ α̂nic∗−Ci
∣∣≤ 2δ

−1c∗(‖X̂∗n − x∗‖+‖X̂∗n− x∗‖)→ 0.

C.3 Proof of Theorem 4.3
Fix i. Then

sup
t∈[0,1]

|X̃i(t)−Xi(t)|= |X̃i(t)−Xi(t)|

for some t that falls into some interval [shn;(s+1)hn]. Denote that t by Ti. Then

|X̃i(Ti)−Xi(Ti)|= |X̃i(Ti)− X̃i(shn)+ X̃i(shn)−Xi(Ti)|

≤ |X̃i(Ti)− X̃i(shn)|+ |X̃i(shn)−Xi(Ti)|.
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Note that

|X̃i(Ti)− X̃i(shn)| ≤ |X̂i(shn)− X̂i((s+1)hn)|

= |X̂i(shn)−Xi(shn)+Xi(shn)−Xi((s+1)hn)+Xi((s+1)hn)− X̂i((s+1)hn)|

≤ 2‖X̂i−Xi‖+Ci|a(shn)−a((s+1)hn)|+ |b(shn)−b((s+1)hn)|

≤ 2‖X̂i−Xi‖+Ci‖a∗n−a∗n‖+‖b∗n−b∗n‖

≤ 2‖X̂i−Xi‖+ c∗‖a∗n−a∗n‖+‖b∗n−b∗n‖.

Therefore,

|X̃i(Ti)−Xi(Ti)| ≤ 3‖X̂i−Xi‖+ c∗‖a∗n−a∗n‖+‖b∗n−b∗n‖.

Then

1
n

n

∑
i=1
‖X̃ni−Xi‖ ≤ 3

1
n

n

∑
i=1
‖X̂i−Xi‖+ c∗‖a∗n−a∗n‖+‖b∗n−b∗n‖.

By Lemma 1, ‖a∗n−a∗n‖→ 0,‖b∗n−b∗n‖→ 0, while by Theorem 4.2, almost surely
1
n

n

∑
i=1
‖X̂i−Xi‖→ 0. Therefore, almost surely

1
n

n

∑
i=1
‖X̃ni−Xi‖→ 0.
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