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Abstract The field of the biology of ageing has

received increasing attention from a biomedical point

of view over the past decades. The main reason has

been the realisation that increases in human population

life expectancy are accompanied by late onset dis-

eases. Indeed, ageing is the most important risk factor

for a number of neoplastic, neurodegenerative and

metabolic pathologies. Advances in the knowledge of

the genetics of ageing, mainly through research in

model organisms, have implicated various cellular

processes and the respective signalling pathways that

regulate them in cellular and organismal ageing.

Associated with ageing is a dysregulation of metabolic

homeostasis usually manifested as age-related obesity,

diminished insulin sensitivity and impaired glucose

and lipid homeostasis. Metabolic deterioration con-

tributes to the ageing phenotype and metabolic

pathologies are thought to be one of the main factors

limiting the potential for lifespan extension. Great

efforts have been directed towards identifying phar-

macological interventions with the potential to

improve healthspan and a number of natural and

synthetic compounds have shown promise in achiev-

ing beneficial metabolic effects.

Keywords Ageing � PI3K � Insulin resistance �
Metabolism � Obesity � Diabetes

Introduction

Cell signalling pathways process cues from the

extracellular environment and signals of cellular

status to ensure cells respond appropriately to

maintain their homeostasis. Metabolic homeostasis

is a key component of cellular and organismal

homeostasis. In multicellular organisms, metabolic

homeostasis requires the coordinate response of

distinct cell and tissue types. Cell signalling path-

ways that sense the availability of nutrients and the

energy status of the cells communicate with hor-

monal and growth factor signalling pathways to co-

ordinately regulate whole body metabolic homeosta-

sis. Ageing results in gradual deterioration of

various cellular functions including of metabolic

regulation. The age-related decline in metabolic

homeostasis is likely an important contributing

factor to general organismal ageing, as a number

of interventions, genetic and pharmacological,

affecting the activity of metabolic pathways also
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affect the rate of ageing. Indeed, the Insulin/IGF-1

Signalling (IIS) pathway and the mechanistic Target

Of Rapamycin (mTOR) pathway are the most

extensively studied pathways shown to regulate

lifespan and healthspan in a number of model

organisms (Fontana et al. 2010; Kenyon 2010).

Moreover, calorie restriction, the most potent envi-

ronmental intervention shown to extend lifespan and

healthspan in a number of species, is accompanied

by alterations in the insulin/IGF-1 circulating levels,

whereas inhibition of the mTOR pathway has been

shown to have both common and distinct effects

with calorie restriction (Kaeberlein and Kennedy

2009; Miller et al. 2014).

The relationship between ageing and metabolic

regulation is bidirectional: Ageing impairs the activ-

ity of key metabolic signalling pathways and the

ensuing metabolic dysregulation results in acceler-

ated ageing. For example, age-related impairment in

the activity of the insulin signalling pathway results

in insulin resistance. The ensuing hyperglycemia, as

a result of dysregulated glucose clearance, promotes

formation of advanced glycation end products

(AGEs), which in turn cause tissue damage further

exacerbating metabolic dysregulation and accelerat-

ing the organismal ageing process (Semba et al.

2010).

The finding that loss-of-function mutations in genes

encoding components of the IIS pathway can improve

health span and in many cases the metabolic profile of

aged mice is seemingly paradoxical (Barzilai et al.

2012). Various potential mechanisms have been

proposed to explain this phenomenon. An important

implication of these findings is that pharmacological

targeting of metabolic signalling pathways can pro-

duce beneficial metabolic effects and ameliorate age-

related metabolic pathologies. The activity of cell

signalling pathways can readily be manipulated, as a

large number of their component molecules are

enzymes such as kinases and phosphatases, which

can be inhibited or activated with the use of natural or

synthetic compounds.

Here we summarise some key findings on the role

of signalling pathways in metabolic homeostasis over

the course of ageing, generated mainly through

research in model organisms, and the evidence

supporting pharmacological manipulation of these

pathways as a means to improve metabolic health at

old age.

Calorie restriction in lifespan and healthspan

Calorie restriction is the most potent environmental

intervention known to increase lifespan and health-

span in a number of species including primates

(Colman et al. 2014). The molecular mechanisms

underlying the beneficial effects of calorie restriction

on lifespan and healthspan have been extensively

studied and debated over the years (Masoro 2009).

Various mechanisms have been proposed to explain

the effects of calorie restriction ranging from

enhanced stress resistance and improved proteostasis

(Mitchell et al. 2016) to reduced inflammation (Chung

et al. 2002). With regards to metabolic effects, calorie

restricted animals are normally leaner and more

insulin sensitive and glucose tolerant than ad libitum

fed animals. It has recently been reported that calorie

restriction induces browning of the adipose tissue with

profound beneficial metabolic consequences (Fab-

biano et al. 2016). Also calorie restriction was recently

reported to protect from accelerated ageing induced by

DNA-repair deficiency (Vermeij et al. 2016). Signif-

icant progress has been made in the identification of

the signalling pathways mediating the effects of

calorie restriction (Fig. 1). Growth factor, energy

and nutrient sensing pathways likely have a prominent

Fig. 1 Signalling pathways implicated in age-related metabolic

decline. Calorie restriction is the most potent environmental

intervention that improves the metabolic profile and extends

healthspan and lifespan of various animal species. Calorie

restriction is thought to be suppressing the GH/IGF-1, insulin/

PI3K, and mTOR pathways and activating the AMPK pathway.

These pathways provide potential targets for therapeutic

intervention to improve metabolic homeostasis at old age.

Pointed arrows indicate activatory and blunt arrows inhibitory

actions
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role in mediating the effects of calorie restriction

(Anderson and Weindruch 2010; Lopez-Lluch and

Navas 2016). The fact that circulating IGF-1 and

insulin levels in calorie restricted animals are lower

than those in ad libitum fed ones (Argentino et al.

2005; Huffman et al. 2008; Weiss et al. 2006) has

pointed to a potential role for the somatotropic

(Growth Hormone (GH)/IGF-1) axis and the IIS

pathways in the mediation of the effects of calorie

restriction. Genetic evidence has lent further support

for a role of somatotropic signalling (Bonkowski et al.

2006). Also, the mTOR and AMP-activated protein

kinase (AMPK) pathways together with sirtuins, a

family of NAD-dependent deacetylases have also b-

een implicated as effectors of the benefits associated

with calorie restriction. In line with genetic studies,

unbiased gene expression analyses in tissues of calorie

restricted animals have revealed that genes encoding

components of the somatotropic and the IIS pathways

as well as genes involved in metabolic processes and

energy metabolism are consistently part of the

molecular signature of calorie restriction (Plank

et al. 2012). Therefore, pharmacological agents

targeting components of these pathways might have

the potential to mimic the beneficial effects of calorie

restriction. The field of calorie restriction mimetic

compounds has been an area of intensive research, as it

holds great promise for therapeutic applications in the

combat against age-related diseases. Below, we briefly

summarise the key evidence implicating these cell

signalling pathways in lifespan and healthspan exten-

sion and we discuss the progress in pharmacological

targeting of these pathways with a focus on improve-

ments in metabolic homeostasis.

Growth factor, energy and nutrient sensing

pathways in metabolic regulation and ageing

The main cell signalling pathways that have been

implicated in the modulation of the rate of ageing have

at the same time important roles in metabolic regula-

tion. These are the somatotropic axis, insulin/IGF-1,

mTOR and AMPK signalling pathways. These path-

ways are interlinked to ensure coordinate regulation

and fine-tuning of cellular metabolic responses in line

with cellular energy status, nutrient availability and

hormonal/growth factor signalling input (Fig. 2).

Feedback loops operate within the pathways to

regulate signal intensity and duration. A key feedback

mechanism for downregulation of IIS involves phos-

phorylation of the Insulin Receptor Substrates (IRS)

by p70 ribosomal protein S6-kinase-1 (S6K1) follow-

ing activation of mTOR (Harrington et al. 2004; Shah

et al. 2004). In fact, sustained activation of S6K1 and

various other stress-induced serine/threonine kinases

is thought to be a major cellular mechanism in the

development of insulin resistance (Tanti and Jager

2009). Key mediators of the metabolic effects of the

IIS pathway are Phosphoinositide 3-Kinase (PI3K)

and its downstream effectors, serine/threonine kinase

Akt and FOXO transcription factors (Whiteman et al.

2002). FOXO transcription factors are essential

mediators of the lifespan extending effects of IIS

attenuation (Martins et al. 2016). Consistent with this,

the gene encoding FOXO3 is one of few human genes

consistently associated with longevity in a number of

distinct populations (Morris et al. 2015). FOXO

transcription factors have multiple metabolic effects.

Notably, FOXO1 plays an essential role in the

regulation of hepatic glucose production (Gross et al.

2008). mTOR’s most extensively studied role is in the

regulation of protein translation. mTOR key effectors

in this process are the above mentioned S6K1 and the

translational repressor eIF4E-Binding Protein 1

(4EBP1). mTOR has also prominent roles in lipid

biosynthesis (Caron et al. 2015).

Closely intertwined with the IIS and mTOR path-

ways is the Liver Kinase B (LKB) 1/AMPK pathway,

which plays a role in energy status sensing (Garcia and

Shaw 2017). Overexpression of one of the AMPK

subunits has been shown to increase lifespan in C.

elegans (Apfeld et al. 2004). AMPK activation brings

about beneficial metabolic effects mainly by promot-

ing glucose uptake and fatty acid oxidation. AMPK

activation is thought to mediate the effects of the anti-

diabetic biguanide drug metformin at least in part, as

additional mechanisms have been shown to underlie

metformin’s effects in the liver; notably suppression

of gluconeogenesis through inhibition of mitochon-

drial glycerophosphate dehydrogenase (Madiraju et al.

2014) and antagonism of glucagon action through

accumulation of AMP and consequent inhibition of

adenylyl cyclase (Miller et al. 2013).

The Ras/Extracellular Signal Regulated Kinase

(ERK) pathway is an essential pathway in transmis-

sion of mitogenic signalling, which is also activated

downstream the insulin/IGF-1 receptor via IRS. The
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Ras/ERK pathway has also been implicated in the

modulation of lifespan (Slack 2017). It has recently

been reported that administration of trametinib, an

inhibitor of ERK activation, extends the lifespan of D.

melanogaster (Slack et al. 2015). A key downstream

effector of the pathway in lifespan extension is AOP, a

transcriptional repressor of the ETS family. Whether a

similar lifespan extending effect of ERK inhibition

could be attainable in mammalian species remains to

be seen. Evidence for metabolic effects of Ras/ERK

pathway perturbations, at least under obesogenic

conditions, has been presented before and it is

summarised in (Slack 2017). However, the potential

metabolic effects of long-term administration of this

inhibitor in mammalian species also remain to be seen.

The somatotropic, insulin/IGF-1 and mTOR sig-

nalling pathways have been extensively studied in the

context of ageing and age-related metabolic home-

ostasis over the years and they are discussed below in

more detail, together with the role of sirtuins, a class of

histone deacetylases, which have emerged as impor-

tant regulators of cellular energy homeostasis.

Somatotropic signalling in ageing and metabolism

Signalling via the growth hormone/insulin-like growth

factor-1 (GH/IGF-1) axis, known as the somatotropic

axis, is essential for body growth. IGF-1 is produced

by the liver upon stimulation by GH released from the

anterior pituitary gland. Loss-of-function mutations in

components of the somatotropic axis have been shown

to affect longevity in mammals (Junnila et al. 2013). A

number of mouse mutants with spontaneous or

targeted loss-of-function mutations that diminish

production or impair sensing of GH have been

described (Brown-Borg 2015). All these mutants have

smaller body size and substantially extended lifespan.

The first group of this type of mutants to be studied

were hypopituitary mice, such as Snell and Ames

dwarf mice which bear the Pit-1dw and the Prop-1df

Fig. 2 Interrelationships between growth factor, nutrient avail-

ability and energy sensing pathways in metabolic regulation in

health. The Ras/ERK and PI3K/Akt pathways are activated

upon insulin/IGF1 stimulation. Akt, a key effector of insulin/

PI3K signalling mediates most of the metabolic actions of

insulin, notably stimulation of glucose uptake and glycogen

synthesis and inhibition of lipolysis. The mTOR pathway

integrates signals from growth factor stimulation (via Akt),

aminoacid availability and energy status (via AMPK). mTOR-

activated S6K1 is a key component of a feedback loop that

downregulates insulin’s signal. FOXO transcription factors,

which upon phosphorylation by Akt are inhibited through

nuclear exclusion, also have metabolic roles, prominently in the

regulation of gluconeogenesis. AMPK is activated by low

energy (high AMP/ATP and/or ADP/ATP ratio) stress via

phosphorylation by LKB1 and promotes glucose uptake and

fatty acid oxidation. The majority of the molecular components

of these pathways have been omitted from the schematic for

simplicity
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(Prophet of Pit-1) gene mutations, respectively. Both

mutations affect the activity of the Pit-1 transcription

factor, which is required for proper development of the

anterior pituitary gland. Both Snell and Ames mice

exhibit a deficiency in release of pituitary hormones

(growth hormone, thyroid stimulating hormone and

prolactin), greatly reduced body size, reduced fertility,

increased adiposity, undetectable circulating IGF-1,

and low insulin and glucose levels. The other group of

somatotropic axis mutants consists of GH-resistant

mice, specifically GH receptor and GH-binding pro-

tein (GHR/BP) knockout mouse (Laron mouse) (Zhou

et al. 1997) as well as GH-deficient mice, due to a

spontaneous mutation (little mice) or targeted disrup-

tion of the Ghrhr gene (GHRH-KO), which encodes

the GH-releasing hormone receptor (Alba and Salva-

tori 2004; Godfrey et al. 1993). Hypopituitary dwarf

mice display a 40–70% increase in mean lifespan

depending on the specific mutation and sex (Brown-

Borg et al. 1996; Flurkey et al. 2001). Even though

these mutant mice are deficient in other hormones in

addition to GH, their lifespan extension seems to be

primarily due to GH deficiency, as the lifespan of

Ames dwarf mice treated with GH reverts back to that

of control animals (Panici et al. 2010).

Hypopituitary, GH deficient and GH resistant mice

have been extensively characterised with respect to

their metabolic phenotypes, over the years (Bartke and

Westbrook 2012). Ames mice, as wells as GHR-KO

mice, display increased adiposity, hypoinsulinemia

and hypoglycaemia, increased adiponectin levels and

reduced serum lipids. Interestingly, visceral fat from

GHR-KO mice has been shown to produce higher

levels of adiponectin, which likely explains the

improved insulin sensitivity and glucose tolerance in

the face of increased adiposity (List et al. 2011).

Indeed removal of visceral fat from GHR-KO mice

resulted in reduced insulin sensitivity in contrast to

wild type mice, in which the same intervention

improved insulin sensitivity (Masternak et al. 2012).

Furthermore, indirect calorimetry experiments

revealed increased oxygen consumption and reduced

respiratory quotient indicating that these mutants have

elevated oxidative metabolism and preferentially

utilise lipids as fuel (Westbrook et al. 2009). Such

properties can explain the beneficial metabolic param-

eters, i.e. improved insulin sensitivity and glucose

homeostasis of these dwarf mutants. Interestingly,

increased respiration was evident only under standard

vivarium temperature (commonly 23 �C) whereas

under mouse thermoneutral conditions (30 �C) there
was no difference (Bartke and Westbrook 2012). This

suggests that the small body size of these mutants

could be the key determinant of their metabolic

phenotype, as it necessitates an increased metabolic

rate in order to maintain body temperature.

The extent to which reduction in the IGF-1 accounts

for the life extending effects of GH-deficient and GH-

resistant mice is not fully clear, but both GH-deficient

and GH-resistant mice consistently show more robust

lifespan extension than IGF-1-deficient mice (Bartke

2009). Gene inactivation of the IGF-1 receptor in

homozygosity is perinatally lethal, but haploinsuffi-

ciency of the IGF-1 receptor (IGF-1R?/-) resulted in

enhanced stress resistance and lifespan extension by

33% in female, but not male, mice (Holzenberger et al.

2003). Another study conducted independently, found

a lifespan extension of only 4.7% in female IGF-

1R?/- mice, though it confirmed the previously

reported stress resistance (Bokov et al. 2011). In terms

of metabolic phenotypes, the latter study demonstrated

that over ageing the mice developed insulin resistance

and the males glucose intolerance as well. A follow up

study from the Holzenberger lab, demonstrated that

the magnitude of the lifespan extension effect, but not

stress resistance, was depended on genetic background

(Xu et al. 2014). In terms of metabolic phenotypes, the

study corroborated the development of insulin resis-

tance in male mice. Thus, downregulation of IGF-1

signalling does not seem to offer the same beneficial

effects with GH deficiency/resistance. Therefore, GH

deficiency/resistance likely mediates its life extending

effects through mechanisms distinct from IGF-1

deficiency to a large extent.

The neuroendocrine axis of growth control has been

implicated in human ageing as well. GH levels drop

with age, a process known as somatopause. Certain

manifestations of tsomatopause, such as reduction of

muscle mass, causing age-related sarcopenia, and

increase in visceral adiposity are partly reversible by

GH treatment (Rudman et al. 1990). Hence, GH

replacement therapy has been proposed as an anti-

ageing intervention. However, the findings from

research in GH deficient/resistant mouse mutants do

not support such an effect of GH and on the contrary

suggest that such an intervention could have a negative

impact on human ageing (Bartke 2008). Also, in

humans there is an apparent negative correlation

Biogerontology

123



between height and longevity, thus suggesting a

potential role of GH and IGF-1 regulated growth in

promoting ageing (Samaras and Storms 1992). There

is also genetic evidence implicating the activity of the

somatotropic axis in human ageing. Allele frequency

studies have reported that polymorphic variants of

genes related to GH synthesis, IGF-1 signalling and

insulin action change in frequency with age. Bonafè

et al. found that allele A of IGF-1R is associated with

low plasma IGF-1 and is more frequent among long-

lived people (Bonafe et al. 2003). Moreover, van

Heemst et al. found that women carrying a SNP

variant of the GH1 gene for human growth hormone

are 2 cm shorter and exhibit a 0.80-fold reduced

mortality (van Heemst et al. 2005). Furthermore,

female offspring of centenarian Ashkenazi Jews were

found to be heterozygous for loss-of-function muta-

tions in the gene encoding IGF-1R (Suh et al. 2008).

However, such evidence is essentially correlative and

it does not reveal the underlying mechanisms of

lifespan extension. Body size per se is not necessarily

a determinant of lifespan extension. Reduced suscep-

tibility to pathologies such as cancer could underlie the

lifespan extending effect in this context (deMagalhaes

and Faragher 2008). This notion is further supported

by the recent report that male carriers of a common

GHR allele lacking exon 3 (d3-GHR) live longer

despite being taller than carriers of the wild-type allele

(Ben-Avraham et al. 2017). Interestingly, a study that

monitored 99 Ecuadorian GH receptor deficient

dwarfs for 22 years, has shown that they were less

susceptible to cancer and obesity, but not long-lived

(Guevara-Aguirre et al. 2011). Therefore, diminished

somatotropic signalling can have beneficial metabolic

effects, even in the absence of lifespan effects in

humans.

Insulin/IGF-1 signalling pathway and metabolic

ageing

During the 1980s and 1990s, mutagenic screen studies

in C. elegans identified the first long-lived mutants,

where single mutations produced large effects on

lifespan. Worms with loss-of-function mutations in

genes in the IIS pathway showed remarkable

increases in mean and maximum lifespan and main-

tained a youthful morphology for longer (Kenyon

2011). Therefore, the IIS pathway was the first

signalling pathway shown to play a pivotal role in

the ageing process. Indeed, loss-of-function mutation

of daf-2, the worm ortholog of the insulin/IGF-1

receptor, resulted in large increases in the lifespan of

worms. In contrast, ubiquitous knock out of the

Insulin Receptor (IR) gene in mice resulted in

neonatal lethality (Accili et al. 1996). Moreover, a

severely diminished IR gene function in humans

causes Dohonue syndrome (leprechaunism) (Kita-

mura et al. 2003). Hence, it was initially thought that

the role of IIS in the regulation of the ageing process

could not be evolutionarily conserved and that the

activity of the IIS pathway was unlikely to promote

ageing in mammals. However, there is now ample

evidence that reduction of the IIS pathway can delay

ageing and improve the metabolic profile of mam-

malian species in late life. The first evidence was

provided from the study of mice with adipose tissue-

specific knockout of the insulin receptor (FIRKO

mice, Fat-specific Insulin Receptor KnockOut).

FIRKO mice were protected against age-related

obesity and exhibited an 18% increase of mean

lifespan in both sexes (Bluher et al. 2003). FIRKO

mice displayed reduced insulin levels and resistance

to age-related glucose intolerance (Bluher et al.

2002). More recently, extension of the maximal

lifespan of heterozygous mice for a ubiquitous null

mutation of the insulin receptor (IR-KO?/-) has been

reported for male, but not female, mice (Nelson et al.

2012). Conversely, reduction of circulating insulin

levels by targeted disruption of insulin genes has

recently been reported to extend lifespan in female,

but not male mice (Templeman et al. 2017). This is an

example of how sex can differentially influence the

effects of genetic interventions even on closely

positioned components of signalling pathways.

Ubiquitous knock-out of the Insulin Receptor

Substrate-1 (IRS1) has also been shown to extend

lifespan (by 32% in females, weaker effect in males)

and improve a wide range of markers of ageing such as

immune and motor system dysfunction and bone and

skin deterioration (Selman et al. 2008, 2011). IRS1

KO mice, although insulin resistant, display improved

glucose tolerance at old age. Although Selman et al.

found no lifespan effects in ubiquitous IRS2 heterozy-

gous knockout mice (IRS2?/-), another study reported

that both ubiquitous IRS2?/- and brain-specific IRS2

KO mice exhibited lifespan extension (Taguchi et al.

2007). Interestingly, ubiquitous IRS2?/- mice were

found to be more insulin sensitive than wild-type
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littermates, but brain-specific IRS2 KO were insulin

resistant and glucose intolerant.

A key effector molecule in IR is PI3K. The

principal IIS-responsive mammalian isoform of

PI3K is p110a (Foukas et al. 2006). Hence, mice

heterozygous for a kinase-dead knock-in mutation in

the gene encoding p110a (p110aKI) displayed insulin

resistance and moderate glucose intolerance at young

age. However, this partial inactivation of PI3K p110a
exerted a protective effect in the long-term so that

aged p110a KI mice were leaner and manifested an

improved metabolic profile compared to their wild-

type littermates (Foukas et al. 2013). These effects

were more prominent in male mice. Consistent with

this, male p110a KI mice showed a modest (approx.

7%) extension in their median lifespan. These findings

are in line with the phenotypes reported for mice with

systemic overexpression of the tumour suppressor

phosphatase and tensin homolog (PTEN), which

counteracts the activity of PI3K. PTEN transgenic

(PTEN-Tg) mice exhibited increased energy expen-

diture, decreased adiposity, improved insulin sensi-

tivity upon high-fat feeding or with aging, and

extended lifespan (Ortega-Molina et al. 2012). High

levels of expression of the uncoupling protein 1

(UCP1) in the brown adipose tissue (BAT) of PTEN

transgenic mice resulted in enhanced nutrient burning

capacity and reduced adiposity and associated

pathologies. All the above evidence supports the

notion that downregulation of the insulin signalling

pathway can have important beneficial metabolic

effects in mammals.

mechanistic Target of Rapamycin (mTOR)

pathway and metabolism

The mTOR signalling pathway is evolutionarily

conserved and integrates nutrient availability, energy

status and growth factor signalling in the control of

cell growth and proliferation. It regulates a multitude

of cellular processes such as mRNA translation,

metabolism, autophagy and stress resistance (Cornu

et al. 2013; Kapahi et al. 2010; Laplante and Sabatini

2012). The mTOR protein kinase is distributed in two

distinct complexes, mTOR Complex 1 and 2

(mTORC1 and 2), each with distinct functions and

substrates. mTORC1 consists of mTOR, mammalian

lethal with sec-13 protein 8 (mLST8, also known as

GbL), and regulatory-associated protein of TOR

(Raptor). Additional components include DEP-do-

main-containing mTOR-interacting protein (DEP-

TOR) and proline-rich Akt substrate 40 kDa

(PRAS40). mTORC1 is acutely sensitive to rapamycin

and regulates ribosomal protein biogenesis, protein

translation and autophagy. mTORC2 is composed of

mTOR, rapamycin-insensitive companion of mTOR

(Rictor), a G protein beta subunit-like associated to

mTOR (mLST8), and stress-activated protein kinase-

interacting protein 1 (mSIN1) (Cornu et al. 2013;

Laplante and Sabatini 2012). S6K1 and 4E-BP1 are

two well-characterised substrates of mTORC1 (Ma

and Blenis 2009), whereas the hydrophobic motif

phosphorylation site (S473) of Akt is a key substrate

for mTORC2 (Sarbassov et al. 2005). Both mTORC1

and mTORC2 are activated by growth factors.

mTORC1 activity is also modulated by availability

of aminoacids and by energy levels through input from

AMPK. Hence, mTORC1 is a central signalling node

that integrates multiple inputs to regulate biological

responses such as protein and lipid synthesis, autop-

hagy and cell cycle progression. mTORC2 has been

implicated in cytoskeletal organisation, cell survival

and metabolism; in the latter to a large extent via its

Akt phosphorylating activity.

Genetic or pharmacological inhibition of mTOR

signalling has been found to extend the lifespan of

invertebrate species including yeast, nematodes, fruit

flies and mice (Kapahi et al. 2010; Lamming et al.

2013). Indeed, deletion of S6K1 protects against diet-

induced obesity, enhances insulin sensitivity and

increases lifespan in mice (Selman et al. 2009; Um

et al. 2004). Moreover mice expressing a hypomorphic

allele of mTOR and mice heterozygous for both

mTOR and mLST8, are also long-lived (Lamming

et al. 2012; Wu et al. 2013). Furthermore, it has

recently been shown that long-lived heterozygous

Akt1 mutants exhibit decreased mTORC1 activity

(Nojima et al. 2013). A role for mTORC2 in the

regulation of lifespan is still largely uncertain, but it

could potentially have an influence through its role as a

modulator of mTORC1 signalling.

The mTOR and IIS pathways are closely linked in

the regulation of energy metabolism and glucose

homeostasis (Zoncu et al. 2011). Early genetic

approaches attempting ubiquitous inactivation of

mTOR in mice resulted in early embryonic lethality

and therefore did not contribute to the study of mTOR

in metabolic regulation (Gangloff et al. 2004;
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Murakami et al. 2004). Hence, tissue-specific muta-

genesis has been applied in order to study the roles of

the two mTOR complexes in metabolic tissues, which

often resulted in disparate metabolic effects depending

on the targeted tissue (Table 1). Tissue-specific dis-

ruption of mTOR signalling pathway components has

been shown to induce differential effects on the

metabolic profile in rodents, summarised in (Polak

and Hall 2009). Deletion of Raptor, a component of

mTOR C1, specifically in the adipose tissue protected

against diet-induced obesity (Polak et al. 2008),

whereas deletion of Raptor in skeletal muscle was

deleterious, causing severe muscular dystrophy (Bent-

zinger et al. 2008). Overexpression of a dominant-

negative version of Raptor in the liver improved

insulin sensitivity (Koketsu et al. 2008), whereas

inhibition of mTOR by rapamycin reduced the

production and release of insulin by pancreatic islets,

leading to hypoinsulinemia and glucose intolerance

(Zahr et al. 2008). Also, aminoacid-induced activation

of mTOR or activation of S6K in the hypothalamus

decreased food intake and body weight (Blouet et al.

2008; Cota et al. 2006). Similar approaches targeting

mTORC2 in the adipose tissue by disruption of the

Rictor gene resulted in larger body mass due to organ

hypertrophy and hyperinsulinemia, but normal glu-

cose tolerance, under standard chow feeding (Cybulski

et al. 2009). These findings have been largely corrob-

orated by another study utilising a similar targeting

approach, with the exception of the glucose tolerance,

which in the later study was found to be impaired

(Kumar et al. 2010). From the above data, it becomes

evident that the effect of downregulation of mTOR

signalling on metabolism is difficult to predict.

Pharmacological inhibition of mTOR with rapamycin

apparently results in negative metabolic effects though

these largely depend on the dosing regimen (see

below). And hypomorphic mTOR expression has no

metabolic phenotypes despite lifespan extension (Wu

et al. 2013). Therefore, in the case of the mTOR

pathway, a relation between body metabolic home-

ostasis and longevity is not obvious.

Insulin sensitivity and longevity

Ageing is associated with a reduction in insulin

sensitivity both in humans and rodents (Basu et al.

2003; Escriva et al. 2007). Age-related insulin

Table 1 Metabolic phenotypes of mTORC1/2 conditionally mutated mice

Component Tissue Metabolic phenotypes References

mTOR Systemic hypomorphic

(mTORD/D mice)

Normal insulin sensitivity and glucose tolerance, and energy expenditure Wu et al.

(2013)

mTOR Skeletal muscle Severe myopathy, increased muscle glucose uptake and glycogen

accumulation, but normal glucose and insulin tolerance

Risson et al.

(2009)

Raptor Adipose tissue Leanness in the face of reduced physical activity and unaffected caloric

intake, protection against diet-induced obesity, improved insulin

sensitivity, elevated energy expenditure due to mitochondrial

uncoupling

Polak et al.

(2008)

Raptor Liver Normal glucose tolerance Lamming

et al.

(2012)

Rictor Liver, liver-specific Rictor

knockout (LiRiKO) mice

Constitutive gluconeogenesis, impaired glycolysis and lipogenesis,

systemic hyperglycemia, hyperinsulinemia, and hypolipidemia

Hagiwara

et al.

(2012)

Rictor Adipose tissue Mice hyperinsulinemic, but glucose tolerant Cybulski

et al.

(2009)

Rictor Adipose tissue Glucose intolerance, marked hyperinsulinemia, insulin resistance in

skeletal muscle and liver and hepatic steatosis

Kumar et al.

(2010)

Rictor Skeletal muscle Glucose intolerance, but increased basal glycogen synthase activity in

muscle

Kumar et al.

(2008)

Mutants for which systemic metabolic phenotypes have been reported

Biogerontology

123



resistance is thought to be a result of increased visceral

adiposity with age progression. Consistent with this

notion, removal of visceral adipose tissue improves

insulin sensitivity in mice (Gabriely et al. 2002).

Adipose tissue development and function is highly

dependent on sex steroids (White and Tchoukalova

2014) and therefore it is thought that differences in

adipose tissue distribution between sexes would pro-

duce differences in development of insulin resistance,

however there is no clear consensus about this (Kim

and Reaven 2013).

The potential effect of insulin sensitivity on lifes-

pan is still unclear (Barzilai and Ferrucci 2012). In

humans, insulin resistance is accompanied by com-

pensatory hyperinsulinemia and has clearly been

implicated as a risk factor for multiple age-related

diseases. Consistent with this, calorically restricted

rodents and a number of long-lived mice (e.g. GH

deficient/resistant mutants, FIRKO mice, S6K KO

mice) display enhanced insulin sensitivity. However,

as mentioned above, attenuation of the insulin sig-

nalling cascade via genetic inactivation of key IIS

pathway intermediates has been associated with

lifespan extension in model organisms (Kenyon

2010). Moreover, lifespan extension has been reported

in mouse mutants for the IIS or mTOR pathways with

normal (Lamming et al. 2012; Nojima et al. 2013; Wu

et al. 2013) or reduced (Selman et al. 2008; Taguchi

et al. 2007) insulin sensitivity. This implies that

enhanced insulin sensitivity is not a requisite for

extended longevity. However, insulin resistant

mutants, such as IRS1-/- and PI3K p110a KI mice,

display improved glucose tolerance compared to wild-

type littermates at old age (Foukas et al. 2013; Selman

et al. 2008). As mentioned in the Introduction,

hyperglycemia contributes to a large extent to tissue

damage and old age frailty. Therefore, improved glu-

cose tolerance at old age might be a better indicator of

a metabolic effect, which might translate to enhanced

longevity, than insulin sensitivity.

Sirtuins and metabolic effects of sirtuin activation

Sirtuins are a family of nicotinamide adenine dinu-

cleotide (NAD?)-dependent histone deacetylases

(Chang and Guarente 2014; Houtkooper et al. 2012).

There are seven mammalian sirtuins (SIRT1-7) that

differ in their tissue distribution, subcellular

localisation, enzymatic activity and substrate speci-

ficity. In addition to histones, they also deacetylate

transcription factors and other cellular proteins affect-

ing gene expression activity. Their implication in

lifespan regulation emerged when increasing the

dosage of the sirtuin Sir2 was found to extend

replicative lifespan in yeast (Kaeberlein et al. 1999).

Various lines of evidence support the notion that

sirtuins mediate the effects of calorie restriction to a

large extent (Guarente 2011). They have also been

shown to extend the lifespan of worms, flies and mice.

The lifespan extending effects of sirtuin activation

have been disputed, but the improvements in health-

span seem to be robust (Houtkooper et al. 2012).

Sirtuins mediate various beneficial effects on meta-

bolic tissues, such as reduced glycolysis and increased

fatty acid oxidation in liver and muscle, reduced

hepatic lipogenesis, adipose tissue browning and fat

mobilisation (Chang and Guarente 2014). SIRT1, the

principal mammalian sirtuin exerting metabolic

effects, has been shown to be activated via the AMPK

energy sensing pathway in skeletal muscle (Canto

et al. 2010). Therefore, the sirtuin family provides

promising therapeutic targets in metabolic diseases,

such as age-related obesity and diabetes, and a number

of sirtuin activators have been identified or developed.

The natural polyphenol compound resveratrol has

received great attention as a sirtuin activator with

significant beneficial metabolic effects in mice fed a

high-fat diet and in obese humans (Baur et al. 2006;

Lagouge et al. 2006; Timmers et al. 2011). Resvera-

trol’s mechanism of action as a sirtuin activator has

been reported to be indirect, through activation of

energy sensing pathways and modulation of cAMP

and NAD? levels, according to some studies (Park

et al. 2012; Um et al. 2010). However, later studies

demonstrated that the substrate specificity of SIRT1 is

sequence specific thus explaining the lack of activa-

tion by resveratrol against a number of substrates

(Hubbard et al. 2013; Lakshminarasimhan et al. 2013).

A number of synthetic SIRT1 activators have been

developed and tested in preclinical trials (Carafa et al.

2016; Hubbard and Sinclair 2014; Sinclair and Guar-

ente 2014). Moreover, some positive results have been

reported from early stage clinical trials in inflamma-

tory and metabolic disorders (Bonkowski and Sinclair

2016). However, a more detailed evaluation of their

potential for clinical application remains to be seen.
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Pharmacological interventions in healthspan

extension

The demonstration that administration of the mTOR

inhibitor rapamycin late in life can extend the

lifespan of mice was a ground-breaking develop-

ment in the biology of ageing, as it provided solid

proof-of-principle that pharmacological treatment of

ageing is possible (Harrison et al. 2009). It has

boosted efforts to produce pharmacological agents to

improve healthspan by combating age-related dis-

ease. This section summarises evidence supporting a

potential effect of pharmacological agents, known to

modulate the activity of signalling pathways impli-

cated in regulation of healthspan and lifespan, on

metabolic homeostasis. Specifically, the mTOR

pathway inhibitor rapamycin, PI3K inhibitors (IIS

pathway), somatoropic axis inhibitors and metformin

(indirect activator of AMPK) are discussed in more

detail. Sirtuin activators were briefly discussed

above and in more detail in the literature cited

therein.

Rapamycin

Rapamycin acts as an allosteric inhibitor of mTORC1

by forming a gain-of-function complex with the

12 kDa FK506-binding protein (FKBP12). Rapamy-

cin has immunosuppressive and anti-proliferative

properties in mammalian cells. It was approved as an

immuno-suppressant in 1999. In recent years, interest

has focused on the potential of rapamycin and its

analogues (rapalogues) as anticancer drugs (Wander

et al. 2011). Rapamycin has been reported to have both

positive and negative effects on mammal metabolism.

In obesity, the mTOR pathway is hyper-activated in

the adipose tissue thus leading to increased lipogen-

esis, reduced lipolysis and fat accumulation. To limit

its over-activation, mTORC1 blocks insulin signalling

through a S6K-mediated feedback loop destabilising

IRS (Harrington et al. 2004; Shah et al. 2004) and

through direct phosphorylation and stabilisation of

Grb10 (Hsu et al. 2011), provoking an insulin

resistance state. Acute mTOR inhibition through

rapamycin treatment improves insulin sensitivity

in vitro and in vivo by disrupting this negative

feedback loop of insulin signalling (Krebs et al.

2007; Tremblay and Marette 2001). Also rapamycin

protects from diet-induced obesity and prevents

weight gain in mice (Chang et al. 2009a; Makki

et al. 2014). In rats and humans, it reduces age-related

body weight gain when administered 3 times per week

(Rovira et al. 2008). However, glucose intolerance and

insulin resistance have been observed in a few strains

of rodents treated daily with high doses of rapamycin.

In fact, rapamycin increases lipolysis in the adipose

tissue in rats, causing pronounced hyperlipidemia

(Houde et al. 2010). Also, a 2-week rapamycin

treatment aggravates hyperglycemia in a diabetic

mouse model (Fraenkel et al. 2008) and similarly,

rapamycin administration (6 weeks) exacerbates glu-

cose intolerance in diet-induced obese KK/HIJ mice

(Chang et al. 2009b). These controversial findings on

the insurgence of insulin resistance might be explained

by the duration and the doses of rapamycin treatment

(Fang et al. 2013). Rapamycin could therefore still be a

viable pharmacological option to promote beneficial

metabolic effects in humans pending definition of

appropriate dosing regimens.

GH/IGF1 axis inhibitors

Research in a number of GH deficient/resistant mice

as well as in an Ecuadorian human GH receptor-

deficient population, has clearly demonstrated that

downregulation of this pathway exerts beneficial

metabolic effects. Compounds targeting the activity

of the somatotropic axis have been used in the

treatment of acromegaly. Somatostatin analogues

have been used to supress GH secretion, but with

limited efficacy and substantial side-effects (Parkin-

son et al. 2002). Somatostatin inhibits secretion of

insulin and it is therefore unlikely to have beneficial

metabolic and healthspan effects. However, pegviso-

mat, a GH receptor antagonist, has demonstrated

efficacy and an acceptable safety profile (van der

Lely et al. 2012). Beneficial metabolic effects of

short- to medium- term administration of pegvisomat

in type-1 diabetes and acromegaly patients, respec-

tively, have been reported (Lindberg-Larsen et al.

2007; Thankamony et al. 2014). Pegvisomat, is

therefore a compound that could potentially be tested

for healthspan effects upon long-term administration

in humans, although logistic constraints related to

high costs, make it an unlikely candidate as a widely

available therapeutic modality.
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PI3K inhibitors

As discussed above, long-lived IIS mutant mice, such

as IRS1 KO (Selman et al. 2008), PTEN-Tg mice

(Ortega-Molina et al. 2012) and PI3K p110a KI mice

(Foukas et al. 2013) display a metabolic improvement

at old age. Therefore it is reasonable to hypothesise

that use of inhibitors against ‘druggable’ components

of this pathway could represent a strategy in preven-

tion or treatment of metabolic diseases associated with

old age (such as obesity and type-2 diabetes) and in

healthspan extension. A number of inhibitors against

PI3Ks are currently available, mainly through efforts

to target these enzymes in oncology. Proof of principle

that PI3K inhibitors can also be useful in metabolic

disease has been provided by a recent study (Ortega-

Molina et al. 2015). Long-term administration of low

doses of two pharmacological inhibitors of PI3K,

CNIO-PI3Ki and GDC-0941, has been reported to

reduce the adiposity and body weight of obese mice

and rhesus monkeys. The same treatment did not

affect adiposity of mice fed a standard chow. CNIO-

PI3Ki is a small molecule ATP competitive dual

inhibitor of the PI3K isoforms p110a and p110d.
Further testing for isoform specificity, using p110a
and p110d discriminating compounds, revealed that

the anti-obesity effect was particularly prominent

upon inhibition of p110a, the principal insulin

activated isoform, although inhibition of p110d did

contribute to the overall effect (Lopez-Guadamillas

et al. 2016). p110d is highly expressed in leukocytes

and its involvement was possibly due to an anti-

inflammatory effect of p110d inhibition, as inflam-

mation is a well-established contributing factor in

metabolic pathology. These findings suggest that

pharmacological inhibition of PI3K could be an

effective and safe anti-obesity intervention to prevent

or reverse metabolic syndrome in humans.

Metformin

Metformin is a biguanide that has extensively been

used in the treatment of type 2 diabetes. It works by

decreasing glucose production in the liver, augment-

ing glucose utilisation by body tissues and increasing

sensitivity to insulin. Metformin has been used for

more than 60 years, it is safe and has also been

reported to slow aging in C. elegans (Pryor and

Cabreiro 2015). Metformin-treated worms not only

live longer, but also stay healthier for longer (Onken

and Driscoll 2010). Metformin administration

increases the lifespan of mice by nearly 6% and

improves various markers of healthspan (Martin-

Montalvo et al. 2013). Also diabetic patients treated

with metformin live longer than non-treated non-

diabetic control subjects (Bannister et al. 2014).

Therefore, metformin might have substantial benefi-

cial effects on human healthspan. To test this idea,

metformin is set to enter a ground breaking human trial

as a potential anti-aging drug (Barzilai et al. 2016). A

clinical trial called Targeting Aging with Metformin,

or TAME will involve the administration of met-

formin to 3,000 people aged 70–80 years (at roughly

15 centres around the United States), who already have

one or two of three conditions (cancer, heart disease or

dementia) or are at risk of them. The participants will

be monitored to test whether the medication prevents

or delays development of diseases they do not already

have, as well as of diabetes.

Conclusion and perspective

Recent advances in the elucidation of signalling

pathways that modulate the rate of ageing have

made it possible to study the effects of their

manipulation on various pathologies associated with

advanced age in model organisms. However, a

number of confounding factors complicate the

predictions for translational potential of the findings

from model organism to humans (de Magalhaes

2014). Most of the research in the genetics of ageing

and in testing interventions has used inbred animals

with identical genetic backgrounds. Such models do

not reflect the situation of human populations that

are genetically heterogeneous. In many cases,

the responses under investigation have been extre-

mely variable between different strains. A prominent

example is calory restriction in mice, where the

outcome can vary from life extension to life

shortening depending on the genetic background

(Liao et al. 2010). Furthermore, as alluded at various

places above, in many cases, genetic interventions

have stronger or even restricted effects on one sex. It

is conceivable that, as is the case in other diseases,

notably in cancer, in age-related diseases there will

not be a cure suitable for everyone, but treatments

should be personalised based on individual genetics.
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Pharmacologic interventions might have to match

the genetic and epigenetic make-up as well as the

sex of individuals. To this end, continuous advances

in next generation sequencing and human genetics,

together with development of advanced bioinfor-

matic methods, similar to those used to correlate

longevity genes to age-related disease genes and to

drugs (Fernandes et al. 2016), could make it possible

to predict the likelihood of specific interventions to

be effective in combating age-related diseases in

particular individuals.

There is now substantial evidence that pharmaco-

logical interventions in the IIS, mTOR and AMPK

pathways can have beneficial metabolic effects in

mammalian organisms. As discussed above, interven-

tions within these signalling pathways affect meta-

bolic homeostasis, which appears to be a key

determinant of healthspan. A number of compounds

targeting these pathways have demonstrated good

tolerability and substantial beneficial metabolic

effects through preclinical testing in mice (Table 2).

Whether such compounds will only have beneficial

metabolic effects or more generalised healthspan

effects will be of great interest to determine, but it

will certainly be more challenging and it will require

development of suitable biomarkers. Nevertheless, the

application of signalling pathway inhibitors for pre-

vention and treatment of age-related obesity and

insulin resistance seems within grasp based on very

promising results from preclinical stage testing.

Exciting trials are under way to assess the effects of

such compounds, such as the rapamycin trial in pet

dogs (Kaeberlein et al. 2016) and the metformin trial

in humans (Barzilai et al. 2016). Ongoing research in

independent academic laboratories along with larger

scale programmes such as the National Institute of

Aging Intervention Testing Programme (NIA ITP)

(https://www.nia.nih.gov/research/dab/interventions-

testing-program-itp) have made great contributions to

this effort and will likely identify additional com-

pounds with potency to improve healthspan and

lifespan to be subsequently tested in human trials.

These trials hold great promise and a positive outcome

would be a great return for the extensive efforts

invested in research in the field of biology of ageing.

Such developments are eagerly awaited by the

respective scientific community and they are certain to

be welcome by the general public.
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