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Abstract

Background

In the past decade many Genome-wide Association Studies (GWAS) were performed that

discovered new associations between single-nucleotide polymorphisms (SNPs) and various

phenotypes. Imputation methods are widely used in GWAS. They facilitate the phenotype

association with variants that are not directly genotyped. Imputation methods can also be

used to combine and analyse data genotyped on different genotyping arrays. In this study

we investigated the imputation quality and efficiency of two different approaches of combin-

ing GWAS data from different genotyping platforms. We investigated whether combining

data from different platforms before the actual imputation performs better than combining

the data from different platforms after imputation.

Methods

In total 979 unique individuals from the AMC-PAS cohort were genotyped on 3 different plat-

forms. A total of 706 individuals were genotyped on the MetaboChip, a total of 757 individu-

als were genotyped on the 50K gene-centric Human CVD BeadChip, and a total of 955

individuals were genotyped on the HumanExome chip. A total of 397 individuals were geno-

typed on all 3 individual platforms. After pre-imputation quality control (QC), Minimac in com-

bination with MaCH was used for the imputation of all samples with the 1,000 genomes

reference panel. All imputed markers with an r2 value of <0.3 were excluded in our post-

imputation QC.

Results

A total of 397 individuals were genotyped on all three platforms. All three datasets were

carefully matched on strand, SNP ID and genomic coordinates. This resulted in a dataset of

979 unique individuals and a total of 258,925 unique markers. A total of 4,117,036 SNPs

were available when imputation was performed before merging the three datasets. A total of

3,933,494 SNPs were available when imputation was done on the combined set. Our results
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suggest that imputation of individual datasets before merging performs slightly better than

after combining the different datasets.

Conclusions

Imputation of datasets genotyped by different platforms before merging generates more

SNPs than imputation after putting the datasets together.

Background

In the past decade many Genome-wide Association Studies (GWAS) were executed in order

to assess the relative contribution of single-nucleotide polymorphisms (SNPs) in various phe-

notypes. At this moment more than 21,750 SNPs were significantly associated, in more than

2437 studies (http://www.ebi.ac.uk/GWAS Accessed [May 2016]) with one or more pheno-

types by GWAS. These GWAS were performed on a wide range of different genotyping plat-

forms, with a great diversity in the number and density of SNPs, ranging from 50k to 1 million

SNPs.

Imputation methods are widely used in GWAS, since this will provide information about

variants that are not genotyped directly. Imputation can also be used to combine data geno-

typed on different genotyping arrays. The quality of imputation is discussed in several papers

[1],[2], and imputation methods are used in all large genetic meta-analysis consortia (eg. CAR-

DIoGRAM, MAGIC and GIANT) [3–5]. The standard method used in these large consortia

combining data of studies genotyped on different platforms is to impute the individual cohorts

locally and combine them later centrally. The most import reason to analyse data using this

method is the computational efficiency. Another imputation method mainly used in case-con-

trol studies, is to use only SNPs that are common to all the genotyping platform used in the

analysis to remove potential platform specific imputation errors, when cases and controls are

genotyped on different platforms.

In this paper we investigated whether there is a difference in the imputation quality (num-

ber of imputed SNPs with r2 > 0.3) and efficiency between imputing different platforms by

themselves and combine them afterwards versus combining platforms before the imputation.

We hypothesize that combining the individual platforms before imputation will lead to more

imputed good quality SNPs. We used the AMC-PAS[6] cohort which is genotyped on 3 differ-

ent platforms: MetaboChip, 50K gene-centric Human CVD BeadChip and the HumanExome

BeadChip.

Materials and methods

We included a total of 979 unique patients from the previously described prospective cohort

AMC-PAS[6], with symptomatic Coronary Artery Disease (CAD) before the age of 51 years,

defined as Myocardial Infarction (MI), coronary revascularization, or evidence of at least 70%

stenosis in a major epicardial artery. The samples were genotyped on at least one of the three

different platforms, all manufactured by Illumina: The MetaboChip[7], The Human cardiovas-

cular disease (HumanCVD) BeadChip (Illumina, San Diego, CA, USA), also known as the

ITMAT-Broad-CARe (IBC) (IBCv2 array) [8] and the HumanExome BeadChip(version 24

v1.0) [9]. The MetaboChip consists of approximately 200,000 SNPs chosen based on GWAS

meta-analyses of 23 metabolic traits[7].
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The 50K gene-centric Human CVD BeadChip has approximately 50,000 SNPs on the array

in about 2000 genes in relevant loci across a range of cardiovascular, metabolic and inflamma-

tory syndromes[8].

The HumanExome BeadChip contains about 250,000 variants based on the data of 12,000

sequenced genomes and exomes. Each variant on the chip has been seen at least 3+ times

across at least 2 different data sets (http://genome.sph.umich.edu/wiki/Exome_Chip_Design).

A total of 706 individuals were genotyped on the MetaboChip, a total of 757 individuals

were genotyped on the 50K gene-centric Human CVD BeadChip and a total of 955 individuals

were genotyped on the HumanExome chip. A total of 397 individuals were genotyped on all

three platforms. We only included autosomal chromosomes in our analysis.

Ethics

The Institutional Review Board of the Academic Medical Center approved the protocol. All

patients gave written informed consent.

Pre-imputation quality control

After genotyping, PLINK v1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) was used in the

genotype data generated by all 3 platforms to test the SNPs for population substructure which

could introduce false-positive associations. This was done by means of multidimensional scal-

ing[10], individuals identified as population outliers were removed from the genotype data

from all 3 platforms. Also SNPs were subjected to quality control filters based on sample size

and minor allele frequencies (MAF). Samples with a call rate of<95% were excluded from fur-

ther analysis. Genetic markers with a MAF <1% and Hardy-Weinberg equilibrium p< 10−4

were excluded from further analysis. An identity-by-state (IBS) analysis was performed to

remove related samples from the analyses. We checked if the genotypes for SNPs available on

multiple platforms were concordant, by comparing the genotypes of the SNPs available on all

3 platforms using the–merge-mode 7 option in PLINK.

Imputation

Minimac [11] in combination with MaCH[12] were used for the imputation of the combined

set of individuals and markers with the 1000 Genomes reference panel (Phase 1 Version

march 2012) including all ethnicities. We used a two-step imputation approach. First, the hap-

lotypes of the entire sample were estimated using MaCH followed by haplotype-to-haplotype

imputation by Minimac. Minimac generates the allele dosages for each of the variants. Mini-

mac also generates the SNP-level quality metric Rsq (r2). The r2 value is the SNP-specific esti-

mated squared correlation between the allele dosages and the unknown true genotype. r2 is an

efficient post-imputation quality control value. We used an r2 value of> 0.3 as our post-impu-

tation QC[11,13,14].

To validate our method, we performed the same analysis with the other widely used impu-

tation software IMPUTE2[15] (chromosome 22 only) and we performed the same analysis for

only 2 platforms (chromosome 22 only). We imputed all individuals that were genotyped on

the Exomechip (N = 853) and the individuals that were only genotyped on the Metabochip

(N = 78). First we performed imputation analyses on these two datasets separately, and com-

bined the results afterwards. In our second approach we merged the two data sets before we

performed the imputation analyses.

Combining GWAS data
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Association analysis

Finally, we performed association analysis of both imputed data sets for the Low-Density lipo-

protein concentration (LDL-C) phenotype relevant for premature cardio atherosclerotic dis-

ease. All analyses were adjusted for age and sex. The results were filtered based on bonferroni

correction (p-values < 5x10-8).

Results

The number of SNPs available after QC is shown in Table 1. The concordance for SNPs geno-

typed on all 3 genotyping platforms was perfect. All SNPs genotyped on more than one plat-

form had the same genotype call.

The call rate of the individual arrays was 99.8%, when we combine the different arrays the

call rate drops to 74%, this is because we introduce more missing SNP data, because not all

SNPs are available on all 3 platforms.

Combining different platforms together

All three datasets were carefully matched on strand, SNP ID and genomic coordinates. This

resulted in a dataset of 979 unique individuals and a total of 258,925 SNPs. 397 individuals

were genotyped on all three platforms. A total of 36 individuals were only genotyped on the

IBC Cardiochip, 24 individuals were only genotyped on the Metabochip and 115 individuals

were uniquely genotyped on the Exomechip. The Venn diagram in Fig 1 illustrates the overlap

of individuals on the different genotyping platforms after pre-imputation quality control.

Imputation

The computational time needed to impute a chromosome varied between 153 hours (chr1)

and 23 hours(chr22). There was no significant difference between combining the datasets

before imputation or combining the datasets after imputation.

After imputation and post-imputation quality control there were a total of 707,871 SNPs

available for the IBC Cardiochip array, a total of 2,853,265 SNPs available for the Metabochip,

a total of 1,586,399 SNPs for the Exomechip and a total of 3,933,494 SNPs for the combined

dataset of those 3 platforms.

The Venn-diagram in Fig 2 gives an overview of the overlap of the total number of SNPs

available after imputation between the different data sets. As an example: 305,373 SNPs were

uniquely available after imputation of the MetaboChip. A total of 109,229 unique SNPs were

available from each of the 3 different platforms and the combined dataset.

To validate our analyses, we did perform the same analysis with IMPUTE2 for both meth-

ods and we did find the same result, combining after imputation leads to more good quality

SNPs.

Table 1. Number of genotyped SNPs available after QC on the different genotyping platforms.

Array #Individuals (unique) #SNPs Call rate

IBC CardioChip 718 35,092 0.998

MetaboChip 585 113,685 0.997

Exomechip 853 114,967 0.999

Combined 979 258,925 0.739

Combined (only overlapping individuals 397 258,896 0.998455

doi:10.1371/journal.pone.0172082.t001

Combining GWAS data
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We observed a difference in the number of available SNPs after imputation between the

two imputation approaches. Combining the individual datasets after imputation, resulted in

more SNPs than combining the 3 datasets before imputation. A total of 4,117,036 unique

SNPs was available after combining the three different sets after separate imputation versus

a total of 3,933,494 SNPs after the imputation of the combined set, a 5% difference (ranging

between 1% (chr15) and 10% (chr22)) in the number of available SNPs after imputation, see

Fig 3.

Fig 1. Overlap of individuals genotyped with the three platforms (after QC).

doi:10.1371/journal.pone.0172082.g001
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The overlap of SNPs of the combined data sets and the union of the independently imputed

datasets was 3,428,387 SNPs. This meant that 1.242.341 SNPs were only imputed by one of the

two different imputation approaches.

We also observed that more low frequency variants were imputed with the method when

we combined the different data sets after imputation than imputation after combining the

datasets, shown in Table 2. Fig 4 shows the r2 distribution for all overlapping SNPs for both

methods and the MAF distribution for both methods.

The analysis where we combined data of 2 platforms after imputation analyses (chromo-

some 22 only) resulted in a total of 31,241 available SNPs of good quality (r2 > 0.3) after

Fig 2. Overlap SNPs after imputation on the different platforms and the combined imputation.

doi:10.1371/journal.pone.0172082.g002
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merging the 2 seperate imputed datasets. In our second approach we merged the two data sets

before we performed imputation analyses, this analyses resulted in a total of 13,516 available

SNPs of good quality (r2 > 0.3).

We repeated the imputation analysis for the subgroup of individuals that were genotyped

on all three platforms (n = 397). The number of SNPs available after combining the three sepa-

rately imputed sets was 3,245,164 versus a total of 3,528,322 SNPs after the imputation of the

combined set, a 8% difference between the 2 imputation methods in favour of the method

combining the 3 platforms before imputation.

Fig 3. Histogram of number of snps available after both imputation methods.

doi:10.1371/journal.pone.0172082.g003

Table 2. MAF distribution of the two imputation methods.

#SNPs MAF

Method < 1% > 1% < 5% >5% <10% >10%

Combined before imputation 512,579 591,523 486,281 2,343,111

Combined after imputation 615,779 579,945 497,244 2,715,283

% Difference between methods 17% 2% 2% 14%

doi:10.1371/journal.pone.0172082.t002

Combining GWAS data
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Association analysis comparison

Association analysis was performed in both imputed datasets with the LDL-C phenotype in

the AMC-PAS cohort. No significant association was found with the LDL-C phenotype in

both methods. Manhattan plots and QQ plots for both imputed datasets are shown in Fig 5.

Fig 4. r2 and MAF distribution for the two imputation methods.

doi:10.1371/journal.pone.0172082.g004

Fig 5. Manhattan plots and Q-Q plots for the association analyses for both imputation methods for

LDL-C.

doi:10.1371/journal.pone.0172082.g005
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We have highlighted known associated SNPs reported in the NHGRI GWAS Catalogue

(available at: http://www.ebi.ac.uk/gwas/) for the LDL cholesterol trait. After removing dupli-

cate SNPs, a total of 118 SNPs were available. Of these, 113 SNPs were available in the dataset

combined before imputation analyses and 105 SNPs in the dataset combined after imputation.

None of the p-values of these known LDL-C associated SNPs was associated with LDL-c in our

analyses. In both datasets a variant in the HMGCR gene was the most significant known LDL-

c associated SNP. In the dataset combined after imputation rs3846662 p = 6.62x10-4 and in the

dataset combined before imputation rs7703051 p = 7.97x10-4.

Discussion

Combining different imputed GWAS datasets is a very powerful method to identify new loci

using data from different genotyping platforms[16].

Our study illustrates that combining imputed data from different platforms before and after

imputation does result in differential numbers and quality of SNPs to be analysed. When

imputation of different data sets is performed prior to combining resulted in 5% more SNPs

that satisfied the post-imputation QC, this was not what we hypothesized and we deem those

to explained by the r2 selection during the imputation process. When a SNP is genotyped on

only one of the platforms, al lot more uncertainty will be introduced in the set when we com-

bined the 3 platforms before imputation, because this SNP is only available on one of the three

platforms. When we apply a call-rate filter of 95% or higher, we found the opposite result, the

method where we combine the datasets before imputation results in more good quality SNPs.

To validate our method, we performed the same analysis with IMPUTE2[15] (chromosome

22) and we found the same result, combined after imputation leads to more good quality

SNPs. To validate our chosen r2 threshold we did run the analysis with different r2 thresholds

(r2 > 0.5 and r2 > 0.8), resulting in the same difference of good quality SNPs between the dif-

ferent imputation methods.

We found the opposite result when we analysed only data from individuals (N = 397) geno-

typed on all 3 platforms, where we were able to impute 8% more SNPs that satisfied our post-

imputation QC when we first combine before performing imputation. We think this is because

we do not introduce extra missing data.

To validate our findings we performed the same analysis for only 2 platforms (chromosome

22 only). This result is in favour of combining after imputation and is in line with our previous

results.

Imputation of the individual datasets seems to result in more good quality SNPs (r2 > 0.3).

However, several limitations apply to our study. Firstly, the results presented here were based

on 3 different gene-centric genotyping platforms. This meant that the variant density around

known and interesting genes is higher than on a normal GWAS platforms. Therefore, the

results of our analyses can be different if applied to non-gene-centric GWAS datasets. Sec-

ondly, the relatively small sample size of 979 unique individuals in de AMC-PAS cohort could

have influenced the total number of variants with good quality available after the imputation.

Thirdly, due to the relative small sample size we did not find a significant difference in compu-

tational time needed for both imputation methods. In datasets with more individuals and

SNPs, the computation time needed for the combined imputation method will increase expo-

nentially, this is the main reason why the combined after imputation is seen as the golden-

standard within all large consortia at the moment.

On the other hand, we have a unique data collection, there are few cohorts genotyped on 2

or more different platforms. Other studies have analysed the quality of imputed SNPs after

combining the genotyping data of different cohorts on different genotyping platforms[17].

Combining GWAS data
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Conclusion

In conclusion, our results indicate that combining the data from three different platforms

together after imputation performs better than combining the data of the 3 platforms before

imputation.

Consent

All patients gave informed consent.
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