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Abstract

In statistical ecology, state-space models are commonly used to represent the

biological mechanisms by which population counts – often subdivided according to

characteristics such as age group, gender or breeding status – evolve over time. As

the counts are only noisily or partially observed, they are typically not sufficiently

informative about demographic parameters of interest and must be combined with

additional ecological observations within an integrated data analysis. Fitting inte-

grated models can be challenging, especially if the constituent state-space model is

non-linear/non-Gaussian. We first propose an efficient particle Markov chain Monte

Carlo algorithm to estimate demographic parameters without a need for linear or

Gaussian approximations. We then incorporate this algorithm into a sequential

Monte Carlo sampler to perform model comparison. We also exploit the integrated

model structure to enhance the efficiency of both algorithms. The methods are

demonstrated on two real data sets: little owls and grey herons. For the owls, we

find that the data do not support an ecological hypothesis found in the literature.

For the herons, our methodology highlights the limitations of existing models which

we address through a novel regime-switching model.

Key words: Bayesian inference; Capture-recapture; Integrated population mod-

els; Model comparison; Sequential Monte Carlo; State-space models.
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1 Introduction

State-space models are an increasingly common and useful representation of many eco-

logical systems (Buckland et al., 2007; King, 2014; Newman et al., 2014). They are used

to describe, e.g., population count data (Newman, 1998; Besbeas et al., 2002; King et al.,

2008); telemetry data (Morales et al., 2004; McClintock et al., 2012; Breed et al., 2012);

longitudinal growth data (Peters et al., 2010); fisheries biomass dynamics (Millar and

Meyer, 2000) or capture-recapture data (Dupuis, 1995; Royle, 2008; King, 2012).

Inference in state-space models. Fitting state-space models is computationally chal-

lenging as the likelihood – expressible as an integral over unobserved states – is typically

intractable unless the states take values in a small, finite set; or the model is linear-

Gaussian whence the likelihood is evaluated via the Kalman filter (Kalman, 1960; New-

man, 1998). Two approaches are typically applied to circumvent this problem. The first

is to approximate the state-space model with one that is linear and Gaussian (Besbeas

et al., 2002) but this introduces a difficult-to-quantify bias. The second is to impute the

unobserved states alongside the model parameters within an Markov chain Monte Carlo

(MCMC) algorithm. Such data-augmentation schemes – in particular as implemented in

BUGS (Gilks et al., 1994) or JAGS (Plummer, 2003) (see e.g. Brooks et al., 2004) – can

be slow and poorly mixing if the states and parameters are considerably correlated be-

cause only (small) subsets of them are updated individually (King, 2011). To avoid these

problems, Andrieu et al. (2010) proposed particle Markov chain Monte Carlo (PMCMC)

algorithms (see Knape and de Valpine, 2012; Parslow et al., 2013, for recent applica-

tions in ecology). Such algorithms, implemented e.g. in the software Nimble (de Valpine

et al., 2017), replace the intractable likelihood in the MCMC acceptance ratio with an

estimate obtained through a sequential Monte Carlo (SMC) algorithm (or “particle fil-

ter”) without introducing bias. Another popular approach, implemented in the software

Stan (Carpenter et al., 2017), simultaneously explores multiple directions of the space

via Hamiltonian dynamics. However, as these rely on the gradient of the log-posterior,

they are primarily designed for continuous latent variables (and the models treated in
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this work have discrete latent variables); extensions to discrete spaces have recently been

attempted (Nishimura et al., 2017) but these are still far from established.

Integrated population models. In this work, count data are available on some

species of interest, i.e. estimates of population sizes at discrete times (Besbeas et al.,

2002, 2009; King et al., 2008). These count data are modelled as a state-space model

to account for measurement errors. In addition to the count data, other types of data

are available on the species, e.g. capture-recapture, ring-recovery or nest-record data.

To utilise all available information for estimating demographic parameters of interest,

it is necessary to combine these different data sets within a single integrated population

model. Unfortunately, fitting such models is challenging, since they inherit all the above-

mentioned difficulties with fitting the constituent state-space model.

Contributions. In this work, we devise efficient methodology for performing fully

Bayesian parameter estimation and model comparison in integrated population models

without the need for linear or Gaussian approximations to the state-space model.

• In Section 3, we first review standard PMCMC methods for Bayesian parameter es-

timation in models with intractable likelihoods. Then, in Subsection 3.2, we exploit

the integrated model structure to reduce the computational cost of the PMCMC

algorithm through a delayed-acceptance (Christen and Fox, 2005) technique.

• In Section 4, we first incorporate our PMCMC methodology into SMC samplers

(Chopin, 2002; Del Moral et al., 2006; Duan and Fulop, 2015; Zhou et al., 2016)

so that we can estimate posterior model probabilities (Bayes factors) across a set

of different integrated population models. This permits Bayesian model compari-

son without the need for reversible-jump MCMC (Green, 1995) which often mixes

poorly and can be difficult to implement and tune. Then, in Subsection 4.3, we

again exploit the integrated-model structure to reduce the computational burden

of the SMC sampler by separately tempering the different likelihood terms.

• In Sections 5 and 6, we apply the proposed methodology to two real data sets relat-

ing to little owls and grey herons and obtain estimates of the evidence for a number
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of models proposed in the literature. For the owls, we find that the model from

Abadi et al. (2010b) may be unnecessarily over-parametrised; in particular, we find

no evidence for the hypothesis in Abadi et al. (2010b) that the owls’ immigration

rate depends on the abundance of voles – their main prey. We also demonstrate

the utility of the delayed-acceptance approach. For the herons, we show that an

elaborate threshold model from Besbeas and Morgan (2012) fits poorly; to rem-

edy this, we propose a novel regime-switching state-space model which significantly

outperforms all existing models in terms of model fit and model evidence.

2 Integrated model

2.1 Data

We combine multiple data sets, one of which being count data, obtained from a single

population, within a single integrated model. Let y = {y1, . . . , yT} denote count data

collected at times t = 1, . . . , T . Here, yt is the observation (subject to measurement

error) of the true population size at time t. The observed counts may be multivariate,

e.g. counts for males and females or juveniles and adults, though in all the examples we

consider later the count data are univariate. Let w denote all additional data available

such as capture-recapture data, ring-recovery or nest-record data. The aim of this work

is then to perform inference based on all data z = {y,w}. To illustrate the methodology,

we consider two data sets relating to little owls and grey herons.

Little owls. In Section 5, we consider little owl data described by Schaub et al.

(2006) and subsequently analysed in Abadi et al. (2010b). The count data represent the

number of breeding females at nest boxes near Göppingen, South Germany, observed

annually from 1978 to 2003 (i.e. T = 26). The nest boxes were checked multiple times

annually and data were recorded relating to overall population size (numbers of occupied

nest boxes and breeding females), capture-recapture histories of individuals observed at

nest boxes and reproductive success of the nests. In addition, time-varying covariate

information about the abundance of voles – the primary prey for little owls – is available.
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For further details see Schaub et al. (2006).

Grey herons. In Section 6, we consider grey-heron data previously presented and

analysed by Besbeas et al. (2002, 2009) and Besbeas and Morgan (2012). The count

data correspond to the estimated number of female herons (or breeding pairs) in the UK,

from 1928 to 1998, i.e. for T = 71 time periods. Within our application we also have

ring-recovery data for individuals released between 1955 and 1997.

2.2 Model structure

Given unknown model parameters θ ∈ Θ, the likelihood of the count data y and addi-

tional data w is p(z|θ) = p(y|θ,w)p(w|θ). To simplify the notation, and in agreement

with ecological practice (see e.g. Besbeas et al., 2002), we assume that the count data

are independent of the additional data given the parameters, i.e. p(y|θ,w) = p(y|θ) (see

Abadi et al., 2010a, for a justification). However, we stress that this conditional inde-

pendence is purely a modelling choice; our methodology only requires that the additional

data are modelled in such a way that p(w|θ) can be evaluated pointwise.

The count data are described by a state-space model as follows. Let x = {x1, . . . ,xT} ∈

XT (for some space X) denote the true (unobserved) population counts with initial density

µθ(x1) and transitions fθ(xt|xt−1). Furthermore, let gθ(yt|xt) be the density of the tth

observed count given xt. Then, conditionally on θ, the joint distribution of y and x is:

p(y,x|θ) = µθ(x1)gθ(y1|x1)
T∏
t=2

fθ(xt|xt−1)gθ(yt|xt).

The (marginal) count-data likelihood is thus given by the integral (or sum, if X is discrete)

p(y|θ) =

∫
XT

p(y,x|θ) dx. (1)

Throughout this work, we assume that this integral (sum) is intractable as is usually

the case unless X is finite and sufficiently small or the state-space model is linear and

Gaussian in which case (1) can be evaluated using the Kalman filter.

Let p(θ) denote the prior distribution of the parameters then the (marginal) posterior
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distribution of the parameters θ (given the full data z) is given by

π(θ) := p(θ|z) =
p(z|θ)p(θ)
p(z)

; p(z) :=

∫
Θ

p(z|θ)p(θ)dθ, (2)

where p(z) in the denominator is the evidence for the model. This quantity plays a key

role in Bayesian model comparison as outlined in Section 4. The posterior distribution

is typically intractable as the integrals in (1), (2) are not of closed form. Instead, we

approximate it via Monte Carlo methods as described in the next section.

3 Parameter estimation

3.1 Particle MCMC

In this section, we describe MCMC methods for approximating the posterior distribution

of the model parameters. We also propose modifications which exploit the structure of

integrated models to improve efficiency of the algorithm. For now, we assume that the

model is known – model uncertainty is dealt with in Section 4.

As the count-data likelihood p(y|θ) (and thus p(z|θ)) is intractable, we cannot im-

plement the idealised Metropolis–Hastings algorithm which, at each iteration, proposes

new parameters ϑ ∼ q(ϑ|θ) and accepts them with probability (w.p.) 1 ∧ q(θ|ϑ)
q(ϑ|θ)

p(ϑ)
p(θ)

p(z|ϑ)
p(z|θ) .

A common solution is to use data-augmentation, i.e. to impute the latent variables x

(alongside the parameters). However, the number of states is typically large so that

single-site updates (i.e. updates for a single state xt conditional on {xs : s 6= t} within a

Gibbs sampler framework) are required. This approach, commonly used in ‘black-box’

samplers such as BUGS or JAGS, can lead to poor mixing if highly correlated variables or

parameters are updated separately. To avoid such problems, we employ particle Markov

chain Monte Carlo (PMCMC) algorithms (Andrieu et al., 2010). These replace p(y|θ)

in the acceptance ratio of the idealised Metropolis–Hastings algorithm with an unbiased

estimate p̂(y|θ) obtained through a sequential Monte Carlo (SMC) method. Crucially,

the resulting algorithm still targets the correct posterior distribution.

Before stating the PMCMC algorithm, we review SMC algorithms, usually termed
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particle filters (PFs) when applied to state-space models (Doucet and Johansen, 2011). A

simple PF is outlined in Algorithm 1, where we use the convention that actions prescribed

for the nth particle are to be performed independently for all 1 ≤ n ≤ N , for some user-

specified number, N ≥ 1, of particles.

1 Algorithm (particle filter). Sample xnt ∼ µθ(xt); for t = 2, . . . , T ,

(1) sample ant−1 = l ∈ {1, . . . , N} w.p. W l
t−1 ∝ wlt−1 := gθ(yt−1|xlt−1),

(2) sample xnt ∼ fθ(xt|x
ant−1

t−1 ).

At the end of Algorithm 1, an unbiased (Del Moral, 1996) estimate of p(y|θ) is

p̂(y|θ) :=
T∏
t=1

1

N

N∑
n=1

wnt .

Numerous extensions exist for making Algorithm 1 more efficient. The particular version

of PF we use in our applications is outlined in Web Appendix C.

We now describe the PMCMC algorithm. A single PMCMC update is outlined

in Algorithm 2, where α ∈ [0, 1] is a parameter which will be used by the evidence-

approximation algorithms in Section 4. For the moment simply consider α = 1.

2 Algorithm (particle MCMC). At each iteration, given (θ, p̂(y|θ)),

(1) propose ϑ ∼ q(ϑ|θ) and generate p̂(y|ϑ) using Alg. 1 (wherein θ = ϑ),

(2) return (ϑ, p̂(y|ϑ)) w.p. 1 ∧ q(θ|ϑ)

q(ϑ|θ)
p(ϑ)

p(θ)

[
p̂(y|ϑ)p(w|ϑ)

p̂(y|θ)p(w|θ)

]α
; otherwise, return (θ, p̂(y|θ)).

3.2 Improving PMCMC efficiency for integrated models

The computational cost of the PMCMC update in Algorithm 2 is dominated by the PF

used to generate the estimate of p(y|ϑ) for each proposed parameter value ϑ. To improve

the efficiency of the algorithm, we utilise a delayed-acceptance (DA) approach (Christen

and Fox, 2005; Sherlock et al., 2015) based on the integrated-model structure. The idea

is to avoid invoking the PF for proposed parameter values ϑ which are not compatible

with the additional data w and are therefore likely to be rejected in Algorithm 2. This
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can improve efficiency if w is highly informative about a considerable proportion of the

parameters. Algorithm 3 summarises the approach. Again, take α = 1, for the moment.

3 Algorithm (delayed acceptance PMCMC). At each iteration, given (θ, p̂(y|θ)):

(1) Propose ϑ ∼ q(ϑ|θ),

(2) Go to Step 3 w.p. 1 ∧ q(θ|ϑ)

q(ϑ|θ)
p(ϑ)

p(θ)

[
p(w|ϑ)

p(w|θ)

]α
; otherwise, return (θ, p̂(y|θ)).

(3) Generate p̂(y|ϑ) using Alg. 1 (with θ = ϑ).

(4) Return (ϑ, p̂(y|ϑ)) w.p. 1 ∧
[
p̂(y|ϑ)

p̂(y|θ)

]α
; otherwise, return (θ, p̂(y|θ)).

The validity of Algorithm 3 may be established using the arguments of Christen and

Fox (2005), Andrieu et al. (2010). We note DA was previously combined with PMCMC

updates in Golightly et al. (2015) (though in a different way).

4 Model comparison

4.1 Posterior model probabilities

Let {Mi : 1 ≤ i ≤ I} denote a finite collection of plausible biological models. To indicate

the ith model, we add the model indicatorMi to densities in Section 2 so that the prior

of θ ∈ Θi is written as p(θ|Mi), the likelihood as p(z|θ,Mi) = p(y|θ,Mi)p(w|θ,Mi)

and the evidence as p(z|Mi) =
∫
Θi
p(z|θ,Mi)p(θ|Mi) dθ. Let p(Mi) denote the prior

probability of the ith model. Bayesian model comparison is based on the posterior model

probabilities (Bernardo and Smith, 2009, Chapter 6)

p(Mi|z) :=
p(Mi)p(z|Mi)∑I
j=1 p(Mj)p(z|Mj)

. (3)

Unfortunately, the model evidence p(z|Mi) in (3) – hence also ith posterior model prob-

ability – is intractable. To perform model comparison, we replace the model evidence

p(z|Mi) with an estimate p̂(z|Mi) obtained via an SMC sampler. As a by-product, the

SMC sampler also yields an approximation of the posterior of θ under the ith model.
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4.2 SMC sampler for evidence approximation

For the moment, assume that p(y|θ,Mi) can be evaluated. A simple importance-sampling

approximation of p(z|Mi) is then given by 1
M

∑M
m=1 p(z|θm,Mi), where θ1, . . . , θM are

sampled independently from p(θ|Mi). However, a prohibitively large sample size M is

required if there is a strong mismatch between the prior and the posterior (which is

common, especially if θ is high-dimensional or if the data are highly informative). To

circumvent this problem, we employ an SMC sampler (Chopin, 2002; Del Moral et al.,

2006) which uses successive importance-sampling steps to approximate a sequence of

distributions to smoothly bridge the gap between the prior and the posterior,

p(θ|Mi) = π0(θ), π1(θ), . . . , πS(θ) = p(θ|z,Mi). (4)

The idea behind SMC samplers is that each individual importance-sampling step (i.e.

proposing samples from πs−1(θ) to approximate πs(θ)) may be feasible even if the gap

between prior π0(θ) and posterior πS(θ) is wide. We use a likelihood-tempering approach,

πs(θ) ∝ p(θ|Mi)p(z|θ,Mi)
αs , (5)

where the temperatures 0 = α0 < α1 < · · · < αS = 1 (and the number of bridging

distributions, S) can then be tuned to ensure that the interpolation between the prior

and posterior in (4) is sufficiently smooth. In the models considered in this work, p(y|θ)

is intractable and therefore again approximated using a PF (for any 0 < αs < 1, the

distributions targeted by the algorithm are then actually slightly different from (5) but

we stress that this does not affect the validity of the algorithm). This idea was first

employed by Duan and Fulop (2015).

Algorithm 4 outlines the SMC sampler; we use the convention that any action specified

for the mth particle is to be performed independently for all m ∈ {1, . . . ,M}.

4 Algorithm (SMC sampler).

(1) Sample θm0 ∼ p(θ|Mi) and generate p̂m0 (y|θm0 ,Mi) using Alg. 1 (with θ = θm0 ),

(2) At step s = 1, . . . , S,
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(a) set vms := (ums−1)
αs−αs−1 , where ums−1 := p̂ms−1(y|θms−1,Mi)p(w|θms−1,Mi),

(b) sample bms−1 = l ∈ {1, . . . ,M} w.p. V l
s ∝ vls,

(c) sample (θms , p̂s(y|θms ,Mi)) using Alg. 2 (with α = αs; θ = θ
bms−1

s−1 ; p̂(y|θ) = p̂
bms−1

s−1 (y|θb
m
s−1

s−1 ,Mi)).

At the end of Algorithm 4, we can approximate the evidence p(z|Mi) by

p̂(z|Mi) :=
S∏
s=1

1

M

M∑
m=1

vms .

The algorithm can also be used to infer parameters in the ith model. That is, a pos-

terior expectation E[ϕ(θ)], for θ ∼ p(θ|z,Mi) and test function ϕ, is approximated by∑M
m=1 V

m
S ϕ(θmS ). Numerous extensions can make Algorithm 4 more efficient. The partic-

ular version of SMC sampler we use in our applications is given in Web Appendix C.

Other SMC samplers for model comparison can be found in Zhou et al. (2016). In

addition, Chopin et al. (2013) proposed a related algorithm called SMC2 which useful

when one wishes to perform inference sequentially since it incorporates new data points

as they arrive. However, as observed in Drovandi and McCutchan (2016), SMC2 can

become unstable when a newly arrived observation contradicts the existing information

about the parameters. In such cases, the likelihood-tempering approach adopted here can

lead to a smoother sequence of target distributions (Duan and Fulop, 2015) and hence

more accurate estimates.

4.3 Improving SMC efficiency for integrated models

We are able to exploit the structure of integrated population models to enhance the effi-

ciency of the SMC sampler for evidence approximation. Firstly, we employ DA approach

from Subsection 3.2 to reduce the computational cost of the MCMC updates within the

SMC sampler. Secondly, we propose to employ a likelihood-tempering approach which

tempers the different parts of the likelihood separately. That is, for some 1 ≤ S ′ < S, the

SMC sampler targets distributions of the form

πs(θ) ∝


p(θ|Mi)p(w|θ,Mi)

αs , if 0 ≤ s ≤ S ′,

p(θ|Mi)p(w|θ,Mi)p(y|θ,Mi)
βs , if S ′ < s ≤ S,
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where 0 = α0 < α1 < . . . < αS′ = 1 and 0 < βS′+1 < . . . < βS = 1. We note that the in-

tractable count-data likelihood is again replaced by an unbiased estimate. The advantage

of this refined tempering scheme is that the approximation of the count-data likelihood

(obtained via the costly PF) is not needed in the first S ′ steps, so that S ′ can be taken

to be large. Introducing the additional data likelihood first can be especially beneficial

if these are informative about the parameters relative to the count data. This refined

tempering strategy was crucial for obtaining reliable estimates in the herons example

from Section 6; its efficiency gains are also illustrated in Subsection 5.4.

5 Example 1: Little owls

5.1 Parameters

The main model parameters – potentially specific to age group a ∈ {1,A} (1: juvenile,

i.e. first-year, A: adult) and gender g ∈ {m, f} (f: female, m: male) of the owls, and to

time index t ∈ {1, . . . , T} – are

φa,g,t: probability of an owl of gender g surviving to time t + 1 if the owl is alive and in

age group a at time t;

pg,t+1: probability of observing a marked owl (in a capture-recapture setting) of gender

g at time t+ 1 if alive at time t+ 1;

ρt: productivity rate governing the expected number of chicks produced per female at

time t that survive to fledgling;

ηt: immigration rate governing the number of female immigrants at time t+1 per female

of the population at time t.

5.2 Model specification

We consider the model defined by Schaub et al. (2006) and subsequently fitted in BUGS

by Abadi et al. (2010b); see these papers for further information and ecological rationale.
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5.2.1 Count-data model

The true population sizes for the juvenile and adult females, xt = {x1,t, xA,t}, evolve as

x1,t|xt−1, θ ∼ Poisson
(
[x1,t−1 + xA,t−1]ρt−1φ1,f,t−1/2

)
, xA,t = sur t + immt,

where sur t|xt−1, θ ∼ Binomial(x1,t−1 + xA,t−1, φA,f,t−1) is the number of female adults

which survive from time t− 1 to time t, and immt|xt−1, θ ∼ Poisson
(
[x1,t−1 +xA,t−1]ηt−1)

is the number of female adults which immigrate in this period. We take the initial popula-

tion sizes x1,1, xA,1 to be a-priori independently distributed according to a discrete uniform

law on {0, 1, . . . , 50}. The observation process is specified by yt|xt, θ ∼ Poisson(x1,t+xA,t).

5.2.2 Capture-recapture model

Capture-recapture data are available in the form of age-group and gender specific matrices

m := {ma,g : a ∈ {1,A}, g ∈ {m, f}}. The tth row, ma,g,t := {ma,g,t,s : 1 < s ≤ T + 1},

corresponds to the tth year of release (t ∈ {1, . . . , T − 1}). That is, ma,g,t,s is the number

of individuals of gender g, last observed at age a at time t, that are recaptured at time

s (if t + 1 ≤ s ≤ T ) or never recaptured again (if s = T + 1). Note that ma,g,t,s = 0 if

s ≤ t. For each year of release, we assume a multinomial distribution for the subsequent

recaptures. The capture-recapture model specified as

ma,g,t|Ra,g,t, θ ∼ Multinomial(Ra,g,t,qa,g,t).

Here, Ra,g,t is number of owls in age group a and of gender g that observed (either an

initial capture or, if a = A, as a recapture) at time t and subsequently released. The

multinomial cell probabilities qa,g,t := {qa,g,t,s : 1 < s ≤ T + 1} are given by

qa,g,t,s :=


0, if 1 < s ≤ t,

φa,g,tpg,s
∏s−1

r=t+1 φA,g,r(1− pg,r), if t < s ≤ T ,

1−
∑T

r=1 qa,g,t,r, if s = T + 1.
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5.2.3 Fecundity model

Nest record data n := {Nt, nt : 1 ≤ t ≤ T} are also available to provide information

relating to the fecundity rate of little owls. Specifically, Nt denotes the number of breeding

females recorded at time t and nt the number of chicks produced that survive to leave

the nest. Following Schaub et al. (2006) we specify nt|Nt, θ ∼ Poisson(Ntρt). With this

notation, the set of all additional data is w = {m,n}.

5.3 Parametrisation and priors

There is additional covariate information about the abundance of voles – the primary

source of prey for little owls – classified as low (volet = 0) or high (volet = 1), for each

year of the study. Following Schaub et al. (2006); Abadi et al. (2010b), we parametrise

log ηt = δ0 + δ1volet and logit pg,t+1 = β1 I{g = m}+ βt+1 as well as

logitφa,g,t = α0 + α1 I{g = m}+ α2 I{a = A}+ α3year t,

for 1 ≤ t < T , where the additional covariate: year t, denotes the normalised year.

For simplicity, we assume that all components of θ have independent Normal(0, 2)

priors, except δ0 for which we use a Normal(−2, 2) prior because preliminary runs of the

algorithm indicated that this parameter is typically very small. We avoided diffuse priors

(a) to improve efficiency of the first steps of the SMC sampler and (b) to reduce the

impact of the Jeffreys–Lindley paradox on the model comparison (i.e. very vague priors

can unduly penalise a model; see Lindley, 1957). Other priors could have been employed

but investigating the choice of priors in integrated population models is beyond the scope

of the work.

5.4 Results

We end this section by demonstrating the gains in computational performance achievable

for the PMCMC and SMC algorithms through the modifications proposed in Subsec-

tions 3.2 and 4.3. We also perform a model comparison to demonstrate the scientific
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utility of our methodology.

Delayed acceptance. We first illustrate the performance gains obtained through

the delayed-acceptance (DA) approach proposed in Subsection 3.2. For simplicity, we

only report results for the model with productivity rate constant over time and immigra-

tion independent of the abundance of voles as this was one of the specifications which

performed best in terms of model evidence. Figure 1 illustrates the utility of DA. It

shows that even though DA decreases the acceptance rate (Christen and Fox, 2005), the

computational savings due to only invoking PF for ‘promising’ parameter values more

than compensate for this.

Refined tempering. In Table 1, we illustrate efficiency gains attainable through

the refined likelihood tempering scheme (Section 4.3) over standard likelihood tempering

(Section 4.2). For eight different models (specified in Web Appendix A), Table 1 displays

(efficiency gain) =
MSE × (computation time)

MSE × (computation time)

} standard tempering

} refined tempering
. (6)

Here, MSE denotes the average mean-square error (MSE) of the estimate of the posterior

mean based on 20 independent repeats of the SMC samplers (the average is taken over all

components of the vector of model parameters); (computation time) represents the aver-

age computation time over the independent repeats. Since the true posterior means are

intractable, we ran an MCMC algorithm using a large number (10, 000, 000) of iterations

for each model and treated the resulting posterior mean estimates as the true values.

Model comparison. Finally, we perform a model comparison to investigate the hy-

pothesis from Abadi et al. (2010b) that little-owl immigration depends on the abundance

of voles – their main prey. Figure 2 shows estimates of the evidence for the eight models

specified in Web Appendix A in the case that the immigration rate may depend on the

abundance of voles (i.e. δ1 6= 0) and in the case that it is independent of vole abundance

(i.e. δ1 = 0). The results indicate that the hypothesis is not supported by the data.
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6 Example 2: Grey herons

6.1 Parameters

Younger herons typically having a lower survival probability than older adults. Following

Besbeas et al. (2009), we therefore specify up to four age categories, indicated by the

subscript a ∈ {1, . . . ,A}; a = 1 represents first-years, a = 2 represents second-years and

so on, while a = A represents all remaining adults. The main model parameters are

φa,t: probability of a heron surviving until time t+ 1 if alive and aged a at time t;

ρt: productivity rate w.r.t. the expected no. of females produced per female at time t;

λt: probability of recovering a dead heron in [t, t+ 1) if it died in that interval.

6.2 Model specification

For the specification of the integrated model, we follow Besbeas et al. (2009), allowing

for some judicial modificatitions of the constituent state-space model.

6.2.1 Count-data model

We specify state-space model for the count data y = {y1, . . . , yT}. Let xa,t, denote the

true population sizes of herons in age group a at time t. These then evolve as

xa,t|xt−1, θ ∼


Poisson(ρt−1φ1,t−1

∑A
a=2 xa,t−1), if a = 1,

Binomial(xa−1,t−1, φa,t−1), if 1 < a < A,

Binomial(xA−1,t−1 + xA,t−1, φA,t−1), if a = A.

For simplicity, we assume that the distribution of each component of the initial state is a

negative binomial distribution with probability p = 1/100 and size n0 = µ0p/(1− p) for

age groups 1 ≤ a < A and n1 = µ1p/(1−p) for adults, respectively. We specify the means

µ0 = 5000/5 and µ1 = 5000−(A−1)µ0 in such a way that a-priori, E[
∑A

a=1 xa,1|θ] = 5000.

Such a state-space model is typically approximated by a linear-Gaussian model in

order to permit inference via the Kalman filter (Besbeas et al., 2002). However, the
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assumption that gθ(yt|xt) is Gaussian is typically unrealistic, since it implies that the

observation error is independent of scale and continuous. Instead, we consider a negative

binomial observation process (with probability/size parametrisation), such that

yt|xt, θ ∼ Negative-Binomial

(
κ

1− κ

A∑
a=2

xa,t, κ

)
,

for some κ ∈ (0, 1). Note that this specification permits overdispersed observations since

E[yt|xt, θ] =
∑A

a=2 xa,t <
∑A

a=2 xa,t/κ = var[yt|xt, θ].

6.2.2 Ring-recovery data model

Recall that count data are available from 1928 to 1998, i.e. for T = 71 time periods. In

contrast, ring-recovery data are only available for individuals released between 1955 and

1997, i.e. released in time period t ∈ {t1, . . . , t2}, where t1 = 28 and t2 = 70. These data

are stored in a matrix w whose tth row is denoted wt = {wt,s : t1 + 1 ≤ s ≤ t2 + 2}.

Here, wt,s indicates the number of individuals released at time t which are subsequently

recovered dead in the interval (s− 1, s]; wt,t2+2 corresponds to the number of individuals

that are released at time t that are not seen again within the study.

For each year of release, we assume a multinomial distribution for the subsequent re-

coveries (see e.g. McCrea and Morgan, 2014, for further explanations of the ring-recovery

model). Thus, the model for the rows of w is then specified as

wt|Rt, θ ∼ Multinomial(Rt,qt).

Here, Rt denotes the number of herons that are ringed as chicks and released in the tth

time period. The multinomial cell probabilities qt := {qt,s : t1 < s ≤ t2 + 2} are given by

qt,s :=


0, if t1 < s ≤ t,

(1− φmin{s−t,A},s−1)λs−1
∏s−t−1

a=1 φmin{a,A},t+a−1, if t < s ≤ t2 + 1,

1−
∑t2+1

s=t1+1 qt,s, if s = t2 + 2.
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6.3 Parametrisation

6.3.1 Parameters common to all models

We consider additional covariate information to explain temporal variability. The re-

covery probabilities are assumed to be logistically regressed on the normalised covariate

timet which represent the normalised (bird) year t:

logitλt = α0 + β0timet, t = t1, . . . , t2 − 1.

We specify the survival probabilities to be logistically regressed on the normalised covari-

ate fdays t which represents the (normalised) number of days in (bird) year t on which

the mean daily temperature fell below freezing in central England:

logitφa,t = αa + βafdays t, t = 1, . . . , T − 1. (7)

The free parameter in the negative-binomial observation equation is parametrised as

κ = logit−1(ω) ∈ (0, 1) with ω ∈ R.

6.3.2 Models for the productivity rate

We specify a set of models – differing only in the productivity rate – for which we perform

model comparison. The unknown parameters are θ = {ω, α0, β0, α1, . . . , αA, β1, . . . , βA, ϑ},

where ϑ represents the additional model parameters needed for one of the following mod-

els for the productivity rate.

Constant. We set log ρt = ψ. Thus, ϑ = {ψ}.

Regressed on frost days. We set log ρt = γ0 + γ1fdays t−1. Thus, ϑ = {γ0, γ1}.

Direct density dependence. Besbeas and Morgan (2012) investigated taking the log-

productivity as a linear function of abundance, log ρt = ε0 + ε1ỹt, where ỹt denotes

the tth normalised observation. Thus, ϑ = {ε0, ε1}.

Threshold dependence. Besbeas and Morgan (2012) also investigated models in which

the productivity is a step function with K levels and hence K − 1 thresholds (K
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itself may be unknown). The thresholds are a function of the observed rather than

the true count to permit inference via the Kalman filter in Besbeas and Morgan

(2012). The productivity rate is constant between change points and monotonically

decreasing with increasing population size, i.e. for K > 1,

ρt =


ν1, if yt < τ1,

νk, if τk−1 ≤ yt < τk for 1 < k < K,

νK , if τK−1 ≤ yt,

where ν1 > ν2 > · · · > νK and τ1 < τ2 < · · · < τK−1. Thus, it is assumed that

larger population sizes induce lower productivity rates, e.g. due to an exhaustion of

high quality breeding sites. To ensure these inequalities we set νK = exp(ζK) and

νk =
∑K

l=k exp(ζl); τk = ymin + (ymax − ymin )

∑k
l=1 exp(ηl)∑K
m=1 exp(ηm)

,

for k ∈ {1, . . . , K − 1}, where ymin = min{y1, . . . , yT} and ymax = max{y1, . . . , yT}.

In this case, ϑ = {ζk, ηk : 1 ≤ k ≤ K}.

Regime switching dynamics. To construct a more flexible model for the productivity

rate, we extend the latent states xt by including an additional (unobserved) regime

indicator variable rt which takes values in {1, . . . , K}. Conditionally on rt−1, the

productivity rate ρt−1 is then defined as ρt−1 = νrt−1 where ν1, . . . , νK are specified

as in the threshold model, above. The evolution of the latent regime indicator rt is

assumed to be described by a Markov chain with transition equation

rt|rt−1, θ ∼ Multinomial(K,Prt−1),

where Pk = (Pk,1, . . . , Pk,K) with Pk,l = exp($k,l)/
∑K

m=1 exp($k,m), for 1 ≤ l ≤ K,

is the kth row of the (K,K)-transition matrix for the regime indicator variable. In

this case, ϑ = {ζk, $k,l : 1 ≤ k, l ≤ K}. This assumed Markovian structure allows

the estimation of the productivity rate to borrow strength over time (which would

not be possible in a temporal random-effect model).

Finally, we note that we also vary the number of levels, K, and the number of age
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groups, A, so that the number of models to be compared is much larger than the five

specifications for the productivity rate summarised above.

6.3.3 Prior specification

We assume that all the model parameters in θ are independent a-priori with Normal(0, 1)

priors, except that ω ∼ Normal(−2, 4). The motivation for this choice of priors is the

same as in Subsection 5.3.

6.4 Results

Estimates of the evidence for the models can be found in Figure 3. The fit of the different

models for the productivity rates is illustrated in Figure 4 below (see also Web Figure 2 in

Web Appendix B). Due to the increased flexibility of the productivity rates, the regime-

switching model leads to a smaller measurement error. In addition, the evidence for the

regime-switching model is much higher than the other models in Figure 3.

Figure 3 supports the finding from Besbeas et al. (2009) that modelling the herons

using four age groups is appropriate (though the results with three age groups are similar).

Using only two age groups drastically reduces the model evidence across all specifications

for the productivity rate. The results also support the findings from Besbeas and Morgan

(2012) that the first three models (with productivity rate constant, regressed on the

number of frost days, or density-dependent) do not explain the data well.

The posterior distribution of the productivity rate (under any of the models) must be

interpreted with care. Indeed, note the sharp decline of the productivity rate in the years

immediately preceding the severe winters of 1946–47 and 1962–63 in Figure 4b. This

indicates that the linear model for the survival rates in (7) may not be flexible enough

to accommodate the drop in the heron population in subsequent years.

We also implemented all of the above-mentioned models using a continuous (linear-

Gaussian) approximation to the state-space model for the count data. The results (omit-

ted here) are relatively similar to the results obtained for the original models. However,

the regularising effect of the approximation artificially increased the evidence for all mod-
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els by roughly the same amount, thus overestimating the model fit.

7 Conclusion

We have proposed methodology for Bayesian inference in integrated population models

which have a state-space model for the noisily observed population sizes as one of their

constituent parts. Utilising particle Markov chain Monte Carlo (PMCMC) techniques,

our approach can be applied to fairly general models without the need for linear or

Gaussian approximations which introduce a bias that is often difficult to quantify. In-

corporating the approach into an SMC sampler also enables Bayesian model comparison,

e.g. for the number of age groups. Finally, we have proposed extensions which exploit

the integrated model structure to enhance the efficiency of our methodology.

We have demonstrated the methodology on two different applications: (1) little owls

and (2) grey herons. For the owls, we have found no evidence in the data in favour of some

complex model specifications proposed in the literature, e.g. for the dependence of immi-

gration on the abundance of voles (Abadi et al., 2010b). For the herons, we have shown

that existing models, including the elaborate threshold model for the productivity from

Besbeas and Morgan (2012), do not explain the data well. As a remedy, we have proposed

a novel regime-switching model and demonstrated that it is very strongly favoured over

the competing models in terms of the Bayes factor. We note that the regime-switching

model is motivated by statistical rather that ecological considerations. Its flexibility pro-

vides insights into the data and assists practitioners with the identification of factors

affecting the productivity rate through the period of the study.

Our methodology is related to the SMC2 algorithm from Drovandi and McCutchan

(2016). However, even in low-dimensional settings (i.e. 3-4 unknown model parame-

ters) Drovandi and McCutchan (2016) had to combine SMC2 with a second importance-

sampling algorithm to obtain evidence estimates accurate enough for model comparison

in some examples (and, as pointed out by Drovandi and McCutchan (2016), this second

scheme may not be applicable in higher dimensions). In contrast, in all applications
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considered in this work, the evidence estimates provided by our methodology were accu-

rate enough to directly identify the best-performing models despite the relatively large

number of unknown model parameters (i.e. 6–58 for the owls; 8–31 for the herons).

The principle of using the evidence (and associated Bayes factors) for model com-

parison arises naturally in Bayesian statistics (Kass and Raftery, 1995) and eliminates

the need for easier-to-compute but not-as-firmly-grounded alternatives such as the de-

viance information criterium (DIC) from Spiegelhalter et al. (2002) (see e.g. Pooley and

Marion, 2018, for discussion and empirical comparisons) which was used e.g. in Abadi

et al. (2010b). We note that overfitting is, in principle, not an issue when working with

Bayes factors (for instance, a simple model is favoured in the little-owl example). Further

posterior predictive checks could be carried out but this is beyond the scope of this work.

Future work in this area – potentially of great benefit to practitioners – could focus on

making implementations of SMC samplers for model comparison available in easy-to-use

software packages such as Nimble (de Valpine et al., 2017).
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Figure 1. Autocorrelation (rescaled by computation time) of the estimates of the pa-
rameters α0 and β1 in the little-owls model (with the productivity rates assumed to be
constant, i.e. ρ1 = . . . = ρT ) and immigration independent of the abundance of voles,
i.e. δ1 = 0. The results are based on two independent repeats (each comprised of 107

iterations) of the MCMC algorithms with and without delayed-acceptance.
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Figure 2. Logarithm of the estimates of the evidence for the eight models for the little
owls with or without dependence of the immigration rate on the abundance of voles.
The results were obtained from 20 independent runs of the adaptive SMC sampler using
10, 000 particles; the particle filters used to approximate the marginal likelihoods use
1, 000 particles. The average computation time for each SMC sampler was around 9–18
hours on a single core. We stress such a relatively large number of particles was only used
to gain accurate evidence estimates in the more complex models (in terms of the number
of parameters), i.e. in Models 1–5. For the smaller models, i.e. Models 6–8, quite similar
results could have been obtained in 30 minutes by using only 500 particles.
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Figure 3. Logarithm of estimates of the evidence for different models for the grey herons.
Shown are results for the different models for the productivity rate and different numbers
of distinctly modelled age categories (A). For the threshold and regime-switching models,
we also investigate different values for the number of thresholds/regimes (K). Obtained
from 10 independent runs of the adaptive SMC sampler using 1, 000 particles; the PFs
used to approximate the count-data likelihood employed 4, 000 particles. The average
computation time was 42–61 hours for the threshold models, 32–45 hours for the regime-
switching models and 29–48 for the remaining models, the lower numbers corresponding
to A = 2 age categories and the higher numbers to A = 4 age categories.
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a. Threshold dependence (K = 4 levels, i.e. 3 thresholds).
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b. Regime switching (K = 4 regimes).

Figure 4. Marginal posterior distributions of the estimated heron counts (top rows)
and productivity rates (bottom rows) for the threshold model from Besbeas and Morgan
(2012) and the novel regime-switching model (results for other models are shown in Web
Appendix B) with A = 4 distinct age categories. The shaded areas represent, respectively,
the 90 % quantile and range of all encountered realisations. The shown results display
the average over 10 independent repeats of the adaptive SMC sampler (each using 1, 000
particles). The PFs used to approximate the count-data likelihood use 4, 000 particles.
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Table 1. Average efficiency gain (as defined in Equation (6)) of the refined likelihood
tempering scheme (see Section 4.3 of the main manuscript) over standard likelihood
tempering for different numbers of particles (M). To simplify the presentation, we only
show results for each of the eight models in the case that δ1 6= 0, i.e. we allow for
dependence of immigration on the abundance of voles.

Model 1 2 3 4 5 6 7 8
efficiency gain (M = 1, 000) 14.0 4.7 2.8 2.3 2.9 0.9 0.9 1.2
efficiency gain (M = 10, 000) 19.1 4.5 2.3 2.3 2.5 0.8 1.2 0.6
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