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Abstract
Objectives Generally speaking, crime is, fortunately, a rare event. As far as modelling is

concerned, this sparsity of data means that traditional measures to quantify concentration

are not appropriate when applied to crime suffered by a population. Our objective is to

develop a new technique to measure the concentration of crime which takes into account

its low frequency of occurrence and its high degree of concentration in such a way that this

measure is comparable over time and over different populations.

Methods This article derives an estimate of the distribution of crime suffered by a pop-

ulation based on a mixture model and then evaluates a new and standardised measurement

of the concentration of the rates of suffering a crime based on that distribution.

Results The new measure is successfully applied to the incidence of robbery of a person in

Mexico and is able to correctly quantify the concentration crime in such a way that is

comparable between different regions and can be tracked over different time periods.

Conclusions The risk of suffering a crime is not uniformly distributed across a popula-

tion. There are certain groups which are statistically immune to suffering crime but there

are also groups which suffer chronic victimisation. This measure improves our under-

standing of how patterns of crime can be quantified allowing us to determine if a
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prevention policy results in a crime reduction rather than target displacement. The method

may have applications beyond crime science.

Keywords Crime concentration � Mixture model � Victimisation profile � Chronic
victimisation � Crime immunity � Lorenz curve � Gini coefficient

Introduction

The risk of suffering a crime is not uniformly distributed over a region (Johnson 2010) and

nor is it uniformly distributed across members of the same community (Grove et al. 2012),

with some regions and some population groups more affected by crime than others (Farrell

2015). In the case of burglary, for example, it has been shown that houses in deprived areas

suffer a higher risk of being the target of a crime, whilst other regions appear to be immune

to that type of crime (Bowers et al. 2005). Equally, whether it is determined by race, age,

income or many other factors, it has been found that the risk of suffering a robbery of a

person is not uniformly distributed across all the members of the same population. Thus,

just as there are places in which crime is concentrated (Freeman 1996), there are popu-

lation groups with a higher risk of suffering a crime (Farrell and Pease 1993).

As a result of this risk heterogeneity, crime is highly concentrated in certain population

groups. For example, a landmark analysis of victimisation data from the British Crime

Survey showed that 2% of people who suffer the highest number of personal crimes, in

fact, suffered 66% of the total reported for that type of crime (Pease 1998). This has often

been attributed to the attractiveness of a place or a person (Brantingham and Brantingham

2010), the interaction in space and time of motivated offenders with suitable targets and the

absence of any deterrence system, such as a police, a security guardian or perhaps even

ordinary citizens (Hindelang et al. 1978; Cohen and Felson 1979) or based on some other

theory (Stark 1987). But, how far away from a homogeneous distribution is the crime

suffered by the population in a region and how can we quantify it? Does the distribution of

crime, as well as its concentration, change over time? These questions are highly relevant

for decision-makers interested in designing policies to reduce the levels of crime.

Measuring the number of crimes that a person suffers, quantifying its concentration and

understanding the reasons why one person is victimised more frequently than others, has a

counterpart in the number of crimes committed by potential offenders. Relevant questions

include, how many criminals are there in a region? And if crime increases, does it mean

that there are more criminals, or that a few individuals have become more active? These

questions have been of interest to criminologists for years. For example, Wolfgang’s

classic study of a birth cohort in Philadelphia found that the majority of the population had

no contact with the police, but at the same time there was a small group (less than 7% of

the population) that was responsible for the majority of the crimes committed by that

cohort (Wolfgang et al. 1987). Also, by considering families and not only the individuals

within a family, it was shown that less than 5% of the families account for more than 30%

of the arrests (Farrington et al. 2001). Thus, crime is highly concentrated in the regions in

which it is executed, in the population that suffers it and in the people that commit it.

Unfortunately, current measures for the concentration of crime do not take into account

the relative rarity of these events and so do not provide particularly useful information that

would be necessary for policy design and decision-making. This results in misleading

measures that underestimate crime concentration and which are not comparable over time,
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potentially leading to vulnerable groups being wrongly targeted while others are

overlooked.

The traditional and most frequent measurement of the concentration of crime suffered

by a population is provided by the average number of crimes suffered by a single victim.

Formally, we consider a population of size N and let V be the number of people within the

population who suffered a particular type of crime during a given time period (usually one

year). The victimisation rate (v), also known as the prevalence, is then defined as

victimisation rate ¼ v ¼ V

N
: ð1Þ

We can interpret this by saying that if we take a person at random, then v is the probability

that they suffered that type of crime of during the time period being considered. Now, let C

be the number of times that a particular type of crime was committed on the whole

population during the same time period. The crime rate (c), also known as incidence, is

defined by

crime rate ¼ c ¼ C

N
; ð2Þ

thus, c is defined as the proportion of the number of crimes to the population size.

Both, the crime rate c and the victimisation rate v are usually reported with regards to a

population of 100,000 individuals and, based on these two measures, a frequently used

metric is the concentration of crime (H), given by the ratio of the crime rate c to the

victimisation rate v, that is

H ¼ crime rate

victimisation rate
¼ c

v
¼ C

V
: ð3Þ

Assuming that each crime is assigned to a single victim, H� 1, and so H is a measure

which can be interpreted as the average number of crimes suffered by the victims of that

type of crime. H has been used, for example, to measure the concentration of burglary,

referred to in that case as the burglary concentration (Tseloni et al. 2004).

Although H is frequently used to measure the concentration of crime, it has severe flaws

because it does not help us determine if crime is, in fact, more or less concentrated. To

illustrate this, here we use a simple example to show that it is a poor summary of the crime

suffered. Consider two populations, A and B, both with a population size of N ¼ 100; 000,
and both suffering the same crime rate of c ¼ 0:1 and the same victimisation rate of

v ¼ 0:05 so that in both populations we have the same number of victims (V ¼ 5; 000) and
experience the same number of crimes (C ¼ 10; 000), hence we obtain the same con-

centration of crime HA ¼ HB ¼ 2 (where the subscript denotes the population to which it is

applied) . However, consider the artificial situation in which for the population A each

victim suffered exactly two crimes, but in the population B there were 4,000 victims

suffering a single crime each and 1,000 victims suffering 6 crimes each. Clearly this single

measure of HA ¼ HB ¼ 2 does not help us differentiate the construction of these two

distinct scenarios where, in the population B, the 1% of the population who suffers the

highest amount of crime actually suffers 60% of the crime which is a completely different

behaviour than that observed in the population A.

The level in which crime is concentrated should have an impact on the design of

policies. For example, if we know that 1% of the population suffers 60% of the crime, as in

the example case of the population B, then efforts might be better directed towards that

particular population group, both in terms of crime prevention and victim support. Hence, a
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better quantitative approach needs to be developed to measure the level in which crime is

concentrated.

Measures of variance, such as the coefficient of variation or the standard deviation,

might be applied directly to the number of crimes suffered by each person or might be

applied to the number of crimes suffered only by the actual victims. Results in the first case

tend to be highly dependant on the crime rate c and results in the second case ignore

whether 50 or 95% of the population did not suffer any crime. Other measurements of the

level of concentration of crime have been proposed, for example, by taking into account

the time between repeat offences (Short et al. 2009). However, this results in a mea-

surement that cannot be compared between different regions, over different time periods or

types of crime, due to the different crime intensities. A more detailed discussion on the

issues the most frequently used measures can be found in the Appendix of ESM.

In the specific case of a measure of spatial concentration of crime, a common technique

is to consider the street segments in which the crime was committed (including, sometimes,

the intersections) and then to determine the amount of crime concentrated in the top 5% of

the segments Andresen et al. (2016) or any other top P%. A similar type of metric is often

used when the number of crimes suffered by the most victimised people is reported (Pease

and Ignatans 2016; Pease 1998), or the most criminal individuals (Wolfgang et al. 1987) or

families (Farrington et al. 2001). This metric, however, has some severe issues, such as the

lack of agreement on the percentage that gets reported (Fox and Tracy 1988); the metric

might not be comparable between different cities (Hipp and Kim 2016); it might be the

result of a certain degree of randomness (Levin et al. 2016) and it does not work as an

adequate metric when the data is extremely sparse. Consider, for example, the number of

street segments of The Hague and the number of sexual offences registered by the police

between 2007 and 2009 in that city (Bernasco and Steenbeek 2016). The extremely low

frequency of this type of crime (only 430 cases) distributed over the large number of street

segments (14,375 segments) means that taking the top 5% of streets is not even properly

defined since, at most, 3% of the segments concentrate all the crimes. Taking the top 5%

street segments, victims or criminals is a weak way of measuring crime concentration

based on an artificial cutoff point which is blind, not only to the other 95% of the

observations, but also, it is blind to the distribution inside the 5% being considered, which

is extremely relevant when the events are rare, as crime usually is.

An adequate metric to determine the statistical dispersion of crime is to consider the

Lorenz curve and its corresponding Gini coefficient G (Fox and Tracy 1988) since it is a

global metric that does not depend on an artificial cutoff point. In the artificial case that one

individual suffers all the crime or all the events are concentrated on one street segment, or

in the real case of the sexual offences in The Hague, the Gini coefficient gives a value close

to one, indicating a high degree of concentration. However, there is still a major drawback

in using the Gini coefficient directly from the number of crimes suffered by the population.

The Gini coefficient is a valid metric with distinct values in the context where a variable,

such as income, is distributed across most of the members of the population, but in the case

of crime, the majority of the population suffers zero crimes and so the coefficient, com-

puted directly from the number of crimes suffered by the population (or the number of

crimes on each street segment) overestimates the level of concentration (Bernasco and

Steenbeek 2016). In the previous example of populations A and B, the Gini coefficient of

the number of crimes is fairly similar given by GA ¼ 0:95 and GB ¼ 0:97 respectively,

which reveals that crime is highly concentrated, but nothing more, providing little addi-

tional information to distinguish between the concentration observed in A and B.
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When there are more individuals than crimes, as it is almost always the case, or more

street segments than crimes, as it sometimes occurs, then an arithmetic adjustment to the

Gini coefficient has been proposed (Bernasco and Steenbeek 2016) which compares

against a case of maximum equality (termed the generalised Gini coefficient denoted as

G0). Although the generalised Gini coefficient is a clever way to correct the traditional Gini
coefficient, it still has one major drawback. Consider two populations, B and C, where, as

before, population B has a size of N ¼ 100; 000 individuals, and has 4,000 victims suf-

fering a single crime each and 1,000 victims suffering 6 crimes each while the population

C has only N ¼ 10; 000 individuals (that is only 10% of the size of B) where the population

C has (just like population B) 4,000 victims suffering a single crime each and 1,000 victims

suffering 6 crimes each. We observe that populations B and C suffer crime under a

different pattern and have a completely different concentration of crime since 95% of the

population of B did not suffer any crime, whereas 50% of the C population suffered at least

one crime. However, in this artificial but illustrative example, B and C have the same line

of ‘‘maximal equality’’ and the same corrected Gini coefficient G0
B ¼ G0

C ¼ 0:7, precisely

highlighting the main weakness of this arithmetic correction of the Gini coefficient: in the

case of the population B, it corrects the traditional Gini coefficient by ignoring 90% of the

population, but in the case of the population C it takes all of its individuals into account. In

fact, any population with 4,000 victims suffering a single crime each and 1,000 victims

suffering 6 crimes each, with a population size of N� 10; 000 gives the same corrected

Gini coefficient G0 ¼ 0:7 regardless of whether the population has only 10,000 inhabitants

or millions. Thus, the arithmetic correction to the Gini coefficient creates another issue that

the original Gini coefficient did not have (since GB ¼ 0:97 and GC ¼ 0:7).
Very recent developments, responding perhaps to issues raised by the law of crime

concentration (Weisburd 2015), have highlighted the need for more specific tools in the

field of crime science. Here, we construct a new measure of the concentration of crime

rates suffered by a population which overcomes problems encountered when using other

measures and descriptive statistics as metrics. This new measure can be used to compare

different regions and it is also tractable across various time periods and therefore it can be

used for purposes such as policy design, policing and crime prevention (Laycock and

Farrell 2003).

A Probabilistic Approach to the Crime and Victimisation Rates

Assuming that the number of crimes suffered by the individuals within a population is

independent and that suffering a crime does not affect the probability of a person being a

victim in the future, then the number of crimes suffered by the i-th individual during a

period of time (usually a year) might be modelled as a Poisson distribution with rate ki � 0.

Although other distributions could be used for modelling the random component of suf-

fering crime, such as a Negative Binomial (Park and Eck 2013), the Poisson distribution

allows to focus on a single parameter (the rate k), and so it is frequently used in crime

science (Maltz 1996).

What is relevant about this approach for the distribution of the crime rates is that it is

probabilistic: even when a person has a rate of kj [ 0 of suffering a crime, the probability

that he or she does not suffer any crime is not negligible, given by expð�kjÞ, therefore,
even when a person did not suffer a crime, it does not necessarily mean that he or she has a

crime rate of k ¼ 0, and vice versa, if a person suffers many crimes, it could be the result of
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a small rate and bad luck. By focusing on the rates ki rather than on the observed frequency
of crime, we consider not only the population who actually suffered crime, but also the

people who did not suffer any crime but were lucky, in the sense that given that their rate is

greater than zero they were fortunate not to suffer any crime.

The assumptions required to model the crime counts as a Poisson distribution (inde-

pendence of the crime suffered by individuals, independence between past and future

victimisation and a constant rate) are quite problematic, especially since we know that past

victimisation actually helps predict future victimisation (Tseloni and Pease 2003), crime

suffered by individuals might be strongly correlated, for example, if individuals live nearby

and finally, certain types of crime are more likely to occur at specific times of the day.

These assumptions are thus too strong and hence the results are not really useful if we use

the Poisson distribution to forecasting the number of crimes that a person will suffer, for

instance. However, the objective here is to construct a global metric of the concentration of

crime and so these assumptions, although apparently unrealistic, help us measure the

concentration based on the least possible aggregated observations, usually from large

populations but for which the number of crimes suffered is quite small. Other scenarios are

discussed later in this paper, where different assumptions are made.

Since we consider a distinct crime rate for each individual, here the number ki refers to
the individual crime rate and it represents the rate or ‘‘speed’’ at which the i-th individual

suffers crime. The reasons why individuals experience different rates have been considered

in depth by others and explanations go from individual attributes, which cause an increase

in the attractiveness, to a boost on the probability of suffering a second crime after

suffering a first one (Johnson et al. 2009). We referred to this as a population which suffers

an inhomogeneous distribution of crime.1

The causal mechanism that leads to a population suffering an inhomogeneous rate has

been studied before (Tseloni and Pease 2004), but the focus of this study is the distribution

itself, so here we assume different individual rates, without going any further into this

topic. Considering a probabilistic approach means that the actual number of crimes suf-

fered by the i-th individual is an observation from the Poisson distribution, so we can

analyse the individual crime rates rather than the observations. The expected number of

crimes suffered by the population is simply the sum of the rates ki, from which

C ¼
XN

i¼1

ki; ð4Þ

which also means that the average rate �k is the population crime rate c ¼ C=N.
The probability that the i-th person actually suffers a crime is ð1� expð�kiÞÞ, which

means that the number of victims V follows a Poisson-Binomial distribution with

parameters pi ¼ 1� expð�kiÞ, with i 2 1; 2; . . .;N. The Poisson-Binomial distribution is

closely related to a Binomial distribution, in which each observation is allowed to have a

different success probability (Chen and Liu 1997). The expected number of victims is

V ¼
XN

i¼1

pi ¼ N �
XN

i¼1

expð�kiÞ: ð5Þ

Since the number of crimes C and the number of victims V from the population is a fixed

(observed) number, we thus have three restrictions for the rates ki:

1 We use the term ‘‘inhomogeneous’’ here rather than ‘‘heterogeneous’’ for consistency purposes with other
applications of a Poisson process.
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RestrictionI : ki � 0 for all i ¼ 1; 2; . . .;N:

RestrictionII :
PN

i¼1 ki ¼ C:

RestrictionIII : N �
PN

i¼1 expð�kiÞ ¼ V:

The restrictions II and III refer to the expected value of the number of crimes C and victims

V (so the left-hand side is not necessarily a whole number), which means that both are

considered to be satisfied in an interval around each integer C and V. Additional restric-

tions could also be considered by taking into account the observed number of people who

suffered exactly two crimes, or exactly three crimes and so on against the theoretical

(expected) outcome. Different distributions of the individual rates ki, with i ¼ 1; 2; . . .;N
which satisfy these restrictions could be the distribution of the crime rates over the whole

population, and a goodness of fit test could help us accept or reject the distribution of the

individual rates ki.
A homogeneous distribution of the rates means that ki is the same for all i ¼ 1; 2; . . .;N,

from which, due to the Restriction II, we see that ki ¼ c. If (and only if) c and v are such

that ð1� expð�cÞÞ ¼ v, then a homogeneous distribution of the individual rates might be

accepted. However, this is rarely the case since crime is far more concentrated than random

events would predict (Osborn and Tseloni 1998); usually v is much smaller than

ð1� expð�cÞÞ, which tells us that a homogeneous distribution is far from being the

observed one and other distribution of the rates ki needs to be considered. Here, we present
a potential distribution of the individual crime rates ki.

Although the methodology presented here, by modelling the distribution of the vic-

timisation rates, is designed for the number of crimes suffered by individuals, with certain

precautions it could also be applied to other aspects of crime, for instance, the concen-

tration of criminality (the observations could also be the number of crimes executed by a

person) or the spatial concentration of crime (so the observations could be the number of

crimes committed on a street segment). In the case of the crime committed by the popu-

lation, the assumption that past and future events are independent is strong, since it has

been found that the rate at which an individual executes crime tends to increase as they

commit more crimes (Ferguson 1952) meaning that a constant rate is dubious. In the case

of the spatial distribution, crime suffered in street segments (Weisburd 2015) or regions of

a city (Mohler et al. 2012) tends to be highly concentrated and a hot spot pattern usually

emerges, indicating a geographic clustering of crime (Short et al. 2008), thus, assuming

independence between the observations might not be adequate. The methodology pre-

sented could be used for measuring the concentration of crime in the other two aspects (the

location and the criminal) but we focus here on the crime suffered by the victims.

Inhomogeneous Distribution of the Crime Rates

The individual crime rates ki depend on many factors (Tseloni 2000), such as the habits of

the i-th person, their lifestyle, the region in which he or she usually commutes, physical

attributes (such as gender or age), and perhaps that rate is of a similar value to other

individuals who live under the same circumstances. To model the inhomogeneous distri-

bution of the crime rates, we assume that the population can be divided into k� 1 distinct

groups, where group j say, has Qj members, all of whom suffer the same crime rate kj, with
j ¼ 1; 2; . . .; k. Each of the N members of the whole population belongs to one and only one

group so that Q1 þ Q2 þ . . .þ Qk ¼ N. The proportion of the population who suffer the

crime rate kj is qj ¼ Qj=N, so that
Pk

j¼1 qj ¼ 1. To avoid ambiguous definitions, we order
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the groups by their crime rate in increasing order, k1\k2\. . .\kk, so we label the groups

according to their rate.

If we consider a random person from the population, the distribution of the number of

crimes that he or she suffered can be expressed as

q1Poisðk1Þ þ q2Poisðk2Þ þ . . .þ qkPoisðkkÞ; ð6Þ

which means that the person is assigned into any of the k groups and suffers a Poisson

distribution with the corresponding rate.

Assuming that the population can be divided into k� 1 distinct groups where all of the

members of each group suffer the same rate is a common technique that simplifies the

crime suffered by a population of perhaps millions of people into only a few parameters

(Short et al. 2009; Brame et al. 2006; Nagin and Land 1993). The number of groups, k, is

crucial for the mixture model (Böhning et al. 1992), and distributions with a larger number

of groups are less useful since for each additional group, its size and its rate need to be

estimated, so this increases the number of parameters of the model. The (non-parametric)

maximum likelihood estimator (mle or npmle) helps us compare between models and to

pick the best (Böhning et al. 1998), since in our case we have no prior information on the

number of groups (McLachlan and Peel 2004). Although other techniques to estimate the

number of groups are also available, for example, by using bootstrapping (Schlattmann

2005), the mle is used here, which includes an estimate k̂ of the number of population

groups, easily computed using the statistical package CAMAN (Computer Assisted

Analysis of Mixtures) by considering the observed number of crimes suffered by each of

the individuals, Ci. A similar procedure, using a mixture model, has been used in different

scenarios (Böhning 1998), such as traffic accidents, the number of accidents in a factory

and even the number of criminal acts from a set of persons considered to have deviant

behaviour.

The results obtained using CAMAN and estimating the mle are:

• the optimal number of groups in which the population might be divided k̂,

• the size of each population group relative to the total population q̂j, expressed as a

vector as q, and

• the corresponding rate for each group k̂j, also expressed as a vector k.

As an example, we consider again the previous populations A and B, both with

N ¼ 100; 000, c ¼ 0:1 and v ¼ 0:05. In population A (where 10,000 crimes are suffered

uniformly by the 5,000 victims), the mle gives k̂ ¼ 2 groups, with q ¼ ð0:937; 0:063Þ and
k ¼ ð0; 1:594Þ, which means that 93.7% of the population has a crime rate of k̂1 ¼ 0 and

6.3% of the population has a crime rate of k̂2 ¼ 1:594. On the other hand, in the population
B (where 6,000 crimes are suffered by 1,000 victims and 4,000 crimes are suffered by

4,000 victims), the mle gives k̂ ¼ 3 groups, with q ¼ ð0:409; 0:580; 0:010Þ and

k ¼ ð0; 0:069; 5:897Þ, which means that the mixture model tells us that indeed 1% of the

population suffers crime with rate k̂3 ¼ 5:897, but also that 58% of the population suffers

crime at a rate of k̂2 ¼ 0:069, so that if we randomly select 15 individuals from that group,

we would expect to find only one victim. Results indicate that a large proportion of the

population (more than half) suffers crime at a very small rate, but there is a particular

group, (formed by only 1% of the individuals) whose members suffer a considerably large

crime rate (k̂3 ¼ 5:89). In the population B, efforts might be much better oriented towards
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the small population group who expect to suffer k̂3 ¼ 5:89 crimes during that time period

rather than the large population group who suffer the lower rate k̂2 ¼ 0:069.
The mixture model process depends not only on c and v, but it also changes based on the

number of people who suffered exactly 0, 1, 2, 3 or more crimes. It gives a more accurate

distribution of the crime rates, considering the random component of suffering a crime,

hence it provides a better understanding of the distribution of crime in the population since

it estimates that a group of relative size q̂j suffers crime at a rate k̂j. This distribution is

useful since it allows us firstly, to compare different regions or different time periods,

secondly, to simulate crimes in a population, and thirdly, to determine the expected

departures that natural variability gives to the number of crimes suffered by the population.

The mixture model is useful from a macro perspective giving an approximate distribution

of the number of crimes over the whole population in terms of only a few parameters. It is

not useful, though, from an individual perspective. For example, results for population B

are that nearly 60% suffers a crime rate k[ 0 but it comes from a population where 95%

suffered zero crimes, meaning that if a person suffered no crimes we would not be able to

tell whether they belong to the group that suffers no crime or whether they belong to a

group which suffers a small rate k̂2 ¼ 0:069 or even less likely, but not impossible, they

belong to the group who suffers a large rate k̂3 ¼ 5:89 and yet they were lucky and suffered
no crime.

Two particular cases of the results of the mixture model are worth further comment. The

first is when k̂ ¼ 1 (which means that there is only one group, with rate k̂1 ¼ c), in which

case the mixture model tells that crime is uniformly suffered by the population. The second

case is when k̂ ¼ 2 and k̂1 ¼ 0, which indicates that the population is divided into two

groups, one of them of relative size q̂1 which does not suffer crime and the second group,

of relative size q̂2 ¼ 1� q̂1, suffers all the crime within that population. This type of model

is also known as a Zero-Inflated Poisson Model (Böhning 1998), frequently used to model

heterogeneity in the rates (Bushway and Tahamont 2016) and for count data in which the

number of zeros is frequent, such as here in which we consider the count of the number of

people who suffered zero crimes. These two cases might result from data after fitting the

mixture model, which means that the mixture model lets the data adjust to the most

suitable distribution of the crime rates, without assuming anything about the uniformity of

crime suffered by the whole population.

Immunity and Chronic Victimisation

As previously noted (Sparks 1981; Hope and Norris 2013), there is usually a population

group which is immune to victimisation and the mixture model allows us to detect the

existence of such a population group and determine its size. After analysing the data, if the

results show that there are k̂� 2 groups and k̂1 ¼ 0, then it means that indeed there is a

group who is immune to crime and its relative size is given by q̂1. It is important to note

that the existence of an immune group is the result of the data and the model rather than by

an assumption. Equally, results might reveal that there is no immune group, in which case

the smallest crime rate would be k̂1 [ 0.

Population groups that suffer chronic victimisation have also been noted previously

(Hope and Trickett 2008), where again, their existence might be tested using the results

from the mixture model. Results from the mixture model might also show that a population

group which suffers a rate higher than k ¼ 2. Suffering two or more crimes per year is a
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persistent and perhaps habitual victimisation and so groups which suffer a rate k̂k � 2 are

considered to suffer chronic victimisation.

In the previous example of populations A and B (with N ¼ 100; 000, c ¼ 0:1 and

v ¼ 0:05), for the population A (where 10,000 crimes are suffered uniformly by the 5,000

victims), results of the mixture model showed that 93.7% of the population has a crime rate

of k̂1 ¼ 0, which means that a large portion of the population is statistically immune to

crime. For the population B (where 6,000 crimes are suffered by 1,000 victims and 4,000

crimes are suffered by 4,000 victims), results of the mixture model showed that 40.9% are

immune to crime, but also, 1% of the population has a crime rate of k̂3 ¼ 5:89, which
means that they expect to suffer chronic victimisation of almost six crimes each year.

Concentration of Crime Metric

Although the distribution of the rates ðq; kÞ is powerful by itself, the Rare Event Con-

centration Coefficient (RECC) (Prieto Curiel and Bishop 2016) is a new and standardised

summary statistic from the mixture model, based on the Lorenz curve (Marsh and Elliott

2008; Hope and Norris 2013) and the Gini coefficient (Dorfman 1979) of the distribution of

the crime rates. It is important to note that it is not the Gini coefficient computed directly

from the number of crimes suffered by each member of the population [previously used to

measure the concentration of crime (Tseloni and Pease 2005; Fox and Tracy 1988; Ber-

nasco and Steenbeek 2016)], but rather it is the Gini coefficient of the rate at which

individuals suffer crime. The RECC is given by

RECC ¼ 1

2
Pk̂

i¼1 k̂iq̂i

Xk̂

i¼1

Xk̂

j¼1

q̂iq̂jjk̂i � k̂jj; ð7Þ

which is the Gini coefficient of a stepwise distribution and can be interpreted in a similar

way to how the Gini coefficient is used in the case of the distribution of wealth: a smaller

value of the RECC means a more homogeneous distribution of the crime rates across the

population, and a value closer to one means that crime is more concentrated in some

population groups. The RECC is comparable between different time periods and different

regions and different types of crime.

Using again the example of populations A and B (both with N ¼ 100; 000, c ¼ 0:1 and

v ¼ 0:05), for the population A (where 10,000 crimes are suffered uniformly by the 5,000

victims) the mixture model says that 93.72% of the population is considered immune to

crime and so, the RECCA ¼ 0:9372. On the other hand, for the population B (where 6,000

crimes are suffered by 1,000 victims and 4,000 crimes are suffered by 4,000 victims) the

RECCB ¼ 0:7546 which means that crime is suffered more homogeneously in the popu-

lation B, perhaps an expected result since 59% of the population has a crime rate greater

than zero.

Coefficient Interval

Is observing RECCA ¼ 0:9372 statistically different from RECCB ¼ 0:7546? We construct

an interval for the RECC of each population based on a Monte Carlo method (Mooney

1997) which allows us to incorporate a level of uncertainty. This method assumes that the

distribution ðq; kÞ is the true distribution of the crime rates and so that we can simulate N

individuals which suffer crime with the distribution given in Eq. 6. Each one of the N
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simulated individuals represents the number of crimes that a person taken at random from

the population might suffer, given the true distribution of crime and by simulating N

individuals we are thus considering the departures from the true distribution that the

number of crimes the population could experience. By computing the mixture model of the

simulated crimes and then considering its corresponding RECCsim we are thus taking into

account just how low, or high, the RECC could be, given the exact same distribution.

Following the same procedure a sufficient number of times (100 in our case) results in a

simulated sample of potential values of the RECC. We subsequently consider the 95%

intervals to avoid the extreme simulated values (Greenland 2004).

The results, in terms of the simulated RECC, are given in Table 1 in terms of the 95%

lower and upper bound intervals.

These results show that with the true distribution observed in the population A, the

RECC does not achieve values as low as the ones obtained for population B. Therefore,

with the simulated intervals, we can reject a Null Hypothesis that both populations have the

same concentration of crime and so, thanks to the simulated intervals we have a statistical

justification that both populations suffer a different concentration of crime. A more

detailed explanation of the simulated intervals for the RECC is included in the Appendix of

ESM.

A relevant observation from the simulations is that the number of groups k̂sim might

change and also the sizes of the immune group and the chronic group might also change

since, for example, suffering a small rate of k̂ ¼ 0:01 is almost the same as k̂ ¼ 0 but this

difference would change the size of the immune group. Therefore, for comparing two

different populations or comparing the same population over different time periods, a

global metric, such as the RECC, provides more stable results.

Case Study

We use the case of Mexico to apply the mixture model. Its territory is divided into 32

states with a wide variety in terms of population size —some states have a population

of just above 700,000 inhabitants (a population size similar to Luxembourg), while at

the same time, there is a state with a population size nearly 23 times larger, of more

than 16 million inhabitants (a population size similar to the Netherlands)— and this

Table 1 Group sizes q, crime rate k and intervals for the RECC for the populations A and B

Population Group RECC Lower bound Upper bound

1 2 3

A q̂j 0.937 0.063 0.9372 0.9369 0.9428

k̂j 0 1.594

B q̂j 0.409 0.580 0.010 0.7546 0.7117 0.7948

k̂j 0 0.069 5.897

Immune population size are given in bold

Zero crime rate k1 ¼ 0 are given in italic

Chronic population size is given in bold italic

Chronic crime rate kj � 2 is underlined

J Quant Criminol (2018) 34:775–803 785

123



sub-division also considers Mexico City as a separate state, allowing us to detect

whether crime tends to be more concentrated in regions with more inhabitants (Glaeser

and Sacerdote 1996).

Data was obtained from an annual victimisation survey conducted yearly between 2011

and 2016 in Mexico. Thus, six years of data are available which allows us to measure the

concentration of crime across time. Although previous victimisation surveys were also

conducted in Mexico, the survey used here provides comparable data over different years

and also provides the most up to date data (INEGI 2016), with micro-data available on-

line.2 For each year, more than 80,000 surveys were conducted, and its sampling method

allows separate data for each of the 32 states. The survey contains an expansion factor,

used to establish an estimate for the number of people who are represented by each survey

respondent so that every person older than 18 years in the country is represented by a

single survey respondent.

For different types of crime, such as robbery of a person, car theft or burglary, the

person is asked whether he or she suffered that type of crime and the number of times

that it occurred during the previous year. We mainly use the case of robbery of a person

in our studies since it has the highest variability, from a crime rate as low as cBCS ¼
0:007 (where the subscript denotes the state) to a crime rate as high as cMEX ¼ 0:471,
nearly 68 times larger, so this particular type of crime allows us to detect whether

higher crime rates are also associated with a higher concentration of crime. Also, the

analysis of the crime rates from the 32 states in Mexico allows us to compare popu-

lation groups, so detecting, for example, an immune group in the states with high crime

rates implies that they live under better conditions, in terms of crime and security than

some of the groups from states with low crime rates. Thus, living in a state with a

lower crime rate is not necessarily preferable from an individualistic viewpoint. More

specific details on why we focus on the case of robbery of a person in Mexico is

included in the Appendix of ESM.

Results

At a national level, the Table 2 gives the number of crimes suffered by the survey

respondents in Mexico for 2016, as well as the national estimate, considering the expansion

factor for each survey. The data shows that 91.9% of the population did not suffer a

robbery of a person during 2015, but also, it is estimated that more than 100,000 persons

suffered at least four robberies during that year.

Is the crime suffered the result of a homogeneous distribution? We use one state

(Guerrero) and over one year (2016) to test against a random distribution of crime (Park

and Eck 2013). With the observed number of crimes, c ¼ 0:069 we would expect, from

Eq. 5, a victimisation rate of v ¼ 0:066 and values between 0.065 and 0.068 would support
this hypothesis. However, the observed victimisation rate (v ¼ 0:053) is far from this

interval so that, in this state, crime is far from being homogeneously suffered by the

population and there are much fewer victims than the homogeneous distribution would

indicate. Similar results occur for other states and so there is, indeed, a high concentration

of crime.

The distribution of the rates for each state and for each year have been computed (R

Core Team 2014; Schlattmann et al. 2015) based on data from the victimisation surveys

and the concentration RECC and its corresponding intervals are displayed in Table 4. The

2 Available at http://www3.inegi.org.mx/sistemas/microdatos/encuestas.aspx?c=34517&s=est.
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full distribution of the rates for the latest two years (2015 and 2016) in Tables and and the

remaining years can be found in the Appendix of ESM. The results show that crime has a

completely different pattern across the 32 states from Mexico. For example, in some states

(Baja California Sur in 2015 or Aguascalientes in 2016) the population can be divided into

just two groups, the immune and the victimised. However, in Morelos, for example, for

2015 and 2016 the model gives 4 groups, which means that a more complex distribution of

crime is needed.

Results for the 32 states, over the six years of data available, are displayed in Table 7

and they show that there is usually a large group which have a rate k̂1 ¼ 0, forming the

group which statistically is immune to crime and its relative size reaches a value as high as

95.6% in the state of Campeche in the year 2015. This means that during that year, in that

state, less than 5% of the population actually expected to suffer crime, but with a rate of

k̂2 ¼ 0:853, higher than most of the groups from all the other states. Actually, considering

the population size of each state, this small group from Campeche suffered a higher rate

than 96.8% of the whole country. The results obtained support the theory of the existence

of an immune population group (Hope and Trickett 2008) and its size on average through

the six years considered, was 61.5% of the whole population.

Results also show that there are some states (15 out of the 32 states in 2015 and only 9 in

2016) with a group which suffers chronic victimisation, so they expect to suffer two or more

crimes in a year. For example, in Estado de México in 2015, there is a small group (which

represents approximately only 0.2%of the population), butwhich has a crime rate of k̂4 ¼ 7:8,
which sadly means that they expect to suffer one robbery roughly every seven weeks.

Figure 1 shows the results from Mexico City during 2014 simply as an illustration of the

crime rates suffered by the population. The upper diagram, part (a), gives the rates from the

mixture model so it provides the Victimisation Profile of Mexico City during 2014. The

lower diagram, part (b), gives the cumulative rates and the Lorenz curve, where the area

shaded in colour grey is the distance to a uniform distribution of the rates.

Crime Rates and Crime Concentration

Another observation of the results is that lower (or higher) crime rates do not necessarily

mean a lower (or higher) concentration of crime. For example, the state of Chiapas (CHIS)

between 2015 and 2016 suffers a similar crime rate (cCHIS;2015 ¼ 0:037 and cCHIS;2016 ¼
0:034 respectively) with an opposite pattern for the concentration of crime

(RECCCHIS;2015 ¼ 0:897 and RECCCHIS;2016 ¼ 0:228). In general, though there is a national

decrease in the concentration of crime between 2011 and 2016. Between 2011 and 2013

the average RECC, weighted by the population size of each state, was nearly 0.8 but it has

gradually decreased to an average of RECC ¼ 0:688 by 2015 and RECC ¼ 0:563 by 2016.

Table 2 Crimes suffered by the population, in thousands, estimated by considering the expansion factor for
each survey respondent

Crimes suffered 0 1 2 3 4 5 6 7 or more

Respondents 81,672 3486 455 95 22 10 1 23

Populationa 75,992.6 5604.5 769.5 193.1 72.7 23.1 3.9 5.9

% 91.9 6.8 0.9 0.2 0.1 0.0 0.0 0.0

a Population expressed in thousands meaning that 75.9 million people did not suffer any crime, 5.6 million
people suffered exactly one crime and so on
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At the same time, crime rates have increased slightly through this period, from a national

rate near c ¼ 0:084 to an average of c ¼ 0:105. Thus, for this particular type of crime,

there are now more robberies which are being suffered by more people.

Less or More Concentrated?

Having the estimated distribution of crime and its corresponding RECC enables us to

understand the degree of concentration of crime and, using data from the victimisation

survey, allows us to obtain quantitative results for the different states in Mexico during the

years considered. What is not clear is what degree of concentration of crime is preferable.

Crime prevention strategies might result in some displacement of crime (Guerette and

Bowers 2009; Johnson et al. 2014) from one place to the other, to an alternative victim

(which is referred to as target displacement), to different times of the day, to a different

tactic or to a different type of crime (Bowers and Johnson 2003), which has an effect on the

levels of concentration of crime, but then this promotes the question: is it desirable to have

less concentrated crime? Clearly, a population with overall less crime is desirable, but let

us compare two populations with the same number of crimes. On the one hand, a high

degree of concentration of crime means that fewer people suffer crime, that is, fewer

Fig. 1 a Victimisation Profile (individual crime rates k and group sizes q) and b Lorenz curve of the

individual crime rates for Mexico City in 2014
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victims, but those victims suffer usually much more than a single crime. With a high

degree of concentration of crime, resources might be better targeted to those who suffer

most crime in terms of prevention and victim support. On the other hand, a low degree of

concentration of crime means more victims, which makes policies less efficient, and it

might deteriorate the perception of security in a particular region. Suffering a crime when

there is a low degree of concentration of crime becomes a matter of bad luck and not a

matter of being socially deprived, a minority, a female or any other attribute which perhaps

increases the chances of suffering a crime, therefore it could be considered as a more fair

distribution of crime (Bowers and Johnson 2003) as opposed to a population with a high

degree of concentration of crime.

As an example, we analyse the particular case of Mexico City between 2011 and 2012.

We focus on this particular example for three reasons. Mexico City is different from other

states as it is the only one which is also a single metropolitan area so that any security

programs are easily identifiable within its constraints. The majority of other states have

three levels of police officers (federal, state and local) but in Mexico City, all security

efforts are coordinated by the state police. Secondly, between 2010 and 2012, Mexico City

started a security program which consisted of installing more than 13,000 CCTVs across

the city and utilising several hundreds of police officers to perform surveillance3 with a

real-time police allocation strategy, investing nearly 500 million dollars in this program

alone.4 Thirdly, it has one of the most drastic changes of the RECC between two con-

secutive years meaning that the concentration of crime rates across its population signif-

icantly changed between these two years.

The most frequently used metrics for the concentration of crime in Mexico City were

computed (Table 3) which show that with most of the traditional metrics we obtain almost

the same results, for example, the Gini coefficient is GCDMX;2011 ¼ 0:898 and GCDMX;2012 ¼
0:872 respectively, which only highlights the high concentration of crime, but a barely

perceptible change and the reason is that in both years more than 85% of the population

(that is, more than 85% of the observations) did not suffer any crime. The arithmetic

correction of the Gini coefficient G0 and the average number of crimes suffered by the

victims H does show a slight difference between the two years. However, the individual

rates for these two years are displayed in Fig. 2 where a drastic change is noticeable.

Using our method, for 2011 it was estimated that around 5% of the population suffered a

rate of k̂ ¼ 1:35 and, perhaps due to a policy oriented to reduce the crime suffered by that

population group, for 2012 this high rate was reduced to k̂ ¼ 0:32, which appears to be a

good result. However, during 2011 more than 50% of the population were immune to

crime, because their rate was exactly zero, but by 2012, only 28% of the population were

immune to crime, and in fact, the global crime rate increased from cCDMX;2011 ¼ 0:170 to

cCDMX;2012 ¼ 0:173.

Between 2011 and 2012, some people suffered a lower crime rate while some suffered a

higher rate, which means that comparing individual rates does not provide much infor-

mation (Fig. 2). However, for 2011 the RECCCDMX;2011 ¼ 0:680, shows a much higher

degree of concentration than for 2012, where the result was RECCCDMX;2012 ¼ 0:367 and

Table 4 shows that the values are statistically different. Thus, between 2011 and 2012, the

results obtained in Mexico City indicate that there was not a reduction in the crime rates,

3 More at https://placesjournal.org/article/inside-mexico-citys-c4i4-surveillance-center/.
4 http://latimesblogs.latimes.com/world_now/2011/10/mexico-city-security-intelligence-emergency-center-
c4i4-ebrard.html.
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but rather it was merely a target displacement with a lower level of concentration of crime.

In this period, the crime rate did not change, in fact increasing slightly, meaning that the

surveillance program with a real-time police allocation strategy might have simply induced

a target displacement.

Extensions of the Rare Event Concentration Coefficient

The RECC is a metric designed to detect changes in the concentration of crime based on

the number of crimes suffered by the individuals. It considers that the observed numbers

might be the result of luck and that fluctuations might be present so that it gives a

probabilistic approach to the concentration of crime. It is based on some assumptions:

individuals suffer crime independently, at a constant rate and suffering a crime does not

affect future victimisation. Based on these assumptions, the number of crimes suffered by

an individual might then be modelled as a Poisson distribution.

However, looking at the individual observations, such as the crimes suffered by a

particular person, the crimes executed by an offender or even its arrests, is not consistent

with a constant rate (Bushway and Tahamont 2016). Also, looking at a more aggregate

type of data means reducing the number of observations, from millions of individuals into

a few thousand street segments or regions and it reveals a pattern in terms of the space, the

time or both, in which crime occurs (Osgood 2000). For more aggregate data, assuming

Table 3 Metrics of the concentration of crime observed in Mexico City in 2011 and 2012

Metric Victim
rate

Crime
rate

Std.
dev.

CoV. Concentration Gini General
Gini

Rare
Event

v c r CoV H G G0 RECC

2011 0.127 0.170 0.507 2.990 1.330 0.898 0.401 0.680

2012 0.148 0.173 0.514 2.976 1.166 0.872 0.257 0.367

2011/
2012

0.860 0.982 0.986 1.005 1.141 1.031 1.560 1.853

Fig. 2 Victimisation Profile (individual crime rates k) and group sizes q) for Mexico City between 2011 and

2012
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Table 5 Group sizes q and crime rate k for the 32 states in Mexico, based on data for robbery of a person,

2015

Year 2015 Population group

1 2 3 4

AGUASCALIENTES qj 0.839 0.159 0.002

kj 0 0.232 2.399

BAJA CALIFORNIA qj 0.635 0.261 0.099 0.006

kj 0 0.035 0.474 2.651

BAJA CALIFORNIA SUR qj 0.871 0.129

kj 0 0.146

CAMPECHE qj 0.956 0.044

kj 0 0.853

COAHUILA qj 0.912 0.086 0.002

kj 0 0.418 1.747

COLIMA qj 0.623 0.353 0.024

kj 0 0.013 0.433

CHIAPAS qj 0.896 0.012 0.092

kj 0 0.323 0.359

CHIHUAHUA qj 0.696 0.296 0.008

kj 0 0.11 1.272

CIUDAD DE MEXICO qj 0.348 0.071 0.557 0.025

kj 0 0.036 0.31 1.361

DURANGO qj 0.888 0.111 0.001

kj 0 0.391 5.184

GUANAJUATO qj 0.379 0.613 0.008

kj 0 0.114 2.861

GUERRERO qj 0.796 0.097 0.095 0.012

kj 0 0.249 0.262 2.092

HIDALGO qj 0.033 0.948 0.019

kj 0 0.027 0.832

JALISCO qj 0.11 0.82 0.069 0.001

kj 0 0.038 0.491 2.583

ESTADO DE MEXICO qj 0.446 0.383 0.168 0.002

kj 0 0.302 1.545 7.833

MICHOACAN qj 0.096 0.878 0.026

kj 0 0.019 0.919

MORELOS qj 0.713 0.028 0.257 0.002

kj 0 0.382 0.4 3.532

NAYARIT qj 0.201 0.783 0.016

kj 0 0.012 0.762

NUEVO LEON qj 0.82 0.18

kj 0 0.439

OAXACA qj 0.354 0.616 0.03

kj 0 0.059 1.231
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independence or a constant rate for each observation might not be appropriate, as most of

the observations are not zero and so crime, within this more macro data frame, might not

even be a rare event. Therefore, the RECC is not convenient to determine the concentration

of crime within this context and more adequate tools for estimating the rate of crime of

each of the k observations exist, for example, by considering the rate as a function of time

t which might consider space, past victimisation, or even the topology of the street network

(Rosser et al. 2016).

Provided that the rate of the i-th region (or a street segment, for instance) is modelled as

a function of time k̂iðtÞ then measuring the concentration of crime within a more macro

data set can be carried out by considering the Event Concentration Coefficient (ECC)

(Prieto Curiel and Bishop 2016) which is constructed similarly, by computing the Gini

Table 5 continued

Year 2015 Population group

1 2 3 4

PUEBLA qj 0.014 0.941 0.045

kj 0 0.038 0.973

QUERETARO qj 0.904 0.095 0.001

kj 0 0.395 3.872

QUINTANA ROO qj 0.121 0.825 0.052 0.003

kj 0 0.026 0.807 2.241

SAN LUIS POTOSI qj 0.003 0.981 0.016

kj 0 0.034 1.7

SINALOA qj 0.854 0.146 0.001

kj 0 0.33 7.734

SONORA qj 0.903 0.096 0.002

kj 0 0.296 2.322

TABASCO qj 0.015 0.966 0.018 0.001

kj 0 0.057 1.208 3.48

TAMAULIPAS qj 0.769 0.229 0.002

kj 0 0.202 4.821

TLAXCALA qj 0.8 0.2

kj 0 0.387

VERACRUZ qj 0.735 0.264 0.001

kj 0 0.124 2.531

YUCATAN qj 0.922 0.075 0.003

kj 0 0.325 1.681

ZACATECAS qj 0.938 0.062

kj 0 0.545

Immune population size are given in bold

Zero crime rate k1 ¼ 0 are given in italic

Chronic population size are given in bold italic

Chronic crime rate kj � 2 are underlined
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Table 6 Group sizes q and crime rate k for the 32 states in Mexico, based on data for robbery of a person,

2016

Year 2016 Population group

1 2 3 4

AGUASCALIENTES qj 0.81 0.19

kj 0 0.219

BAJA CALIFORNIA qj 0.521 0.387 0.092

kj 0 0.022 0.284

BAJA CALIFORNIA SUR qj 0.647 0.317 0.034 0.001

kj 0 0.017 0.453 2.652

CAMPECHE qj 0.869 0.024 0.107

kj 0 0.253 0.284

COAHUILA qj 0.919 0.011 0.069 0.001

kj 0 0.392 0.404 3.726

COLIMA qj 0.726 0.273 0.001

kj 0 0.063 2.605

CHIAPAS qj 0.013 0.982 0.005

kj 0 0.027 1.666

CHIHUAHUA qj 0.871 0.041 0.084 0.004

kj 0 0.265 0.284 2.496

CIUDAD DE MEXICO qj 0.254 0.732 0.014

kj 0 0.265 1.681

DURANGO qj 0.11 0.843 0.046

kj 0 0.024 0.532

GUANAJUATO qj 0.097 0.778 0.125

kj 0 0.031 0.441

GUERRERO qj 0.87 0.115 0.015

kj 0 0.482 0.895

HIDALGO qj 0.832 0.167 0.001

kj 0 0.156 1.962

JALISCO qj 0.017 0.933 0.051

kj 0 0.04 1.055

ESTADO DE MEXICO qj 0.001 0.964 0.035

kj 0 0.228 2.1

MICHOACAN qj 0.793 0.205 0.002

kj 0 0.135 1.771

MORELOS qj 0.633 0.029 0.307 0.031

kj 0 0.231 0.253 1.12

NAYARIT qj 0.008 0.989 0.002

kj 0 0.016 2.129

NUEVO LEON qj 0.056 0.904 0.041

kj 0 0.034 0.534

OAXACA qj 0.256 0.657 0.087

kj 0 0.02 0.595
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coefficient of the k individual rates, even in the case in which they were estimated using a

different model and under different assumptions. In this case, the ECC is constructed as

ECCðtÞ ¼
Pk

i¼1

Pk
j¼1 jk̂iðtÞ � k̂jðtÞj

2k
Pk

i¼1 k̂iðtÞ
; ð8Þ

which would also be a function of time. Thus, the ECC(t) gives a measure of the con-

centration of the rates under a different data frame and with different assumptions, but its

interpretation is the same as the RECC, so values closer to 1 means a higher concentration

of the rates and values closer to zero means a more homogeneous distribution. With the

ECC(t), periods of the week in which crime is more evenly distributed or more concen-

trated in a few places, could be detected.

Table 6 continued

Year 2016 Population group

1 2 3 4

PUEBLA qj 0.467 0.521 0.012

kj 0 0.109 1.156

QUERETARO qj 0.463 0.41 0.127

kj 0 0.025 0.259

QUINTANA ROO qj 0.101 0.798 0.102

kj 0 0.029 0.464

SAN LUIS POTOSI qj 0.029 0.957 0.014

kj 0 0.02 1.114

SINALOA qj 0.825 0.174 0.001

kj 0 0.175 6.803

SONORA qj 0.868 0.131 0.001

kj 0 0.313 6.786

TABASCO qj 0.035 0.905 0.06

kj 0 0.052 0.448

TAMAULIPAS qj 0.147 0.837 0.017

kj 0 0.017 0.648

TLAXCALA qj 0.846 0.153 0.001

kj 0 0.361 3.5

VERACRUZ qj 0.194 0.765 0.041

kj 0 0.023 0.439

YUCATAN qj 0.914 0.006 0.08

kj 0 0.263 0.297

ZACATECAS qj 0.766 0.125 0.109

kj 0 0.042 0.08

Immune population size are given in bold

Zero crime rate k1 ¼ 0 are given in italic

Chronic population size are given in bold italic

Chronic crime rate kj � 2 are underlined
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Table 7 Immune and chronic percentage of the population for the 32 states in Mexico between 2011 and
2016

State Year (%) 2011 2012 2013 2014 2015 2016

AGUASCALIENTES Immune 81.3 86.6 86.5 87.4 83.9 81

Chronic 0 0 0 0 0.2 0

BAJA CALIFORNIA Immune 66.2 60.7 66.8 78.6 63.5 52.1

Chronic 0.2 0 0 0 0.6 0

BAJA CALIFORNIA SUR Immune 85.5 90.2 91.5 80.4 87.1 64.7

Chronic 0 0 0 0.1 0 0.1

CAMPECHE Immune 87.6 89.7 90.4 77.7 95.6 86.9

Chronic 0 0 0 0 0 0

COAHUILA Immune 75.7 90.3 86 85.8 91.2 91.9

Chronic 0 0.3 0 0 0 0.1

COLIMA Immune 69.3 90.6 85.3 92.2 62.3 72.7

Chronic 0 0 0 0.1 0 0

CHIAPAS Immune 84 78.4 86.2 81.2 89.6 1.3

Chronic 0 0 0.1 0 0 0

CHIHUAHUA Immune 67.9 63.8 74.9 78 69.6 87.1

Chronic 0 0 0.5 0 0 0.4

CIUDAD DE MEXICO Immune 50.4 28.1 54.2 59.8 34.8 25.4

Chronic 0 0.1 0.1 0 0 0

DURANGO Immune 64 87.4 81.1 62 88.8 11

Chronic 0 0 0.2 0 0.1 0

GUANAJUATO Immune 77.5 68.3 73.4 75 37.9 9.7

Chronic 0 0 0 0 0.8 0

GUERRERO Immune 83.1 64.1 75.9 82.4 79.6 87

Chronic 0.3 0 0 0 1.2 0

HIDALGO Immune 78.5 80.5 67.5 78.7 3.3 83.2

Chronic 0 0 0 0 0 0

JALISCO Immune 83.5 75.7 81.1 78.1 11 1.7

Chronic 0 0 0.8 0 0.1 0

ESTADO DE MEXICO Immune 42.6 48.6 36.3 49.5 44.6 0.1

Chronic 0 2.1 0.1 0.2 0.2 3.5

MICHOACAN Immune 82.8 77 77.1 81.8 9.6 79.3

Chronic 0 0 0 0.2 0 0

MORELOS Immune 69.4 79.1 74.4 74.5 71.3 63.3

Chronic 0.3 0.5 0.6 0 0.2 0

NAYARIT Immune 86.9 87.3 93 86.7 20.1 0.8

Chronic 0 0 0 0 0 0.2

NUEVO LEON Immune 72.5 62.8 72.4 78.7 82 5.6

Chronic 0 0 0 0 0 0

OAXACA Immune 85.9 54.4 87 82.4 35.4 25.6

Chronic 0 0 0.1 0.4 0 0

PUEBLA Immune 76.3 78.1 73.2 72 1.4 46.7

Chronic 0 0.2 0 0 0 0
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Conclusions

Although this probabilistic approach to studying crime and victimisation rests on limited

assumptions (i.e., that crime occurs independently, and that being victimised once does not

affect the likelihood of being victimised again), by considering the number of crimes that each

person suffers and modelling its random component, we can gain several pieces of valuable

information about the crime problem. First, we can reject the notion that every person suffers

the crime at the same rate, and accept that a homogenous distribution of crime in the popu-

lation is far from being observed. Second, a mixture model provided a distribution of crime

rates for an entire the population. Themodel has only a small number of parameters and so the

distribution is useful for simulating the number of crimes that a population might suffer.

Thirdly, the model allows us to detect whether a group exists which expects to suffer more

than two crimes in a year, so they suffer from chronic victimisation and it also allows us to

detect the existence of a groupwhich is immune to crime. The existence of this immune group

and the chronic group is based on the distribution of the crime rates and not directly on the

number of crimes so, for example, a person who suffered no crime during a year is not

necessarily immune to crime. Instead, theymight have a positive rate of suffering crime but it

was just lucky that they experienced no crime and a similar reasoning applies to a person who

suffered two or more crimes, which could also be observed with a small rate.

The model presented here captures the general behaviour of the distribution of crimes. It

is easily displayed through the Victimisation Profile, a novel way to graphically display the

Table 7 continued

State Year (%) 2011 2012 2013 2014 2015 2016

QUERETARO Immune 75.6 85.1 83.4 65.5 90.4 46.3

Chronic 0 0 0 0 0.1 0

QUINTANA ROO Immune 78.7 85.4 84.8 80.2 12.1 10.1

Chronic 0 0.1 0.1 0.2 0.3 0

SAN LUIS POTOSI Immune 76.5 81.6 81.3 87.4 0.3 2.9

Chronic 0 0 0 0.2 0 0

SINALOA Immune 71 78.8 76 83.3 85.4 82.5

Chronic 0 0.3 0 0 0 0.1

SONORA Immune 85.9 88.9 77.3 78.9 90.3 86.8

Chronic 0 0 0 0 0.2 0

TABASCO Immune 57.4 73.3 80.9 75.6 1.5 3.5

Chronic 0.2 0 0 0 0.1 0

TAMAULIPAS Immune 65.2 80.6 76.8 84.9 76.9 14.7

Chronic 0 0 0 0.2 0.2 0

TLAXCALA Immune 86.6 86.9 66.1 82.5 80 84.7

Chronic 0 0 0.2 0 0 0

VERACRUZ Immune 87.5 78.5 76.7 77.7 73.5 19.4

Chronic 0 0 0 0 0.1 0

YUCATAN Immune 83.5 84.6 78.1 90.3 92.2 91.4

Chronic 0 0 0 0 0 0

ZACATECAS Immune 88.5 60.1 87.6 78.4 93.8 76.6

Chronic 0.1 0.3 0 0 0 0
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distribution of the crime rates suffered by the population, which is comparable between

different populations and over a different time period and so it also provides a versatile tool

for dissemination purposes.

Finally, the model also allows us to construct a global measure for the concentration of

crime (the RECC), which is a comparable metric between different time periods or dif-

ferent populations. This is an adequate tool for measuring the concentration of crime than

others widely used in the field since it takes into account that crime is rare, highly con-

centrated and depends on random elements.

By using data from a victimisation survey in Mexico, and considering a different

distribution of crime over its 32 states over 6 years, this study revealed that in most cases

there is a considerably large population group which suffers a crime rate equal to zero so

that they are statistically immune to crime. Also, some states have a small population

which suffers chronic victimisation, meaning that they expect to suffer two or more crimes.

These sorts of questions could also be answered using other data sources, for instance, the

National Crime Victimization Survey (NCVS) (Bureau of Justice Statistics 2016), the

Crime Survey for England and Wales (Office for National Statistics 2017) or perhaps by

examining crime calls at addresses or street segments (Hipp and Kim 2016).

Using the specific case of the robbery of a person suffered in Mexico City between 2011

and 2012 allowed us to show a real scenario for which the traditional tools for measuring

crime concentration failed to detect any major changes between one year and the next one,

but the Victimisation Profile and the corresponding RECC show a drastic change in the

observed pattern in which that crime is suffered.

A similar analysis could be conducted by considering the number of crimes committed

by the population. With proper data we could also consider the rates at which the popu-

lation commits crime and divide the population into the non-criminal group, the one-time

offenders and the chronic offenders (Wolfgang 1983) which would be helpful to determine

the effect of a preventive program.

This work goes towards the provision of adequate tools in the field in response to the

need highlighted by the law of crime concentration (Weisburd 2015). Having adequate

tools to measure the global concentration of crime, both from the crime that is suffered and

the crime that is executed by the population, or whether is a spatial metric or based on the

time of the crime, can help researchers and policy makers better understand the crime

problem and what can be done to fix it.
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