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1 Introduction

The impressive growth of Bayesian econometric applications in the last two decades has been clearly due to the
driving force of computational methods. The need to evaluate high dimensional integrals for all practically important
or interesting applications was acknowledged very early and the very first numerical integration strategies for
the implementation of the Bayesian paradigm were based on importance sampling simulations introduced in the
seminal paper by Kloek and van Dijk (1978). Although the major advances in Bayesian econometrics has been
compelling in terms of Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo methods, the original goal
of drawing Monte Carlo based independent samples from a high-dimensional posterior density in a computationally
straightforward way has attracted a lot of research interest in the past 35 years.

The importance sampling scheme we consider is the following. Suppose that interest lies in approximating
expectations Ef of some measurable function f(θ) with respect to a (target) un-normalised posterior density
p(θ|Y ) ∝ L(θ;Y )p(θ) ≡ π(θ|Y ), θ ∈ Θ is a continuous parameter vector in <k, Y denotes the data, L(θ;Y ) denotes
the likelihood function and p(θ) denotes the prior density. The vast majority of the information required in any
Bayesian analysis problem can be expressed as an expectation which requires evaluation of at most k-dimensional
integrals. These expectations can be approximated by first sampling I i.i.d. samples θi, i = 1, . . . , I from a density
q(θ;α) indexed by a parameter vector α and then using the approximation

Êf =

∑n
i=1 wif(θi)∑n

i=1 wi
, wi =

p(θi|Y )

q(θi;α)
, i = 1, . . . I, (1)

where n−1
∑n
i=1 wi is an approximation of the marginal likelihood of the dataM(Y ) =

´
Θ
L(θ;Y )p(θ)dθ.

The strong law of large numbers guarantees that Êf → Ef almost surely and a central limit theorem yields that
√
n(Êf − Ef) is asymptotically normal with zero mean and variance σ2 equal to the expected value, with respect

to p(θ|Y ), of p(θ|Y )2q(θ;α)−2(f(θ)− Ef)2; see Geweke et al. (1989). Following the article by Kloek and van Dijk
(1978), the development of importance sampling simulation strategies in Bayesian econometrics was enhanced by
the work of Van Dijk and Kloek (1980) and Geweke (1988); Geweke et al. (1989). Evans (1991) was the first to
suggest the idea of adaptive importance sampling in which the parameters α can be adapted along with Monte
Carlo sampling. The idea has been turned out to be popular, see for example West (1993), Oh and Berger (1993),
Givens and Raftery (1996), Bauwens et al. (2004), Richard and Zhang (2007), Hoogerheide et al. (2007), Cappé et al.
(2008), Ardia et al. (2009). It is well known that the variance of the consistent and asymptotically normal estimator
Êf depends crucially on how well q(θ;α) approximates p(θ|Y ). Therefore, the key problem considered in these
papers is the construction of off-the-shelve algorithms for posterior integration that automatically update q(θ;α)

so that it approximates p(θ|Y ). In recent years, this problem has been more popular because of the immediate
application of such methods to sequential Monte Carlo algorithms, see for example Cornebise et al. (2008, 2014).

Since q(θ;α) is typically multidimensional and needs to be sampled efficiently, a common choice is a mixture of
multivariate normal or Student-t densities. Adaptation of α, which here denotes number of components, means,
covariance matrices and mixture proportions, is based on either minimisation of the chi-square distance (Kong et al.,
1994; Liu, 2008) or the Kullback-Leibler divergence (Cappé et al., 2008) between q(θ;α) and p(θ|Y ). The fact that
adaptation is being performed in a high dimensional space with often multi-modal posterior densities makes this
adaptation process often problematic.

Our basic idea is based on Sklar (1959) celebrated theorem which states that the density p(θ|Y ) can be written as
a product of k univariate marginal densities and a k-dimensional copula density for which the marginal probability
of each variable is a uniform density on (0, 1). Research directions in this area have been focused on optimal choice of
copulas. Simulation methods to generate random variables from a given copula have been derived to aid Monte Carlo
checking of certain estimator properties. Random number generation methods consist of the conditional inverse
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method in which samples from conditional densities are generated recursively and the methods by Marshall and
Olkin (1988) and McNeil (2008). Although these algorithms are in general inefficient for high dimensional copulas,
there are recent examples of fast sampling algorithms, see for example Smith and Maneesoonthorn (2016) and Oh
and Patton (2017). We exploit Sklar’s theorem by constructing an adaptive importance sampling strategy based on
a proposal density q(θ;α) which approximates the k marginal densities and the k-dimensional multivariate copula
density by probability density functions that are easy to sample from. The marginal densities are approximated
with finite mixtures of univariate Student-t distributions and the copula density with finite mixture of multivariate
beta-Liouville distributions. The parameters α of all mixture densities, including the number of components in
each finite mixture, are updated adaptively along with the Monte Carlo sampling by minimising the chi-square
distance between the target and proposal densities. We document that this approximation performs well in a series
of Bayesian econometrics problems and it is easy to craft in practice.

Our sampling method can be applied with various variants in challenging high-dimensional Bayesian inference
problems. We illustrate that in the popular family of latent Gaussian models, adoption of sequential, nested
approximations are adequate to construct an importance sampling function that samples efficiently the required
posterior distribution. The flexibility of our sampling strategy is successfully tested in a series of challenging, new
high-dimensional vector autoregressive models with time-varying parameters and multivariate stochastic volatility.

The rest of the paper proceeds as follows. Section 2 describes our methodology and Section 3 illustrates it to a
collection of popular Bayesian inference problems. In Section 4 we present variants of the basic methodology that
can handle latent Gaussian models together with prediction and sequential updating inferences. We conclude with
a short discussion in Section 5.

2 Construction of the importance sampling

2.1 Specification of the importance function

We follow Bauwens et al. (2004) and start by applying an initial transformation as follows. If the initial parameter
is denoted by ϑ = (ϑ1, . . . , ϑk), it is transformed to a new parameter vector θ = (ρ, η) ∈ < × {η ∈ <k−1 : η′η < 1}
using the transformation

ρ = sgn(ϑk)
√
ϑ′ϑ, (2)

ηj = ϑjρ
−1, j = 1, . . . , k − 1. (3)

The Jacobian of the transformation is ρk−1(1 − η′
η)−1/2. Bauwens et al. (2004) have proposed efficient MCMC

schemes based on the Metropolis-Hastings algorithm to sample ρ and η by introducing the class of adaptive radial-
based direction sampling methods to sample from a posterior distribution which may be non-elliptical.

We construct the importance function q(θ;α) by exploiting Sklar (1959) theorem which states that any posterior
density p(θ|Y ) can be written as

p(θ|Y ) =

k∏
j=1

pj(θj) · c(u1, . . . , uk), (4)

where pj(θj) denotes the marginal density of the j-th element of θ, uj = Pj(θj) =
´ θj
−∞ pj(φ)dφ and c(u1, . . . , uk)

represents a copula density. Our suggested proposal density q(θ;α) is constructed as follows. First, we choose
p̃j(θj) to be flexible univariate densities that can capture many shapes of the marginals pj(θj) and let

uj = P̃j(θj) =

θjˆ

−∞

p̃j(φ)dφ. (5)
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We now choose c̃(u1, . . . , uk), 0 < uj < 1, j = 1, . . . , k, to be a k-dimensional density that can be sampled efficiently
and define the importance function as

q(θ;α) = c̃(P̃1(θ1), . . . , P̃k(θk))

k∏
j=1

p̃j(θj). (6)

Thus, samples from q(θ;α) can be obtained by first sampling u1, . . . , uk from c̃(u1, . . . , uk) and then obtaining
θj from (5) by inverting P̃j . It is necessary to choose densities p̃j of known form, such as normal or Student-t,
so that numerical inversion of P̃j can be performed through commonly available software. We emphasize here
that the crucial advantage between our sampling strategy against existing adaptive Monte Carlo methods for
generating samples from p(θ|Y ) is that the hard problem of fitting the high-dimensional dependence induced by
the posterior density is achieved by approximating the copula density and all marginal densities rather than the
posterior density itself. Our method involves an approximation in {u ∈ <k+ : 0 ≤ uj ≤ 1, j = 1, . . . , k} and k

univariate approximations in R which are much easier than one approximation over <k.
We propose approximating each marginal density by a mixture of Gj Student-t univariate densities with param-

eters αpj = (Gj , σ
2
jg, πjg, µjg, νjg),

∑Gj

g=1 πjg = 1, 0 < πjg < 1, µjg ∈ R, νjg, σjg ∈ R+:

p̃j(θj) =

Gj∑
g=1

πjg
Γ(

νjg+1
2 )

Γ(
νjg
2 )(νjgπσ2

jg)
1/2

(
1 +

(θj − µjg)2

νjgσ2
jg

)−(νjg+1)/2

, j = 1, . . . , k. (7)

This choice is by no means unique. Any flexible family of univariate densities could have been chosen and we do
not believe that the performance of our proposed methodology would be affected.

A key methodological aspect in our sampling strategy is the choice of the importance function that approximates
the copula density. An obvious choice is a finite mixture of Gaussian or t-copulas which are based on the corre-
sponding elliptical multivariate distributions. However, the estimation of these copula densities requires estimation
of k(k + 1)/2 parameters of covariance matrices which increases quadratically with k and renders the estimation
process cumbersome. Other choices such as, for example, the random Bernstein polynomial copula density, see
Burda and Prokhorov (2014), which is a mixture of a product of beta densities is hard to sample from and its
evaluation is computationally very expensive.

We propose the use of a finite mixture of beta-Liouville densities which have k + 2 parameters and sampling
from them is straightforward. The beta-Liouville density is a product of a Dirichlet density with parameters αi and
a beta density g with parameters a and b, see (Fang et al., 1990, p. 147). It is written as

pL(u1, . . . , uk;α1, . . . , αk, a, b) =

k∏
i=1

uαi−1
i

Γ(αi)

Γ(
∑k
i=1 αi)

(
∑k
i=1 ui)

∑k
i=1 αi−1

ga,b(

k∑
i=1

ui), (8)

where 0 ≤ ui ≤ 1. It is a generalisation of the Dirichlet distribution since its covariance elements can be, unlike the
Dirichlet distribution, positive or negative. Since we need to approximate c(u1, . . . , uk) we need

∑k
i=1 ui ≤ k so we

choose ga,b to be a beta density of the first kind with parameters a and b, see McDonald and Xu (1995):

ga,b(r) =
1

B(a, b)
k1−a−bra−1(k − r)b−1, 0 < r < k.

The induced copula function of (8) inherits the dependence structure of the scale mixture representation of Liouville
densities and its survival copula belongs to the family of Liouville copulas introduced by McNeil and Nešlehová
(2010). Like the Liouville copulas, the copula function induced by (8) does not have an explicit form and can be only
written with respect to the Williamson’s transform. There are recent results about the tail behaviour of Liouville
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copulas and that of their corresponding survival counterparts such as the one we propose through (8), see Belzile and
Nešlehová (2017) and Hua (2016). Clearly, this tail behaviour depends on the interaction between the tail behaviour
of the Dirichlet density induced by the parameters αi and the beta density ga,b. One clear advantage of this copula
is that it has richer tail behaviour than that of the Archimedean copulas derived by setting all Dirichlet parameters
αi = 1 which assumes symmetric (exchangeable) dependence. In general, unlike other symmetric copulas such
as, for example, Gaussian or Student-t copulas, the copula function induced by (8) will have the ability to better
adapt to more complex posterior shapes because it is able to capture asymmetric, non-exchangeable dependence.
An enrichment of the association structures captured by copula functions is achieved via mixtures of copulas, see
for example Arakelian and Karlis (2014), so our copula density is taken to be a finite mixture of beta-Liouville
densities:

c̃(u1, . . . , uk) =

Gc∑
g=1

πcgpL(ug1, . . . , ugk;αg1, . . . , αgk, ag, bg) (9)

with parameters αc = (Gc, πcg, αg1, . . . , αgk, ag, bg),
∑Gc

g=1 πcg = 1, 0 < πcg < 1, αg1, . . . , αgk, ag, bg ∈ R+. Thus,
α = (αc,αpj , j = 1, . . . , k).

To generate random drawings from (8) we use the following construction, see (Fang et al., 1990, p. 146).
Suppose wi ∼ Be(

∑i
j=1 αj , αi), are mutually independent and independent of r =

∑k
i=1 ui . Then the required

draw is u = r(
∏k−1
i=1 wi, (1−w1)

∏k−2
i=2 wi, . . . , 1−wk−1). The inversion of P̃j is achieved numerically as follows. The

distribution function of the Student-t density is available through standard statistical packages, so P̃j(θj) is available
through (7). Then, the required θj is obtained by solving the optimisation problem θj = arg minx(P̃j(x)− uj)2.

2.2 Adaptation of the importance function

We use the general methodology of adaptive importance sampling which is based on the following steps. For a
given α we sample θi, i = 1, . . . , I from q(θ;α) and we compute the un-normalised weights wi in (1). Adaptation
refers to the way α is being estimated adaptively from the sample θi so that it approximates the posterior density
of interest p(θ|Y ). The most often used criterion is the chi-squared distance between p(θ|Y ) and q(θ;α) defined as

W(α) =

ˆ

Θ

p(θ|Y )

q(θ;α)
p(θ|Y )dθ − 1 =

ˆ

Θ

{
p(θ|Y )

q(θ;α)

}2

q(θ;α)dθ − 1.

Geweke et al. (1989) argued that this is a reasonable objective function to minimise and the criterion has been used
extensively since, see for example Ardia et al. (2009). In fact W(α) is just the variance of the weight function wi
defined in (1) under the proposal density q(θ;α) and can be readily estimated by computing the squared coefficient
of variation of the un-normalised weights

W̃(α) =
I
∑I
i=1 w

2
i

(
∑I
i=1 wi)

2
− 1.

Note that W̃(α) is related to the efficient sample size (ESS) which is often used to measure the overall efficiency
of the importance function since it represents the number of i.i.d samples equivalent to the number of importance
sampling drawings, see Kong et al. (1994):

I−1ESS = (1 + W̃(α))−1. (10)

The chi-squared distance is not the only criterion that can be used in our proposed sampling strategy. In one of
our examples we also use, for comparison purposes, the relative numerical efficiency introduced by Geweke et al.
(1989) to measure how well an adaptive importance sampling density is tailored to the target density. This quantity
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is just the ratio var(q(θ;α))/σ2 and is interpreted as the ratio of number of replications required to achieve any
specified numerical standard error using the adaptive importance sampling density, to the number required using
the posterior as an importance sampling density. The Kullback-Leibler divergence which is central in cross-entropy
methodology is also another alternative, see for example Rubinstein and Kroese (2013); we have not explored this
criterion here.

Minimization of W̃(α) with respect to α can be performed using widely available conjugate gradient algorithms
with numerical derivatives. We use subroutine tn from package opt in netlib, a truncated Newton algorithm
due to S. G. Nash which is efficient when the number of variables is large. We choose not to update all vector of
parameters α simultaneously but instead we update the subset α

′
which denotes all elements of α except the number

of components Gj and Gc. The algorithm proceeds by starting with one mixture component for each marginal and
the beta-Liouville density and if a chosen desired optimisation criterion is not satisfied we add one component in
each sampling density; see Algorithm 1. This heuristic adaptation strategy has been suggested by Hoogerheide
et al. (2012) who discuss the different merits of an algorithm that continues adding mixture components until the
quality of the approximation does not improve against alternatives which may require more computing time.

Start with Gj = Gc = 1, j = 1, . . . , k; Fix ε.
while the relative change of W̃(α) is greater than ε do

for all j set Gj = Gj + 1; set Gc = Gc + 1 ; Minimize W̃(α
′
);

end
Algorithm 1: The adaptive importance sampling algorithm

Algorithm 1 does not necessarily reach a global minimum of W̃(α
′
). This issue is very important when an

inference problem requires a probabilistic description of the marginals or the copula with a parsimonious model
based on finite mixture of densities. However, our goal here is to construct an efficient importance function so
the key criterion is the ESS and we have found that Algorithm 1 obtains values of W̃(α) < 1 in all our real data
examples. The trade-off between searching for optimum values or just increasing the number of mixtures depends
on whether one would like to adopt a black-box or a more elaborate, adaptive optimisation algorithm. Algorithm 1
needs only one tuning parameter, ε. In the extended and challenging examples we present in the following Sections
we have found that ε = 0.01 works very well and the algorithm converges with at most three components.

The ESS reported in our illustrative examples is based on the resulting number of mixture components and
it does not take into account the numerical effort to construct the importance function through the iterations of
Algorithm 1. Depending on the cost to evaluate the posterior kernel, this effort might render the efficiency of
Algorithm 1 questionable. To address this issue, and for a more direct comparison with other methods, we also
report W̃(α

′
) obtained by fitting directly five components Gj = Gc = 5, j = 1, . . . , k; see Algorithm 2.

Start with Gj = Gc = 5, j = 1, . . . , k. Minimize W̃(α
′
).

Algorithm 2: The non-adaptive importance sampling algorithm

Algorithm 2 may unnecessarily use more components for the importance function and it is more probable that
it will converge to a local minimum. But there is considerable improvement in numerical efficiency compared to
Algorithm 1 and it serves as a yardstick for comparing ESS against other Monte Carlo algorithms. In the Appendix,
we report results from this strategy in all our illustrative examples. We have found that although the resulting
importance function is not as good as the one derived by Algorithm 1, the overall ESS is satisfactory.

During the first iteration of both Algorithms, the minimisation of W̃(α
′
), requires initial values. In all our

examples we used some plausible, naive initial values, taken as follows. The Student-t densities were initialised at
zero mean, unit scale and five degrees of freedom, the parameters of beta-Liouville densities were set to αj = 0.5,
j = 1, . . . , k, and a = b = 1 and the five mixing parameters for Algorithm 2 were taken to be equal to 0.2

6



When the number of components is increased, our optimisation strategy in Algorithm 1 exploits the current
optimal values exactly as described in Algorithm 1 of Hoogerheide et al. (2012): we propose the new mixture
component in the region in which the current importance sampling weights are larger and we keep all other parameter
estimates equal to the current values. An alternative that provided identical results in all our examples is to split
the component which has the largest weights by sampling new parameters and mixing probabilities exactly as
Richardson and Green (1997) proposed split moves in their reversible jump algorithm for finite mixtures of normals.

In all the examples of the following Sections, the estimation of W̃(α
′
) in each iteration of Algorithms 1 and

2 was based on samples of size I2 = 100, 000. We did not experiment with the values of I2, as we consider it as
a preliminary stage to construct the importance function. For a direct comparison with other methods such as
MCMC with respect to function evaluations, one may replace the sample size I with I + I2 and make a direct
comparison of ESS obtained by Algorithm 2. We discuss this issue further in Section 5.

3 Empirical applications

3.1 Incomplete simultaneous equation model

We follow closely Hoogerheide et al. (2007) and consider the following possibly over-identified instrumental variables
model, also known as the incomplete simultaneous equations model or errors in variables model, see Zellner et al.
(1988):

y1 = y2β + ε

y2 = Xπ∗ + v

where y1 and y2 are T × 1 observation vectors, X is a T × k matrix of weakly exogenous variables, β is a scalar
structural parameter of interest, π∗ is a k × 1 vector of reduced form parameters and ε, v are T × 1 vectors of
error terms such that their corresponding T elements follow a bivariate normal distribution with zero mean and
covariance matrix Σ. Assume that the prior density is non-informative and has the form

p(β, π∗,Σ) ∝ |Σ|−h/2

and we set h = 3. After integrating out Σ we obtain

p(β, π∗|Y,X) ∝

{
det

[
(y1 − y2β)′(y1 − y2β) (y1 − y2β)′(y2 −Xπ∗)
(y2 −Xπ∗)′(y1 − y2β) (y2 −Xπ∗)′y2 −Xπ∗)

]}−T/2
(11)

which is a bivariate density that is a challenging case for our method since it may show highly non-elliptical shapes
when instruments are weak, see Drèze (1976, 1977) and Kleibergen and Van Dijk (1994, 1998). For π∗ = 0 it is well
known from Kleibergen and Van Dijk (1994, 1998) that the posterior kernel is improper, although it can be made
proper by restricting β and π∗ to certain bounded regions. We simulate data as in Hoogerheide et al. (2007) and
we evaluate the posterior density in (11) as follows. We set k = 1, T = 100, β = 0, σ11 = σ22 = 1, π∗ = 0, 0.1 or
1 and ρ = 0, 0.1 or 1 where ρ is the correlation deduced from Σ between the error terms ε and v. Thus, we have
nine combinations resulted from the 3 × 3 values of π∗ and ρ that represent three different cases of identification,
or quality of instruments, expressed via π∗, and three cases of endogeneity expressed through ρ. The matrix X
was filled with independent draws from a standard normal density. Hoogerheide et al. (2007) used their AdMit

procedure to construct a Type 3 neural network approximation, a mixture of 15 Student-t distributions, and used
a million drawings from an algorithm based on importance sampling and Metropolis-Hastings. We did not use the
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exact same artificial data as in Hoogerheide et al. (2007) so slight sampling errors may have occurred.
The convergence behaviour of Algorithm 1 is reported in Table 1 whereas final parameter estimates, based on

three components, are shown in Table 2. Direct comparison with the results of Hoogerheide et al. (2007) based on
one million drawings, reported in Table 2 in their paper, is illustrated in Table 3. The results of the two methods are
very similar, indicating that our importance function captured very well the non-elliptical contour of the posterior.
Our ESS, expressed through W̃(α

′
) is slightly better than that of Hoogerheide et al. (2007). Algorithm 1 was

based on I = 107 after adaptation and the posterior standard errors are based on 20 independent replications of
our algorithm.

Number of components W̃(α
′
) W̃(α

′
) without transformation

1 85.18 97.12
2 7.43 12.44
3 0.75 3.55

Table 1: Incomplete simultaneous equation model. Number of components and corresponding value of W̃(α
′
)

achieved by Algorithm 1.

We also investigated the usefulness of the initial approximation (2)-(3) by comparing the values of W̃(α
′
)

obtained by Algorithm 1 without the transformation; see Table 1. It is evident that the initial transformation is
useful since, for example, the values obtained for ESS for 3 components and sample size I = 1000 are, through (10),
571 and 220 with and without the transformation respectively.

Evidently, the posterior results are quite close to Hoogerheide et al. (2007) but the effective sample size expressed
through (10) and the relative numerical efficiency indicate the advantage of importance sampling over MCMC.
Algorithm 2 produced W̃(α

′
) = 0.80. This is very similar to the best values obtained with 3 components via

Algorithm 1. The final parameter estimates are reported in the Appendix.

3.2 Mixture GARCH model

The mixture GARCH model of Ausín and Galeano (2007) is formulated as

yt = µ+ h
1/2
t εt

ht = ω + α(yt−1 − µ)2 + βht−1

where ht denotes the instantaneous volatility at time t, t = 1, . . . , T , εt ∼ N (0, σ2) with probability ρ and εt ∼
N (0, σ2λ−1) with probability 1− ρ, 0 < λ < 1, σ2 = (ρ+ (1− ρ)/λ)−1 and the parameter vector to be estimated is
θ = (µ, ω, α, β, ρ, λ). To impose covariance stationarity, we restrict ω > 0 and α, β ≥ 0 with α+ β < 1.

The initial value h0 is treated as a known constant set as the sample variance yt. Following Bastürk et al.
(2017), we use the S&P 500 index percentage log-returns (100 times the change of the logarithm of the closing

π∗1 π∗2 β
location parameters, Student-t -0.023, 0.017, 0.033 -0.024, 0.017, 0.024 0.71, 0.25, 0.32
scale parameters, Student-t 1.82, 2.36, 0.25 0.31, 0.44, 0.78 0.67, 2.57, 4.43
d.f. parameters, Student-t 1.34, 5.72, 9.44 1.77 3.81 6.13 2.40, 7.17, 15.32

mixing probabilities, Student-t 0.24, 0.32, 0.44 0.27, 0.33, 0.40 0.14, 0.45, 0.41
beta-Liouville, αj (0.44, 0.81, 0.92), (0.12, 0.24, 0.71), (0.25, 0.32, 0.61)

beta-Liouville, (a, b) (3.81, 7.44), (2.52, 6.33), (4.41, 9.32)
mixing probabilities, beta-Liouville 0.334, 0.541, 0.125

Table 2: Incomplete simultaneous equation model. Final estimates of Algorithm 1 based on 3 components.
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π∗1 π∗2 β

posterior mean 0.0197 0.0158 0.6355
posterior mean, HKD 0.0200 0.0158 0.6357

posterior standard error ×20 1.2× 10−4 1.4× 10−4 0.0071
posterior standard error ×20 , HKD 1.2× 10−4 1.4× 10−4 0.0070

relative numerical efficiency 0.9715 0.9822 0.9533
relative numerical efficiency, HKD 0.3622 0.3586 0.2211

Posterior standard deviation 0.0944 0.0934 3.0742
Posterior standard deviation, HKD 0.0945 0.0934 3.0745

W(α
′
) 0.75

W(α
′
), HKD 1.47

Table 3: Incomplete simultaneous equation model. Summary of results: HKD refers to the results of Hoogerheide
et al. (2007).

price) from January 2, 1998 to December 26, 2002. For the dimensional parameter vector θ we place a uniform
prior on [−1, 1]× (0, 1]3× ( 1

2 , 1]. The likelihood function, hence the posterior density under an uninformative prior,
may have non-elliptical shapes (Zivot, 2009). We illustrate our importance sampling strategy by comparing it
with the results of Bastürk et al. (2017). Moreover, we also included in our comparison the Hamiltonian Monte
Carlo algorithm of Girolami and Calderhead (2011) started at the first-stage GMM estimators and run for 50,000
iterations with 10,000 iterations as burn-in.

The results are based on 104 draws of the final importance function of Algorithm 1 based on two mixture
components. Tables 4 and 5 present values of W̃(α

′
) and comparisons with other competing methods with respect

to CPU times. Note that the CPU times reported here for AdMit and MitISEM are smaller than the ones reported
by Bastürk et al. (2017) because are based on the same mainframe computer as Algorithm 1 for fair comparison.
The CPU time of Algorithm 1 refers to the time required for both the adaptation and the sampling effort. The
results indicate that we do better than the other importance sampling methods with respect to ESS and as well
as the Hamiltonian Monte Carlo, which, of course, requires more draws because of the Markovian dependency
of the sampler and more effort because of the necessity to derive second derivatives of the likelihood function.
However, our sampling method is slower with respect to computing time. Notice the trade-off between efficiency
and precision between Algorithms 1 and 2: it seems that here Algorithm 2 is preferable, it has only slightly larger
W̃(α

′
) while it uses 70% of the CPU time used by Algorithm 1. We also report in Table 4 the improvement of the

initial parameter transformation (2)-(3) and in Table 6 the final estimates of Algorithm 1 based on two mixture
components. Here it seems that the initial parameter transformation does not offer a great improvement in the
efficiency of the algorithm. Finally, Algorithm 2 resulted in W̃(α

′
) = 0.92 which is very satisfactory; see Appendix

for the corresponding parameter estimates.

number of components W̃(α
′
) W̃(α

′
) without the

transformation
CPU time in seconds

AdMit 5 1.99 - 17.57
MitISEM 3 0.99 - 6.12

Algorithm 1 1 2.35 3.42 -
Algorithm 1 2 0.88 0.97 215.3
Algorithm 2 5 0.92 - 151.45

Table 4: Mixture GARCH model. Values of W̃(α
′
) and CPU times. AdMit is the Adaptive mixture of Student t-

distributions approach and MitISEM is the mixture of t-distributions importance sampling using the EM algorithm
for crafting the mixture approximation. Transformation refers to the initial transformation (2)-(3). The results
of W̃(α

′
) for AdMit and MitISEM are taken from Bastürk et al. (2017). All CPU times are based on the same

mainframe computer. CPU time for AdMit and Algorithm 1 includes adaptation time.
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Posterior mean numerical standard error ×100
AdMit MitISEM HMC Algorithm 1 AdMit MitISEM HMC Algorithm 1

ω 0.08 0.08 0.080 0.081 0.07 0.05 0.041 0.04
λ 0.37 0.37 0.369 0.372 0.17 0.17 0.132 0.13
β 0.86 0.86 0.863 0.862 0.07 0.05 0.032 0.03
α 0.10 0.10 0.103 0.102 0.06 0.03 0.025 0.02
ρ 0.79 0.79 0.792 0.792 0.30 0.23 0.151 0.15
µ 0.03 0.03 0.031 0.032 0.07 0.05 0.020 0.02

Table 5: Summary of results for the mixture GARCH model. The results of AdMit and MitISEM are taken from
Bastürk et al. (2017). AdMit is the Adaptive mixture of t-distributions approach and MitISEM is the mixture of
Student t-distributions importance sampling using the EM algorithm for crafting the mixture approximation. HMC
is the Hamiltonian Monte Carlo of Girolami and Calderhead (2011).

µ ω α β ρ λ

location parameters, Student-t 0.17, 0.28 0.10, 0.32 0.15, 0.41 0.28, 0.53 0.22, 0.35 0.21, 0.35
scale parameters, Student-t 0.11, 0.18 0.04, 0.09 0.08, 0.15 0.03, 0.11 0.04, 0.09 0.02, 0.04
d.f parameters, Student-t 3.23, 8.33 5.12, 11.3 1.82, 9.85 3.15, 7.12 4.12, 9.81 3.18, 8.16

mixing probabilities, Student-t 0.31, 0.69 0.35, 0.65 0.21, 0.79 0.61, 0.39 0.66, 0.34 0.77, 0.23
beta-Liouville, αj (0.12, 0.19), (0.05, 0.36), (0.10, 0.61), (0.14, 0.64), (0.15, 0.33), (0.22, 0.53)

beta-Liouville, (a, b) (1.82, 6.14), (1.30, 4.71)
mixing probabilities, beta-Liouville 0.713, 0.287

Table 6: Mixture GARCH model. Final estimates of Algorithm 1 based on two components.

3.3 Marginal likelihood calculation: The EGARCH model

We consider the parameter rich EGARCH-type model of Durham and Geweke (2014) which allows for more than
one volatility factor and a finite mixture of normals structure for the disturbance term. The model is as follows:

yt = µY + σY exp
(∑K

k=1 vkt/2
)
εt, t = 1, . . . , T

vkt = αkvk,t−1 + βk

(
|εt−1| −

√
2/π

)
+ γkεt−1, k = 1, . . . ,K

where yt represents the returns of an asset, vkt are volatility factors and µY , σY , αk, βk, γk parameters that are
restricted with the usual covariance stationarity restrictions. The disturbance density p(εt) is modelled as a finite
mixture of normal densities

p(εt) =

L∑
i=1

piφ(εt;µi, σ
2
i ).

where φ(ε;µ, σ2) represents the normal density with mean µ and variance σ2. This specification is completed with
the zero mean and unit variance conditions

L∑
i=1

piµi = 0,

L∑
i=1

pi
(
µ2
i + σ2

i

)
= 1.

The models are indexed by K, the number of volatility factors, and L, the number of components in the return
disturbance normal mixture. The original EGARCH model due to Nelson (1991) has K = L = 1. Durham and
Geweke (2014) craft carefully a novel sequential Monte Carlo sampler to perform Bayesian analysis of this model.

We compare our results directly with that of Durham and Geweke (2014) so we use price log-differences as
returns of the S&P 500 beginning January 3, 1990 (t = 1) and ending March 31, 2010 (T = 5, 100).
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Algorithm 1 converged to 3 components with values of W̃(α′) being 2.35, 1.46 and 0.33 for 1,2 and 3 components
respectively, whereas Algorithm 2 resulted in W̃(α′) = 0.42. The corresponding final estimates are presented in the
Appendix.

Our comparison with the results in Durham and Geweke (2014) is provided in Table 7. They used a Bayesian
sequential Monte Carlo sampling strategy with 216 particles organised in a computationally efficient way in 26 groups
of 210 particles each. Their estimates of log marginal likelihood are taken from their Table 1, p. 24 corresponding
to their ‘Hybrid Step 2’ which has lower numerical standard error compared to ‘Hybrid Step 1’.

EGARCH

(K, I)

Durham

and Geweke

(2014) LML

Durham

and Geweke

(2014) NSE

Importance

sampling

LML

Importance

sampling

NSE

ESS
without

transforma-
tion

ESS of
Algorithm 1

ESS with
Gaussian
copula

(1,1) 16,641.69 0.0541 16,642.11 0.0542 82.42% 95.42% 5.46%

(1,2) 16,713.60 0.0799 16.713.40 0.0781 81.51% 98.51% 4.90%

(2,1) 16,669.39 0.0929 16,668.76 0.0932 75.32% 94.32% 4.48%

(2,2) 16,736.89 0.0864 16,736.73 0.0872 74.44% 97.45% 3.77%

(2,3) 16,750.83 0.0869 16,750.25 0.0903 63.24% 98.23% 3.52%

(3,2) 16,734.94 0.0735 16,735.65 0.0633 61.12% 98.12% 2.99%

(3,3) 16,748.75 0.0646 16,748.55 0.0645 72.25% 96.25% 2.62%

(3,4) 16,748.64 0.0716 16,748.33 0.0711 75.14% 98.15% 2.37%

(4,3) 16,745.61 0.0725 16,745.20 0.0722 64.12% 97.13% 1.84%

(4,4) 16,745.54 0.0643 16,745.39 0.0642 72.21% 98.26% 1.72%

Table 7: Log marginal likelihood estimation, EGARCH model. LML = log marginal likelihood; NSE = numerical
standard error; ESS= Effective sample size as as % of number of draws. Transformation refers to the initial
transformation (2)-(3).

Compared to Durham and Geweke (2014) our method does not always deliver lower numerical standard errors
although the differences are not very large and estimates of the log marginal likelihood are comparable. Notably,
both approaches agree that K = 2 and L = 3 works best for this data in terms of marginal likelihood.

Finally, Table 7 includes results from an experimental exercise that illustrates the need to adopt the initial
transformation (2)-(3) and a mixture of beta-Liouville densities rather than, for example, a simple Gaussian copula.
The transformation offers only a small improvement but clearly the Gaussian copula produces a very inefficient
importance sampler with very low ESS.

In terms of computing time, the algorithm of Durham and Geweke (2014) clearly outperforms ours in terms of
CPU time. For example, our importance sampling took 178 and 14, 890 seconds for EGARCH(1,1) and EGARCH(4,4)
models respectively, whereas the corresponding reported values in Durham and Geweke (2014) are 65 and 2685 sec-
onds respectively. Note that the algorithms of Durham and Geweke (2014) have used parallel computing environment
with full GPU implementation.

4 Latent Gaussian models

We focus on a very large family of latent Gaussian models that have a wide range of applications in all areas of
econometrics. In these models, the density of the response variable yt, t = 1, . . . , T , is assumed to belong to an
exponential family and is written as p(Y |θ,H), where H = (H1, H2, . . . ,HT ) denotes a vector of T latent Gaussian
variables with mean zero and a precision matrix which specifies the prior structure imposed to H. Temporal
dependence is introduced by treating the latent process as a structured time series model. The Bayesian treatment
of these models requires to treat H as an extra set of parameters and obtain a sample from p(θ,H|Y ). When
integrating out the latent variables H is not possible, the dimension of the posterior densities increases with the
number of observations, so the required approximation we propose in this paper requires special treatment which
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is presented in this Section. Clearly, this family of models represents a challenging task for our sampling strategy.

4.1 Full conditional approximations

Our approximation to the posterior marginals can be enriched by results in Bayesian inference for latent Gaussian
models through nested Laplace approximations as developed by Rue et al. (2009). The Gaussianity of the latent
paths allows estimation of posterior marginal densities and such approximations may be used as initialisations
of the optimisations required in our construction of mixtures of Student-t densities. We propose here a faster
approximation which is based on approximating the posterior full conditional densities. Although the resulting
approximation may not be as accurate as that of the Laplace approximation, it is adequate for approximating an
importance sampling density and it involves only lower-dimensional optimisations.

First, consider the simple, but often met, case in which the modes of the full conditionals p(Ht|H−tθ, Y ), Ĥt, are
available with low computational cost, and the corresponding second derivatives at the mode, Dt, are analytically
available. Then, one can just reduce the dimension of αpj by setting g = 1 and replacing the vector of σ2

j1 with
−τD−1

t . Thus, only one parameter (τ) is maximized for all variances of marginal densities. As an example, consider
the univariate stochastic volatility model:

yt = h
1/2
t εt,

log ht = α+ ρ log ht−1 + vt,
(12)

where εt ∼ N (0, 1), vt ∼ N (0, σ2
v), t = 1, . . . , T . The parameters are θ = (α, ρ, σv, H), whereH = (log h1, . . . , log hT ).

By setting µt = [α(1−ρ)+ρ(log ht+1 +log ht−1)](1+ρ2)−1 and σ2 = σ2
v(1+ρ2)−1, the log-posterior full conditional

of Ht is given by

log p(Ht|Ht−1, Ht+1, θ, Y ) = − 1
2Ht −

y2
t

2
exp(−Ht)−

(Ht − µt)2

2σ2

and it is concave. Its mode satisfies the equation

−1

2
+
y2
t

2
exp(−Ĥt)−

Ĥt − µt
σ2

= 0 (13)

and the second derivative at the mode is Dt = −y2
t exp(−Ĥt)/2 − σ−2. Since the mode and the second derivative

can be computed at, practically, no cost, we can use as an approximation to the posterior marginals p(Ht|Y ) a
Student-t density centred at a location which is obtained via (13) with numerical optimisation and variance equal
to −τD−1

t , where τ is optimised in Algorithms 1 or 2 and it is the same across all t.

4.2 Nested beta-Liouville approximations

We present here an adaptive strategy for the beta-Liouville density used for the approximation of the copula function
in Gaussian latent models. Specifically, ignoring θ and focusing only on H, approximation of c̃(u1, . . . , uT ) can be
obtained by sequentially optimising with respect to αc for different subsets of the data based on ` windows of
ξ = T/` observations. Note that each data point yt provides information, through the likelihood function, to the
parameter Ht. We denote by y1:t the data vector y1, y2, . . . , yt and we construct a series of nested approximations
α1,α2, . . . ,α` based on data y1:ξ, y1:2ξ, . . . , y1:T respectively. Thus, the final approximation of αc = α` is achieved
through a path of consecutive approximations based on nested data vectors. More precisely, first we construct the
ξ-dimensional beta-Liouville approximation c̃α1 based on data y1:ξ. For the window y1:2ξ the 2ξ-dimensional density
c̃α2 is constructed by retaining the optimum values of α1 from the initial window and optimising only with respect
to the remaining ξ parameters. Initial values for this optimisation are the optimum values of α1, which are usually
very good approximations due to the dependency imposed by the Gaussian prior. The approach is performed `
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times and only ξ-dimensional optimisations are required each time. Although this procedure does not guarantee
that the mixture of beta-Liouville densities c̃(u1, . . . , uT ), is based on the best values of αc, we have found that by
nesting the approximations the optimisations are much quicker than maximising in the T -dimensional space and
the resulting importance function is adequate for our sampling strategy.

4.3 A stochastic volatility example

We apply the full conditional and the nested beta-Liouville approximations to the stochastic volatility model (12).
We report a direct comparison with the data used in Kim et al. (1998) based on a sample of 946 observations for
the U.K. Sterling / U.S. dollar exchange rate from 1/10/81 to 28/6/85. We adopted the same parameterisation
and priors as in Kim et al. (1998), we set ` = 20 and applied the initial transformations based on (2) and (3).
Algorithm 1 produced W̃(α

′
) = 0.30 with one mixture component whereas Algorithm 2 resulted in W̃(α

′
) = 0.47.

The results of Algorithm 1 are shown in Table 8 and the results of Algorithm 2 in the Appendix. Our comparisons
based on the simulation inefficiency factor of the sampler as explained in (Kim et al., 1998, p. 368-369) are shown
in Table 9. We sampled 200, 000 draws from the resulting importance sampling function of Algorithm 1. Evidently,
our approximation delivers much the same results with comparable Monte Carlo errors (not reported here) and
lower computational inefficiency factors. To illustrate the importance of the initial parameter transformation, the
last column of Table 9 presents how the inefficiency factors are increased when the transformation is not applied.

ρ ση β
location parameters, Student-t 0.981 0.59 0.66
scale parameters, Student-t 0.11 0.034 0.13
d.f. parameters, Student-t 3.25 12.10 7.33

copula, (a, b) (2.33,5.85)

Table 8: Stochastic volatility model. Final estimates of Algorithm 1 based on one mixture component.

mean
Kim et al. (1998)

mean
Algorithm 1

Inefficiency
Kim et al. (1998)

Inefficiency
Algorithm 1

Inefficiency, Algorithm 1
without transformation

ρ 0.97779 0.97744 29.776 15.420 27.44
ση 0.15850 0.15831 155.42 32.61 55.12
β 0.64733 0.64729 4.3264 2.311 7.19

Table 9: A Stochastic volatility model. Comparison of Importance sampling based on full conditional and nested
beta-Liouville approximations with Kim et al. (1998). IS denotes our proposed importance sampling strategy.

The performance of the nested beta-Liouville approximations with respect to different window sizes can be
investigated by inspecting the corresponding inefficiency factors; see Table 10. Overall, as the window size increases
the inefficiency factor decreases but the posterior means remain almost the same. The nested approximation can
be automated as it depends only on window width, `, and involves only minimal additional computation time
due to re-optimizations. The initial parameter transformation provides some improvement in the efficiency of the
importance sampling.

4.4 A time-varying parameter vector autoregressive model

In this Section we present a high-dimensional empirical application based on a large time-varying parameter vector
autoregressive (TVP-VAR) model. It is well known that we can write a VAR model in the form

yt = Xtβt + εt,
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` = 5 ` = 10 ` = 20

mean inefficiency mean inefficiency mean inefficiency
ρ 0.97744 11.444 0.97730 9.352 0.97738 7.348
ση 0.15822 45.88 0.15815 22.17 0.15821 15.220
β 0.64707 1.2415 0.64712 1.1925 0.64709 1.1172

Results without the transformation (2)-(3)
ρ 0.97512 14.25 0.97526 14.546 0.97536 12.313
ση 0.15417 49.31 0.15424 31.817 0.15220 21.215
β 0.62715 1.715 0.64255 1.832 0.64114 2.212

Table 10: A Stochastic volatility model. Performance of nested beta-Liouville approximations based on different
window sizes, with or without the initial parameter transformation (2)-(3).

and allow for parameter variation using a random walk specification

βt+1 = βt + ut,

where yt is an M × 1 time series vector, Xt is M × k matrix of lagged values of yt where, typically, k = LM and
L denotes the number of lags, and the error terms are i.i.d. εt ∼ N (0,Σt), ut ∼ N (0,Ωt) and independent of one
another. Each equation contains a k × 1 vector of regressors, say xt, and Xt = I ⊗ x′t. From standard Kalman
filter results one can readily deduce that βt|yt−1 ∼ N (βt|t−1, Pt|t−1), where βt−1|yt−1 ∼ N (βt−1|t−1, Pt−1|t−1), the
expressions for βt−1|t−1, Pt−1|t−1 are widely available and Pt|t−1 = Pt−1|t−1 + Ωt. Koop and Korobilis (2013) have
proposed replacing Σt and Ωt by estimates based on forgetting factors, and exploit analytical expressions for the
posterior in order to deal with the insurmountable problems in large VAR models. They also propose to use a
similar approximation to remove the need for a posterior simulation algorithm for multivariate stochastic volatility
in the measurement equation. Specifically, they use

Pt|t−1 = ζPt−1|t−1, (14)

Σ̂t = κΣ̂t−1 + (1− κ)ε̂tε̂
′
t, (15)

where ε̂t = yt − Xtβt|t−1 is the one-step ahead prediction error produced by the Kalman filter and κ is a certain
constant, which they choose to be κ = 0.96. Here, 0 < ζ ≤ 1 is a forgetting factor which Koop and Korobilis
(2013) propose to estimate from the data. In (14) one avoids the need to update elements of Ωt and in (15) the
multivariate stochastic volatility is filtered out. Although (15) is a simple form of multivariate stochastic volatility,
this specification works well in terms of predictive accuracy as shown by Koop and Korobilis (2013). The model
is clearly a restricted version of a multivariate GARCH model of the form Σt = AΣt−1 + Bεt(βt)εt(βt)

′, where
εt(βt) := yt −Xtβt, A = κI and B = (1− κ)I.

In this example we test the performance of our importance sampling strategy in expectations expressed as
predictive densities. For comparison purposes we use the same data as in Koop and Korobilis (2013) . The data
set comprises 25 major quarterly US macroeconomic variables from 1959:Q1 to 2010:Q2, so the TVP-VAR model
contains 25 equations, for details see Section 3.4 in Koop and Korobilis (2013). Following, for example, Stock and
Watson (2009) and recommendations in Carriero et al. (2015) we transform all variables to stationarity.

We used κ = 0.96 as in Koop and Korobilis (2013) so the parameter vector consists of ζ and the vector of β’s.
For the constant coefficients we adopt a standard Minnesota prior as in Koop and Korobilis (2013). Algorithm 1
enriched with full conditional and nested beta-Liouville approximations based on ` = 5 converged in one mixture
with W̃(α

′
) = 0.61 and Algorithm 2 resulted to W̃(α

′
) = 0.67.

The predictive densities based on the importance function derived from Algorithm 1 resulted to the mean
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GDP, forecast horizon
h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Koop & Korobilis 1.02 1.05 1.03 1.06 1.06 1.08 1.07 1.09
TVP-VAR 1.03 1.08 1.03 1.05 1.04 1.07 1.07 1.09

Inflation, forecast horizon
h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Koop & Korobilis 1.01 1.03 1.03 0.95 1.01 1.04 0.97 1.02
TVP-VAR 1.01 1.02 1.02 0.95 1.01 1.02 0.96 1.02

Interest rate equation, forecast horizon
h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

Koop & Korobilis 1.05 0.94 1.05 0.97 0.98 1.00 0.92 0.91
TVP-VAR 1.05 0.92 0.95 0.97 0.99 0.99 0.98 0.97

Table 11: Large TVP-VAR model. Mean squared forecast errors. The results of Koop and Korobilis (2013)
correspond to their Table 1, row corresponding to Large TVP-VAR, ζ = 0.99 and β following a random walk.

squared forecast errors reported in Table 11. We compare our results for h = 1, 2, . . . , 8 forecast horizons with the
corresponding errors of Koop and Korobilis (2013) TVP-VAR-DMS model. The row that corresponds to the results
of Koop and Korobilis (2013) paper were taken from their Table 1, row corresponding to Large TVP-VAR, ζ = 0.99

and βT+h following a random walk model as this row seems to give the most favourable results. Our estimate of ζ
was 0.98.

It turns out that our model provides similar results relative to Koop and Korobilis (2013) who also use estimated
Σ and Ω matrices through their simplified versions of the Kalman filter updates.

5 Concluding remarks

We have contributed to the long tradition of importance sampling methodology for the implementation of the
Bayesian paradigm by introducing a new flexible class of importance functions. Our new methodological ingredient
is based on the observation that easy to sample multivariate densities can be constructed as a product of univariate
mixture densities and a mixture density on a hypercube, resulting to a copula-based approximation.

The key to construct our proposed importance function was to choose a mixture of beta-Liouville densities on
hypercube as a copula density. An important advantage of these densities is that they can capture a rich association
structure and at the same time sampling from them is straightforward. Together with the flexible mixture of Student-
t densities chosen for the posterior marginal densities, we have provided a copula-based approximation that can be
adequately approximate high-dimensional posterior densities.

We have tested our method to a range of examples ranging from a very challenging posterior shape produced
by an incomplete simultaneous equation model to high-dimensional latent Gaussian models. Our adaptive strategy
performed well compared with other competitive methods. For comparison purposes we also demonstrated results for
a non-adaptive strategy based on fixed number of mixture components that does not require sequential adaptation
of the importance function parameters. The adaptive scheme (Algorithm 1) requires more computational effort but
results in better importance sampling functions.

Our proposed importance sampling strategy may seem very inefficient when the computational effort of the
adaptation is added to the estimation samples. For example, the stochastic volatility model requires I + `I2

samples to be estimated. Even if the adaptation sample size is much lower than I2 = 100, 000 that we used in
all our examples, this computational effort is not comparable with efficient purposed-built MCMC algorithms for
stochastic volatility models. However, the power of the importance sampling algorithms is that they have a broad
applicability to many posterior densities. Moreover, when good initial values are available the adaptation phase
can be much more efficient. For example, in the stochastic volatility example we could utilise the full conditional

15



approximations presented in Section 4.1.
There is a plethora of methodological tools that have been proposed to adaptively fit an importance sampling

density for Bayesian computation. One may consider adopting tools such as EM algorithm and machine leaning
and investigate how the adaptation may be improved. We believe that in the area of sequential Monte Carlo the
importance functions we propose will turn out to be very valuable when multivariate filtering is required, since
copula decompositions have not been exploited at all in this rich area of research.

We did not exploit our samplers to construct efficient proposals for Metropolis-Hastings samplers. The experience
of Hoogerheide et al. (2012) shows that there is a duality when a good adaptive function is constructed, in the sense
that it can be successfully used to both independent and dependent sampling strategies. Although independent
Metropolis-Hastings algorithms can be applied immediately using our proposal densities, the challenge here is to
construct efficient random walk Metropolis algorithms which can be used in more complex Bayesian models.

We have presented two approximation methods to optimise the parameters of the importance function in latent
Gaussian models. There is wide scope to investigate other related optimisation strategies borrowing ideas from
quick, but less accurate Bayesian implementation strategies such as variational approximations.

Acknowledgements: The authors wish to thank Gary Koop and Herman K. van Dijk for constructive com-
ments on an earlier version of the article.
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APPENDIX

Incomplete simulaneous equation model: Parameter estimates for Algorithm 2

π∗1 π∗2 β

location parameters, Student-t -0.32 0.28 0.44 0.02 0.01 0.31 0.57 1.81 -0.03 0.03 0.71 0.25 0.32 0.01 0.04
scale parameters, Student-t 1.82 2.36 0.25 0.02 0.05 0.31 0.44 0.78 0.05 0.08 0.81 0.25 1.54 0.01 0.04
d.f. parameters, Student-t 1.34 5.72 9.44 4,32, 6.81 1.81 3.67 5.82 4.81 7.81 2.40 7.17 15.32 5.43 9.44

mixing probabilities, Student-t 0.21 0.30 0.42 0.03 0.04 0.25 0.30 0.40 0.02 0.03 0.10 0.43 0.37 0.04 0.06
mixing probabilities, beta-Liouville 0.11, 0.80, 0.04

copula, αj (0.11, 0.80, 0.04), (0.10, 0.20, 0.80), (0.01, 0.10, 0.89),
(0.03,0.64,0.33),(0.02,0.07, 0.91)

copula, (a, b) (3.81, 7.44), (2.52, 6.33), (4.41, 9.32),(0.12,0.40),(0.07,0.18)

GARCH mixture model: Parameter estimates for Algorithm 2

µ ω α β ρ λ

location parameters,
Student-t

(0.12,

0.33,0.07,

-0.02, -0.01)

(0.13, 0.25,

0.07, 0.03,

0.01)

(0.17, 0.35,

0.05, 0.03,

0.01)

(0.33, 0.45,

0.01, 0.03,

0.04)

(0.15, 0.23,

0.01, 0.02,

0.0.03)

(0.14, 0.27,

0.12, 0.05, 0.03)

scale parameters,
Student-t

(0.07, 0.12,

0.03, 0.02,

0.05)

(0.03, 0.06,

0.01, 0.02,

0.02)

(0.06, 0.10,

0.01, 0.02,

0.03)

(0.042,

0.091, 0.02,

0.02, 0.02)

(0.023,

0.071,0.004,

0.02, 0.03)

(0.012, 0.033,

0.005, 0.007,

0.007)

d.f. parameters,
Student-t

(1.16, 2.33,

4.12, 5.15,

7.13)

(3.31, 5.52,

6.45, 8.32,

9.44)

(2.32, 3.51,

4.84, 6.71,

9.44)

(2.33, 4.41,

5.32, 7.18,

8.43)

(1.51, 3.49,

5.32, 6.17,

12.21)

(2.10, 4.14,

5.32, 6.41, 8.14)

mixing probabilities,
Student-t

(0.30, 0.60,

0.02, 0.03,

0.05)

(0.40, 0.50,

0.03, 0.06,

0.01)

(0.13, 0.85,

0.005,

0.005, 0.01)

(0.43, 0.52,

0.01, 0.01,

0.03)

(0.30, 0.65,

0.02, 0.02,

0.01)

(0.87, 0.10,

0.01, 0.01, 0.01)

mixing probabilities,
beta-Liouville

0.051, 0.075, 0.144, 0.189, 0.322, 0.219

copula, αj (0.32, 0.51, 1.44, 1.71, 2.33), (0.87, 0.44, 1.71, 2.32, 3.12), (1.13, 0.65, 2.32,
3.44, 5.12), (0.45, 0.73, 1.82, 2.44, 3.17), (0.88, 1.7, 2.33, 3.17, 4.10)

copula, (a, b) (2.89, 4.83), (2.13. 2.24), (2.37, 5.61), (3.35, 7.81), (2.14, 4.17)

EGARCH model: Parameter estimates for Algorithm 1: Student-t mixtures, 3 com-
ponents

µY σY αk1 αk2 βk1 βk2 γk1

location -0.17, 0.07, 0.12 0.025, 0.041, 0.062 0.17, 0.32, 0.55 0.19, 0.44, 0.60 0.39, 0.41, 0.48 0.61, 0.35, 0.39 0.33, 0.12, 0.35

scale 0.04, 0.055, 0.081 0.015, 0.021, 0.037 0.012, 0.024, 0.044 0.021, 0.034, 0.061 0.021, 0.033, 0.051 0.022, 0.018, 0.035 0.017, 0.021, 0.044

d.f 4.12, 5.65, 8.21 4.12, 6.14, 9.1 3.17, 8.12, 11.15 4.12, 7.49, 9.31 3.14, 6.12, 8.04 3.21, 5.67, 7.71 2.21, 3.15, 4.44

mixing 0.30, 0.60, 0.10 0.25, 0.17, 0.58 0.13, 0.22, 0.75 0.21, 0.45, 0.34 0.32, 0.35, 0.33 0.17, 0.23, 0.60 0.07, 0.22, 0.69

µ1 µ2 µ3 σ1 σ2 σ3 γk2

location -0.17, 0.032, 0.061 -0.047, 0.042, 0.063 -0.012, 0.017, 0.003 0.0062, 0.012, 0.0031 0.0017, 0.0032, 0.0081 0.0011, 0.041, 0.016 0.21, 0.23, 0.35

scale 0.028, 0.035, 0.052 0.012, 0.024, 0.033 0.013, 0.024, 0.045 0.013 0.0014, 0.021 0.0021, 0.0033, 0.032 0.013, 0.021, 0.037 0.007, 0.012, 0.044

d.f 2.12, 3.13, 8.15 2.61, 2.89, 6.15 1.88, 3.25, 9.63 2.37, 4.25, 8.12 1.67, 2.54, 7.32 1.82, 2.44, 6.71 2.89, 4.14, 6.81

mixing 0.21, 0.42, 0.37 0.25, 0.47, 0.28 0.24, 0.43, 0.33 0.14, 0.32, 0.54 0.19, 0.24, 0.57 0.21, 0.48, 0.31 0.09, 0.23, 0.58
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Notes: The parameters a and b for beta-Liouville densities were (2.13, 4.89), (3.12, 8.13) and (12.30, 18.15)

whereas the mixing parameters were (0.72, 0.23, 0.05). The values of α for each component of the beta-Liouville den-
sity were (0.012, 0.015, 0.222, 0.251, 0.367, 0.554, 0.717, 1.081, 1.337, 1.330), (0.015, 0.167, 0.442, 0.556, 0.771, 1.115, 1.321,
1.446, 1.603, 1.701) and (0.033, 0.045, 0.061, 0.082, 0.093, 0.098, 1.125, 1.233, 1.335, 1.515).
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EGARCH model: Parameter estimates for Algorithm 2

µY σY αk1 αk2 βk1 βk2 γk1 γk2

location parameters, Student-t (-0.11,

0.044,

0.052,

-0.01,

-0.02)

(0.018,

0.021,

0.044,

0.003,

0.009)

(0.12

0.28,

0.19,

0.02,

0.04)

(0.14,

0.35,

0.43,

0.01,

0.01)

(0.35,

0.43,

0.33,

0.01,

0.02)

(0.60,

0.21,

0.30,

0.02,

0.03)

(0.27,

0.09,

0.26,

0.01,

0.03)

(0.12,

0.15,

0.17,

0.03,

0.02)

scale parameters, Student-t (0.028,

0.044,

0.060,

0.02,

0.04)

(0.010,

0.015,

0.028,

0.03,

0.03)

(0.032,

0.057,

0.068,

0.02,

0.04)

(0.012,

0.018,

0.025,

0.01,

0.03)

(0.017,

0.021,

0.032,

0.01,

0.01)

(0.015,

0.021,

0.044,

0.02,

0.02)

(0.015,

0.020,

0.023,

0.03,

0.03)

(0.003,

0.015,

0.043,

0.02,

0.03)

d.f. parameters, Student-t (5.44,

7.32,

12.20,

21.32,

33.40)

(8.12,

10.25,

13.55,

27.8,

41.4)

(5.13,

7.15,

9.44,

38.4,

45.2)

(2.28,

7.15,

12.20,

25.5,

37.7)

(5.25,

7.19,

11.33,

19.49,

39.5)

(3.12,

5.15,

8.22,

35.6,

40.1)

(2.12,

5.67,

8.13.,

33.16,

52.1)

(3.15,

7.12,

12.20,

43.2,

56.4)

mixing probabilities, Student-t (0.30,

0.60,

0.05,

0.02,

0.03)

(0.10,

0.21,

0.60,

0.03,

0.06)

(0.18,

0.70,

0.04,

0.04,

0.04)

(0.41,

0.55,

0.03,

0.005,

0.005)

(0.30,

0.42,

0.21,

0.06,

0.04)

(0.15,

0.17,

0.65,

0.01,

0.02)

(0.03,

0.20,

0.65,

0.05,

0.07)

(0.11,

0.34,

0.52,

0.02,

0.01)

µ1 µ2 µ3 σ1 σ2 σ3

location parameters, Student-t (-0.020,

0.048,

-0.015,

0.012,

0.016)

(-0.050,

0.044,

-0.023,

0.030,

0.007)

(-0.015,

0.012,

-0.010,

0.017,

0.003)

(0.0085,

0.012,

0.001,

0.012,

0.001)

(0.0044

0.0052,

0.001,

0.020,

0.002)

(0.0051,

0.020,

0.019,

0.012,

0.014)

scale parameters, Student-t (0.028,

0.032,

0.007,

0.009,

0.012)

(0.016,

0.019,

0.005,

0.007,

0.009)

(0.015,

0.013,

0.003,

0.003,

0.005)

(0.013,

0.007,

0.002,

0.003,

0.003)

(0.007,

0.012,

0.006,

0.007,

0.009)

(0.004,

0.0055,

0.004,

0.004,

0.007)

d.f. parameters, Student-t (3.44,

8.15,

14.51,

25.32,

35.12)

(1.15,

6.77,

15.5,

25.7,

33.8)

(5.88,

12.10,

25.1,

35.1,

44.4)

(4.13,

9.32,

13.10,

28.12,

35.22)

(5.24,

9.71,

22.5,

28.9,

39.3)

(3.12,

13.15,

25.5,

30.4,

42.8)

mixing probabilities, Student-t (0.20,

0.70,

0.03,

0.03,

0.04)

(0.03,

0.92,

0.01,

0.03,

0.01)

(0.10,

0.84,

0.01,

0.03,

0.02

(0.11,

0.81,

0.04,

0.03,

0.01)

(0.06,

0.90,

0.02,

0.01,

0.01)

(0.12,

0.82,

0.03,

0.01,

0.02)

copula, (a, b) (2.44, 5.75), (4.17, 12.51), (0.51, 0.72), (0.313, 0.32), (0.10, 0.25)
Notes: The parameter values αj for the beta-Liouville mixture are available on request.
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Stochastic volatility model: Parameter estimates for Algorithm 2

ρ ση β

location parameters, Student-t (0.512, 0.773, 0.830, 0.969, 0.99) (0.050, 0.01, 0.01, 0.02, 0.01) (0.51, 0.01, 0.01, 0.02, 0.03)
scale parameters, Student-t (0.12,0.002, 0.002, 0.002, 0.003) (0.033, 0.0032, 0.0035, 0.0041, 0.0045) (0.12, 0.003, 0.004, 0.004, 0.006)
d.f. parameters, Student-t (3.12, 12.55, 15.43, 17.21, 25.4) (12.10, 22.50, 28.12, 37.14, 45.51) (6.87, 33.5, 37.21, 41.5, 50.2)

mixing probabilities, Student-t (0.03, 0.17, 0.22, 0.35, 0.23) (0.03, 0.17, 0.33, 0.25, 0.32) (0.09, 0.13, 0.21, 0.22, 0.45)

Notes: We set `=5. The parameter values for the Student-t mixtures of the latent volatility path and the beta-
Liouville mixture are available on request.
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