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A Bayesian Survival Analysis of a Historical Dataset:
How Long Do Popes Live?

Julian Stander, Luciana Dalla Valle,
and Mario Cortina–Borja

Abstract

University courses in statistical modeling often place great emphasis on methodological

theory, illustrating it only briefly by means of limited and repeatedly used standard examples.

Unfortunately, this approach often fails to actively engage and motivate students in their

learning process. The teaching of statistical topics such as Bayesian survival analysis can

be enhanced by focusing on innovative applications. Here we discuss the visualization and

modelling of a data set of historical events comprising the post–election survival times of

popes. Inference, prediction and model checking are performed in the Bayesian framework,

with comparisons being made with the frequentist approach. Further opportunities for

similar statistical investigations are outlined.

1 Introduction

Often, data about historical events can provide an interesting and well-structured approach

to teaching statistical methodology. This paper discusses such a historical data set that

provides a teaching example of interest in three very popular areas of modern statistics:

data visualization, biostatistics and Bayesian modeling. We have successfully presented

this material in a module on data modeling, taught to final-stage undergraduates (that

is, students in the third year of full-time university study) in Mathematics and Statistics

at Plymouth University, UK. The students had a strong mathematical and statistical

background that included some experience of frequentist inference and of using R (R Core

Team, 2017) to perform a variety of analysis and modeling tasks. Students responded well

to the material with 88% agreeing with the statement ‘the teaching methods used helped

me to learn’ and 81% agreeing that ‘the use of technology enhanced my learning’. One

student stated that ‘it was fun and interesting to see this application of a different way of

1

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
C

L
 L

ib
ra

ry
 S

er
vi

ce
s]

 a
t 0

8:
06

 2
1 

A
ug

us
t 2

01
7 



doing statistics’. After exposure to this example, students were able to undertake a range

of Bayesian modeling tasks with little additional support.

In Section 2 we present a data set based on post–election survival times of Roman Catholic

popes from 1404 and show how to visualize the information that it contains using a Lexis

diagram. Section 3 discusses a survival analysis model for these data, with inference about

the model parameters being performed in the Bayesian framework using the JAGS program

(Plummer, 2003), and makes comparisons between the Bayesian and frequentist inferential

approaches. We also extensively discuss inference when some of the data are ‘censored’,

that is, when we only know a lower bound for some of the post–election survival times.

In Section 4 the predictive distribution is used to make statements about future survival

times, while simple diagnostics for model checking are presented in Section 5. Finally,

Section 6 discusses additional investigations that students may undertake, including those

based on other historical data sets, before presenting brief conclusions. Basic JAGS code

for Bayesian inference is presented in Appendix 1, while R code for frequentist inference is

given in Appendix 2.

2 A Historical Data Set and a Lexis diagram

The Argentinian Jorge Mario Bergoglio was elected Pope of the Roman Catholic Church

on 13 March 2013 and took the name Francis. In August 2014, he jokingly announced

that he expected to live another two or three years, and that he may even retire within this

period (Guardian, 2014). Although like other populations it may be expected that popes

have experienced a generally increased longevity, a statistical question naturally springs to

mind: how many years can a pope such as the present one expect to live after his election?

A statistical answer to this question requires data, and these data can provide teachers with

considerable scope for discussion about visualization, biostatistics and Bayesian modeling.

To answer the above question we analysed data on the post–election survival times of

popes, starting with Pope Innocent VII, whose pontificate began in 1404. These data, which

are supplied online, were obtained from Wikipedia (2016) and confirmed using Kelly and

Walsh (2010). The beginning of the fifteenth century was chosen as the starting point,

as dates of birth, election and death (or resignation) are accurately documented from

then. The resulting data set is based on the 62 popes before Pope Francis. Apart from
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Pope Gregory XII (resigned 1415, died 1417) and Pope Emeritus Benedict XVI (Joseph

Ratzinger, Francis’s predecessor, who resigned on 28th February 2013), all the popes

analysed died in office. Thus, except for these two popes, the post–election survival time is

the same as the pontificate duration. The median age at election of these 62 popes is 63.5

years (interquartile range 12.5 years), meaning that generally they have achieved a certain

maturity. The median post–election survival time of the 61 popes excluding Benedict XVI is

9 years (interquartile range 9 years); Benedict XVI’s survival time was 11.7 years on 25th

December 2016.

The post–election survival times of popes elected since 1404 are displayed in Figure 1 by

a Lexis diagram, produced in R using the Epi package (Carstensen and Plummer, 2011).

Benedict XVI and Francis were alive on 25th December 2016, and are indicated by grey

triangles. Francis celebrated his 80th birthday on 17th December 2016, while Benedict XVI

was 90 years old on 16th April 2017. A Lexis diagram provides an excellent visualization

of survival time data that can stimulate discussion. For example, in Figure 1 the lines are

longer and tend to finish on higher values in recent pontificates, confirming that popes have

experienced a generally increased life expectancy. This is investigated further in Section 3

using survival analysis.

Lexis Diagram for Popes from 1400
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Figure 1: Post–election survival times of popes from 1404. The south–west end of each
line indicates the age at and year of election. The north–east end reports the age at and
year of death (black circle), or in the case of Pope Emeritus Benedict XVI and Pope Francis
their ages on 25th December 2016 (grey triangles).
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3 Bayesian Survival Analysis

3.1 A Data Model Based on the Weibull Distribution

The historical data set under consideration provides the teacher with an immediate

application of survival analysis to understand how the post–election survival time Ti of the

i -th pope, i = 1, . . . , 62, depends on the age at and year of election. For illustration

purposes, the Weibull distribution is used to model the positive times Ti . The Weibull

probability density function of Ti takes the form

fTi
(ti | r ,µi) = r µi t r−1i exp (−µi t ri ) , r ,µi > 0, for ti > 0, (1)

in which ti is the observed post–election survival time of the i -th pope. The associated

cumulative distribution function takes the form

Pr (Ti ≤ ti | r ,µi) = 1− exp (−µi t ri ) . (2)

The first parameter r of the Weibull distribution is a positive scale parameter. We model the

log of the second parameter µi > 0 as a linear function of the covariates age at election

x1i and year of election x2i , both of which were centered by subtracting the corresponding

sample means. Hence, our model takes the form:

Ti ∼ Weibull(r ,µi)

log(µi) = β0 + β1x1i + β2x2i , (3)

where log is to base e. In this model the scale parameter r is the same for all popes. The

Weibull parametrization adopted is the one used by BUGS (Lunn et al. (2013), page 346)

or JAGS. With this parametrization

median[Ti ] =

{
log(2)

µi

}1/r

, (4)

and

mean[Ti ] = Γ

(
1 +

1

r

)(
1

µi

)1/r

,

4
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in which Γ is the gamma function. More generally it can be shown that the p-th quantile of

Ti takes the form

qp[Ti ] =

{
− log(1− p)

µi

}1/r

, p ∈ (0, 1). (5)

The Weibull distribution can provide a starting point for an interesting discussion. In addition

to properties of this distribution including its shape and use, the teacher could point out that,

if T ∼ Weibull(r ,µ), then

T
d
=

(
1

µ

)1/r

ε1/r , (6)

in which
d
= means equal in distribution and ε ∼ Exp(1), that is ε is an exponential random

variable with rate parameter 1. It can immediately be seen from (6) that the exponential

distribution is a special case of the Weibull distribution. Students can then be asked to

derive that

log(T )
d
= − 1

r
log(µ) +

1

r
log(ε),

and hence, using (3), that

log(T )
d
= − 1

r
(β0 + β1x1 + β2x2) +

1

r
log(ε). (7)

The teacher can then help the students to understand that log survival time, which can

take any real value, is being modeled using a mathematical form that is very similar to that

adopted in the general linear model. In particular, log(T ) is modeled as a linear function

of the covariates plus a scaled random variable that can take any real value. This may

enhance their understanding of the model.

Further insight may be gained by asking students to show that the model formulation implies

that the log mean/median of Ti are also linear functions of x1i and x2i taking the form

α0 + α1x1i + α2x2i , where the coefficients αj = −βj/r , j = 0, 1, 2. They can also show

that, because of the logarithmic transformation, exp(α1) and exp(α2) are the multiplicative

scale factors of the mean/median post–election survival time for a unit increase in age at

and year of election. In fact, 100 {exp(α1)− 1} and 100 {exp(α2)− 1} represent the

percentage increases in mean/median post election survival time for a unit increase in age

at and year of election.

One feature of survival analysis emphasized in many biostatistics courses is ‘censoring’.

The data under consideration include one censored observation. This is because
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Benedict XVI was still alive on 25th December 2016 and so his data provide a lower bound

of 11.7 years for his survival time. So, assuming that Benedict XVI is indexed by i = 1,

we know only that T1 > 11.7. This type of censoring is referred to as ‘right censoring’;

for a full discussion of the different types of censoring, see Cox and Oakes (1984), for

example. Francis is still alive but the data set is based on the 62 popes before him,

so that data on Francis do not feed into predictions related to him. The teacher could

expand the discussion of censoring by explaining its importance in a medical context and

showing how the associated data model or likelihood L(data | r , β0, β1, β2) can be modified

to take into account censored observations; see Cox and Oakes (1984) and Venables

and Ripley (2002) for more general discussions. In particular, when there is no censoring

L(data | r , β0, β1, β2) =
∏62

i=1 fTi
(ti | r ,µi), where the probability density function fTi

is

defined in (1) and µi depends on the parameters β0, β1 and β2 through (3). When this

likelihood is modified to take into account the censoring of Benedict XVI’s survival time, it

becomes

L(data | r , β0, β1, β2) = Pr (T1 > 11.7 | r ,µ1)
62∏
i=2

fTi
(ti | r ,µi). (8)

The ‘survivor function’ Pr (T1 > 11.7 | r ,µ1) = 1 − Pr (T1 ≤ 11.7 | r ,µ1) =

exp (−µ1 × 11.7r) from (1). In a recent contribution, Kundu and Mitra (2016) construct

a likelihood in a similar way to (8) and perform Bayesian inference on the parameters of the

Weibull distribution for left truncated (survival times are observed only if they are greater

than a given value) and right censored data. Kundu and Mitra (2016) state that ‘it will be of

interest to consider the case when there are some covariates.... More work is needed along

that direction.’ This paper provides an example of such covariate modeling.

3.2 Bayesian Inference

There are four parameters r , β0, β1 and β2 in our model about which to make inference.

Many traditional statistics courses would discuss inference about these parameters in

the frequentist framework based on the likelihood L, and this is briefly mentioned in

Section 3.3. Recently, however, more emphasis has been placed on inference in the

Bayesian framework, partly due to the availability of software to perform the associated

computations; see Ntzoufras (2009), Brooks et al. (2011), Gelman et al. (2013), Lunn et
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al. (2013), Kruschke (2015), and Levy and Mislevy (2016) for example.

In the Bayesian framework, inference is based on the posterior distribution of the unknown

parameters given the data. In our case this can be written as π(r , β0, β1, β2 | data).

By Bayes Theorem, this posterior distribution is proportional to the likelihood of the data

multiplied by the prior distribution of the unknown parameters. This prior distribution

summarises what may be known about the model parameters before seeing the data. Here

prior parameter independence is assumed so that the posterior probability density function

takes the form

π(r , β0, β1, β2 | data) ∝ L(data | r , β0, β1, β2) π(r) π(β0) π(β1)π(β2). (9)

The assumption of prior parameter independence is often made to simplify the specification

of the model and its implementation. It does not imply posterior parameter independence.

The assumption could be relaxed, for example by adopting a multivariate normal distribution

for (β0, β1, β2), if there were specific prior knowledge about parameter dependence.

The following prior distributions for r , β0, β1 and β2 were adopted:

r ∼ Exp(rate = 0.001)

β0, β1, β2 ∼ N(mean = 0, variance = 10, 000).

These priors support a very wide range of possible parameter values and so represent

considerable uncertainty. In our case, it is reasonable to assume such uncertainty as it

reflects our lack of previous knowledge about the parameters. Kundu and Mitra (2016)

provide some discussion about the choice of the prior on r . Below we explore briefly

the sensitivity of the results to prior assumptions. As is now standard (Brooks et al.,

2011), inference proceeds by simulating values from the posterior probability density

function (9) using a Markov chain Monte Carlo algorithm. Our simulation-based inference

was implemented in JAGS (Plummer, 2003) using R2jags (Su and Yajima, 2015). Basic

BUGS/JAGS code is given in Appendix 1.

There are two approaches to handle censored observations in the Bayesian framework,

as discussed in Section 9.6 of Lunn et al. (2013). The first approach, described

briefly in Plummer (2003), treats unknown survival times as model parameters about

which to make inference. The second approach is similar in flavour to the one

7
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used by Kundu and Mitra (2016) and is based on specifying in the BUGS/JAGS code

the contribution to the likelihood function (8) discussed in Section 3.1 from censored

observations. We now explain in detail the relevant parts of the code for the first

approach given in Appendix 1. The indicator variable censored takes the value 1 for

Benedict XVI whose survival time is censored and 0 for the other popes. The survival

times are stored in the variable survival, except in the case of censoring when NA (‘not

available’) is assigned: survival[1] = NA . The variable censoring limits is defined

as censoring limits[1] = 11.7 and censoring limits[i] = 32, i = 2, . . . , 62, in

which 11.7 is the censored survival time for Benedict XVI and 32 is an arbitrarily chosen

survival time that must be greater than or equal to all the non-censored survival times.

The function dinterval(s,c) takes the value 0 if s ≤ c and 1 if s > c. When

i = 1, the requirement censored[1] ~ dinterval(survival[1], censoring_limits[1])

becomes 1 ~ dinterval(NA, 11.7), which forces the unknown survival[1] to be

simulated subject to the constraint that survival[1] > 11.7. When i = 2, . . . , 62, the

requirement censored[i] ~ dinterval(survival[i], censoring_limits[i]) becomes

0 ~ dinterval(survival[i], 32) which is automatically satisfied. In general, this

requirement would be automatically satisfied for any value greater than or equal to all the

non-censored survival times, so the actual value chosen is unimportant provided that it is

sufficiently large.

To implement the second approach based on specifying the contribution to the likelihood

function from censored observations, we use the ‘zeros trick’ of Section 9.5.1 of Lunn et

al. (2013). In particular, we invent an observation z = 0 (referred to as z censored in the

code) which is assumed to be drawn from a Poisson(φ) distribution. Since Pr(z = 0) =

exp(−φ), the likelihood contribution of z will be exp(−φ). Setting this to the required

contribution exp (−µ× 11.7r), in which µ is the value of the Weibull parameter µ for

the censored observation, means that φ = µ × 11.7r > 0. We found that the results

from the two approaches were very largely the same. Lunn et al. (2013) point out that the

second approach requires the survivor function to be known, so is less generally applicable,

although computationally more efficient, than the first approach.

Traceplots of simulated r , β0, β1 and β2 values, together with a variety of convergence

diagnostics (Ntzoufras, 2009), suggested that 500,000 simulated values were sufficient.

Posterior summaries are given in Table 1. The teacher can explain how the inference
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procedure is based on hypothetical popes simulated in the light of the observed data

and the modeling assumptions. There is much scope for additional discussion including

experimentation about the sensitivity of the results to prior assumptions. The prior

probability density functions of β0, β1 and β2 adopted above do not have a strong

influence on the posterior as they are essentially flat. The effect of specifying stronger

prior distributions, such as β0, β1, β2 ∼ N(0, 1) and r ∼ Exp(1) that give more weight to

smaller parameter values, can be investigated by easily modifying the code. The 2.5% and

97.5% quantiles reported in Table 1 generally change a little to reflect these modifications

(r : (0.840, 1.277); β0: (−2.950,−1.758); β1: (0.005, 0.057) and β2: (−0.003, 0.000).)

In the context of our historical data the posterior distribution of the median post–election

survival time given by (4) is more interesting than inference about the parameters

themselves. One of the beauties of the BUGS/JAGS simulation-based approach is that

it is easy to transform values of r , β0, β1 and β2 simulated from the posterior distribution

into a sample from the posterior distribution of any function of those parameters simply

by computing the values of that function. Here, the values of β0, β1 and β2 are used to

compute µi through (3), from which the median post-election survival time can be obtained

through (4) using the values of r . Code for this is provided in Appendix 1. Figure 2 shows

posterior densities, based on 500,000 draws, of the median post–election survival time

for hypothetical popes elected in 1750 and 1950, aged 60 and 80 at the time of election.

Figure 2 suggests that, as the years have passed, the median survival time has increased.

Naturally, popes who are older when elected tend to have shorter pontificates. This can also

be seen from Figure 3 in which we have added to the Lexis diagram shown in Figure 1 the

posterior means of the 0.05, 0.5 and 0.9 quantiles of end of pontificate age corresponding

to popes aged 55 and 65 years at election. These ages were chosen because there

Mean Standard Quantiles
Deviation 2.5% 5% 50% 95% 97.5%

r 1.151 0.127 0.914 0.947 1.147 1.366 1.412
β0 −2.623 0.347 −3.334 −3.209 −2.612 −2.071 −1.975
β1 0.033 0.014 0.006 0.011 0.034 0.056 0.060
β2 −0.002 0.001 −0.003 −0.003 −0.002 −0.001 0.000

Table 1: Summaries of the posterior density π(r , β0, β1, β2 | data). The posterior mean,
standard deviation and selected quantiles including the median are shown. 95% credible
intervals can be obtained from the 2.5% and 97.5% quantiles.
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are several popes who began their pontificate at 55 or 65 years. The life trajectories for

these popes have been highlighted in Figure 3. Apart from two popes who had very short

pontificates, these quantile curves suggest good posterior support for the highlighted data.

Popes with very short pontificates are discussed in more detail in Section 5. The fact that the

upper quantiles shown in Figure 3 take rather high values is in part due to the assumptions

about the right tail made by our parametric Weibull model.

 Age at election 60  Age at election 80

E
lection year 1750

E
lection year 1950

0 10 20 30 0 10 20 30
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Figure 2: Posterior distributions of the median post–election survival time for popes elected
in 1750 and 1950, aged 60 and 80 when elected.
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Figure 3: The posterior means of the 0.05 (lower curve), 0.5 (middle curve) and 0.9 (upper
curve) quantiles of end of pontificate age corresponding to popes of 55 (left panel) and 65
(right panel) years at election added to the Lexis diagram of Figure 1. The dashed horizontal
lines are drawn at 55 and 65 years and popes of this age when elected are highlighted.
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We can further quantify Figure 3 by considering the multiplicative scale factors exp(α1)

and exp(α2) of the mean/median post–election survival time for a unit increase in age

at and year of election. Posterior means and 95% highest posterior density credible

intervals for these quantities and the associated percentage increases 100 {exp(α1)− 1}
and 100 {exp(α2)− 1} are shown in Table 2. The highest posterior density credible

intervals were calculated using the function HPDinterval available from the coda package

(Plummer et al., 2006). The posterior means for exp(α1) and exp(α2) are 0.971 (less

than 1) and 1.002 (greater than 1), meaning that a higher age at election leads to a

reduced mean/median post election survival time, while a later year of election leads to an

increase. Similarly, the posterior means of 100 {exp(α1)− 1} and 100 {exp(α2)− 1}
are−2.860% and 0.163%, meaning that an additional year of age leads to a considerable

percentage decrease in these survival times, while the passing of a further year leads to

a smaller percentage increase. These quantities can be linked to Figure 3. For example,

the posterior mean of the median survival time (the gap between the middle curve and

the dashed horizontal line in Figure 3) is approximately 16/12 for popes aged 55/65 years

when elected in 2000, so that the ratio between these two approximate survival times is

16/12 = 0.75 for ages that differ by 10 years. This corresponds well to the posterior mean

of exp(10α1) which is 0.753. Similarly, the changes in the posterior mean of the median

survival times over the 600 year period between 1400 to 2000 are 6.2 to 16/4.4 to 12 years

for popes elected at 55/65 years. The ratios 16/6.2 ≈ 2.6 and 12/4.4 ≈ 2.7 correspond

well to the posterior mean of exp(600α2) of around 2.8.

Quantity Interpretation Posterior 95%
Mean Credible Interval

exp(α1) Multiplicative scale factor 0.971 (0.950, 0.994)
for age

exp(α2) Multiplicative scale factor 1.002 (1.0003, 1.0030)
for year

100 {exp(α1)− 1} Percentage increase −2.860% (−5.039,−0.589)%
for age

100 {exp(α2)− 1} Percentage increase 0.163% (0.030, 0.298)%
for year

Table 2: Posterior means and 95% highest posterior density credible intervals for the
multiplicative scale factors and percentage increases for the mean/median post–election
survival time for a unit increase in age at and year of election.
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3.3 The Frequentist Alternative

As our emphasis in this paper is on inference in the Bayesian framework, we only

briefly discuss the frequentist alternative. If students wish to make comparisons with

frequentist-based maximum likelihood estimation results, they could be directed towards

the function survreg of the survival package (Therneau, 2015). It should, however, be

pointed out that the model fitted by survreg takes the form

log(T ) = α0 + α1x1 + α2x2 + σ log(ε),

which is parametrized in a different way from (7); see Section 13.2 of Venables and

Ripley (2002). In particular, αj = −βj/r , j = 0, 1, 2, and a simple comparison with (7)

tells us that σ = 1/r . We provide R code in Appendix 2 for performing inference about

these parameters, for making predictions and for extracting residuals. Note that standard

errors are available for log(σ) rather than for σ. Censoring is handled by creating a

survival object using the Surv function that contains information about censoring. Table 3

presents a comparison between Bayesian and frequentist inference for these parameters,

and differences are seen to be small. An advantage of using a simulation approach in the

Bayesian framework is the ease with which the distributions of parameter transformations

such as α0, α1, α2 and log(σ) can be obtained. For a recent, excellent discussion of the

Bayesian and frequentist inference approaches see Efron and Hastie (2016), for example.

4 Predictive Distribution

Francis was 76 years old when elected in 2013. His pontificate has lasted 3.79 years as

of 25th December 2016. The future survival time T new of a pope such as Francis can be

understood by considering the predictive distribution and in particular the probability density

function:

π (T new | data,T new > 3.79) , (10)

in which 3.79 years is the assumed current pontificate length. The sample from the

posterior density π(r , β0, β1, β2 | data), together with simulations from an appropriate

Weibull distribution, can be used to generate values from this predictive distribution. All this

can be done in a straightforward way in BUGS/JAGS and code is supplied in Appendix 1.
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Bayesian Frequentist

Posterior Posterior Posterior Approximate
Mean Standard 95% Credible Parameter Standard 95% Confidence

Deviation Interval Estimate Error Interval
log(σ) −0.133 0.111 (−0.343, 0.092) −0.133 0.112 (−0.357, 0.090)
σ 0.881 0.099 (0.709, 1.097) 0.875 (0.700, 1.094)
α0 2.276 0.118 (2.044, 2.508) 2.271 0.116 (2.045, 2.498)
α1 −0.029 0.012 (−0.053,−0.006) −0.027 0.011 (−0.050,−0.005)
α2 0.002 0.001 (0.000, 0.003) 0.002 0.001 (0.001, 0.003)

Table 3: A comparison between Bayesian and frequentist inference. The posterior
means, standard deviations and 95% credible intervals for the parameters log(σ), σ,
α0, α1 and α2 are presented. Frequentist estimates, standard errors and approximate
95% confidence intervals are also given. R does not provide a standard error for the
estimate of σ. The approximate 95% confidence interval for log(σ) was calculated using
parameter estimate ± 2 standard errors. The confidence interval for σ was obtained by
applying the exponential function to the resulting values.

Kundu and Mitra (2016) perform inference about probability density functions such as (10),

although not in the presence of covariates.

Current
Pontificate
length
3.79 years

Median
10.5 years

95% quantile
22 years

50% 45% 5%

0.00

0.04

0.08
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Figure 4: The predictive probability density function of the post–election survival time
for a hypothetical pope elected in 2013, aged 76, who, like Francis, has already served
3.79 years, presented as a histogram of simulated future survival times. 50% of simulated
times lie below the median of 10.5 years, while 95% of them are below (and 5% are above)
the 95% quantile of 22 years.

Figure 4 shows the predictive distribution of the post–election survival time for a pope

such as Francis. The median survival time is 10.5 years, with the 95% quantile being

approximately 22 years. The corresponding ages at death are approximately 86 and 98

years, leading to the conclusion that the forecast made by Francis in 2014 about his own

survival was rather pessimistic: based on the post–election survival of past popes, he can
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expect to live around 10 years with probability 50%, and 22 years with probability 5%.

This example should provide students with a basic understand of the use of the predictive

distribution to make statements about future survival times. Students can then use this

methodology to say something about the future survival of hypothetical popes with different

covariate values. They can, for example, investigate how year of election, age and present

pontificate length affect the distribution of future survival times.

5 Diagnostics for Model Checking

A routine part of any statistical analysis should be to use some kind of diagnostics to check

the reasonableness of the model. An extensive discussion of Bayesian model checking is

given in Chapter 10 of Ntzoufras (2009). Many of the diagnostic techniques described

there are based on the predictive distribution, discussed in Section 4. Here a simple

approach, based on the posterior distribution of specially defined residuals and motivated

by Section 10.3.5 of Ntzoufras (2009), is used to check model (3) . From equation (6)

it is easy to show that µT r = ε ∼ Exp(1). Students can be asked to establish that

the cumulative distribution function of ε takes the form 1 − e−ε, that 1 − e−ε ∼ U[0, 1]

and that Φ−1 (1− e−ε) ∼ N(0, 1), in which U[0, 1] is the uniform distribution on (0, 1),

N(0, 1) is the standard normal distribution, Φ is the cumulative distribution function of

a standard normal random variable and Φ−1 is the associated quantile function. They

can then modify the basic BUGS/JAGS code in Appendix 1 to sample from the posterior

distribution of the ‘transformed residuals’ Φ−1 (1− e−εi ), in which εi = µiT
r
i . It should be

noted that the JAGS function qnorm needs to be supplied with all its arguments: qnorm(1 -

exp(-epsilon[i]), 0, 1). A plot illustrating the posterior distribution of these transformed

residuals is shown in Figure 5, together with guide limits at −2 and 2. Five mainly

16-th Century and one 20-th Century pope have been highlighted as they have posterior

distributions that give considerable support to very low residual values. These popes had

very short pontificates ranging from around 0.03 to 0.17 years. Students could be asked

to remove these popes from the data set, to repeat the above analyses and to comment

on the differences in results. They may find, for example, that there are some noticeable

changes to the results presented in Table 1, that the median post–election survival time

for a pope such as Francis increases from around 10 years to considerably more than 11
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years, but that the 95% quantile of this survival time remains at around 22 years. As well

as these transformed residuals, we also worked with standardized residuals defined as

(Ti − E[Ti ])/sd[Ti ]. These standardized residuals were less sensitive to the data from

popes with short pontificates than the transformed residuals.
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Figure 5: The posterior median and 95% credible interval of all the transformed residuals
against year of election. A cross and thicker line is used when the posterior median of the
residual is less than −2. The triangle indicates that the corresponding survival time for
Benedict XVI is censored.

6 Further Investigations, Different Data and Conclusions

The historical data set used and the problem of quantifying Francis’s statement about his

own longevity can open up various additional avenues for discussion. For example, our

analysis does not take any account of Francis’s particular state of health. His life expectancy

may be somewhat reduced as he is missing part of a lung (BBC, 2014) and has walking

difficulties that have led to falls (BBC, 2016, for example), though one should balance this

by his having access to excellent medical care.

There is considerable scope for discussion of the modeling that has been performed. For
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example, model (3) could be extended to include a multiplicative term β3x3i , in which x3i

is the product of the age at and year of election of the i -th pope centered to have mean 0

and scaled to have standard deviation 1 to prevent numerical problems. The posterior

support for β3 could be investigated by students, who would find that there is some support

around zero. 95% credible intervals for the other model parameters r , β0, β1 and β2 and

their widths are given in Table 4, together with the widths of the corresponding intervals

for model (3) given in Table 1. It can be seen that the credible interval widths for the

extended model are larger than those for model (3), indicating that the additional term has

increased posterior uncertainty. In addition to this investigation, alternative models could

also be considered.

Actuarial type tables such as WorldLifeExpectancy (2016) suggest that an 80 year old

Argentinian man has a life expectancy of 87.2 years (the corresponding figures for an

Argentinian woman, and a US man and woman are 89.5, and 88.7 and 90 years,

respectively). Hence our prediction for Francis of 86 years is slightly lower than that given in

the published life table, possibly because popes have particular life courses. However, our

Bayesian approach offers the full predictive distribution and our modeling provides some

historical insights. Such a comparison can introduce students to the use of actuarial tables

and can lead to some fun investigations.

Extrapolating conclusions from data based on just popes to the whole male population

may be dangerous because of the particular life courses of popes and the fact that their

median election age of over 63 years means that they have generally achieved a certain

maturity. However, Hanley, Carrieri and Serraino (2006) made a very careful comparative

study of the longevity of popes and artists between the 13-th and 19-th century. For each

pope they considered artists born in the same year who were still alive when the pope was

elected. They found that from the 14-th until the 18-th century artists tended to outlive

Extended Model Model (3)
95% Credible Intervals Width Width

r (0.937, 1.464) 0.527 0.498
β0 (−3.434,−2.017) 1.417 1.359
β1 (−0.494, 0.108) 0.602 0.054
β2 (−0.023, 0.001) 0.024 0.003

Table 4: 95% credible intervals and their widths for the parameters r , β0, β1 and β2 when
model (3) is extended by the addition of β3x3i . The width of the corresponding intervals for
model (3) given in Table 1 are also reported.
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popes. Again, the class could be engaged in a discussion about how these comparisons

could be made, perhaps referring again to Lexis diagrams such as Figure 1; see Hanley,

Carrieri and Serraino (2006) for a very interesting discussion.

A similar analysis could be conducted for individuals comprising special populations such

as presidents, monarchs and other heads of state. These data are readily available.

When analysing populations that include females, a covariate indicating gender should be

included. Discussion about this could be motivated by consideration of the actuarial tables

mentioned above. Similar analyses could be conducted for subpopulations with particular

mortality schemes, for example people in specific professions. Britton and Shipley (2010)

found that among British civil servants ‘those reporting being bored are more likely to die

younger than those who are not bored’. The class could be asked to discuss how they could

investigate whether job interest is a protective factor for people in stressful occupations.

In conclusion, we believe that using historical data provides ample scope for enhancing the

teaching and discussion of a range of issues such as data visualization, survival analysis,

and Bayesian statistical modeling. It therefore has considerable potential for improving the

student learning experience.
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Appendix 1: BUGS/JAGS Code

First Approach: treat the unknown survival time as a model parameter

model{

for(i in 1:n){

#

# Likelihood part

#

censored[i] ~ dinterval(survival[i], censoring_limits[i])

# To deal with censoring:

# censored equals 1 for Benedict XVI as of 25/12/2016,

# 0 for the other popes.

# survival equals NA for Benedict XVI,

# and the survival times of the other popes.

# censoring_limits equals 11.7 for Benedict XVI,

# and values (e.g. 32) greater than or equal to

# the survival times of the other popes.

survival[i] ~ dweib(r, mu[i]) # Basic Weibull assumption

mu[i] <- exp(beta[i]) # Defining beta as log(mu)

beta[i] <- beta_0 + beta_1*x_1[i] + beta_2*x_2[i]

# beta = log(mu) is a linear function of the covariates

}

#

####################################################

#

# Priors

#

beta_0 ~ dnorm(0.0, 1.0E-4) # Prior on beta_0 is normal with low precision

beta_1 ~ dnorm(0.0, 1.0E-4) # Prior on beta_1 is normal with low precision

beta_2 ~ dnorm(0.0, 1.0E-4) # Prior on beta_2 is normal with low precision

#
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r ~ dexp(0.001) # Prior on r

#

####################################################

#

# Define the alphas

#

alpha_0 <- - beta_0 / r

alpha_1 <- - beta_1 / r

alpha_2 <- - beta_2 / r

#

# Percentage increases

#

percentage_increase_age <- 100*(exp(alpha_1) - 1)

percentage_increase_year <- 100*(exp(alpha_2) - 1)

#

####################################################
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#

# Posterior median at various covariate values

#

beta_med <- beta_0 + beta_1*x_1_new + beta_2*x_2_new

# New values need to be supplied

t_median <- pow(log(2) * exp(-beta_med), 1 / r)

#

####################################################

#

# Predictive distribution of age at the new values

#

beta_Francis <- beta_0 + beta_1*age_Francis + beta_2*year_Francis

# Values of age_Francis and year_Francis need to be provided

mu_Francis <- exp(beta_Francis)

survival_Francis~ dweib(r, mu_Francis)T(present_length, upper_length)

# Take into account the current pontificate length

# Also specify a sensible upper bound

age_Francis_predictive <- age_at_election + survival_Francis

# Work also with age

}
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Second Approach: specify the contribution to the likelihood function

from the censored observation

model{

#

####################################################

#

# Likelihood contribution from censored survival time

#

# z_censored takes the value 0

# z_censored is assumed to follow a Poisson distribution

# with parameter phi_censored

#

z_censored ~ dpois(phi_censored)

#

# Required form of phi_censored, in which

# t_censored takes the value 11.7, censored survival time for Benedict XVI

#

phi_censored <- mu_censored * pow(t_censored, r)

#

# Usual form of mu for mu_censored

# x_1_censored and x_2_censored

# are the corresponding covariate values

#

mu_censored <- exp(beta_censored)

beta_censored <- beta_0 + beta_1*x_1_censored + beta_2*x_2_censored

#

####################################################

#

# Likelihood contributions from non-censored observations, as before

#

# We loop over the 61 non-censored observations
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# Previously indexed i in 2:62

#

for(j in 1:n_non_censored){ # n_non_censored is 61

survival_non_censored[j] ~ dweib(r, mu[j])

mu[j] <- exp(beta[j])

beta[j] <- beta_0 + beta_1*x_1_non_censored[j] + beta_2*x_2_non_censored[j]

}

#

##############################################

#

# Priors

#

beta_0 ~ dnorm(0.0, 1.0E-4)

beta_1 ~ dnorm(0.0, 1.0E-4)

beta_2 ~ dnorm(0.0, 1.0E-4)

#

r ~ dexp(0.001)

#

}
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Appendix 2: R code for Frequentist Inference

require(survival)

#

# Censoring is handled by creating a survival object:

Surv(survival_raw, censored == 0)

# survival_raw contains all the survival times.

# censored equals 1 for Benedict XVI as of 25/12/2016,

# 0 for the other popes.

# The condition is TRUE for popes who are no longer alive or not censored

#

# Fit the model

#

s <- survreg(Surv(survival_raw, censored == 0) ~ x_1 +x_2)

summary(s) # Estimates and standard errors

confint(s) # Approximate 95% confidence intervals

#

# Predictions at the original data points

#

predict(s, se.fit = TRUE) # See ?predict.survreg

#

# Predictions at a combination of age and year values

#

age_new <- c(60, 80, 60, 80)

x_1_new <- age_new - mean(popes$Age.Election) # Centered

year_new <- c(1750, 1750, 1950, 1950)

x_2_new <- year_new - mean(popes$Year.Elected) # Centered

#

predict(s, newdata = data.frame(x_1 = x_1_new, x_2 = x_2_new))

#

# Residuals

#
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residuals(s, type = "response") # See ?residuals.survreg
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