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Abstract. One prevalent assumption in queueing theory is that the number of servers in a queueing

model is deterministic. However, randomness in the number of available servers often arises in

practice, e.g., in virtual call centers where agents are allowed to set their own schedules. In this

paper, we study the problems of sta�ng and controlling queueing systems with an uncertain number

of servers and impatient customers. Because randomness in the number of servers creates congestion

in the system, the customer abandonment distribution plays an important role. We characterize

how it a�ects both the optimal sta�ng policy and the cost incurred by the manager. Because of that

strong dependence on the abandonment distribution, it is natural to investigate ways of controlling

customer abandonment behavior so as to mitigate that cost. Here, we propose doing so by making

delay announcements in the system. We characterise how the manager may use three controls in

her toolbox, sta�ng, compensation, and the announcements, to e�ectively control her system. We

show that despite jointly optimizing the usage of those three controls, it may be cost e�ective for

the manager to understa�, oversta�, or match supply and demand in any given shift.

Keywords: delay announcements; many-server queues; random capacity; abandonment.
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1 Introduction

There is a broad literature in queueing theory which studies the problems of sta�ng and controlling

large-scale service systems; e.g., for surveys of applications in call-center management, see Gans

et al. (2003) and Ak³in et al. (2007). Much of that body of research formulates recommendations

based on queueing models with several realistic features, such as time-varying parameters and non-

standard network structures. However, one prevalent assumption in those models is that the number

of servers is deterministic. As such, the realized sta�ng level in any given time period is assumed

to be equal to the planned sta�ng level for that period. In contrast, this paper studies optimal

sta�ng and control decisions in queueing systems with a random number of servers instead.

Uncertainty in the number of available agents arises in many novel work arrangements. Virtual

call centers, such as Liveops (liveops.com) or Arise (arise.com) hire work-from-home agents who are

free to set their own schedules, often at very short time notice. Amazon Flex (�ex.amazon.com) relies

on independent contractors to deliver Amazon Prime Now packages, which have a short delivery

deadline, usually 1-2 hours. Those delivery workers enjoy the �exibility of setting their preferred

delivery times. Ride-sharing services, such as Uber (Uber.com) or Lyft (lyft.com), also allow their

drivers to self-schedule. They use �surge pricing� (Uber 2015) to ensure the participation of a

su�cient number of drivers in di�erent time periods. Uncertainty in the number of agents also arises

in traditional work environments when there is signi�cant non-adherence to planned schedules. For

example, it is well known that nurse absenteeism is a considerable problem in healthcare settings (US

Bureau of Labor Statistics 2008, BBC 2015). As a result, the actual number of available nurses, in a

given shift, is uncertain. Agent absenteeism also remains one of the leading causes of poor customer

service levels in brick-and-mortar call centers (TalkDesk 2014). While each of those settings poses

unique operational challenges, agents may be viewed as being strategic in each. That is, they are

decision makers who choose whether or not to be available for work in a given shift based on their

individual preferences or availabilities. We study the operational management of such systems.

Framework. We assume that there are k working shifts, and that agents have inherent, heteroge-

nous, availabilities or preferences for di�erent shifts. We assume that there is a sta�ng cost cj per

server, depending on the shift j. In a �rst stage, the system manager decides on the total sta�ng
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level, n. Each agent in the pool of size n has a �xed probability, rj , of showing up to work in

the second stage. The show-up probability rj depends on both the personal preferences of agents

and the compensation o�ered in shift j: An agent shows up to work in a shift if her (random)

opportunity cost is less than or equal to the compensation o�ered for that shift. Customers are

assumed to be both impatient and delay sensitive, as is usually the case in practice.

A long-term sta�ng decision. Virtual call-center platforms, such as Arise or LiveOps, routinely

provide training services to agents before matching them with client companies. These training

periods typically last a few weeks (up to 10 weeks) 1. With ride-sharing platforms, such as Uber

or Lyft, training and background checks also require advance planning, and typically last around

2 weeks 2. Thus, sta�ng decisions in systems with self-scheduling agents cannot, usually, be made

�on the �y�. Since the agent population is both remote and large, up to hundreds of agents, system

managers cannot simply solicit their agents' scheduling preferences ahead of time. For example,

hiring decisions in virtual call centers often do not even involve a face-to-face interview 3.

To mimic such practical challenges, we �rst consider a setting where the manager must decide

on n in advance by relying on historical estimates of rj . The manager may obtain these, e.g.,

by analyzing human resources data in her �rm. For example, based on analyzing that data, she

may know that work-from-home parents usually prefer morning shifts while children are at school;

however, she would not know whether any speci�c work-from-home parent will be available for a

particular shift. We determine n that minimizes the expected total system cost, which is the sum

of all sta�ng and customer-related (waiting and abandonment) costs, i.e., our focus is on ensuring

a su�ciently high quality of service to customers; this is usually a major concern in service systems.

Since the sta�ng problem in our general context is not amenable to exact analysis, we determine

optimal sta�ng levels by solving its �uid approximation.

To quantify the impact of self-scheduling, we consider as benchmark a system where it is op-

timal, in the absence of self-scheduling, to match the supply (service) and demand (arrival) rates

in each shift. Then, there is no congestion in the system, at �uid scale, and customer impatience

does not play any role. When servers self-schedule, the resulting uncertainty in the numbers of

1http://www.ariseworkfromhome.com/faq/agent-questions/
2http://www.businessinsider.com/how-much-you-earn-as-an-uber-driver-2014-6?IR=T
3http://workathomemoms.about.com/od/workathomecareers/p/callcenterprofi.htm
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servers creates congestion in understa�ed shifts. Because of that congestion, the speci�c customer

abandonment distribution now plays an important role.

Short-term controls. We assume that the manager may control the compensation that she o�ers

her agents, and investigate how to optimize this control along with the sta�ng decision. Indeed,

controlling agents through compensation is the rationale behind �surge pricing� in ride-sharing

platforms (Uber 2017): By increasing (decreasing) compensation in a given shift, more (less) agents

should be willing to participate (Gurvich et al. 2017, Cachon et al. 2016, Riquelme et al. 2016).

However, there is also a need to consider alternative tools, besides compensation and sta�ng, to

control the system. First, the manager may be restricted in how much and how often she can modify

compensation. This is certainty the case in virtual call centers because of market transparency and

�erce competition between providers. Also, in virtual call centers, compensations are often set in

advance by client companies rather than by the virtual call-center platform itself. In this case, the

responsibility of the platform is to sta� and train agents, and act as an intermediary between client

companies and their agents 4 5. Second, while pricing in�uences agents, it cannot always be used to

in�uence the behaviour of customers, e.g., in service-oriented virtual call centers; there is therefore a

need to consider other customer-side controls. Third, there is considerable concern about the extent

to which pricing should be used as a control in on-demand service platforms, because of extreme and

frequent �uctuations. As was noted in Taylor (2017), most on-demand service platforms avoid real-

time pricing because of customer resistance to it. As a result, there are numerous calls to consider

alternatives (Harvard Business Review 2015). We propose one such alternative in this paper.

Given that customer impatience plays an important role, it is natural to think of ways of con-

trolling customer abandonment behavior so as to alleviate the cost of self scheduling. Here, we

propose doing so by communicating to customers information about upcoming delays, in the form

of delay announcements. Indeed, delay announcements are known to impact customer abandonment

behavior in practice (Mandelbaum and Zeltyn 2013, Aksin et al. 2016, Yu et al. 2016, Ibrahim et al.

2017). When customers respond to the announcements, their behavior alters the performance in

the system which, in turn, a�ects the future announcements given. Therefore, studying customer

response requires an equilibrium analysis i.e., one where announced and experienced delays coin-

4http://www.ariseworkfromhome.com/faq/agent-questions/
5http://join.liveops.com/sales-independent-contractor-better-than-work-from-home-jobs
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cide in the �uid approximation. Communicating announcements allows the manager to alleviate

congestion in understa�ed shifts, and may also be seen as an alternative to restricting the freedom

of agents by capping their access in oversta�ed shifts (Gurvich et al. 2017). Since restricting agent

�exibility through caps is typically a cause of agent complaint 6, or may not be possible in practice

(e.g., it would be easy to send nurses home if they do show up, or to limit the number of Uber

drivers that �ock to a certain area), it is useful to consider alternatives.

In this paper, we study e�ective ways of managing service platforms with self-scheduling agents

where the manager has three controls in her toolbox: (i) the sta�ng level, (ii) the announcements,

and (iii) the compensation. For completeness, we consider the optimization of such controls indi-

vidually (�x the other two), pairwise (�x only one), and jointly, because the time scales at which

those decisions are made in practice may vary depending on context. When the agent pool size

is �xed, the announcements and the compensation may be considered to be short-term controls.

Shortly before a given shift, the manager may have at her disposal updated or revised arrival-rate

forecasts which are based on some new information, e.g., for ride-sharing services, a concert may

have just ended in some region, creating a surge in customer demand for Uber cars. Then, the

manager would optimize her compensation and announcement decisions, for that shift, based on

those updated arrival rates; we consider this joint optimization problem in �6.2.

Contributions. In this paper, we make the following contributions.

• For a rigorous treatment, we prove the asymptotic (for large arrival rates) accuracy of our �uid

approximation to the system with a binomially distributed number of servers and exponential

times to abandon. The binomial distribution arises when agents make independent decisions,

each with probability rj , to be available in shift j.

• We characterize the role that customer impatience plays in on-demand service platforms by

deriving various stochastic-order relations between di�erent customer abandonment distribu-

tions and characterizing how those relations impact the system's cost (extending part of the

analysis in Bassamboo and Randhawa (2010) who do not explicitly study the impact on cost

and Whitt (2006b) who focuses on a single-shift setting).

6https://www.glassdoor.co.uk/Reviews/Employee-Review-Arise-RVW9860651.htm
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• We determine the optimal long-term sta�ng policy: We �nd that it is optimal to either

match the supply and demand rates in one of the shifts, thus oversta�ng or understa�ng the

remaining shifts, or to not match the supply and demand rates in any of the shifts, depending

on whether the abandonment distribution has a non-decreasing (former) or decreasing (latter)

hazard rate. This goes against conventional wisdom in workforce management which supports

optimizing controls in order to match supply with customer demand 7.

• We analyze the system with announcements and a self-scheduling capacity across multiple

shifts (extending part of the analysis in Armony et al. (2009) who focus on a single shift).

Analyzing the system with multiple shifts is not straightforward: Because of self-scheduling,

there are di�erent sta�ng levels in di�erent shifts, leading to di�erent equilibrium announce-

ments and abandonment distributions, depending on the shift. We derive a condition under

which the announcements lead to a decrease in the cost of self-scheduling, across all shifts. In

the same spirit as Huang et al. (2017), we also position the announcements more generally in

a broader context of operational decision-making in service systems: We solve a joint sta�ng

and announcement problem and show that a manager that will be using announcements at a

later stage may decide on a di�erent initial sta�ng level in the �rst stage.

We formulate the following managerial insights based on optimizing the three controls:

• For a �xed agent pool size, the manager should vary compensation to either incite enough

agents to participate (i.e., match demand), or intentionally incite a smaller or larger supply

of agents than the incoming demand. This suggests e.g., that �surge pricing� need not always

be used to match supply and demand, which is the guiding principle in managing on-demand

service platforms (The Economist 2016).

• By using the announcements, the manager can alleviate costs by altering customer abandon-

ment behavior in understa�ed periods. However, if the announcements are su�ciently e�ective

in reducing customer-related costs, then the manager has less incentive to o�er high pay to

her agents to induce their participation; in other words, agents are worse o� because of the

announcements.

7http://searchcrm.techtarget.com/tip/Using-workforce-management-software-effectively-in-contact-centers
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• When optimizing all three controls, the value of the minimum wage that the manager has

to pay her agents plays a major role. To characterize that role, as we do here, is especially

important in light of the current debate about the necessity to o�er minimum wage to agents

in on-demand service platforms8. If the minimum wage is �su�ciently low�, then the manager

uses only the compensation and sta�ng controls, but does not resort to the announcements:

She eliminates all congestion in the system by paying compensation which may be strictly

higher than the minimum wage. If the minimum wage is �high�, then the manager pays that

wage in all shifts and uses the announcements to alleviate congestion in understa�ed periods.

Organization. Here is how this paper is organized. In �2, we review the relevant literature. In

�3, we describe our modelling framework and the system manager's problem. In �4, we formu-

late sta�ng recommendations with self-scheduling agents. In �5, we study the problem with delay

announcements. In �6, we investigate the compensation optimization problem, and the joint op-

timization of all controls. In �7, we establish the asymptotic accuracy of the �uid approximation

with a binomial number of servers, and in �8, we draw conclusions. We relegate all proofs to the

appendix, and present some additional related material in an online supplement.

2 Related Literature

Our modelling approach is close to the stream of literature initiated by Harrison and Zeevi (2005)

which addresses the question of capacity planning under parameter uncertainty. Our paper is

also related to the extensive literature analyzing asymptotics of many-server queueing systems

with impatient customers (Garnett et al. 2002, Zeltyn and Mandelbaum 2005, Whitt 2004, 2006a,

Bassamboo and Randhawa 2010, Bassamboo et al. 2010), and to the large literature on optimal

sta�ng decisions in service systems (Maglaras and Zeevi 2003, Borst et al. 2004, Harrison and Zeevi

2005, Bassamboo et al. 2005, 2006); for other references, see Gans et al. (2003) and Ak³in et al.

(2007). However, none of those papers considers a random number of servers. Atar (2008) derives

a di�usion limit for the number of customers with a random number of servers and random service

rates. However, the sta�ng question is not addressed there.

8http://uk.businessinsider.com/british-uber-drivers-entitled-to-minimum-wage-holiday-pay-lodon-tribunal-rules-2016-10
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Our paper is also related to the literature which considers a random arrival rate instead of a ran-

dom number of servers (Aldor-Noiman et al. 2009, Jongbloed and Koole 2001, Steckley et al. 2005).

Bassamboo et al. (2010) rely on a stochastic-�uid approximation to determine optimal sta�ng levels

in many-server queues with random arrival rates, and Whitt (2006b) relies on a �uid approximation

to systems with with an uncertain arrival rate, an uncertain number of servers, and a single shift

(our focus here is on sta�ng multiple shifts instead, and on making delay announcements in that

setting). It is important to acknowledge that the �uid approximations for systems with random

arrival rates or with a random number of servers are equivalent. However, the optimization and

control problems that we study in this paper (jointly over both compensation and delay announce-

ments) are especially relevant to a system with a random number of servers, and are not covered

by existing results on queues with a random arrival rate. To capture the distinction between those

two types of randomness, in number of servers versus in arrivals rates, it is necessary to go beyond

the �uid approximation, as we do in a follow-up paper, Dong and Ibrahim (2017).

There is a body of research within the queueing games literature which considers strategic servers

that may select their service rates (Cachon and Harker 2002, Cachon and Zhang 2007). However,

such papers do not consider sta�ng decisions, and the maximum number of servers considered is

two. Recent exceptions are Gopalakrishnan et al. (2016) and Zhan and Ward (2016). Our work

is related to papers on nurse sta�ng with absenteeism, such as Green et al. (2013) and Wang and

Gupta (2014). However, our self-scheduling sta�ng context is di�erent because agents self-schedule

to di�erent shifts from a single pool, based on their availabilities and preferences, whereas each

clinical unit may be sta�ed separately. This paper is related to research on delay announcements,

including Armony et al. (2009), Jouini et al. (2011), Allon and Bassamboo (2011), Aksin et al.

(2016), and Yu et al. (2016). However, none of these papers considers multiple shifts, nor the joint

sta�ng and announcement problem which arises in a context with self-scheduling servers.

This paper is most closely related to recent papers on queues with a self-scheduling capacity. The

paper closest to ours is Gurvich et al. (2017), who were the �rst to study the operational management

of systems with self-scheduling agents. They consider a pro�t-maximizing �rm which can control

the pool size, the compensation, as well as place a cap on agent participation in oversta�ed shifts. In

contrast, we focus here on minimizing costs when quality of service is important and customers are

impatient. Modelling system congestion and customer impatience allows us to analyze a customer-
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side control instead, i.e., the announcements. More generally, there is a growing stream of literature

on the management of on-demand service platforms (see for example Ozkan and Ward (2017), Hu

and Zhou (2017b), Braverman et al. (2017), Taylor (2017), Cachon et al. (2016), Riquelme et al.

(2016), Tang et al. (2017), Bimpikis et al. (2017), Hu and Zhou (2017a,b), Feng et al. (2017), Hu

and Chen (2017), etc.). Our paper is related to that stream of literature, but our focus on sta�ng

queues with randomness in capacity, and focusing on the role of customer impatience, are di�erent.

Ata et al. (2017) is also relevant to our work, albeit in a di�erent application context (volunteer

gleaning operations), and with a di�erent focus.

3 Modelling Framework

In this section, we describe our modelling framework: First, we describe our queueing framework,

and then we formulate the optimization problem faced by the system manager.

Queueing Model. There are k shifts and we consider single-class G/G/Nn
j +GI queueing models

in steady state, where j indexes the shift and Nn
j is a random variable which depends on the pool

size n. As in Gurvich et al. (2017), we assume that agents are statistically identical and have

an availability threshold (opportunity cost) T for showing up in shift j. Letting G(·) denote the

cumulative distribution function (cdf) of T , an agent shows up in shift j with probability rj ≡ G(cj).

In particular, E[Nn
j ] = nrj is the expected number of servers in shift j. We assume that G(·) is

log-concave with positive density function g(·). We emphasize that there we make no restriction on

whether the agent may appear in multiple and/or successive shifts. Service times are independent

and identically distributed (i.i.d.) random variables with a general distribution and mean 1/µ. We

assume, without loss of generality, that µ = 1.

Each customer will abandon if he is unable to start service before a random amount of time,

which we refer to as his patience time. Patience times are i.i.d. across customers, and have a cdf

F , complementary cdf (ccdf) F̄ , density function f , hazard-rate function ha, and mean 1/θ for

some θ > 0. Abandonment makes the system stable, even when Nn
j is random (Whitt 2006b) 9.

Customers arrive to the system according to general stationary processes with rates λj , 1 ≤ j ≤ k.
9Speci�cally, with abandonment and a deterministic N , a proper steady-state distribution always should exist.

Stability with a random N follows by conditioning and unconditioning on N .
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We assume that there is no service overlap between the di�erent shifts, i.e., customers who arrive

during a shift must be served by agents who are assigned to that shift. While this assumption

may not always be justi�able, it is reasonable when the system is su�ciently large. The arrival,

service, and abandonment processes are all mutually independent, also independent of Nn
j . There

is unlimited waiting space, and we use the �rst-come-�rst-served service discipline.

System Manager's Problem. As in Bassamboo and Randhawa (2010), we consider two quality-

of-service costs, indexed by the shift j: (i) A delay cost, hj , per customer for each unit of time that

this customer spends waiting to be served, and (ii) an abandonment penalty cost, pj , incurred per

customer who abandons before being served. Let QNn
j
denote the steady-state queue length and αNn

j

denote the net customer abandonment rate. The system manager can decide on both the sta�ng

level n and the compensation to o�er her agents. Because of �erce competition between alternative

service providers, and because of mounting pressure to o�er a su�ciently high compensation 10 to

agents in on-demand service platforms, we assume that there exists a minimum wage, l, i.e., that

we must have cj ≥ l in every shift j (Gurvich et al. 2017). Here is the manager's problem:

(3.1)min
cj ≥l,n∈N

Π(n, c) ≡
∑

1≤j≤k

(
cj · E[Nn

j ] + pj · E[αNn
j

] + hj · E[QNn
j

]
)
,

where c ≡ (c1, c2, · · · , ck) is the k-dimensional vector of compensations and N denotes the set of

natural integers. We note in passing that the formulation in (3.1) is a cost formulation, i.e., the

objective is to minimize the expected cost in the system. An alternative formulation would be to

consider a constraint formulation instead, e.g., to impose a service-level constraint on the waiting-

time. This distinction is carefully treated in Bum Soh and Gurvich (2017) who explore the duality

between the two formulations in both single-class and multi-class queues. They �nd that while the

optimal trade-o� of capacity and delay can be implemented via a sta�ng problem with average

waiting constraints in a single-class setting, the problem is more complicated with multiple classes

where a priority scheme must be implemented as well.

Since the problem in (3.1) is not amenable to exact analysis, we consider a steady-state �uid

approximation of the system instead. For an G/G/s + GI system, q̄ρs and ᾱρs are, respectively,

the �uid approximations for the queue-length and net abandonment rates with tra�c intensity

10http://www.zerohedge.com/news/2016-12-28/uber-out-drivers-sue-sharing-economy-champion-minimum-wage
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ρs ≡ λ/sµ. The �uid approximation to problem (3.1) is:

(3.2)min
cj ≥l,n∈N

C(n, c) ≡
∑

1≤j≤k
nG(cj)cj + pj · ᾱρj/G(cj) + hj · q̄ρj/G(cj),

where E[Nn
j ] = nG(cj). In �7, we establish the asymptotic accuracy of our �uid approximation and

quantify the orders of magnitude of the resulting errors, depending on the prescribed asymptotic

regime, when the number of servers has a binomial distribution. There, we show that our �uid

approximation is extremely accurate, particularly when the system is heavily congested.

Under the �uid approximation in (3.2), only the expected number of agents who show up in a

given shift, e.g., based on the o�ered compensation, matters. In reality, the variance in the number

of agents who show up is also important to consider, as it could considerably impact performance

measures in the system. For example, larger agent pools may also entail higher variance which must

be planned for by the system manager. In this paper, we do not address that issue further as our

main goal is to derive insights on how to manage such systems using both short-term (compensation,

announcements) and long-term (sta�ng) controls. We study the impact of the variance in capacity

on the operational management of the system in a follow-up paper, Dong and Ibrahim (2017).

4 Long-Term Sta�ng Policy

In this section, we solve the long-term sta�ng problem with self-scheduling servers. Here, we �x

c in (3.1) and focus on determining the capacity n directly as a function of rj = G(cj). Later, we

solve the manager's problem when she can jointly decide on all controls in her toolbox. Since we are

particularly interested in describing the role played by the abandonment distribution, and in order

to ground our theoretical analysis in common practice, we begin by highlighting some empirical

�ndings on how customers abandon in real-life service systems.

4.1 How Do Customers Abandon in Practice?

Using hazard rates to describe customer patience dates back to Palm (1953), and is common in

statistical inference studies on customer abandonment; e.g., see Brown et al. (2005). Mandelbaum

and Zeltyn (2013) also advocate the usage of survival functions for patience inference.

Existing empirical evidence, from both the call center and healthcare settings, suggests that

customers typically have an abandonment distribution with a decreasing hazard rate. In a call
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center setting, Mandelbaum and Zeltyn (2013) �nd that �customers who have already waited for a

signi�cant time, tend to remain increasingly patient� (p. 14). In an emergency department setting,

Bolandifar et al. (2016) also reach the conclusion that the abandonment distribution of patients has

a decreasing hazard rate, and attribute this to the �sunk cost e�ect� (p. 19). In what follows, we

consider abandonment distributions with both increasing and decreasing hazard rates, and deter-

mine the optimal sta�ng policy in each case. Later, we formulate stochastic order relations between

abandonment distributions using both survival functions and hazard rates, and study the impact

of those relations on the cost in the system.

4.2 Benchmark Case: No Self-Scheduling

Without self-scheduling, the system manager can independently select the optimal sta�ng levels,

n∗j in each shift j. However, with self-scheduling, she can only choose the total sta�ng level, n∗,

and allow agents in the pool of size n∗ to self schedule.

The density of the �uid that has been waiting for exactly u time units, in shift j, is equal to

λjF̄ (u). Therefore, the corresponding (unscaled) queue length is given by qj =
∫ wj

0 λjF̄ (u) du,

where wj denotes the waiting time given service. The net abandonment rate (unscaled) in shift j is

equal to λjF (wj). In the absence of self-scheduling, we must have that n∗j = λjF̄ (w∗j ) ≤ λj where

w∗j is the optimal waiting time in shift j; indeed, it is then suboptimal to sta� more than λj agents

in shift j. The �uid approximation to the system manager's problem for shift j is:

min
wj≥0

λj

(
(cj − pj)F̄ (wj) + hj

∫ wj

0
F̄ (u) du

)
. (4.3)

Hereafter, we make the following assumption.

Assumption 4.1. For all j, cj < min{hj/ha(0) + pj , hj/θ + pj}.

Assumption 4.1 states that sta�ng costs are su�ciently inexpensive; this is consistent with the

assumptions in Bassamboo and Randhawa (2010). Then, it is easy to establish the following result

for the optimal solution to problem (4.3).

Proposition 4.1. Under Assumption 4.1, in a system with no self-scheduling servers, it is optimal

to match the supply and demand rates in every shift, i.e., n∗j = λj.
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Proposition 4.1 shows that, in a system without self-scheduling, it is optimal to operate every shift

in the critically-loaded regime (Hal�n and Whitt 1981). Thus, all customers are served immediately

upon arrival, and there is no reneging from the system. Intuitively, when the sta�ng costs are small

enough (less than the upper bound in the assumption), it is cost e�ective for the manager to sta�

a large enough agent pool to eliminate, at �uid scale, all congestion from her system. In contrast,

if the sta�ng costs are high, then it would be cost e�ective to allow for congestion instead, i.e.,

purposely deteriorate the service level because sta�ng enough agents is too costly.

4.3 Self-Scheduling Capacity

We de�ne the augmented arrival rate Γj ≡ λj/rj , and let Γ0 ≡ 0. De�ning the augmented demand

rates as such allows us to capture the salient heterogeneity across shifts, which is the key challenge

in managing a random capacity. That heterogeneity is due to two factors: (i) time-dependent

demand λi and (ii) time-dependent availabilities of agents ri. Without loss of generality, we assume

that the alternative shifts are numbered in order of increasing Γj values, i.e., Γj−1 ≤ Γj for all

j ∈ {1, 2, · · · , k}. In other words, we re-index the di�erent shifts so that the Γi values are ordered.

That is, if Γ1 > Γ2 and there are only two periods, we re-index shift 1 as shift 2, and vice-versa.

For a total sta�ng level Γj−1 < n < Γj , all shifts with index i where i ≤ j − 1 are underloaded,

whereas all shifts where i ≥ j are overloaded. Moreover, letting n = Γj amounts to matching

the supply and demand rates in shift j. In an overloaded shift i, we have that ΓiF̄ (wi) = n, i.e.,

wi = F̄−1(n/Γi). Since it is never optimal to strictly underload all shifts, the system manager's

problem can be de�ned piecewise over the successive [Γj−1,Γj) intervals as:

min
0≤n≤Γk

C(n) ≡

 k∑
j=1

1(Γj−1 ≤ n < Γj)uj(n)

 , (4.4)

where 1(n ∈ A) denotes the indicator function over the set A, and uj(n) is given by:

uj(n) ≡
k∑
i=1

cinri +
k∑
i=j

(
pi(λi − nri) + hiλi

∫ F̄−1(n/Γi)

0
F̄ (u) du

)
, (4.5)

i.e., uj(n) is the total cost incurred if n is chosen in the interval [Γj−1,Γj). In (4.4), for each value

of n, exactly one of the indicator functions will be equal to 1 and the rest will be equal to 0. For
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example, if n ∈ [Γi0−1,Γi0), then C(n) = ui0(n) for ui(n) in (4.5). That is, all shifts which are

indexed i0 and above will be congested and the manager incurs customer-related costs in those shifts,

whereas the remaining shifts, indexed below i0, are oversta�ed (no congestion). We begin with the

following proposition providing necessary and su�cient conditions under which self-scheduling is

not costly to the manager, relative to the benchmark.

Proposition 4.2. Self-scheduling is not costly to the system manager if, and only if, the resulting

augmented arrival rates are identical across all shifts.

Proposition 4.2 highlights the importance of considering multiple shifts in our setting. Indeed, with

a single shift, it is readily seen that the manager can simply sta� a large enough agent pool, equal

to λ/r, so as to eliminate the cost of self-scheduling in her system. It is because the manager is

confronted with a self-scheduling capacity across multiple shifts that she has to pay a price for

self-scheduling. Based on Proposition 4.2, if the manager is able to solicit her agents' scheduling

preferences upon hire, then she should make sta�ng decisions in a way to ensure demand-augmented

uniform plans across shifts. For example, if the morning shift (M) typically experiences high demand

while the afternoon shift (A) typically experiences low demand, i.e., λM > λA, then she should hire

agents with a stronger preference for the morning shift, i.e., rM > rA so that ΓM = ΓA. By doing so,

she could eliminate the cost of self-scheduling. The problem is, of course, that hiring agents based on

their scheduling preferences is not usually possible in our context, e.g., with self-scheduling agents

in virtual call centers. Instead, the manager may only have historical estimates of agent preferences,

i.e., of the rj values, and of the resulting Γj values, and know the cost structure in her system. Next,

we investigate her sta�ng problem when the augmented arrival rates are not uniform across shifts.

4.4 Monotonically Non-Decreasing Hazard Rate

For abandonment distributions with a monotonically increasing hazard rate or with exponential

abandonment, we �nd that it is optimal to match the supply and demand rates in one of the k

shifts when servers self schedule (as opposed to all shifts when they do not self-schedule), with the

remaining shifts being either over or under sta�ed.

Proposition 4.3. For abandonment distributions with a monotonically non-decreasing hazard rate:
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• The objective function in problem (4.4) is piecewise concave (piecewise linear with exponential);

• There is one shift i0 where the supply and demand rates must be matched, i.e., n∗ = Γi0 ;

• With exponential abandonment, i0 must satisfy the following condition where Lj ≡ pj +
hj
θ :

k∑
j=1

cjrj −
k∑

j=i0

Ljrj < 0 and

k∑
j=1

cjrj −
k∑

j=i0+1

Ljrj > 0. (4.6)

Proposition 4.3 shows that solving the sta�ng problem in this case reduces to determining which of

the k shifts to critically load. For example, with exponential abandonment, the condition in (4.6)

can be interpreted as follows. Starting with a sta�ng level equal to 0, a unit increase in the sta�ng

level increases the expected sta�ng cost by
∑k

j=1 cjrj . It also decreases the expected congestion

cost by
∑k

j=1 Ljrj . Under Assumption 4.1, adding one server to an empty pool will yield an overall

cost decrease in the system, since
∑k

j=1 cjrj <
∑k

j=1 Ljrj . Condition (4.6) states that the manager

must continue increasing the sta�ng level until the rate of decrease in congestion costs no longer

o�sets the rate of increase in sta�ng costs: The supply and demand rates in shift i0 are then

matched. The optimality of oversta�ng certain shifts lends some support to the sta�ng policies

adopted in virtual call centers such as LiveOps 11 or Arise 12, where agents regularly complain

about the fact that there are �too many other agents on board� and, consequently, �too few calls

to answer�. However, the compensation structure in those settings is di�erent: There, the manager

typically uses volume-dependent pay, e.g., agents earn a piece-rate compensation in addition to

some base salary. Under our �xed compensation structure, we �nd that oversta�ng certain shifts

can minimize costs, but that this is not true for all shifts.

To illustrate how the sta�ng policy of Proposition 4.3 may be implemented in practice, we

now discuss a simple example with three shifts: morning (M), early afternoon (EA), and (3) late

afternoon (LA). Let us assume that λLA < λM < λEA. That is, demand is highest in the early

afternoon, followed by morning, and then late afternoon. Let us now compare two di�erent patterns.

Under pattern 1, we assume that many agents show up in the morning, few in the early afternoon,

and many again in the late afternoon. In particular, we assume that rEA < rLA < rM and that, as

a result, we have ΓM < ΓLA < ΓEA. Recall that we re-index the shifts in order of increasing Γi to

11https://www.glassdoor.ie/Reviews/Employee-Review-LiveOps-RVW6931455.htm
12https://www.glassdoor.co.uk/Reviews/Arise-technical-support-Reviews-EI-IE31617.0,5-PKH6,23.htm
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derive the optimal sta�ng policy. Under pattern 1, since ΓEA is largest, it will be indexed as the

third shift. Thus, the shifts are re-indexed as: 1: M, 2: LA, and 3: EA.

Let us now consider another pattern. Under pattern 2, let us assume that few agents show

up in the morning, many show up in the early afternoon, and then few in the late afternoon. In

particular, rM < rLA < rEA. Let us also assume that we then obtain ΓEA < ΓM < ΓLA. The shifts

are now indexed as 1: EA, 2: M, and 3: LA. That is, even though the early afternoon shift has

the highest demand, it has the lowest Γ value since many agents show up for that shift. Since the

sta�ng policy in Proposition 4.3 depends on both the indexing of the shifts and the cost structure,

we may have di�erent sta�ng prescriptions under patterns 1 and 2. For example, the morning shift

may be oversta�ed under pattern 1, and understa�ed under pattern 2.

4.5 Monotonically Decreasing Hazard Rate

We now consider abandonment distributions with a monotonically decreasing hazard rate, which is

consistent with the way call center customers abandon in practice (�4.1).

Proposition 4.4. For abandonment distributions with a monotonically decreasing hazard rate:

• The objective function in problem (4.4) is piecewise convex;

• If there exists 1 ≤ i0 ≤ k such that C ′(Γi0−1) < 0 and C ′(Γ−i0) > 0, then the optimal solution to

problem (4.4) is n∗ ∈ (Γi0−1,Γi0), i.e., it is optimal to either under or over sta� every shift (no

matching). Otherwise, it is optimal to match the supply and demand rates in one of the shifts.

Interestingly, Proposition 4.4 shows that it may be optimal for the manager to not match the supply

and demand rates anywhere, i.e., to e�ectively under or over load every shift. In the appendix, we

derive a su�cient condition on the augmented arrival rates for this to be the case (in the proof of

the proposition). At a high level, this su�cient condition shows that if the imbalance between the

augmented arrival rates, measured by Γi0−1/Γi0 , is small enough then it may be optimal to �strike

a balance� between the two shifts i0−1 and i0, i.e., to underload shift i0−1, while overloading shift

i0. This result is di�erent from, e.g., the result in Wang and Gupta (2014) who study the nurse

sta�ng problem with absenteeism and show, under a similar �rst-order approximation as ours, that

�assignments must match average supply to mean demand� (p. 440) in each shift. Indeed, the main
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di�erence between our setting and theirs is that agents self-schedule from a single pool, whereas

there are distinct pools associated with clinical units, and each may be sta�ed separately.

In practical terms, Proposition 4.4 shows that it may be optimal for the manager to maintain

an imbalance between the average supply and demand rates in each of the shifts. In other words,

�having just the right number of sta� available within each interval of the day to meet established

service levels� 13, which is conventional wisdom for workforce management in call centers, may no

longer be the right approach with self-scheduling agents, since it may be optimal not to meet the

established service level in any shift, but rather to exceed or fall below it.

4.6 Numerical Example

We now turn to illustrating the impact of the abandonment distribution on the system's cost. In

Figures 1 and 2, we solve the sta�ng problems without and with self-scheduling, respectively, for

a Weibull abandonment distribution with �xed mean (equal to 1) and alternative values of the

shape parameter, s. Considering Weibull abandonment is convenient because its hazard rate has

di�erent monotonicities depending on the value of s: For s < 1, it is decreasing (DFR), for s > 1

it is increasing (IFR), and for s = 1 it is constant. Other parameters are held constant across the

two �gures, in particular we consider k = 5 shifts, and assume equal cost parameters across all

shifts: c = 0.8, h = 0.8, p = 1. We also let r = 0.4. We let the average arrival rate be equal to

55, and assume equal increments in the arrival rates across the shifts, i.e., λi+1 − λi is constant for

1 ≤ i ≤ k−1. We assume that λmax/λmin = 5, so that the shift with the highest arrival rate has an

arrival rate which is 5 times larger than the shift with the smallest arrival rate. Figure 1 illustrates

that the abandonment distribution plays no role without self scheduling, since the optimal sta�ng

cost is constant, and there is no congestion anywhere. In contrast, Figure 2 shows that, while

self-scheduling is always costly, the cost of self scheduling itself depends on the speci�c shape of the

abandonment distribution. Figure 2 suggests that if two abandonment distributions have the same

mean, a distribution with a decreasing hazard rate yields a smaller cost than one with an increasing

hazard rate. We demonstrate this, along with other properties, next.

13http://www.icmi.com/Resources/Workforce-Management/2015/03/How-Remote-Employees-Can-Help-Contact-Centers-Better-Manage-Peak-Seasons
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Figure 1: Benchmark cost (Problem (4.3)) with-
out self-scheduling and Weibull abandonment un-
der a constant mean and di�erent shapes.
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Figure 2: Cost of self-scheduling (Problem (3.2))
withWeibull abandonment under a constant mean
and di�erent shapes.

4.7 Stochastic Order Relations

We now study the impact of various stochastic order relations, between abandonment distributions,

on the system's cost; for background, see Shaked and Shanthikumar (2007). Let X1 and X2 denote

two generic times to abandon random variables, with cumulative distributive functions F1, F2

and hazard functions ha1, ha2, respectively. Let C∗i denote the optimal cost under abandonment

distribution i, i.e., C∗i is the optimal objective value in (3.2), for i = 1, 2.

Proposition 4.5. • Under equal mean times to abandon, if ha1 is decreasing and ha2 is in-

creasing, then C∗1 ≤ C∗2 ;

• Under equal mean times to abandon, if X1 is new worse than used in expectation (NWUE)

and X2 is new better than used in expectation (NBUE) 14, then C∗1 ≤ C∗2 ;

• If X1 ≤st X2 (�rst-order stochastic dominance), X1 ≤LR X2 (likelihood ratio order), X1 ≤HR

X2 (hazard rate order), or X1 ≤RHR X2 (reverse hazard rate order), then C∗1 ≤ C∗2 .

We begin by noting that the results in Proposition 4.5 apply generally to any congested system; since

self-scheduling creates understa�ed shifts, they apply to our speci�c context as well. Proposition 4.5

14A nonnegative random variable X is said to be NWUE (NBUE) if E[X − a|X > a] ≥ (≤)E[X] for all a ≥ 0.
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provides a theoretical justi�cation for the observations made in Figure 2: assuming equal mean times

to abandon, the Weibull distribution has a decreasing hazard rate when s < 1, and an increasing

hazard rate when s > 1; thus, the cost of self scheduling must be smaller for s < 1. Intuitively,

with a decreasing hazard rate, waiting customers are impatient initially and become increasingly

patient with time. This leads to a reduction in the average waiting time for all �uid in the system

and, consequently, reduces the cost of self-scheduling. In contrast, with an increasing hazard rate,

customers grow increasingly impatient with time, but are more patient initially. This leads to an

increase in the overall average waiting time for all �uid in the system. The same intuition holds

when one of the two distributions is NBUE, while the other is NWUE.

When X1 and X2 are ordered in a �rst-order stochastic dominance sense, we can derive a

stronger result: Then, the �uid waiting time given service, waiting time given abandonment, and

overall waiting time can all be shown to be smaller with abandonment distribution F1 than with

F2. As a result, the system's cost is also smaller. Since likelihood ratio, hazard rate, and reverse

hazard rate dominance all imply �rst-order stochastic dominance, the same holds under those types

of stochastic orders as well.

5 Controlling Customers: Delay Announcements

Our analysis so far has focused on emphasizing the role played by the customer abandonment

distribution in a system with randomness in capacity. Because of this, it is natural to investigate

ways of controlling this abandonment behaviour so as to alleviate the system's cost. We now propose

to do so via delay announcements in the system. In this section, we �rst explore the impact of the

announcements by assuming that both n and cj are �xed. The manager may also have updated

demand-rate forecasts at her disposal, based on which she would make a decision on whether or not

to make announcements. In that sense, the announcements are viewed as a real-time control that

is decided upon in a short-time scale. Then, we study a joint sta�ng and announcement problem.

5.1 How Do Customers React to Delay Announcements in Practice?

We begin by highlighting empirical evidence describing how customers react to delay announce-

ments in practice. That evidence will subsequently guide us in modelling customer response to the
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announcements. Based on their analysis of call-center data, Mandelbaum and Zeltyn (2013) found

that �customers who are promised a short wait become impatient at some point� and �customers

with the longest estimated wait seem to be relatively impatient� (p. 22). This evidence suggests that

customers grow increasingly impatient with the magnitude of the announced delay, i.e., that their

mean time to abandon is decreasing in the announced delay. Similarly, Aksin et al. (2016) found

that �callers who receive information that the queue length is long abandon the system sooner and

callers who receive information that the queue length is short abandon the system later compared

to the case with no information.� (p. 31). Thus, delay announcements incite customers to abandon

sooner, thereby reducing congestion in the system. Consistently, we make here the assumption that

the mean time to abandon decreases with the magnitude of the announced delay.

5.2 The All-Exponential Model

Because we consider a system with multiple shifts, and di�erent shifts have di�erent congestion

levels and therefore di�erent delay announcements, we obtain in each shift a di�erent announcement-

dependent abandonment distribution. Herein lies the complexity of considering multiple shifts: The

announcements may lead to shorter delays in some shifts, but not in others, and the aggregate e�ect

of those announcements is unclear.

To derive insights on system performance, we focus hereafter on an exponential abandonment

distribution with an announcement-dependent rate. In particular, letting w be the announcement

made, customers abandon according to an exponential abandonment distribution with rate θ(w).

We begin by noting that if the sta�ng level is �xed, then delay announcements cannot be used to

completely eliminate the cost of self-scheduling in the system. This is because the rate of aban-

doning customers is una�ected by the announcements (it is determined solely by the arrival and

service completion rates). Thus, the abandonment cost does not decrease. On the other hand, the

announcements can be used to control the overall waiting time in the system.

5.2.1 Existence and Uniqueness of Equilibria

In this work, we contend that the announcements made must be truthful, for otherwise customers

will learn to mistrust them. Since those announcements alter customer abandonment behavior

which, in turn, a�ects the future announcements made, announcement accuracy in our �uid ap-
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proximation reduces to investigating the existence of an equilibrium delay for which the waiting

time of served customers coincides with the announcement made. Assume that the size of the agent

pool is �xed and equal to n. Then, nj = nG(cj) is the number of agents available in shift j. We let

wej (n) denote the equilibrium delay in shift j, which is dependent on n. Then, we must have:

λje
−wej (n)θ(wej (n)) = nj , i.e., e−w

e
j (n)θ(wej (n)) =

n

Γj
, (5.7)

by conservation of �ow in shift j. The total cost in the system, with the announcements, is

Ca(n) ≡
k∑
i=1

cjnG(cj) +

k∑
i=1

(
pj +

hj
θ(wej (n))

)
(λj − nG(cj))

+. (5.8)

Assuming that θ(·) is continuous and strictly increasing, consistently with the empirical evidence

in �5.1, guarantees the existence and uniqueness of an equilibrium wej (n) in every shift j. In what

follows, we also assume that θ(w) is a di�erentiable function of w and that limw→∞ θ(w) > 0.

5.2.2 When Are the Announcements E�ective?

We have di�erent Γj values and, consequently, di�erent announcement-dependent abandonment

rates given by (5.7). We now derive a simple su�cient condition under which the announcements

lead to an overall decrease in the system's cost, across all shifts. We let θ0 denote the abandonment

rate without the announcements, which is constant across all shifts. By Proposition 4.3, it is optimal

to critically load one shift, call it ic, i.e., n
∗ = Γic without the announcements.

Proposition 5.1. With exponential abandonment with an announcement-dependent rate θ(w), if

θ0 · θ−1(θ0) < ln

(
Γic+1

Γic

)
, (5.9)

then Ca(n
∗) < C∗ for Ca(·) in (5.8), where C∗ is the optimal solution to (3.2) with n∗ = Γic.

Proposition 5.1 shows that for Ca(n
∗) < C∗ to hold, and under our assumptions on θ(·), it su�ces

to impose a condition on customer response at a single point only, namely at θ0, and only two shifts,

ic and ic + 1: Only the augmented arrival rates in shifts ic and ic + 1 matter. The upper bound in

(5.9) on θ0 means that customers do not abandon too fast in the absence of announcements. Since
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Γic+1/Γic measures the �imbalance� in augmented arrival rates, (5.9) shows that the announcements

are e�ective for a larger set of θ0 values as that imbalance increases. This is desirable, since this

is precisely when we would like to control the system. Here is an alternative explanation for the

condition in (5.9). By dividing both sides by θ0, and rewriting the right-hand-side as:

1

θ0
ln

(
Γic+1

Γic

)
=

1

θ0
ln

(
λic+1

n∗ric+1

)
≡ w0

ic+1,

where w0
ic+1 is the �uid waiting time in period ic + 1 under abandonment rate θ0, we see that

(5.9) can be interpreted as having a �long� waiting time, exceeding θ−1(θ0), in the absence of the

announcements, in shift ic + 1. Making the delay announcement would then encourage customers

to abandon, thereby alleviating congestion. In other words: If the waiting time is long enough in

shift ic + 1, then make the delay announcement.

Since the announcements lead to a decrease in waiting times, it is natural to investigate whether

it is optimal for the manager to create additional congestion by understa�ng her system in the �rst

stage. The cost increase due to this congestion would subsequently be reduced by the announcements

in the second stage. Next, we solve the manager's sta�ng problem with delay announcements.

5.2.3 A New Sta�ng Problem

The manager's sta�ng problem, assuming that she makes announcements in the second stage, is:

min
n∈N

k∑
j=1

(
cjnG(cj) +

(
pj +

hj
θ(wej (n))

)
(λj − nG(cj))

+

)
, (5.10)

where we replace the constant abandonment rate θ0 by di�erent announcement-dependent rates,

θ(wej (n)), depending on both the shift and the sta�ng level n. That is, in setting her optimal sta�ng

level, the manager needs to consider the subsequent dependence of customer abandonment behavior

on the selected pool size. Let n∗a denote the optimal solution to (5.10) 15, with the announcements,

and n∗ denote the optimal solution to (3.2), without the announcements.

15An optimal solution necessarily exists. If there are multiple optimal solutions, then we pick the smallest one.
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Proposition 5.2. With exponential abandonment with an announcement-dependent rate θ(w), if

θ0 · θ−1(θ0) < min
1≤i≤k−1

ln (Γi+1/Γi) , (5.11)

then n∗a < n∗.

That is, under (5.11), it is optimal for the manager to hire a smaller agent pool than without the

announcements. This conclusion is consistent with Huang et al. (2017), who consider a di�erent

optimization problem (they minimize the sta�ng level subject to a quality-of-service constraint) in

the context of a single shift with no self-scheduling. They, too, �nd that the announcements may

lead to understa�ng. As such, we provide further evidence, in our new context, that management

may indeed draw a dual bene�t from the delay announcement: �rst, by reducing the waiting time of

served customers and second, by reducing the sta�ng level. While Proposition 5.2 provides a su�-

cient condition for the system manager to understa� her system, compared to the no-announcement

case, it does not quantify the decrease in cost which results from this. We explore this question,

and others, in a numerical study which we relegate to the appendix (�?? there).

6 Optimizing Sta�ng, Compensation, and the Announcements

In this section, we study how the manager may use all three controls in her toolbox, sta�ng,

compensation, and the announcements, to e�ectively manage her system. We focus on the case

with exponential abandonment, and begin by studying how compensation and the announcements

may be used as short-term controls for a �xed sta�ng level (�6.1). Then, we study how sta�ng,

compensation, and the announcements may be jointly optimized (�6.2).

6.1 Short-Term Controls: Compensation and Delay Announcements

Compensation. We assume that the sta�ng level is equal to n, and investigate the optimal

compensation to be o�ered in shift k. In practice, while the manager has to make the sta�ng

decision based on historical estimates of the arrival rates λk, she may update the compensation in

each shift based on some revised estimate of the arrival rate for that shift, e.g., because of additional
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information at her disposal. The problem for shift k is given by16:

min
ck≥l

cknG(ck) +

(
pk +

hk
θ

)
(λk − nG(ck))

+ . (6.12)

For expositional ease, we let Lk ≡ pk + hk/θ capture customer-related costs, and denote ψnk ≡

G−1
(
λk
n

)
. If ck = ψnk , then nG(ck) = λk: This compensation incites just enough agents to meet

demand in shift k. It will also be convenient to de�ne ak < Lk as follows:

G(ak)

(
1 + (ak − Lk)

g(ak)

G(ak)

)
= 0. (6.13)

We note that (6.13) is the �rst-order condition of the unconstrained optimization problem in (6.12),

provided that n is such that n ≤ λk/G(ck); in other words, ak is the optimizer of that unconstrained

optimization problem. The optimal compensation in problem (6.12) is given by the following lemma

where we implicitly assume that l < ak; we relax this assumption in the proof of Lemma 6.1, in the

appendix.

Lemma 6.1. The optimal compensation in shift k, solution to (6.12), depends on n as follows:

(a) If n ≥ λk
G(l) , then c

∗
k = l and shift k is oversta�ed;

(b) If λk
G(ak) ≤ n <

λk
G(l) , then c

∗
k = ψnk and demand and supply are matched in shift k;

(c) If n < λk
G(ak) <

λk
G(l) , then c

∗
k = ak and shift k is understa�ed.

Based on Lemma 6.1, we �nd that the manager uses the minimum wage in shift k when the agent

pool size is very large (case (a)). In this case, the manager need not use high compensation to incite

su�cient agent participation in the shift. For moderate values of the agent pool size (case (b)),

the manager sets compensation to match demand and supply in the shift, i.e., c∗k = ψnk . Finally,

when the pool size is very small (case (c)), inciting su�cient agent participation is too costly for

the manager, so she sets a compensation that leads to an understa�ed shift k. We note that the

compensation o�ered to agents is monotonically decreasing in the agent pool size: the larger the

pool, the smaller the compensation needed to incite agents to participate.

16While the arrival rates may be revised, we retain the same notation, λk, for simplicity.
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Lemma 6.1 suggests that, even though the manager is able to utilize compensation as a control

lever to incite agent participation, she need not use it to match demand and supply in a given shift.

In other words, �surge pricing� need not always be used to match supply and demand, as is the

current viewpoint with e.g., ride-sharing platforms (The Economist 2016). Since excessive surges

in prices usually generate bad press 17, it is insightful that intentionally setting a lower price than

needed to match supply and demand may be optimal. This also lends support to recent calls for

ride-sharing services to set caps on the prices that they charge their customers, at the expense of

potentially inciting fewer drivers to be on the road (Harvard Business Review 2015).

Delay announcements. For tractability, we assume that the announcement-dependent aban-

donment rate is constant and equal to θ̃ > θ, where θ is the rate without the announcements. We

denote L̃k ≡ pk + hk/θ̃ and note that L̃k < Lk ≡ hk + pk/θ. Thus, it is optimal for the manager to

make announcements in every overloaded shift, since doing so would reduce the cost of congestion

in that shift. While it is clear that making announcements is bene�cial to the manager in that case,

it is unclear whether agents will be better or worse o� because of the announcements. We now

investigate this issue by investigating, for �xed n, the optimal compensation in a shift where the

manager is allowed to make delay announcements. Since the announcements are only relevant when

the system is congested, we focus on case (c) in Lemma 6.1, i.e., we assume that n < λk/G(ak)

for ak in (6.13). We let c̃∗k denote the optimal compensation in shift k, assuming that the manager

makes announcements in that shift; i.e., c̃∗k minimizes cknG(ck) + L̃k (λk − nG(ck))
+.

Lemma 6.2. If n < λk/G(ak) for ak in (6.13), then c̃∗k = ãk < c∗k = ak where c∗k is the optimal

compensation for the no-announcement problem in (6.12) and ãk is given by

G(ãk)

(
1 + (ãk − L̃k)

g(ãk)

G(ãk)

)
= 0; (6.14)

i.e., agents are worse o� because of the announcements.

Lemma 6.2 shows that a manager who uses the announcements to reduce congestion in her system

would have less incentive to o�er agents a higher compensation to induce their participation. Indeed,

she uses the announcements to disincentivize customer waiting, thereby relieving congestion instead.

17https://www.nytimes.com/2014/01/12/magazine/is-ubers-surge-pricing-an-example-of-high-tech-gouging.

html?_r=1

25



6.2 Jointly Optimizing All Controls

We now study the manager's problem when she can jointly optimize the sta�ng level, the compen-

sation o�ered to her agents, and whether or not to make announcements in any given shift. In the

interest of analytical tractability, we continue to assume a constant abandonment rate in response

to the announcements, θ̃ > θ, so that the manager will make announcements in every congested

shift. Here is the manager's problem:

(6.15)min
cj ≥l,n∈N

Π(n, c) ≡
∑

1≤j≤k

(
cj · nG(cj) + L̃j(λj − nG(cj))

+
)
,

where as before L̃j ≡ pj + hj/θ̃ is the adjusted congestion cost which accounts for the e�ect of

the announcements. To better position our results, we recall that when capping agents is allowed,

the optimal compensation is set equal to the minimum wage in all shifts (Gurvich et al. 2017),

irrespective of the value of that wage, and the sta�ng level high enough to match demand in the

highest-demand shift (with the o�ered minimum wage). In our context, we �nd that this is no

longer the case. Indeed, the optimal compensation depends on the value of the minimum wage,

in particular whether it is �low� or �high�, the manager may o�er higher compensation than the

minimum wage in some shifts, and may still either understa� or oversta� some shifts. This lends

support to recent practices in some sharing-economy platforms which set a minimum compensation

to agents that is larger than the minimum wage, e.g., as for TaskRabbit 18. We begin by establishing

the existence and uniqueness of the solution to (6.15).

6.2.1 Existence and Uniqueness of the Solution to (6.15)

We have characterized the optimal solution for the compensation when the sta�ng level is �xed

(Lemma 6.1). To solve problem (6.15), we can make use of the results of that lemma. Indeed, the

18https://newrepublic.com/article/120378/wonolo-temp-worker-app-shows-scary-future-sharing-economy
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optimal agent pool size is the solution to the following problem:

min
n≥0

Π(n) ≡
∑

{k : n≥ λk
G(l)
}

nlG(l) (oversta�ed) (6.16)

+
∑

{k :
λk

G(ak)
≤n< λk

G(l)
}

λkG
−1

(
λk
n

)
(supply and demand matched)

+
∑

{k : n<
λk

G(ãk)
≤ λk
G(l)
}

ãkG(ãk)n+ L̃k(λk − nG(ãk)) (undesta�ed/ announcements),

where ãk is given in (6.14) and some intervals for n in (6.16) may be empty. Next, we show that there

exists a unique solution to (6.16). Based on this optimal sta�ng level and the optimal compensation

in Lemma 6.1, we can derive the optimal solution to problem (6.15).

Lemma 6.3. The objective Π(n) in (6.16) is piecewise convex, and Π′(n) is strictly increasing in

n so that Π(n) is strictly convex in n. Thus, there exists a unique solution n∗ to (6.16). For that

n∗, the optimal compensation c∗k for each shift k is given in Lemma 6.1.

In general, the solution to problem (6.16) is algebraically tedious to characterize in our multi-

shift setting. To formulate meaningful insights, we focus next on two special cases: (i) when the

minimum wage is su�ciently low, and (ii) when the minimum wage is su�ciently high.

6.2.2 Low Minimum Wage

We begin by considering the case where the minimum wage is �su�ciently low�. We de�ne:

l0 = G−1

(
mini{λi}

maxi{ λi
G(ãi)

}

)
where ãk is given in (6.14). (6.17)

Then, the following lemma holds for l < l0.

Lemma 6.4. If the minimum wage is su�ciently low, in particular l < l0 in (6.17), then n∗G(c∗k) ≥

λk for all k, i.e., all shifts are either oversta�ed or have matched supply and demand. Moreover,

there exists at least one shift i0 where c∗i0 = G−1(λi0/n
∗) > l where demand and supply are matched.

Lemma 6.4 shows that the manager need not always resort to using the announcements. In partic-

ular, if the minimum wage is �low enough�, then she will sta� a large enough pool and o�er high
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enough compensations so that, in every shift i, the supply n∗G(c∗i ) is at least as large as the demand

λi. Moreover, she will o�er a compensation that is strictly higher than the minimum wage in at

least one of the shifts (with highest demand rates). Intuitively, because the minimum wage is small,

the manager is less restricted in the compensation that she has to pay her agents. Therefore, she

can a�ord to sta� a larger pool and eliminate congestion in her system. This also explains why

she is then able to pay her agents a compensation which is strictly larger than the minimum wage.

Because no shift is congested, the manager does not resort to making delay announcements.

6.2.3 High Minimum Wage

We now explore the case where the minimum wage is �su�ciently high�. In particular, we assume

that ãi < l < L̃i for all i. We now show that the manager would then make announcements.

Lemma 6.5. If the minimum wage is su�ciently high, l > l̄ ≡ max1≤i≤k ãi where ãi is given in

(6.14), then c∗i = l for all i. Moreover, there exists a shift k0 such that n∗ = λk0/G(l), i.e., supply

and demand are matched in shift k0. All shifts k for which λk > λk0 are understa�ed, and all shifts

for which λk < λk0 are oversta�ed; announcements are made in every congested shift.

Lemma 6.5 shows that the manager must set compensation equal to the minimum wage in every

shift, if that minimum wage is su�ciently high. In this case, the manager must sta� a smaller agent

pool (because it would be too costly to employ many agents), and she will use the announcements

to alleviate congestion in understa�ed periods. The fact that the manager consistently compensates

agents at the minimum wage and operates some shifts overloaded lends support to current practices

in virtual call centers 19 where agent compensation is typically set at the minimum wage and there

is congestion in shifts which experience peaks in customer demand.

7 Asymptotic Accuracy of the Fluid Approximation

In this section, we prove the asymptotic accuracy of the �uid approximation in (3.2) with a bino-

mially distributed number of servers; this distribution arises when the servers make independent

decisions to join the di�erent shifts. We also restrict attention to exponentially distributed service

times, and a Poisson arrival process. Conditional on the number of servers in a shift, the queueing

19https://www.thespruce.com/how-home-call-centers-pay-3542389
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dynamics in di�erent shifts are independent. Thus, to establish the desired asymptotic accuracy, it

su�ces to focus on a single shift instead. The proof for multiple shifts can then be obtained by a

simple argument, exploiting a similar conditioning argument as the one that we use in what follows,

along with the conditional independence across shifts. In this section, for clarity of exposition, we

consider a single-shift setting.

In this section, we prove the asymptotic accuracy of the �uid approximation in (3.2) with a

binomially distributed number of servers; this distribution arises when the servers make independent

decisions to join the di�erent shifts. We also restrict attention to exponentially distributed service

times, and a Poisson arrival process. Conditional on the number of servers in a shift, the queueing

dynamics in di�erent shifts are independent. Thus, to establish the desired asymptotic accuracy, it

su�ces to focus on a single shift instead. The proof for multiple shifts can then be obtained by a

simple argument, exploiting a similar conditioning argument as the one that we use in what follows,

along with the conditional independence across shifts. In this section, for clarity of exposition, we

consider a single-shift setting.

We consider a sequence of queueing models indexed by the arrival rate λ, and study system

performance as λ increases without bound. The number of servers in the λth system is Nλ ∼

Bin(nλ, r). We assume that ρ ≡ λ/E[Nλ] = λ/rnλ remains �xed as λ increases. Let QNλ denote

the steady-state queue length and αNλ the net customer abandonment rate in the M/M/Nλ +GI

queue (abandonment makes the system stable). We refer to the cases with ρ > 1, ρ < 1, and ρ = 1

as the overloaded, underloaded, and critically loaded regimes, respectively. Since Nλ is random, an

M/M/Nλ +GI system with e.g., ρ > 1 may or may not be overloaded, i.e., having λ > Nλ.

Theorem 7.1. Consider an M/M/Nλ +GI queueing model with Nλ ∼ Bin(nλ, r),

(a) If ρ > 1 (overloaded regime), then there exists a �nite constant K > 0 such that

lim sup
λ→∞

|E[QNλ ]− rnλq̄ρ| ≤ K and lim
λ→∞

|E[αNλ ]− rnλᾱρ| → 0.

(b) If ρ = 1 (critically-loaded regime), then there exist �nite constants K ′1,K
′
2 > 0 such that

lim sup
λ→∞

E[QNλ ] ≤ K ′1
√
λ and lim sup

λ→∞
E[αNλ ] ≤ K ′2

√
λ.
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(c) If ρ < 1 (underloaded regime), then

lim
λ→∞

E[QNλ ]→ 0 and lim
λ→∞

E[αNλ ]→ 0.

Theorem 7.1 shows that, in the overloaded system, the �uid approximation for the expected queue

length is asymptotically accurate up to O(1) 20, and the �uid approximation for the net aban-

donment rate is asymptotically accurate up to o(1), i.e., the corresponding error is asymptotically

bounded in the former case, and it decreases with the arrival rate in the latter case. In other words,

�uid approximations are �extremely accurate� in the overloaded regime. In the critically-loaded

system, those �uid-approximation errors are O(
√
λ), i.e., they grow in the square-root of the size of

the system. In the underloaded regime, �uid approximations are o(1)-accurate since errors for both

performance measures decrease with the arrival rate.

While our discussion in Theorem 7.1 is split according to the asymptotic regime prescribed, an

alternative approach would be to resort to regime-free universal approximations, as in Gurvich et al.

(2013) and Huang and Gurvich (2016). Since such treatment lies outside the scope of this paper, we

do not discuss this point further here. The following theorem establishes the asymptotic accuracy

of �uid-based sta�ng prescriptions, by exploiting the results of Theorem 7.1; the proof proceeds

along similar lines as Theorem 3 in Bassamboo and Randhawa (2010).

Theorem 7.2. The �uid-based prescription, n∗λ is asymptotically optimal in the overloaded, critically-

loaded and underloaded regimes in the sense that

lim
λ→∞

Π∗λ
Πλ(n∗λ)

= 1,

where Π∗λ is the optimal objective value for (3.1) and Πλ(n∗λ) is the value of its objective evaluated

at n∗λ. If, in addition, n∗λ is such that the system is overloaded, then there exists K ′′ > 0 such that

lim sup
λ→∞

|Π∗λ −Πλ(n∗λ)|≤ K ′′,

20Let f and g be two functions de�ned on some subset of R. Then, as n→∞,

(a) f(n) = O(g(n)) if there exists M > 0 and C > 0 such that |f(n)|≤M |g(n)| for n ≥ C;
(b) f(n) = o(g(n)) if for all ε > 0, there exists N such that |f(n)|≤ ε|g(n)| for all n ≥ N .
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i.e., the �uid sta�ng prescription is asymptotically O(1)-accurate in the overloaded regime.

Intuitively, because the binomial random variable �concentrates� around its mean asymptotically,

so that �uctuations in the number of servers are asymptotically negligible, intuitions similar to those

in Bassamboo and Randhawa (2010), who consider a deterministic number of servers, continue to

hold in our setting. In particular, in the overloaded case, stochastic �uctuations are better explained

by large deviations theory. Thus, �uid approximations are practically indistinguishable from the

estimates for, e.g., average queue-lengths. This translates into the O(1) accuracy for the �uid-based

sta�ng prescriptions in Theorem 7.2. In the critically-loaded regime, stochastic �uctuations are

consistent with those suggested by the central limit theorem, i.e., they are on the order of
√
λ. In

other words, they are also asymptotically negligible since the magnitude of the optimal objective in

our original problem is O(λ): This is because the sta�ng cost is linear in the sta�ng pool, and the

sta�ng pool size itself is O(λ); this is the �rst part of Theorem 7.2. In the online supplement, we

describe the results of some numerical experiments validating our asymptotic results.

8 Conclusions

In this paper, we studied the problem of sta�ng and controlling large-scale service systems with

a random number of servers. This randomness arises with strategic agent behavior, e.g., as with

self-scheduling agents in virtual call centers. Our asymptotic accuracy results support the usefulness

of �uid approximations in this context. Because of congestion in understa�ed shifts, the customer

abandonment distribution plays an important role. We characterized this role, and proposed using

delay announcements as a control of customer abandonment behavior; this is especially useful in

settings where other tools, such as pricing, cannot be used to in�uence customers. We studied the

optimization of three controls (sta�ng, compensation, and the announcements), and found that the

optimal control policy may be non-standard, in that it may be optimal to match supply and demand

in one of the shifts, or to not do so in any shift, e�ectively understa�ng and oversta�ng all shifts.

This suggests that managers may need, in this new context, to shift from the traditional paradigm

of workforce management, or from the current viewpoint dominating sharing-economy applications,

where it is believed that matching supply and demand, at least in �rst order, is always desirable.

The current growth of the sharing economy has motivated several recent papers in the academic
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literature. Nevertheless, further exploration of the dynamics of such systems remains of interest

for future research. In this paper, we explored the sta�ng and control question using a �uid

approximation. There remains to establish supporting many-server heavy-tra�c limits for di�erent

stochastic processes in the system, such as the queue length (corresponding to a functional law

of large numbers). Such an investigation would lead to a deeper understanding of the system's

dynamics. Several modelling extensions (multiplicity of customer classes, time-variability in the

demand rates, etc.) remain to be explored. Finally, alternative system design questions, e.g.,

optimal priority rules when both the available capacity and incoming demand are random, as is the

case with two-sided platforms in the sharing economy, would be interesting to explore as well.
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TECHNICAL APPENDIX

10 Asymptotic Accuracy of the Fluid Approximation

10.1 The Overloaded Regime

10.1.1 O(1)-Accuracy for the Fluid Queue Length.

We begin by establishing the asymptoticO(1)-accuracy for the expected queue length. Let 0 < ε < r
and de�ne k1 ≡ r− ε and k2 ≡ r+ ε. Assume that ε is small enough so that ρr/(r+ ε) > 1. Denote
E[QNλ |Nλ = s] ≡ E[Qs] whereQs is the steady-state queue length in the correspondingM/M/s+GI
queue with the same arrival rate.

Conditioning and unconditioning on Nλ. Conditioning on Nλ, we can write:

|E[QNλ ]− rnλq̄ρ| =

∣∣∣∣∣∣
∑
s≥0

E[Qs]P(Nλ = s)− rnλq̄ρ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s≥0

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ since E[Nλ] = rnλ =
∑
s≥0

sP(Nλ = s),

≤

∣∣∣∣∣∣
∑

s<k1nλ or s>k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

k1nλ≤s≤k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ .
We now turn to establishing asymptotic bounds for Aλ and Bλ, de�ned as follows:

Aλ ≡

∣∣∣∣∣∣
∑

s<k1nλ or s>k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ and Bλ ≡
∣∣∣∣∣∣

∑
k1nλ≤s≤k2nλ

(E[Qs]− sq̄ρ)P(Nλ = s)

∣∣∣∣∣∣ .
Asymptotic bound for Nλ far from nλr. We begin by showing that Aλ is asymptotically
negligible.

Lemma 10.1. limλ→∞Aλ = 0.

Proof. We can write,

Aλ =

∣∣∣∣∣∣
∑

s>k2nλ or s<k1nλ

E[Qs]P(Nλ = s)−
∑

s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s)

∣∣∣∣∣∣ ,
≤ E[Q0]

∑
s>k2nλ or s<k1nλ

P(Nλ = s) +
∑

s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s).

Also, de�ne A
(1)
λ ≡ E[Q0]

∑
s>k2nλ or s<k1nλ

P(Nλ = s) and A
(2)
λ ≡

∑
s>k2nλ or s<k1nλ

sq̄ρP(Nλ = s).
Note that Q0 has the same distribution as the steady-state number in the system in an M/GI/∞
model with Poisson arrivals at rate λ = rnλρ and i.i.d. generally distributed service times hav-
ing the same distribution, F , as the abandonment times in our original model. Therefore, ex-
ploiting standard results for the in�nite-server queue, Q0 has a Poisson distribution with mean
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λ/θ = rnλρ/θ, i.e., E[Q0] = O(λ). Applying Hoe�ding's inequality to the binomial distribution:
P (k1nλ ≤ Nλ ≤ k2nλ) ≥ 1−2e−2ε2nλ ; equivalently, P (k1nλ > Nλ or Nλ > k2nλ) ≤ 2e−2ε2nλ . Thus,

A
(1)
λ = E[Q0]

∑
s>k2nλ or s<k1nλ

P(Nλ = s) = E[Q0] · P (k1nλ > Nλ or Nλ > k2nλ)→ 0 as λ→∞.

We now turn to showing that A
(2)
λ is asymptotically negligible as well. Note that:

A
(2)
λ = q̄ρ

∑
s>k2nλ or s<k1nλ

sP(Nλ = s) = q̄ρE[Nλ1{Nλ > k2nλ or Nλ < k1nλ}],

where 1{·} denotes an indicator random variable. By the Cauchy-Schwarz inequality:

E[Nλ1{Nλ > k2nλ or Nλ < k1nλ}] ≤
√
E[N2

λ ]P(Nλ > k2nλ or Nλ < k1nλ)

=
√

(nλr(1− r) + n2
λr

2)P(Nλ > k2nλ or Nλ < k1nλ)→ 0 as λ→∞.

Therefore, A
(2)
λ → 0 as λ→∞. Combining the above, we obtain that Aλ → 0 as well.

Asymptotic bound for Nλ close to nλr. We now characterize Bλ for large λ.

Lemma 10.2. There exists a �nite constant C > 0 such that lim supλ→∞Bλ ≤ C.

Proof. We begin by writing Bλ as follows,

Bλ ≤
∑

k1nλ≤s≤k2nλ

|E[Qs]− sq̄ρs |P(Nλ = s) +

∣∣∣∣∣∣
∑

k1nλ≤s≤k2nλ

s(q̄ρs − q̄ρ)P(Nλ = s)

∣∣∣∣∣∣ , (10.18)

where ρs ≡ nλrρ/s and q̄ρs is the �uid limit for the queue length in the M/M/s + GI queue with
tra�c intensity ρs (the arrival rate is λ = rnλρ and the number of servers is s). Let,

B
(1)
λ ≡

∑
k1nλ≤s≤k2nλ

|E[Qs]− sq̄ρs |P(Nλ = s) and B
(2)
λ ≡

∣∣∣∣∣∣
∑

k1nλ≤s≤k2nλ

s(q̄ρs − q̄ρ)P(Nλ = s)

∣∣∣∣∣∣ .
First, we consider B

(1)
λ and show that it is asymptotically bounded. Fix nλ and note that to each

k1nλ ≤ s ≤ k2nλ corresponds a tra�c intensity ρs in the M/M/s+GI system, where ρs = nλrρ/s
and 1 < ρr/(r+ε) ≤ ρs ≤ ρr/(r−ε). By Theorem 5 of Bassamboo and Randhawa (2010), assuming
that f is strictly positive and continuously di�erentiable,

lim sup
λ→∞

|E[Qs]− sq̄ρs |≤
√
f(w̄ρs)

(
3|f ′(w̄ρs)|
ρsf2(w̄ρs)

+ 1/2

)
, (10.19)

where w̄ρs is the �uid limit for the steady-state waiting time in the overloaded M/M/s+GI queue
with tra�c intensity ρs. Note that for ρr/(r+ ε) ≤ ρs ≤ ρr/(r− ε), we have that w̄ρr/(r+ε) ≤ w̄ρs ≤
w̄ρr/(r−ε). By the continuity of the bounding function in (10.19) and the boundedness theorem, we
conclude that there exists a �nite constant C1 > 0 such that

sup
k1nλ≤s≤k2nλ

√
f(w̄ρs)

(
3|f ′(w̄ρs)|
ρ′f2(w̄ρs)

+ 1/2

)
≤ C1. (10.20)
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SinceB
(1)
λ =

∑
k1nλ≤s≤k2nλ |E[Qs]−sq̄ρs |P(Nλ = s) ≤ supk1nλ≤s≤k2nλ |E[Qs]−sq̄ρs |

∑
k1nλ≤s≤k2nλ P(Nλ =

s) ≤ supk1nλ≤s≤k2nλ |E[Qs]− sq̄ρs |, combining (10.19) and (10.20) yields that lim supλ→∞B
(1)
λ ≤ C1

by taking limits on both sides. There remains to study the asymptotic behaviour of B
(2)
λ . Note that

q̄ρs = ρs
∫ (F̄ )−1(1/ρs)

0 F̄ (u) du, e.g., by equations (3.6) and (3.7) in Whitt (2006a). Consider,∣∣∣∣∣∣
∑
s≥0

s

(
ρs

∫ (F̄ )−1(1/ρs)

0
F̄ (x) dx− ρ

∫ (F̄ )−1(1/ρ)

0
F̄ (u) du

)
P(Nλ = s)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
s≥0

(
nλrρ

∫ (F̄ )−1(s/nλrρ)

0
F̄ (u) du− sρ

∫ (F̄ )−1(1/ρ)

0
F̄ (u) du

)
P(Nλ = s)

∣∣∣∣∣∣ ,
=

∣∣∣∣∣E
[(

nλrρ

∫ (F̄ )−1(Nλ/nλrρ)

0
F̄ (u) du−Nλρ

∫ (F̄ )−1(1/ρ)

0
F̄ (u) du

)]∣∣∣∣∣ ,
=

∣∣∣∣∣nλρrE
[(∫ (F̄ )−1(Nλ/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du

)]∣∣∣∣∣ .
We now show that there must exist a �nite constant C2 > 0 such that∣∣∣∣∣nλρrE

[(∫ (F̄ )−1(Nλ/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du

)]∣∣∣∣∣ ≤ C2

for λ large enough. To this aim, de�ne the function

gλ(x) = nλρr

∫ (F̄ )−1(x/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du for x ≥ 0.

For a given λ, we use a Taylor-series expansion of E[gλ(Nλ)] around E[Nλ] = nλr (we can do this
since gλ is su�ciently di�erentiable and the moments of Nλ are �nite):

|E[gλ(Nλ)]|=
∣∣∣∣E [gλ(nλr) + g′λ(nλr) (Nλ − nλr) +

1

2
g′′λ(nλr)(Nλ − rnλ)2

]∣∣∣∣+O(1/λ).

Indeed, by computing the centralized moments of Nλ and higher-order derivatives of gλ, it can be
shown that the remainder term in the Taylor series is O(1/λ). Also, gλ(nλr) = 0 and

g′λ(nλr) = − 1/ρ

f
(
F̄−1(1/ρ)

) and g
′′
λ(nλr) = − 1

rnλρ

h1(ρ) + (1/ρ)h2(ρ)/h1(ρ)

h2
1(ρ)

,

where h1(ρ) = f(F̄−1(1/ρ)) and h2(ρ) = f ′(F̄−1(1/ρ)). Thus, there exists C2 > 0 such that:

|E[gλ(Nλ)]|≈ |1
2
g′′λ(nλr)nλr(1− r)|≤ C2 for λ large enough.

We now turn to the asymptotic behaviour of B
(2)
λ . Note that:

B
(2)
λ = |E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}]| , and

|E[gλ(Nλ)]| = |E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}] + E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]| .
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Bounding the second term in the last equality,

E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}] ≤ |E[gλ(Nλ)1{Nλ /∈ [k1nλ, k2nλ]}]|

≤
√
E[g2

λ(Nλ)]P(Nλ /∈ [k1nλ, k2nλ]) (Cauchy Schwarz inequality)

→ 0,

since P(Nλ /∈ [k1nλ, k2nλ]) vanishes exponentially fast as λ → ∞, and E[g2
λ(Nλ)] = O(λ2) since∫ (F̄ )−1(Nλ/nλrρ)

(F̄ )−1(1/ρ)
F̄ (u) du ≤ 1/θ. Thus, lim supλ→∞B

(2)
λ = lim supλ→∞|E[gλ(Nλ)1{Nλ ∈ [k1nλ, k2nλ]}]|≤

C2. Combining the above, there exists C > 0 such that lim supλ→∞Bλ ≤ C.

O(1)-accuracy. Since both Aλ and Bλ are asymptotically bounded, there must exist K > 0 such
that, as desired:

lim sup
λ→∞

|E[QNλ ]− rnλq̄ρ| ≤ K.

10.1.2 o(1)-Accuracy for the Fluid Net Abandonment Rate.

The proof for the net abandonment rate proceeds along similar lines, so we will be brief. Paralleling
(10.19), and denoting E[αNλ |Nλ = s] ≡ E[αs], we can exploit Theorem 5 in Bassamboo and Rand-
hawa (2010) to show that

∑
k1nλ≤s≤k2nλ(E[αs] − sᾱρs)P(Nλ = s) → 0 as λ → ∞. Moreover, by

equation (3.3) in Whitt (2006a): ᾱρs = ρs − 1; thus, s(ᾱρs − ᾱρ) = ρ(nλr − s). We can then write:∑
k1nλ≤s≤k2nλ

s(ᾱρs − ᾱρ)P(Nλ = s) = ρE[(nr −Nλ)1(k1nλ ≤ Nλ ≤ k2nλ)],

and deduce that E[(nr −Nλ)1(k1nλ ≤ Nλ ≤ k2nλ)]→ 0 since E[Nλ] = rnλ.

10.2 The Underloaded Regime

Let 0 < ε < r be small enough so that ρr/(r − ε) < 1, and recall that k1 ≡ r − ε and k2 ≡ r + ε.
Then, conditioning on Nλ:

E[QNλ ] =
∑

k1nλ≤s≤k2nλ

E[Qs]P(Nλ = s) +
∑

k1nλ>s or s>k2nλ

E[Qs]P(Nλ = s),

≤
∑

k1nλ≤s≤k2nλ

E[Qs]P(Nλ = s) + E[Q0]
∑

k1nλ>s or s>k2nλ

P(Nλ = s).

As in the proof of Theorem 7.1, we can show that: E[Q0]
∑

k1nλ>s or s>k2nλ
P(Nλ = s) → 0 as

λ → ∞. Also,
∑

k1nλ≤s≤k2nλ E[Qs]P(Nλ = s) ≤ E[Q(k1nλ)]
∑

k1nλ≤s≤k2nλ P(Nλ = s). Since
E[Q(k1nλ)] is the expected steady-state queue length in an underloaded queue, it converges to 0 as
λ→∞, e.g, see Theorem 5.1 in Zeltyn and Mandelbaum (2005). The limit for the net abandonment
follows similarly.
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10.3 The Critically-Loaded Regime

We condition on Nλ:

E[QNλ ] =
∑

k1nλ≤s<nλr
E[Qs]P(Nλ = s) +

∑
nλr<s≤k2nλ

E[Qs]P(Nλ = s) + E[Qnλr]P(Nλ = nλr),

≤
∑

k1nλ≤s<nλr
|E[Qs]− sq̄ρs |P(Nλ = s) +

∑
k1nλ≤s<nλr

sq̄ρsP(Nλ = s) +
∑

nλr<s≤k2nλ

E[Qs]P(Nλ = s)

+ E[Q(nλr)]P(Nλ = nλr), (10.21)

where ρs = rρnλ/s. Paralleling (10.19) and (10.20), we can show that there exists a �nite constant
C ′1 such that for large λ:

∑
k1nλ≤s<nλr|E[Qs]− sq̄ρs |P(Nλ = s) ≤ C ′1 since ρs > 1 for all k1nλ ≤ s <

nλr. Also,

∑
k1nλ≤s<nλr

sq̄ρsP(Nλ = s) =
∑

k1nλ≤s<nλr
nλr

(∫ (F̄ )−1(s/nλr)

0
F̄ (x) dx

)
P(Nλ = s) (10.22)

= E

[(
nλr

∫ (F̄ )−1(Nλ/nλr)

0
F̄ (x) dx

)
1(Nλ ∈ [k1nλ, nλr))

]
.

Using arguments as in Theorem 7.1 (noting e.g., that gλ(nλr) =
∫ F̄−1(1)

0 F̄ (x)dx = 0), we can show
that there exists a �nite C ′2 > 0 such that

lim sup
λ→∞

E

[(
nλr

∫ (F̄ )−1(Nλ/nλr)

0
F̄ (x) dx

)
1(Nλ ∈ [k1nλ, nλr))

]
≤ C ′2.

By Theorem 4.1 of Zeltyn and Mandelbaum (2005), there exists K ′ > 0 such that E[Qnλr] ≤ K ′
√
λ

for large enough λ. Given that
∑

nλr<s≤k2nλ E[Qs]P(Nλ = s)→ 0 as λ→∞ (underloaded regime),

we obtain that the entire expression in (10.21) is O(
√
λ). The proof for the abandonment rate

follows along similar lines, so we omit the relevant details.

11 Proofs of Propositions

Proposition 4.2 If Γi ≡ Γ, then letting n∗ = Γ yields n∗i = λi in each shift i. Thus, there is no

congestion anywhere, and the overall cost C(n∗) =
∑k

j=1 λi, which is the optimal benchmark cost.

Proposition 4.3 If the abandonment distribution is exponential, then for Γi−1 ≤ n < Γi, ui(n) =∑k
j=1 cjrjn +

∑k
j=i(pj + hj/θ)(λj − nrj). Clearly, under condition (4.6), C(n) is piecewise linear

with piecewise negative slopes for n ≤ Γi0 , and strictly positive slopes for n > Γi0 .
With a monotonically increasing hazard rate, we have

ui(n) =

k∑
j=1

cjrjn+

k∑
j=i

(
pj(λj − nrj) + hjλj

∫ F̄−1(nrj/λj)

0
F̄ (u) du

)
.
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Thus,

u′i(n) =

k∑
j=1

cjrj −
k∑
j=i

rj

pj +
hj

ha

(
F̄−1

(
n
Γj

))
 ,

which is strictly decreasing in n, i.e., u
′′
i (n) < 0. Thus, the objective is piecewise strictly concave.

The minimum must be achieved at some Γi′ , at which we critically load shift i′.

Proposition 4.4 In [Γi−1,Γi), u
′
i(n) is as in the proof of Proposition 4.3, so that u

′′
i (n) > 0 and

the function is piecewise convex. It also follows that u′i(n1) < u′i+1(n2) for n1 ∈ [Γi,Γi+1) and
n2 ∈ [Γi+1,Γi+2). In other words, if C ′(x) > 0, then C ′(y) > 0 for y ≥ x. Thus, the minimum
n∗ will be at the interior of an interval (Γi0−1,Γi0) if u

′
i0

(Γi0−1) < 0 and u
′
i0

(Γi0−) > 0. Here is a
su�cient condition for this to be the case.

Su�cient condition. There exists i0, β, γ > 0 such that:

Γi0−1

Γi0
< β;

k∑
i=1

ciri−
k∑

i=i0

ri

(
pi +

hi
fa(F̄−1(β))

)
< 0;

Γi0
Γk

> γ;

k∑
i=1

ciri−
k∑

i=i0

ri

(
pi +

hi
fa(F̄−1(γ))

)
> 0.

To see why this implies an interior point solution, note that:

u′i0(Γi0−1) =
k∑
i=1

ciri −
k∑

i=i0

ri

pi +
hi

fa

(
F̄−1

(
Γi0−1

Γi

))
 <

k∑
i=1

ciri −
k∑

i=i0

ri

pi +
hi

fa

(
F̄−1

(
Γi0−1

Γi0

))


<

k∑
i=1

ciri −
k∑

i=i0

ri

(
pi +

hi

fa
(
F̄−1 (β)

)) < 0 by assumption.

Furthermore,

u′i0(Γ−i0) =
k∑
i=1

ciri −
k∑

i=i0

ri

pi +
hi

fa

(
F̄−1

(
Γ−i0
Γi

))
 >

k∑
i=1

ciri −
k∑

i=i0

ri

pi +
hi

fa

(
F̄−1

(
Γ−i0
Γk

))


>

k∑
i=1

ciri −
k∑

i=i0

ri

(
pi +

hi

fa
(
F̄−1 (γ)

)) > 0.

Combining both, we get that u′i0(Γi0−1) < 0 and u′i0(Γ−i0) > 0 which, combined with the fact
that C ′(·) increases across intervals, implies that the minimizer must lie strictly in the interval
(Γi0−1,Γi0). In words, if the imbalance between the augmented arrival rates Γi0/Γi0+1 is small
enough, it is optimal to �strike a balance� between the two shifts, i.e., underloading a shift, while
overloading the other.

Proposition 4.5. Let ml(t) = E[Xl − t|Xl > t] denote the mean residual life (MRL) under
abandonment distribution l, l = 1, 2.

• Note that m1(0) = m2(0) = E[X1] = E[X2], and m1(·) increasing while m2(·) decreasing
(by the respective monotonicities of the hazard rates). Thus, m1(t) ≥ m2(t) for all t ≥

42



0. Fix n, and write ulj(n) =
∑k

i=1 ciri +
∑k

i=j

(
pi(λi − nri) + hiλi

∫ wli
0 F̄l(u)du

)
where l

indexes the distribution and wli is the �uid waiting time in shift i. Since
∫ wli

0 F̄l(u)du =

ml(0) −
∫∞
wli
F̄l(u)du = ml(0) − F̄l(wli)ml(w

l
i) and F̄l(w

l
i) = n/Γi, we get that

∫ w1
i

0 F̄1(u)du ≤∫ w2
i

0 F̄2(u)du so that u1
j (n) ≤ u2

j (n) for every n �xed. In particular, this holds at optimal n∗.

• For every a ≥ 0, we have that m1(a) = E[X1 − a|X1 > a] ≥ E[X1] = E[X2] ≥ E[X2 − a|X2 >
a] = m2(a). Writing the objective as in part 1 of the proposition, and proceeding similarly,
yields that the expected cost under the NWUE abandonment distribution is lower.

• With �rst-order stochastic dominance, since ΓiF̄ (wli) = 1 under both distributions, we must

have that w1
i ≤ w2

i for all i (if n is �xed). Thus,
∫ wli

0 F̄1(x)dx ≤
∫ w2

i
0 F̄2(x)dx for all i under

each �xed n, and we must have C∗1 ≤ C∗2 . The remaining stochastic order relations all imply
�rst-order stochastic dominance, so the same holds under each as well.

Proposition 5.1. For convenience, we drop the dependence of we on n. It su�ces to show that
θ(wei+1(Γic)) > θ0 for i ≥ ic. To see this, note that: λi+1e

−wei+1θ(w
e
i+1) = Γicri+1. This implies:

e−w
e
i+1θ(w

e
i+1) = Γic/Γi+1, for i ≥ ic, i.e., w

e
i+1θ(w

e
i+1) = ln

(
Γi+1

Γic

)
. Assume that θ0 · θ−1(θ0) <

ln
(

Γic+1

Γic

)
. Then, θ0 · θ−1(θ0) < wei+1θ(w

e
i+1) for i ≥ ic since Γic+1 ≤ Γi+1 for i ≥ ic. Since

xθ−1(x) is increasing in x, we obtain that wei+1 > θ−1(θ0), which implies that θ(wei+1) > θ0 for
i ≥ ic, as desired. Then, Ca(Γic) < C(Γic) = C∗, and we get strict reduction in cost due to the
announcements.

Lemma 6.1. We derive the optimal compensation for a �xed value of the pool size n. Since c∗i
can be decided upon separately for each shift, we focus on a single shift setting in what follows, i.e.,
we �x the shift i. The solution depends on the speci�c value of n.

1. n ≥ λi
G(l) : c

∗
i = l, i.e., o�er minimum wage and oversta� shift i (under-loaded).

2. n < λi
G(l) . Note that we must have that λi ≥ nG(ci) i.e., ci ≤ G−1

(
λi
n

)
because it will not be

cost e�ective for the manager to incite more supply than the demand in the shift.

Subcase 1: We assume that Li ≤ l. In this case, the problem becomes:

min
Li≤l≤ci≤G−1

(
λi
n

)nciG(ci) + Li(λi − nG(ci))

which is equivalent to
min

Li≤l≤ci≤G−1
(
λi
n

) ti(ci) ≡ (ci − Li)G(ci).

Since ci > Li, it is readily seen that the objective is increasing in ci. Thus, we must have that
c∗i = l. That is, we o�er minimum wage and understa� shift i (over-loaded).

Subcase 2: We now assume that Li > l. In this case, λi
G(Li)

< λi
G(l) . We then consider the

two intervals: (a) n ≤ λi
G(Li)

< λi
G(l) and (b) λi

G(Li)
< n < λi

G(l) .
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(a) n ≤ λi
G(Li)

< λi
G(l) . The problem is now: min

l≤ci≤min{G−1
(
λi
n

)
,Li}

nciG(ci)+Li(λi−nG(ci))

which is equivalent to solving:

min
l≤ci≤min{Li,G−1

(
λi
n

)
}
ti(ci) ≡ (ci − Li)G(ci).

Note that t′i(ci) = G(ci)
(

1 + (ci − Li) g(ci)G(ci)

)
. In this case, we have Li ≤ G−1

(
λi
n

)
. Since

t′(Li) ≥ 0, and ti(·) is convex under log-concavity of G, we obtain that:

i. If t′i(l) < 0 i.e.,
(

1 + (l − Li) g(l)G(l)

)
< 0, then there exists an optimal c∗i = ai ∈ (l, Li)

where t′(ai) = 0;

ii. If t′i(l) ≥ 0 i.e.,
(

1 + (l − Li) g(l)G(l)

)
≥ 0, then we have c∗i = l.

In both cases (i) and (ii), the system is overloaded, i.e., the manager incites a smaller
supply than the demand in shift i.

(b) Now, consider: λi
G(Li)

< n < λi
G(l) . Let 0 < ai < Li be such that t′i(ai) = 0 i.e.,

G(ai)

(
1 + (ai − Li)

g(ai)

G(ai)

)
= 0.

The optimization problem is

min
l≤ci≤G−1

(
λi
n

)
<Li

ti(ci).

Note that if ai < l, then c∗i = l (by the convexity of the objective); in other words, the
manager o�ers the minimum wage and runs shift i overloaded. Now, assume that ai ≥ l.
We then have the following two cases:

i. t′
(
G−1

(
λi
n

))
≤ 0 i.e., G−1

(
λi
n

)
≤ ai i.e.,

λi
G(Li)

< λi
G(ai)

≤ n < λi
G(l) . In this case,

c∗i = G−1
(
λi
n

)
which means that the manager incites a supply equal to the demand,

i.e., she critically loads her shift.

ii. t′
(
G−1

(
λi
n

))
> 0 i.e., G−1

(
λi
n

)
> ai i.e.,

λi
G(Li)

< n < λi
G(ai)

≤ λi
G(l) . In this case,

c∗i = ai and the manager incites a supply that is smaller than the demand, i.e., she
overloads her shift.

Lemma 6.2. We let ãk be the solution to (6.14). Then, t̃′(x) ≡ G(x)
(

1 + (x− L̃k) g(x)
G(x)

)
is

increasing for x ≤ L̃k by the log-concavity of G(·). If ak > L̃k, then it must be that ak > ãk since
ãk < L̃k. Let us now assume that ak ≤ L̃k. Since L̃k < Lk, we must have that

G(ak)

(
1 + (ak − L̃k)

g(ak)

G(ak)

)
> G(ak)

(
1 + (ak − Lk)

g(ak)

G(ak)

)
= G(ãk)

(
1 + (ãk − L̃k)

g(ãk)

G(ãk)

)
0.

Because t̃′(x) is increasing in x for x ≤ L̃k, and we have both ak, ãk ≤ L̃k, we also obtain that
ak > ãk. If n < λk/G(ak), then we must also have that n < λk/G(ãk), so that the optimal
compensation as per Lemma 6.1 is to set c̃∗k = ãk < c∗k = ak. We note that if n is as in cases (a)
and (b) of Lemma 6.1, then the compensation o�ered to agents is unchanged since compensation is
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set so that there is no congestion in the shift. We also note that if ãk < l < ak then c̃∗k = l so that
c̃∗k < c∗k as well. In other words, agents are worse o� in all cases.

Lemma 6.3. The derivative of the objective is given by:

Π′(n) =
∑

{i:n≥ λi
G(l)
}

lG(l)

−
∑

{i: λi
G(ãi)

≤n< λi
G(l)
}

λ2
i

n2g
(
G−1

(
λi
n

))
+

∑
{i:n< λi

G(ãi)
≤ λi
G(l)
}

(ãi − L̃i)G(ãi).

Note that for values of n such that the shift groupings in (6.16) do not change, the derivative Π′(n)

is increasing in n under log-concavity of G(·). Indeed, − (λi/n)2

g(G−1(λi/n))
= −λi

n
G(G−1(λi/n))
g(G−1(λi/n))

is increasing

in n (this is for the critically-loaded shifts). Also, t′(ãi) = 0 for t̃′(x) ≡ G(x)
(

1 + (x− L̃i) g(x)
G(x)

)
.

Thus, assuming that G(ãi) > 0, we get that 1 + (ãi − L̃i) g(ãi)G(ãi)
= 0. Since u(n) = (λi/n)2

g(G−1(λi/n))
is

decreasing in n, we must have that u(n) ≤ u(λi/G(ãi)) = G(ãi)
2

g(ãi)
= −G(ãi)(ãi− L̃i) if n ≥ λi/G(ãi).

This implies that − (λi/n)2

g(G−1(λi/n))
≥ G(ãi)(ãi − L̃i) for all λi

G(ãi)
≤ n < λi

G(l) .

In other words, if n increases such that a shift i that was understa�ed becomes critically-
loaded, then the corresponding part of the derivative of the objective increases too. Thus, Π′(n)
strictly increases as n increases, so that the function is overall strictly convex. Since Π′(0) < 0 and

Π′
(

max{ λi
G(l)}

)
> 0, there must exist a unique solution n∗. Together with the optimal compensation

results in Lemma 6.1, we can obtain the optimal solution (n∗, c∗) to the original problem.

Lemma 6.4. Note that if l < l0 then max{ λi
G(ãi)

} < min λi
G(l) . For max{ λi

G(ãi)
} < n < min λi

G(l) ,

we must have that Π′(n) < 0. Thus, n∗ ≥ min λi
G(l) > max{ λi

G(ãi)
}, and we do not overload or use

the announcements in any shift (since Π′(n) is strictly increasing in n). It is readily seen that we
cannot, for an optimal n∗, have all shifts strictly underloaded. Thus, there must exist i0 as speci�ed
in the lemma.

Lemma 6.5. In this case, problem (6.15) simpli�es to:

min
n≥0

Π(n) ≡
∑

{i:n≥ λi
G(l)
}

nlG(l) (underloaded)

+
∑

{i:n< λi
G(l)
}

lnG(l) + L̃i(λi − nG(l)) (overload+announcements)

Note that Π(n) is piecewise linear. Then, Π′(n) = klG(l) −
∑
{i:n< λi

G(l)
} L̃iG(l). Clearly, as n

increases, Π′(n) increases too. Under our assumptions, there must exist a unique k0 such that

Π′(n) < 0 for n <
λk0
G(l) and Π′(n) > 0 for n >

λk0
G(l) . The optimal solution is to set n∗ =

λk0
G(l) .

45


