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Abstract

We present chemical abundance measurements of three stars in the ultrafaint dwarf galaxy Horologium I, a Milky
Way satellite discovered by the Dark Energy Survey. Using high-resolution spectroscopic observations, we
measure the metallicity of the three stars, as well as abundance ratios of several α-elements, iron-peak elements,
and neutron-capture elements. The abundance pattern is relatively consistent among all three stars, which have a
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low average metallicity of [Fe/H]∼−2.6 and are not α-enhanced ([α/Fe]∼0.0). This result is unexpected when
compared to other low-metallicity stars in the Galactic halo and other ultrafaint dwarfs and suggests the possibility
of a different mechanism for the enrichment of Hor I compared to other satellites. We discuss possible scenarios
that could lead to this observed nucleosynthetic signature, including extended star formation, enrichment by a
Population III supernova, and or an association with the Large Magellanic Cloud.

Key words: galaxies: abundances – galaxies: dwarf – stars: abundances – stars: chemically peculiar

Supporting material: machine-readable table

1. Introduction

The past several decades have seen marked advancement in
our understanding of how a galaxy like the Milky Way is
assembled, as well as how chemical enrichment processes
could have evolved to produce the elements that now exist in
the local universe (e.g., Belokurov 2013; Frebel & Norris
2015). From the early observational work of Searle & Zinn
(1978) a picture emerged that galaxies like the Milky Way most
likely formed, at least in part, via hierarchical merging of
smaller satellites. Modern dark energy+cold dark matter
(ΛCDM) N-body simulations of the Milky Way support this
picture (e.g., Bullock & Johnston 2005; Robertson et al. 2005;
Johnston et al. 2008).

The past two decades have produced an abundance of new
studies to compare to theory. Most of the progress in this field
has been made through modern wide-field imaging surveys and
subsequent spectroscopic study of the objects found in the
survey images. For example, the Sloan Digital Sky Survey
(SDSS) discovered many nearby “ultrafaint” dwarf galaxies in
the Milky Way halo that have lower masses and higher mass-
to-light ratios than previously known Milky Way satellites (see
McConnachie 2012, for a summary). More recently, new wide-
field imaging surveys such as Pan-STARRS and the Dark
Energy Survey (DES; The Dark Energy Survey Collaboration
2005) have discovered even more Milky Way satellite galaxies.
DES has been the most prolific of these surveys to date: the first
2 yr of DES data alone have resulted in the discovery of 22 new
candidate satellites located in and around the Milky Way halo
(Bechtol et al. 2015; Drlica-Wagner et al. 2015; Kim & Jerjen
2015; Kim et al. 2015; Koposov et al. 2015; Luque et al.
2016a, 2016b). Once discovered, these candidates must be
confirmed through kinematics to be gravitationally bound
stellar associations via follow-up spectroscopic observations.
Spectroscopic velocity measurements also yield a measure of
the mass-to-light (M/L) ratio and a determination of whether a
satellite is a dark-matter-dominated dwarf galaxy or a baryon-
dominated stellar cluster (see Willman & Strader 2012, for a
comprehensive definition). The DES-discovered candidate
satellites considered most likely to be nearby ultrafaint dwarf
galaxies have been selected for follow-up spectroscopy; six
have subsequently been confirmed to be highly dark-matter-
dominated, low-luminosity satellites: Reticulum II (Ret II;
Koposov et al. 2015; Simon et al. 2015a), Tucana II (Tuc II)
and Grus I (Walker et al. 2016), Tucana III (Tuc III; Simon
et al. 2017), Eridanus II (Li et al. 2017), and Horologium I (Hor
I; Koposov et al. 2015), the last being the subject of this paper.

Due to their relative physical and therefore presumed
chemical isolation at the time their stars were formed, ultrafaint
dwarf galaxies provide opportunities to study not only the dark
matter that dominates their mass profile but also the
nucleosynthetic processes that occurred in the early universe.
Star formation in these low-mass objects is likely to be highly

influenced by only a few nucleosynthetic events (e.g., Ji et al.
2015). And since star formation in ultrafaint dwarfs appears to
have been quenched early in the history of the universe,
perhaps by reionization (Brown et al. 2014; Wetzel et al. 2015;
Jeon et al. 2017), a fossil record of the early star formation
history of these objects is preserved today.
Prior to the work presented here, three DES-discovered

ultrafaint dwarfs have been the targets of detailed chemical
study: Ret II, Tuc II, and Tuc III. In each of these galaxies a
unique nucleosynthetic process is observed. The majority of
stars in Ret II that have been studied to date are so-called r-II
stars, signifying that they show extreme enhancement in rapid
neutron-capture elements (Ji et al. 2016a; Roederer et al. 2016).
This nucleosynthetic signature can be explained by a single
high-yield event (e.g., a binary neutron star merger or
hypernova) polluting the gas cloud from which stars in the
galaxy were still forming. The chemical diversity of stars in
Tuc II is somewhat unlike that observed in previously studied
ultrafaint dwarfs and could be explained by a range of
phenomena, not all of which follow the standard nucleosyn-
thetic processes (Ji et al. 2016b). Hansen et al. (2017) report the
discovery of a moderately r-process-enhanced (r-I) star in Tuc
III, a rare chemical signature when compared to the bulk of
field stars in the Milky Way halo, though not as rare as r-II
stars. The diverse abundance patterns observed in these
galaxies and the range of unusual phenomena invoked to
explain them suggest that star formation in the early universe
must have been a stochastic process that was highly variable on
the mass scales of ultrafaint dwarf galaxies. If this trend holds
for more of the newly discovered ultrafaint dwarfs, the study of
chemical abundance patterns could provide an opportunity to
improve our understanding of nucleosynthetic processes in the
early universe.
In this paper we present a detailed chemical abundance

analysis of the kinematically confirmed ultrafaint dwarf galaxy
Hor I. Hor I is located at a heliocentric distance of 79 kpc, has a
luminosity MV∼−3.5±0.3 mag (Bechtol et al. 2015), and
has a mass-to-light ratio of ∼600 (Koposov et al. 2015). The
paper is organized as follows: In Section 2 we describe the
observations and abundance analysis of three stars in Hor I. We
present the abundance measurements in Section 3. In Section 4
we discuss the peculiar nature of the chemical abundance
patterns observed in this galaxy. In Section 5 we conclude with
a summary of the results and their impact.

2. Observations and Data Analysis

2.1. Observations and Data Reduction

Observations were performed using the FLAMES-UVES
spectrograph (Dekker et al. 2000; Pasquini et al. 2000) on the
VLT in Paranal, Chile, as part of program 096.D-0967(B) (PI:
E. Balbinot) and the MIKE spectrograph (Bernstein et al. 2003)
at the Magellan-Clay Telescope at Las Campanas Observatory
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(PI: R. Bernstein). In Figure 1 we present a color–magnitude
diagram of the confirmed (Koposov et al. 2015) and high-
probability (Bechtol et al. 2015) member stars of Hor I,
constructed using photometry from DES. DES astrometry and
photometry of the three stars studied in this paper are presented
in Table 1.

2.1.1. UVES Observations

UVES observations took place on five nights over the
months of 2015 December to 2016 January in 14 40-minute
exposures. Stars were selected for UVES observation based on
DES photometry, prior confirmation from Koposov et al.
(2015), and considerations related to fiber positioning due to
simultaneous observations with the FLAMES-GIRAFFE
spectrograph (T. Li et al. 2017, in preparation). Two stars
were selected for UVES observations: DES J025540-540807, a
confirmed member from previous observations using medium-
resolution spectra (Koposov et al. 2015), and DES J025543-
544349, determined to be a likely member of Hor I (Bechtol
et al. 2015). Spectra of UVES targets were obtained in service
mode. The 580 nm configuration was used, resulting in
wavelength coverage of 4800Å<λ<6800Å with a ∼30Å
gap in coverage around 5800Å due to the CCD chip gap. We
obtain a spectral resolution of R∼47,000.

Bias subtraction, flat-fielding, and spectral extraction were
completed using the FLAMES-UVES Data Pipeline provided
by the European Southern Observatory (Modigliani et al.
2004). Pixel oversampling (5 pixels per resolution element in
the output spectrum) of the UVES spectra allowed us to
boxcar-smooth the extracted spectra by 3 pixels in the
wavelength dimension using the IRAF task boxcar without
sacrificing information.

Radial velocities were measured via Fourier cross-correla-
tion of each exposure using the IRAF task fxcor with a UVES
spectrum of radial velocity standard HD 140283 observed on a
different night (2012 May 29) with the same instrument
settings as our observations. We take the statistical error to be
the standard deviation of the resulting velocities derived for
each of the 14 spectra, divided by the square root of the number

of exposures (14). A correction was applied based on the date
of the observation to shift the radial velocities to the
heliocentric frame. Each exposure was then shifted to rest
wavelength, and the 14 spectra were mean-combined using 3σ
rejection.
We estimate the systematic error of the radial velocities as

follows. All spectra for a single star obtained on a given night
were median-combined and then Fourier-cross-correlated with
the combined spectra for the same star obtained on another
night. To minimize the influence of noise, this cross-
correlation was performed over the limited wavelength range
of 5100Å<λ<5300Å centered on the strong Mg triplet
lines. For DES J025540-540807, this night-to-night cross-
correlation yielded an average relative velocity of 0.51 km s−1

with respect to each other. For DES J025543-544349, the
average relative velocity was 0.43 km s−1.
The signal-to-noise ratio (S/N) per resolution element of the

two UVES spectra and measured radial velocities are presented
in Table 2. The reported radial velocity error is the quadrature
combination of the statistical and systematic errors. We note
that the velocity of DES J025543-544349 is consistent with the
other stars in Hor I, increasing the number of confirmed Hor I
member stars from five to six.

2.1.2. MIKE Observations

MIKE observations of DES J025535-540643, a confirmed
Hor I member star (Koposov et al. 2015), took place on 2016
August 06 in five 30-minute exposures. Using a 0.7 arcsec slit
and 2×2 pixel binning, the resulting spectrum has a
resolution of R ∼ 22,000 (Δλ= 0.23Å) with coverage in the
range of 3310Å<λ<5000Å for the blue chip and
4825Å<λ<9150Å for the red chip. Reduction of the data,
including bias correction, flat-fielding, spectral extraction,
wavelength calibration, and stacking, were completed using
the MIKE pipeline (Kelson 2003).
For the spectrum obtained with MIKE, the radial velocity

was measured by performing Fourier cross-correlation of the
target star with a spectrum of radial velocity standard HD
146051 (radial velocity from Massarotti et al. 2008) observed
on the same night using the IRAF task fxcor. A correction was
applied based on the date of the observation to shift the radial
velocities to the heliocentric frame. Each spectral order was
considered individually; the reported radial velocity is the
average value of the velocity measured in each order, and the
reported error is the standard deviation of the radial velocities
determined in each order of the spectrum. The measured S/N
per resolution element and radial velocity for DES J025535-
540643 are presented in Table 2.

2.2. Abundance Analysis

We measured the equivalent widths of spectral features using
the SPECTRE program42 (Sneden et al. 2012), with confirma-
tion of the measurement of each line using the IRAF task splot.
The line list was generated from the Kurucz database (Kurucz
2011) with updated laboratory transition probabilities from the
NIST database (Kramida et al. 2016). Excitation potential,
oscillator strength, and original laboratory source references for
each line used in this analysis are listed in Table 3. For this
analysis, it is assumed that these species are in local

Figure 1. Color–magnitude diagram of high-probability (>70%) candidate
member stars of Hor I from Bechtol et al. (2015). A Dartmouth isochrone
(Dotter et al. 2008) for a stellar population having τ=12.5 Gyr,
[Fe/H]=−2.5, [α/Fe]=+0.0, and distance modulus m−M=19.7 as
derived by Bechtol et al. (2015) is overplotted. The three stars studied in this
work are indicated by larger points. The five diamond-shaped points are the
confirmed member stars of Koposov et al. (2015). Black points are
unconfirmed member stars from Bechtol et al. (2015).

42 See http://www.as.utexas.edu/~chris/spectre.html for the most up-to-date
version of SPECTRE.
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thermodynamic equilibrium (LTE). For CH and CN, we use
dissociation energies of 3.47 eV (Masseron et al. 2014) and
7.72 eV (Sneden et al. 2014), respectively.

2.2.1. Determination of Stellar Parameters

Stellar parameters were derived spectroscopically from Fe I
and Fe II lines using the abfind package of the 2017 version of
the MOOG program43 (Sneden 1973) and the α-enhanced 1D
plane-parallel Castelli–Kurucz model atmospheres (Castelli &

Kurucz 2004).44 We note that, although the stars studied here
do not in fact turn out to be α-enhanced, we choose to use the
Kurucz α-enhanced models for consistency with our previous
and future work. From comparison tests using DES J025540-
540807, which has an [Fe/H]=−2.43, we further note that at
the lowest metallicities the differences between the α-enhanced
and non-α-enhanced Kurucz models are minimal, generally
resulting in ∼0.05 dex additional change in the abundances
(which is much smaller than our total adopted uncertainties).
For spectra obtained using MIKE, the abundance of every

spectral feature bluer than 4500Å was calculated while
accounting for continuum scattering (Sobeck et al. 2011). For
species in which the majority of or all lines measured were
bluer than 4500Å and therefore greatly affected by continuum
scattering, this changed abundances by ∼0.1 dex. For species
where most of the lines measured were redder than 4500Å, the
contribution from continuum scattering does not change the
abundance significantly (<0.05 dex).
Using these models, we calculate an abundance for each Fe I

and Fe II line individually. We take the mean abundance of all
measured lines for each species to be the measured abundance
and use the standard deviation of these abundances as a
statistical error. The effective temperature was determined by
iterating atmospheric models until there was no observed trend
in calculated Fe I abundance with excitation potential of the Fe I
lines. Surface gravity was determined by iterating until there
was 1σ agreement between abundances calculated for Fe I and
Fe II. In several instances, Fe II lines were measurable but weak,
which may contribute to a systematic error regarding the
determined surface gravities. Microturbulence in the stellar
atmosphere was determined by iterating microturbulent
velocity until there was no observed trend in the calculated
abundances of Fe I with the reduced equivalent width of the
Fe I lines. The same was done for Fe II as well; the derived
microturbulence for Fe II was consistent with that derived for
Fe I. Due to the known discrepancy between spectroscopically
derived and photometrically derived effective temperature for
metal-poor giant stars, a correction to the effective temperature
was applied following Frebel et al. (2013). This empirical
correction based on spectroscopically measured effective
temperature increases the effective temperature by ∼100
−200 K. Surface gravity, microturbulence, and abundances
were then recalculated using this new effective temperature.
This changed the surface gravity by ∼+0.4 dex and micro-
turbulence by ∼+0.1 km s−1. The resulting abundances using
these new parameters differed by ∼0.2 dex. We determine the
uncertainty in our stellar parameters by varying the stellar

Table 1
DES Astrometry and Photometry of Three Member Stars of Hor I

ID R.A. (2000) Decl. (2000) g r i z Y
(deg) (deg)

DES J025540-540807a 43.91793 −54.13534 18.67 17.94 17.67 17.51 17.50
DES J025543-544349 43.93246 −54.08878 18.30 17.45 17.14 16.96 16.93
DES J025535-540643b 43.89665 −54.11222 17.73c 16.71 16.35 16.14 16.10

Notes.
a Referred to as Horo 9 by Koposov et al. (2015).
b Referred to as Horo 10 by Koposov et al. (2015).
c Note that Koposov et al. (2015) report g=19.31 mag for this star.

Table 2
Observing Details

ID Instr. S/N S/N Vhelio

at 5300 Å at 6300 Å (km s−1)

DES J025540-540807 UVES 30 40 118.6±0.6
DES J025543-544349 UVES 35 40 114.3±0.5
DES J025535-540643 MIKE 20 20 116.9±0.5

Table 3
Atomic Line Data

Species λ E.P. log(gf ) References
(Å) (eV) (dex)

Fe I 4045.81 1.48 0.28 Kurucz (2011)
Fe I 4063.59 1.56 0.06 Kramida et al. (2016)
Fe I 4071.74 1.61 −0.02 Kurucz (2011)
Fe I 4147.67 1.48 −2.10 Kurucz (2011)
Fe I 4216.18 0.00 −3.36 Kurucz (2011)
Fe I 4250.13 2.47 −0.41 Kramida et al. (2016)
Fe I 4260.47 2.40 0.08 Kramida et al. (2016)
Fe I 4415.12 1.61 −0.62 Kurucz (2011)
Fe I 4427.31 0.05 −3.04 Kurucz (2011)
L L L L L
Tb II 4002.57 0.64 −0.49 Lawler et al. (2001b, 2001d)
Tb II 4005.47 0.13 −0.02 Lawler et al. (2001b)
Tb II 4752.53 0.00 −0.55 Lawler et al. (2001b)
Dy II 3944.68 0.00 0.11 Wickliffe et al. (2000)
Dy II 4103.31 0.10 −0.38 Wickliffe et al. (2000)
Dy II 4449.70 0.00 −1.03 Wickliffe et al. (2000)
Er II 3896.23 0.06 −0.12 Lawler et al. (2008)
Er II 3938.63 0.00 −0.52 Kurucz (2011)
Th II 4019.13 0.00 −0.65 Kurucz (2011)

(This table is available in its entirety in machine-readable form.)

43 See http://www.as.utexas.edu/~chris/moog.html for the most up-to-date
version of MOOG.

44 See http://kurucz.harvard.edu/grids.html for the Castelli–Kurucz model
atmospheres.
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model and examining the resulting trends in excitation potential
and reduced equivalent width. We calculate the final [Fe/H]
of our stars from Fe I owing to the greater number of lines
measured. Measured stellar parameters are presented in
Table 4.

2.2.2. Element Abundance Measurement Using Equivalent Widths

In both UVES and MIKE spectra, equivalent widths were
measured for several species with strong, unblended absorption
lines: Fe I, Fe II, Na I, Mg I, and Ca I. For Fe I in particular, lines
ranging across wavelength, excitation potential (E.P.), and
transition probability log(gf ) were sampled in order to
minimize systematic bias in abundance calculations. For Na I,
we used corrections determined by Lind et al. (2011) for the Na
λ5895.93 doublet to compensate for non-LTE effects.

Due to the greater wavelength coverage of the MIKE
spectrum, 60 Fe I lines were measurable, compared to the only
12 useful Fe I lines in the UVES data. To ensure that the
reduced number of lines in the UVES spectra would not
systematically bias our measurements, the 12 Fe I lines used in
the UVES analysis were measured in the MIKE spectrum and
analyzed separately from the full 60-line analysis. The
difference between the two analyses in both stellar parameter
determination and abundance measurement was within the
uncertainties. We conclude then that the reduced number of
lines in the UVES spectral analysis does not systematically
affect the results.

2.2.3. Element Abundance Measurement Using Synthetic Spectra

Spectral synthesis was done for elements that did not have a
large number of measurable lines owing to low S/N or blending
and for elements where hyperfine structure and/or isotopic shifts
needed to be considered. Using the stellar parameters derived,
we have used spectral synthesis to measure the abundances of
multiple elements in all three stars, specifically Si I, Sc II, Ti I,
Cr I, Mn I, Ni I, Ba II, and Eu II. The increased wavelength
coverage in the MIKE spectrum enables measurement of
additional species in DES J025535-540643. For these measure-
ments, multiple spectral lines were identified based on both their
excitation potential and transition probability to be relatively
strong (i.e., low excitation energies, high transition probabil-
ities). Synthetic spectra were generated using the synth package
of the MOOG program (Sneden 1973) for a 40Å window
centered on the line of interest. The abundances of Fe and Ca
from equivalent width analysis were used as input in the
synthesis. Spectra were generated varying the abundance of the
elements of interest in [X/H] steps of 0.10–0.125 dex. A
Gaussian function was utilized in the smoothing of the synthetic
spectra, which was roughly what was expected based on
spectrograph resolution. If available in the 40Å window, an Fe I
or Ca I line was used to ensure that the Gaussian-smoothed
synthetic spectrum using the equivalent-width-derived stellar
parameters was able to reproduce the observational data,

generally reproducing observational data to ∼0.10 dex. Best-fit
spectra were selected by eye based on the χ2 minimization
output in MOOG. Synthesis was also used to confirm the
abundances derived using equivalent width analysis. Upper
limits were derived by comparisons to synthetic spectra. Models
of varying element abundances were generated until a model
produced a clear detection that would have been distinguishable
from noise but is undetected in the observed spectrum of the star.
Sample synthetic spectra for elements measured using equivalent
width analysis and spectral synthesis can be found in Figure 2,
overlaid onto the observed spectra.
Abundances are calculated as log10(òX), which is defined in

Equation (1) in terms of number density NX. For reference,
log10(òH), where NH is the number density of hydrogen, is
defined as 12:

N

N
log log 12. 1X

X

H
10 10 = +

⎛
⎝⎜

⎞
⎠⎟( ) ( )

Conversion into the more familiar [X/H] notation is performed
using Equation (2) using measurements of log10(òX,☉) by
Asplund et al. (2009). Calculation of [X/Fe] is shown in
Equation (3).

X H log log 2X X10 , 10 ,  = -[ ] ( ) ( ) ( )☉

X Fe X H Fe H . 3  = -[ ] [ ] [ ] ( )

In order to reduce systematic errors, we used Fe I to calculate
[X/Fe] for neutral species and Fe II to calculate [X/Fe] for
ionized species. We present chemical abundance measurements
in Table 5. We list each species measured, the number of lines
measured for that species (N), log10(òX), metallicity, elemental
abundance compared to iron, total error on the measurement
(see discussion in Section 2.3), and the method used to measure
each species. For lines for which we could only determine an
upper limit, the total 1σ uncertainty was added to the measured
limit, i.e., we attempt to report a conservative estimate of the
upper limit. For the UVES spectra we attempted to measure the
abundances of several other elements, including Al, Co, Cu,
Nd, Sr, Yb, and Zn, but could not obtain an upper limit better
than [X/Fe]<+4 dex for these elements owing to the lack of
strong lines in the UVES wavelength range.

2.3. Error Analysis

In order to determine the uncertainty in the abundance
measurements, we employ a method similar to that in
McWilliam & Rich (1994) and account for the statistical and
systematic errors separately. For lines measured using
equivalent widths, we have calculated the mean abundance
for multiple lines across excitation potential and transition
probability space. We assume that the standard deviation from
this mean abundance represents our statistical error that arises

Table 4
Measured Stellar Parameters

ID Teff log(g) vmicro [Fe/H] [Ca/Fe]
(K) (dex) (km s−1) (dex) (dex)

DES J025540-540807 5000±100 2.0±0.2 0.8±0.5 −2.43±0.13 −0.07±0.15
DES J025543-544349 4800±100 1.5±0.2 1.8±0.5 −2.60±0.16 +0.00±0.13
DES J025535-540643 4500±100 1.4±0.2 3.5±0.5 −2.83±0.12 −0.02±0.21
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from uncertainty in our equivalent width measurements. We
take this to be the uncertainty on our abundance measurement
for a single, unblended spectral feature. Therefore, by dividing
by N , where N is the number of lines measured, we arrive at
the statistical error in our abundance measurement that
accounts for the multiple lines measured per element.

To account for systematic errors introduced by the
uncertainty in stellar parameter determination, we vary the
stellar atmosphere model by the uncertainty in the stellar
parameters individually. We then recalculate the abundance of
each element using this perturbed model and determine the

variation in our abundance measurement Δlog10(òX) caused
by the perturbation. We do this for effective temperature
(±100 K), surface gravity (±0.2 dex), and microturbulence
(±0.5 km s−1).
The empirical effective temperature correction from Frebel

et al. (2013) to account for the discrepancy between spectro-
scopically and photometrically derived temperatures may have
increased the uncertainty in effective temperature. Since
this correction was on order ∼100 K, our measured error in
effective temperature may be slightly larger, which may then
affect the measured abundances. However, for the purposes of

Figure 2. Examples of synthetic spectra showing the region around the absorption features for Ca, Mg, Si, Cr, Mn, Ti, Sc, Ni, Ba, and Eu. In each panel, the top
spectrum is DES J025540-540807, the middle spectrum is DES J025543-544349, and the bottom spectrum is DES J025535-540643. Observed data are plotted as
black points, while synthetic spectra of the indicated òX are presented as red lines. Vertical dashed lines indicate the central wavelength of spectral features of the
indicated element. It should be noted that the Si abundance for DES J025535-540643 was not derived from the doublet at 4817.58 and 4818.05 Å alone; other lines
outside of the wavelength coverage of UVES were used to achieve a positive detection. The wavelength coverage of UVES was used to achieve a positive detection.
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Table 5
Abundances of Three Confirmed Member Stars of Hor I

Species N log10(òX) [X/H] [X/Fe] Error Method

DES J025540-540807

Na I 2 3.54 −2.70 −0.27 0.27 Eq. Width
Mg I 2 5.15 −2.45 −0.02 0.25 Eq. Width
Si I 4 <6.58 <−0.93 <+1.95 0.45 Spec. Synthesis
Ca I 4 3.84 −2.50 −0.07 0.15 Eq. Width
Sc II 1 <0.65 <−2.50 <+0.51 0.44 Spec. Synthesis
Ti I 3 3.04 −1.91 +0.52 0.40 Spec. Synthesis
Cr I 8 3.22 −2.42 +0.01 0.30 Spec. Synthesis
Mn I 3 2.94 −2.49 −0.06 0.61 Spec. Synthesis
Fe I 12 5.07 −2.43 +0.00 0.13 Eq. Width
Fe II 4 4.93 −2.57 −0.14 0.11 Eq. Width
Ni I 2 3.80 −2.42 +0.01 0.41 Spec. Synthesis
Ba II 3 <−1.32 <−3.50 <−0.47 0.46 Spec. Synthesis
Eu II 2 <0.09 <−0.43 <+2.55 0.41 Spec. Synthesis

DES J025543-544349

Na I 2 2.74 −3.50 −0.90 0.32 Eq. Width
Mg I 3 4.77 −2.83 −0.23 0.25 Eq. Width
Si I 4 <6.91 <−0.60 <+2.45 0.45 Spec. Synthesis
Ca I 3 3.74 −2.60 +0.00 0.13 Eq. Width
Sc II 1 0.70 −2.45 +0.27 0.50 Spec. Synthesis
Ti I 3 2.64 −2.31 +0.29 0.40 Spec. Synthesis
Cr I 8 2.87 −2.77 −0.17 0.31 Spec. Synthesis
Mn I 3 2.79 −2.64 −0.04 0.68 Spec. Synthesis
Fe I 12 4.90 −2.60 +0.00 0.16 Eq. Width
Fe II 4 4.78 −2.72 −0.12 0.11 Eq. Width
Ni I 2 3.65 −2.57 +0.03 0.47 Spec. Synthesis
Ba II 3 −1.47 −3.65 −0.93 0.32 Spec. Synthesis
Eu II 2 <−0.08 <−0.60 <+2.59 0.47 Spec. Synthesis

DES J025535-540643

C (CH) 1 <5.05 <−3.38 <−0.19 0.36 Spec. Synthesis
N (CN) 1 <5.70 <−2.13 <+1.20 0.50 Spec. Synthesis
Na I 2 2.38 −3.86 −1.03 0.23 Eq. Width
Mg I 4 4.74 −2.86 −0.03 0.30 Eq. Width
Al I 2 2.62 −3.83 −1.00 0.22 Spec. Synthesis
Si I 1 4.80 −2.71 +0.12 0.48 Spec. Synthesis
Ca I 4 3.49 −2.85 −0.02 0.21 Eq. Width
Sc II 3 0.21 −2.94 +0.00 0.15 Spec. Synthesis
Ti I 3 2.39 −2.56 +0.27 0.18 Spec. Synthesis
V I 1 1.80 −2.13 +0.70 0.30 Spec. Synthesis
Cr I 5 2.62 −3.02 −0.19 0.38 Spec. Synthesis
Mn I 1 2.54 −2.89 −0.06 0.36 Spec. Synthesis
Fe I 60 4.67 −2.83 +0.00 0.12 Eq. Width
Fe II 4 4.56 −2.94 −0.11 0.19 Eq. Width
Co I 3 2.38 −2.61 +0.22 0.32 Spec. Synthesis
Ni I 3 3.28 −2.94 −0.11 0.35 Spec. Synthesis
Cu I 3 <1.16 <−3.03 <+0.12 0.32 Spec. Synthesis
Zn I 2 <2.30 <−2.26 <+0.87 0.30 Spec. Synthesis
Ga I 1 <0.68 <−2.36 <+0.90 0.43 Spec. Synthesis
Rb I 2 <2.30 <−0.22 <+2.95 0.34 Spec. Synthesis
Sr II 2 −0.97 −3.84 −0.90 0.33 Spec. Synthesis
Y II 4 <−0.06 <−2.27 <+1.05 0.38 Spec. Synthesis
Zr II 4 <0.70 <−1.88 <+1.40 0.34 Spec. Synthesis
Mo II 1 <0.52 <−1.36 <+1.89 0.31 Spec. Synthesis
Ba II 3 −1.75 −3.93 −0.99 0.33 Spec. Synthesis
La II 5 <−0.18 <−1.28 <+1.98 0.32 Spec. Synthesis
Ce II 5 <−0.45 <−2.03 <+1.21 0.30 Spec. Synthesis
Pr II 4 <−1.04 <−1.76 <+1.49 0.31 Spec. Synthesis
Nd II 6 <−0.50 <−1.92 <+1.33 0.31 Spec. Synthesis
Sm II 5 <−0.55 <−1.51 <+1.75 0.32 Spec. Synthesis
Eu II 4 <−1.84 <−2.36 <+0.97 0.39 Spec. Synthesis
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this paper, we adopt our stated errors solely based on the
observed trends in abundance calculation across excitation
potential and transition probability space.

The variation in abundance due to the perturbed stellar
parameters is added in quadrature with the statistical error taken
from the uncertainty in our equivalent width measurements,
generating Δlog10(òX),Total.

For lines measured using spectral synthesis, we assess
systematic errors as described above. However, because we use
the consistency of multiple lines to measure element abundance,
we cannot derive a statistical uncertainty in the same manner as
the equivalent width analysis. We still remeasure abundances
using a stellar atmosphere model perturbed by the uncertainty in
the measured stellar parameters. Our perturbed model abundance
is compared against the unperturbed abundance to determine the
variation Δò, which we take to be our systematic errors based
on the errors in our stellar parameter determination. We estimate,
based on S/N and the variations observed in our stellar parameter
perturbation, that the statistical error associated with this
measurement could be as high as 0.25 dex. We therefore adopt
this value as the statistical error for lines measured using synthetic
spectra. The final statistical error reported for lines measured using
spectral synthesis is this value divided by the square root of the
number of lines measured.

We present the results of our error analysis in Table 6. The
final errors reported in column (6) of Table 5 and column (7) of
Table 6 are the quadrature sum of the systematic and statistical
errors.

3. Results

In Figure 3 we compare Hor I stars to stars in the Milky Way
halo and 13 ultrafaint dwarf galaxies for which spectroscopic
abundance analysis has been performed. The three Hor I
stars are all of very low metallicity, in the range of
−2.83<[Fe/H]<−2.43, and have similar α-element and
iron-peak element abundances. The measurement of Ba II in
two stars and a consistent upper limit in the third star suggest
that the abundance of neutron-capture elements in these three
stars is also similar.

In comparison to most other stars in the Milky Way halo and
in other ultrafaint dwarf galaxies, the α-element abundance of
these three Hor I stars is low for their [Fe/H]. This can be seen
in the [Ca/Fe] and [Mg/Fe] abundances. The detection of Si in
one star, DES J025535-540643, is also consistent with the
other α-elements. There are a few stars in other ultrafaint
dwarfs with similarly low [Ca/Fe] and [Mg/Fe] (∼0);
however, these stars are generally more metal-rich, and no
other ultrafaint dwarf has consistently low abundances for all
α-elements among all its measured member stars.

The iron-peak elements also present some unusual patterns.
The abundances of Sc and Ni seem to be similar to those of
stars in the halo and the other ultrafaint dwarfs. The abundance
of Cr in Hor I is slightly elevated with respect to most other

ultrafaint dwarfs, but still consistent with the abundances of
halo stars. However, the abundance of Mn is ∼0.4 dex higher
than most halo stars and ∼0.6 dex higher than the abundances
found in other ultrafaint dwarfs.
The abundance of Ba is similar to most other ultrafaint

dwarfs. It does not present significant s-process or r-process
enrichment like the stars in Ret II (Ji et al. 2016c) or Tuc III
(Hansen et al. 2017). The upper limit of Eu found in DES
J025535-540643 ([Eu/Fe]<+1.02) excludes it from being an
r-II star (defined as [Eu/Fe]>+1.0) but does not exclude the
possibility that it is an r-I star (defined as [Eu/Fe]>+0.3),
where these definitions are taken from Beers & Christlieb
(2005). However, the low [Ba/Fe] values of these three stars
make it unlikely that they are r-process enhanced.
Due to wavelength constraints, we could only measure C

using the CH band in DES J025535-540643. Based on the
upper limit of [C/Fe]<−0.14, we can conclude that this star
is not carbon-enhanced.

4. Discussion

We discuss possible scenarios that could lead to the observed
nucleosynthetic pattern of Hor I and compare Hor I stars with
stars in the Milky Way with similar abundance patterns. In
Section 4.1, we compare the abundance pattern of Hor I with
that of stars found in the Milky Way halo with similar
nucleosynthetic patterns. In Section 4.2, we discuss one
plausible enrichment scenario, the early onset of Type Ia
supernovae (SNe Ia) in Hor I. In Section 4.3, we compare the
peculiar abundance pattern observed in Hor I with theoretical
nucleosynthetic yield models. In Section 4.4, we discuss a
possible association with the Large Magellanic Cloud (LMC)
as the cause of the abundance pattern measured in Hor I. We
caution that these discussions are based on the abundance
measurements of only three stars and may change with analysis
of additional stars in Hor I.

4.1. Comparison with Similarly Peculiar Stars
in the Milky Way Halo

The stars in Hor I are not the first metal-poor, α-poor stars
to be discovered. For example, in a detailed chemical
abundance study of stars found in a search for the most
metal-poor stars in the Galactic halo, Ivans et al. (2003)
reported chemical abundance measurements of two additional
low-α, low-metallicity stars in the Galactic halo, G4-36 and CS
22966-043, and found that these two and BD +80°245 all have
[Fe/H]∼−2 and [Ca/Fe]∼0.5 dex below the mean halo
value (Ivans et al. [2003] report [Ca/Fe]=+0.31 for the halo).
Interestingly, these three stars also have iron-peak over-
abundances that are qualitatively similar to the Hor I stars,
with BD +80°245 having the most similar abundances to
our stars. Additionally, BD +80°245 has a similarly high Ti
abundance despite its low α-element abundance. An emerging

Table 5
(Continued)

Species N log10(òX) [X/H] [X/Fe] Error Method

Gd II 3 <−0.13 <−1.20 <+2.06 0.32 Spec. Synthesis
Tb II 3 <−0.47 <−0.77 <+2.52 0.35 Spec. Synthesis
Dy II 3 <−0.75 <−1.85 <+1.43 0.34 Spec. Synthesis
Er II 2 <−0.44 <−1.36 <+2.01 0.43 Spec. Synthesis
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Table 6
Summary of Error Analysis

Species N σ Δlog10(òX) Δlog10(òX) Δlog10(òX) Δlog10(òX),Total
(ΔT=+100 K) (Δlog(g)=+0.2 dex) (Δξ=+0.5 km s−1)

DES J025540-540807

Na I 1 0.10 +0.13 −0.06 −0.20 0.27
Mg I 2 0.13 +0.14 −0.08 −0.16 0.25
Si I 4 0.25 +0.25 +0.25 +0.25 0.45
Ca I 4 0.03 +0.08 −0.03 −0.12 0.15
Sc II 1 0.25 +0.25 +0.25 −0.10 0.44
Ti I 3 0.25 −0.25 +0.13 −0.25 0.40
Cr I 8 0.20 −0.10 −0.10 −0.25 0.30
Mn I 3 0.50 +0.25 +0.25 +0.50 0.61
Fe I 12 0.20 +0.11 −0.01 −0.05 0.13
Fe II 4 0.13 +0.05 +0.07 −0.01 0.11
Ni I 2 0.25 +0.25 +0.10 −0.25 0.41
Ba II 3 0.25 −0.25 −0.25 −0.25 0.46
Eu II 2 0.25 −0.25 −0.25 −0.10 0.41

DES J025543-544349

Na I 1 0.19 +0.12 −0.02 −0.24 0.32
Mg I 3 0.09 +0.09 −0.06 −0.22 0.25
Si I 4 0.25 +0.25 +0.25 +0.25 0.45
Ca I 3 0.04 +0.09 −0.03 −0.08 0.13
Sc II 1 0.25 +0.25 +0.25 +0.25 0.50
Ti I 3 0.25 −0.25 −0.13 −0.25 0.40
Cr I 8 0.20 −0.10 −0.13 −0.25 0.31
Mn I 3 0.50 +0.25 +0.25 +0.50 0.68
Fe I 12 0.29 +0.13 −0.02 −0.04 0.16
Fe II 4 0.17 −0.02 +0.07 −0.01 0.11
Ni I 2 0.25 +0.25 −0.25 −0.25 0.47
Ba II 3 0.25 −0.10 −0.10 −0.25 0.32
Eu II 2 0.25 −0.25 −0.25 −0.25 0.47

DES J025535-540643

C (CH) 1 0.25 +0.15 −0.05 −0.20 0.36
N (CN) 1 0.25 +0.25 +0.25 +0.25 0.50
Na I 1 0.08 +0.14 −0.05 −0.16 0.23
Mg I 4 0.27 +0.14 −0.08 −0.16 0.30
Al I 2 0.07 +0.15 −0.08 +0.13 0.22
Si I 1 0.25 +0.30 +0.20 +0.20 0.48
Ca I 4 0.29 +0.08 −0.03 −0.12 0.21
Sc II 3 0.12 +0.10 +0.08 −0.05 0.15
Ti I 3 0.09 +0.10 −0.10 −0.10 0.18
V I 1 0.25 +0.10 +0.10 +0.10 0.30
Cr I 5 0.35 −0.09 −0.24 −0.23 0.38
Mn I 1 0.25 +0.05 −0.20 −0.15 0.36
Fe I 60 0.20 +0.11 −0.01 −0.05 0.12
Fe II 4 0.33 +0.05 +0.07 −0.01 0.19
Co I 3 0.29 +0.22 −0.13 −0.08 0.32
Ni I 3 0.47 +0.17 +0.12 +0.08 0.35
Cu I 3 0.25 +0.15 +0.10 −0.10 0.32
Zn I 2 0.25 +0.10 +0.10 +0.10 0.30
Ga I 1 0.25 +0.20 +0.20 +0.20 0.43
Rb I 2 0.25 +0.20 +0.10 +0.05 0.34
Sr II 2 0.25 +0.13 −0.08 −0.15 0.33
Y II 4 0.25 +0.20 +0.20 +0.05 0.38
Zr II 4 0.25 −0.20 +0.05 +0.10 0.34
Mo II 1 0.25 +0.15 −0.10 +0.05 0.31
Ba II 3 0.52 +0.10 +0.07 −0.07 0.33
La II 5 0.25 +0.15 +0.10 +0.10 0.32
Ce II 5 0.25 +0.10 −0.10 −0.10 0.30
Pr II 4 0.25 +0.15 +0.10 +0.05 0.31
Nd II 6 0.25 +0.15 −0.10 −0.05 0.31
Sm II 5 0.25 +0.15 −0.10 −0.10 0.32
Eu II 4 0.25 −0.20 −0.20 −0.10 0.39
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suggestion has arisen that posits that Ti is an Fe-peak element
instead of a classical α-element (Sneden et al. 2016). The
abundances of stars found in Hor I may lend additional
credence to that argument.

Other studies have discovered extremely metal-poor stars
having peculiar abundances: Cohen et al. (2008) and Haschke
et al. (2012) report discoveries of extremely low metallicity,
low-α stars; Caffau et al. (2013) found four extremely metal-
poor stars ([Fe/H]∼−3.7) with even lower [α/Fe] ratios than
we measure in Hor I. Each of these studies invokes various
theoretical SN yield models to explain the observed abundance
patterns, which are plausible explanations but in most cases do
not perfectly match the observations.

More recently, a metal-poor ([Fe/H]=−2.5) star having
low α abundances ([α/Fe]∼−0.4), SDSS J0018-0939, was
discovered in the SDSS (Aoki et al. 2014). The authors suggest
that this star, whose observed abundance patterns are compared
to theoretical nucleosynthetic yield models of a pair-instability
supernova (PISN; Heger & Woosley 2002), may represent the
first observational evidence of a PISN. Simon et al. (2015b)
found two stars in Sculptor with similar chemical abundances
but at an average [Fe/H] of ∼−3.9, which is much more metal-
poor than Hor I. Scl 11_1_4296 had depleted abundances of
Mg, Ca, and Si. Scl 07-50 had similarly low Ca and Si, but an
Mg abundance that is consistent with the Milky Way halo.
They concluded that these stars were the second generation of
stars formed in the galaxy and that the chemical signatures
were reproducible using Population III SN nucleosynthetic
models.

Recent models predict that the earliest stars formed that are
still observable today should be very (not extremely) metal-
poor stars, with [Fe/H]=−2.5 and low α abundances.
Karlsson et al. (2008) constructed theoretical models for the
early chemical enrichment of the Milky Way, showing that
the lack of metal-free stars in the Galactic halo that are
observable today is in fact expected if the first stars to form in
the universe were very massive (Bromm et al. 1999). In their
model, the Galactic halo is assembled from stars formed during
the assembly of “atomic-cooling halos” centered on minihalos
each holding a Population III star. These models also show that
stars with this chemical signature of [Fe/H]=−2.5 and low α
abundances should be quite rare, about 1 star in 500 in the
Galactic halo. This may not be the case in ultrafaint dwarfs.
However, this picture is consistent with hierarchical structure
formation, as well as, at least qualitatively, with the number of
halo stars discovered to date having similarly peculiar
abundance patterns. The halo stars described in the above
studies are rare and unusual enough, both in observations and
in theoretical models when compared to other halo stars, to
warrant special attention. It is therefore quite interesting to find
three very similar stars colocated in one low-mass galaxy.

We suggest that those peculiar halo stars could have formed
in small galaxies like Hor I, in which pollution by a single
PISN occurred early in the star formation history of the galaxy.
PISNe, due to the high mass of their progenitors, have a
characteristically low α-element production and a characteristic
odd–even effect in their nucleosynthesis pattern. Therefore, the
observed abundance patterns of Aoki et al. (2014) and in Hor I
may be due to a PISN (we investigate this in more detail in
Section 4.3). Those smaller satellites would then have been
accreted into the Milky Way halo, leaving small numbers of
halo stars with unusual abundance patterns sprinkled through-
out the halo, as is observed.
This scenario is consistent with the idea that the ultrafaint

dwarfs are small contributors (by mass) to the accretion history
of the Milky Way, as predicted by ΛCDM theory, and could
perhaps be further confirmed if adequate numbers of similarly
peculiar stars were found and their kinematic properties are
consistent with having originated in the same accreted satellite.
This last suggestion may be testable once Gaia proper motions
are added to the measured radial velocities, enabling full
position and kinematic information.

4.2. Extended Star Formation in Hor I?

One plausible scenario that could explain the chemical
abundances of Hor I is an early onset of SNe Ia. In our current
understanding of chemical evolution (Tinsley 1979), as a star-
forming gas cloud collapses, the most massive stars form early,
quickly evolving to produce SNe II and thereby enriching the
surrounding gas cloud with the α-elements O, Mg, Si, S, Ca,
and Ti. The next stars that form in this α-rich environment
would then be α-enhanced stars with typical [α/Fe] values
�0.3. As the stellar population continues to evolve, at some
later time SNe Ia, which have characteristically low yields in α-
elements and greater yields of the iron-peak elements (Cr, Mn,
Fe, Co, Ni, Cu), begin to dominate nucleosynthesis. The SNe Ia
then enrich the surrounding environment, thereby lowering the
relative abundance of α-elements and increasing the abundance
of iron-peak elements. Stars formed after the transition between
Type II-dominated nucleosynthesis and Type Ia-dominated
nucleosynthesis would therefore present abundance ratios
closer to the solar ratio (α/Fe]∼0). This process produces a
characteristic “knee” in the [α/Fe] ratios across a range
of metallicities, where metallicity, or [Fe/H], increases with
time as the isolated stellar population enriches itself in iron.
In principle, the slope and the position of the knee can
provide information about the rate and the time, respectively, at
which this transition occurred in a given stellar population.
McWilliam (1997) provides a comprehensive description of
this story, which describes the observed abundances of stars in
the Milky Way halo quite well.
Presumably a similar series of events to that described above

occurs in all stellar populations. However, the specifics of the

Table 6
(Continued)

Species N σ Δlog10(òX) Δlog10(òX) Δlog10(òX) Δlog10(òX),Total
(ΔT=+100 K) (Δlog(g)=+0.2 dex) (Δξ=+0.5 km s−1)

Gd II 3 0.25 −0.15 −0.10 −0.10 0.32
Tb II 3 0.25 −0.10 −0.20 −0.10 0.35
Dy II 3 0.25 −0.15 −0.15 −0.10 0.34
Er II 2 0.25 −0.20 −0.20 −0.20 0.43
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time delay, or, equivalently, metallicity at which this transition
between α-rich to α-poor star formation occurs is determined
by the star formation rate and initial mass function of the stellar
population. This effect has been observed in dwarf galaxies
using both detailed abundance measurements from high-
resolution spectroscopy (e.g., Venn et al. 2004; Koch et al.
2008; Hendricks et al. 2014) and those from medium-resolution
spectroscopy (Kirby et al. 2011). The trend holds for lower-
mass objects as well: Vargas et al. (2013) studied an ensemble
of ultrafaint dwarf galaxies and determined that the transition

between Type II-dominated and Type Ia-dominated nucleo-
synthesis typically occurs in these objects at a “time” when
[Fe/H]∼−2.3, based on the summary properties of eight
ultrafaint dwarfs. According to these results, stars in ultrafaint
dwarfs that are more metal-poor than [Fe/H]∼−2.3 generally
should have formed in the α-rich environment produced by
SNe II and thus present supersolar α-element abundance.
Conversely, stars with [Fe/H]>−2.3 were produced after
SNe Ia began to pollute the surrounding environment with iron-
peak elements and would therefore show [α/Fe]∼0. Vargas

Figure 3. Chemical abundance measurements of three Hor I member stars (red) compared to abundance measurements of stars in the ultrafaint dwarf galaxies Boo I
(Norris et al. 2010; Gilmore et al. 2013; Ishigaki et al. 2014; Frebel et al. 2016), Boo II (Ji et al. 2016d), Ret II (Ji et al. 2016c), ComBer (Frebel et al. 2010), CVn II
(François et al. 2016), Her (Koch et al. 2008, 2013; François et al. 2016), Segue 1 (Frebel et al. 2014), Segue 2 (Roederer & Kirby 2014), UMa II (Frebel et al. 2010),
Leo IV (Simon et al. 2010; François et al. 2016), Tuc II (Ji et al. 2016b), Tuc III (Hansen et al. 2017), and Tri II (Kirby et al. 2017; Venn et al. 2017; various colored
squares). Abundances of stars in the Milky Way halo from Yong et al. (2013; filled gray) and Roederer et al. (2014) (open gray) are also shown. Error bars are shown
only for the Hor I stars for clarity. Points denoted as  indicate an upper limit. The solar ratio ([X/Fe]=0) is indicated by the solid black line.
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et al. (2013) also determine that star formation in ultrafaint
dwarfs occurs after a minimum time delay for the onset of SNe
Ia of at least 100Myr. This picture is consistent with other
work that places limits on the star formation histories of
ultrafaint dwarf galaxies: deep Hubble Space Telescope
imaging and Keck spectroscopy of ultrafaint dwarf galaxies
show that their stars were formed early, with roughly 80% of
stars having formed by 12.8 Gyr ago and 100% of stars formed
by 11.6 Gyr ago (Brown et al. 2014). This duration is
consistent with an early but extended star formation history
that would conform to the standard process of chemical
evolution in a stellar population. Furthermore, the picture that
has emerged to describe star formation in ultrafaint dwarf
galaxies is that star formation began quickly, in some cases in a
single burst of star formation (Frebel & Bromm 2012), and was
soon quenched, possibly by reionization (e.g., Brown
et al. 2014; Wetzel et al. 2015; Jeon et al. 2017), leaving the
stars in the ultrafaint dwarfs as a fossil record of conditions in
the early universe.

If we presume a similar chemical evolution timeline for
Hor I and use [Fe/H] as an age indicator, our measurements
imply that the onset of SNe Ia and the subsequent chemical
enrichment of the surrounding gas would have had to occur
relatively earlier in Hor I than in other ultrafaint dwarfs. The lack
of α-elements in even the most metal-poor star, DES J025535-
540643 ([Fe/H]=−2.8± 0.2 and [Ca/Fe]=−0.05± 0.15),
implies that the transition from SN II-dominated nucleosynthesis
to SN Ia-dominated nucleosynthesis had to occur at a time
when the metallicity of Hor I was [Fe/H]<−2.8. This would
represent a very early transition between nucleosynthesis
dominated by SNe II and nucleosynthesis dominated by SNe
Ia compared to other ultrafaint dwarfs.

We do note that it is somewhat presumptuous to draw strong
conclusions from a sample of three stars in a galaxy.
Furthermore, at least one other ultrafaint dwarf galaxy has
shown a spread in α-enhancement at the low end of its
metallicity range, Ursa Major I (UMa I; Vargas et al. 2013).
The 10 stars studied by Vargas et al. (2013) span nearly two
orders of magnitude in metallicity with a wide spread in α-
abundance at the lowest-metallicity end, i.e., UMa I contains at
least two metal-poor, α-poor stars that could have chemical
abundances similar to the Hor I stars. Unfortunately, the
moderate-resolution spectroscopy used by Vargas et al. (2013)
does not permit detailed abundance analysis of many elements.
It should be noted, however, that UMa I may not fit the
canonical picture of stellar populations (Jeon et al. 2017).

Limits on the duration of star formation in Hor I could be
placed if it were possible to study a larger sample of member
stars chemically. According to the standard picture of chemical
evolution described above, some of those stars would be older
than the three studied here, should have [Fe/H]<−2.8, and
should show α-element enhancement consistent with the knee
observed in other galaxies. Alternatively, a larger sample of
stars could be studied with medium-resolution spectra using
techniques such as those used by Kirby et al. (2009).

4.3. Comparison to Supernova Yield Models

Alternatively, Hor I may have been host to a rare primordial
SN such as a PISN whose nucleosynthetic signature is
preserved in the currently observable population of stars.
Frebel & Bromm (2012) suggest that the chemical signatures of
low-mass ultrafaint dwarfs can be described by a single, long-

lived generation of stars that formed in the early universe. In
related work, Ji et al. (2015) demonstrate that the chemical
abundance patterns of these single events can be preserved in
the second generation of stars. Though Hor I does not have the
characteristically high α-element abundance predicted by
Frebel & Bromm (2012) in their “one-shot enrichment”
scenario, if Aoki et al. (2014) are correct that their observed
abundance patterns, which are similar to ours, are due to a
PISN, then we expect that there must have been only a single
nucleosynthetic event in Hor I. If there had been several
generations of SNe preceding the currently observed popula-
tion, the peculiar abundance pattern produced in rare SNe
would be obscured by nucleosynthesis in other, more common
SNe II. By this reasoning, for the purposes of this analysis, we
assume that the stars in Hor I are chemically primitive objects,
and we explore the possibility that the observed abundances
could be explained by the predicted yields of a single
nucleosynthetic event. Therefore, in our comparison to
nucleosynthetic yield models, we limit the number of events
to a single Population III SN that enriched the surrounding gas,
creating the chemical abundance pattern observed today.
To explore the possibility that the observed abundance

pattern of Hor I may arise from a PISN, we have compared the
abundances of DES J025535-540643 to various SN yield
models for Population III stars. These models can produce low
[Ca/Fe] and [Mg/Fe] abundances, such as those observed in
the three stars studied in Hor I. Since we were able to measure
more elements in DES J025535-540643, we conduct this
analysis only on this star.
We used the STARFIT45 tool (C. Chan et al. 2017, in

preparation; Heger & Woosley 2010) to compare our
abundance measurements with SN II nucleosynthetic yield
models (Heger & Woosley 2010, and subsequent online
updates in 2012) for progenitors spanning a wide range in
mass (9.6–100 M☉) and PISN nucleosynthetic yield models
(Heger & Woosley 2002) for progenitors spanning a zero-age
main-sequence (ZAMS) mass range of 140–260 M☉. The
STARFIT code calculates a χ2 statistic using abundance
measurements and upper limits (see Heger & Woosley 2010,
Equation (4)) and determines a best-fit SN yield model. We
used STARFIT to compare the observed abundance pattern of
DES J025535-540643 against three categories of models; we
present the parameters of the best-fit models in Table 7. It
should be noted that Sc and Cr are generally underproduced by
yield models. Heger & Woosley (2010) assume that this is due
to additional production sites that are unaccounted for, and
therefore discrepancies regarding these elements should be
taken lightly. We therefore have STARFIT ignore them when
fitting our abundance pattern. Heger & Woosley (2010)
compute yields for nonrotating, metal-free Population III stars
using initial big bang compositions from Cyburt et al. (2001).

Table 7
Supernova Yield Model Fits to DES J025535-540643

Model Best-fit Mean
Progenitor Mass Sq. Residual

O Shell (S = 4) Piston 10 M☉ 23.8
Fe Core (Ye) Piston 85 M☉ 28.2
PISN 260 M☉ 64.4

45 See http://starfit.org for routine and models.
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Due to the lack of a robust model for how a core-collapse SN
explodes, these computations utilize a piston model to simulate
the explosion. Heger & Woosley (2010) compute nucleosyn-
thetic yield models for two locations of the piston (initial mass
cut), one model for a piston at the base of the O shell (S= 4
Piston Model), and one model for a piston at the edge of the Fe
core (Ye Piston Model). We compare the abundance of DES
J025535-540643 to both models using STARFIT. Using the
model for a piston at the base of the O shell yields a best-fit
model of a 10 M☉ progenitor SN II (mean squared
residual=23.8). Using the model for a piston at the edge of
the Fe core yields a best-fit model of an 85M☉ progenitor SN II
(mean squared residual=28.2).

The explosion mechanism of a PISN is well understood and
is simulated to obtain theoretical nucleosynthetic yields by
Heger & Woosley (2002). PISN progenitors enter a regime of
electron/positron pair production resulting in a collapse until O
burning and Si burning produce enough energy to explode.
This explosion results in low α-element abundances, a low C
abundance, and a strong odd–even effect. Comparison to the
model nucleosynthetic yields of PISNe using STARFIT gives a
best-fit model of a 260 M☉ (130 M☉ He core) PISN (mean
squared residual=64.4). It should be noted that this is the
highest available PISN model used by STARFIT. It may be that
the best-fitting PISN model is beyond the available mass range.

In the left panels of Figure 4, we show the yield models that
best fit DES J025535-540643 and the abundance measurements
of all three stars observed in Hor I. As can be seen in the figure,

each model has difficulties in fitting the observed abundance
patterns. The 10 M☉ SN II model produces too much C, Ca,
Mg, and Co compared to our Hor I stars. These four elements
produce contradictory requirements. The low upper limit on C
and the abundances of Ca and Mg in DES J025535-540643
suggest that a higher-energy explosion than provided by the 10
M☉ SN II is required, while the low Co abundance requires a
lower-energy explosion. The 85 M☉ SN II model produces too
few iron-peak elements, implying that there is too much
fallback and not enough iron-peak elements are synthesized
and ejected. This model also does not produce enough Co,
indicating that the energy of the explosion is too low. Finally,
the 260 M☉ (130 M☉ He core) PISN model produces a larger
odd–even effect and a lower Co abundance than is observed in
the stars of Hor I, which show essentially no odd–even effect.
We compare BD +80°245, G4-36, CS 22966-043 (Ivans

et al. 2003), and SDSS J0018-0939 (Aoki et al. 2014) with the
same models that best fit DES J025535-540643 in the right
panels of Figure 4. It should be noted that the PISN model that
we present is the same model suggested by Aoki et al. (2014)
as a possible fit for SDSS J0018-0939. For a common point of
comparison for our best-fit models, we also used STARFIT to
determine a best-fit PISN model for SDSS J0018-0939. The
result was a best-fit model of a 260M☉ (130M☉ He core) PISN
(mean squared residual=159.6). Aoki et al. (2014) discussed
the discrepancies in this PISN model fit to SDSS J0018-0939,
specifically mentioning that the model predicts too much Si and
too large of an odd–even effect for their observed abundance

Figure 4. Left: the three theoretical SN yield models (Heger & Woosley 2002, 2010) that best fit DES J025535-540643: a 10 M☉ SN II model (top), an 85 M☉ SN II
model (middle), and a 260 M☉ (130 M☉ He core) PISN model (bottom). For comparison, our measurements of [X/Fe] for all three stars are shown: DES J025540-
540807 (dark blue squares), DES J025543-544349 (green diamonds), DES J025535-540643 (red crosses). Black lines indicate the solar ratio. Right: the same three
SN yield models with abundances of SDSS J0018-0939 (brown stars; Aoki et al. 2014), CS 22966-043 (pink squares), G4-36 (light blue diamonds), and BD +80°245
(orange circles; Ivans et al. 2003) shown for comparison. Points denoted as  indicate an upper limit.
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pattern. However, the model does fit their measured Co
abundance. Our analysis of Hor I shares a similar problem in
that the model’s predicted odd–even effect is too large for our
observed abundance pattern. The model does fit our Si
abundance well, but it underpredicts the amount of Co in
DES J025535-540643, mirroring the discrepancies in SDSS
J0018-0939.

If it were possible to study a larger sample of member stars
chemically, then if a PISN were the underlying cause of the
peculiarity in the observed abundance pattern of Hor I, the α-
element enhancement knee described previously would not be
observed. It would require the chemical analysis of many more
stars in Hor I to make any strong conclusions.

4.4. Possible Association with the LMC

An interesting question posed by the recent discovery of so
many candidate ultrafaint dwarf galaxies in the outskirts of the
Milky Way and located in the southern hemisphere is whether
they originated in the Milky Way or, rather, they originated as
satellites of satellites (the Magellanic Clouds). Indeed, both
groups announcing the discovery of Hor I (Bechtol et al. 2015;
Koposov et al. 2015), as well as the kinematic confirmation
work (Koposov et al. 2015), note Hor I’s potential association
with the LMC due to its location and measured systemic
velocity. Several recent theoretical studies have shown that the
existence of satellites of satellites is predicted by simulations.
Specifically, Deason et al. (2015) use the ELVIS suite of N-
body simulations to show that two to four of the nine satellites
discovered at the time that were found in close proximity to the
LMC are expected to be associated with the LMC, while Sales
et al. (2017) use the Aquarius Project suite of zoomed-in
cosmological simulations to show that 2–3 of all 46 dwarfs
located within 300 kpc of the Milky Way should be associated
with the LMC. Both of these works specifically state that Hor I
has a high probability of being associated with the LMC
according to their simulations. Jethwa et al. (2016) use a
complementary approach to these results and construct a
dynamical model to determine which, if any, of the DES-
discovered satellites could have Magellanic origins assuming
that the Milky Way–LMC system follows the distribution of
subhalos predicted by ΛCDM. Their model uses the satellites’
observed positions and kinematic parameters to show that 7 of
the 14 candidate DES satellites in the range −7<MV<−1
discovered by Bechtol et al. (2015), Koposov et al. (2015), and
Drlica-Wagner et al. (2015) are likely to be satellites of the
LMC rather than of the Milky Way. Their simulations produce
predicted systemic velocities for the DES satellites, which must
be confirmed by spectroscopic follow-up observations (only 4
of the 14 had measured velocities at the time of writing: Hor I,
Ret II, Gru I, and Tuc II). To date, of the satellites considered
by Jethwa et al. (2016), Hor I’s measured systemic velocity
would be by far the closest to the velocity predicted if Hor I
were associated with the LMC.

If Hor I is indeed a satellite of the LMC, the chemical
abundance pattern of Hor I could provide further interesting
information about the relationship of the satellite to its host.
The LMC has an overall lower α-enhancement than the Milky
Way (e.g., Pompéia et al. 2008; Lapenna et al. 2012; Van der
Swaelman et al. 2013). Van der Swaelman et al. (2013) suggest
that the lack of α-elements implies a significantly different star
formation history for the LMC than that of the Milky Way
halo. Hence, the lower α-abundance of the Hor I stars may

simply be due to its Magellanic origin and the fact that early
star formation in the LMC proceeded quite differently than in
the halo of the Milky Way. The detailed abundance analysis of
additional stars in Hor I, as well as of other candidate satellites
of the LMC, would lend credence to this hypothesis. However,
with only the three stars observed in this study, the chemical
abundance pattern of Hor I does not exclude the possibility of
an association with the LMC, nor does it strongly suggest it.
The strongest evidence that Hor I is a satellite of the LMC is
the measured radial velocity of its member stars.

5. Conclusions

We have measured the chemical abundances of three
confirmed member stars in Hor I and have shown that it is
yet another example of an ultrafaint dwarf galaxy having
a peculiar abundance pattern. Hor I’s average metallicity of
[Fe/H]∼−2.6 is not particularly exceptional; however, the
observed α abundances are much lower than expected when
compared to other metal-deficient stars. In addition, the
abundances of other elements, in particular the iron-peak
elements, are close to the solar ratio, which is unusually high
when compared to most Milky Way halo stars. We put forward
the possibility that Hor I could have the earliest known
transition between nucleosynthesis dominated by SNe II and
nucleosynthesis dominated by SNe Ia. Alternatively, Hor I’s
chemistry could be explained by a PISN, or it could be a
satellite of the LMC. In either case, our small sample of three
stars is not enough to confirm these suggestions, and additional
member stars must be studied.
Four DES-discovered ultrafaint dwarfs have been chemically

studied in detail to date: Ret II (Ji et al. 2016a; Roederer et al.
2016), Tuc II (Ji et al. 2016b), Tuc III (Hansen et al. 2017), and
now Hor I. In each case (with the possible exception of Tuc II),
the brightest confirmed member stars show an unexpected and
peculiar abundance pattern. Although a plausible explanation
for the observed abundances in each system can be invoked,
the variety of explanations is large, suggesting that star
formation processes in the early universe may be highly
stochastic. These results suggest that study of additional
ultrafaint dwarfs, as well as additional stars in these four
previously studied ultrafaint dwarfs, may shed more light on
how the first stars and galaxies were formed. However, probing
the detailed chemical abundance patterns in many more
confirmed member stars in Hor I will likely not be possible
until the next generation of telescopes comes online in the next
decade.
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