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Abstract The effects of flooding on an originally skimming body in shallow water are analysed. A two-dimensional
flow model is presented which is based on mass flux, momentum, a stream-wise pressure jump across the leading
edge of the body and an equi-pressure condition at the trailing edge. Linearised and numerical analyses are performed
over a wide range of model parameters; the conditions under which a body is able to either emerge from or sink
deeper into water are examined, with particular respect to the body’s incident angle, rotation, scaled gravity and
buoyancy. The findings here enlarge the existing skimming theory and give a first mathematical account of the
complete life cycle of a skimming or sinking body.
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1 Introduction

The focus of the present work is the flooding over and complete sinking of a body as it fails to skim (skip) over a
shallow layer of water. Alternatively the body may re-emerge or erupt from the layer and continue to skim. The body
is assumed to be thin and the typical Reynolds number large. The work is motivated by applications in industry
especially concerning the trajectories of ice shards along an aircraft fuselage [1-6]. Other applications include
surfboarding and skimming [7-10]. There is also intrinsic interest in the fluid-body interactions active here. It is our
pleasure to dedicate the article to the Journal of Engineering Mathematics on its 50" anniversary; one of us (FTS)
is honoured to have been an editor for over 30 of those years.

Clearly there are many different length scales and possible parameter ranges. We seek common features. “Flood-
ing” occurs frequently in the natural world (e.g. whales and dolphins, swimming and diving) as well as in fields
of industry and engineering. For example, observations and experience suggest that a surfboard is often partially
immersed under water during surfing. Even a surfboard at rest while carrying the weight of an adult is typically
below water (Fig. 1a), and only with sufficient speed can the board usually surf on the ocean’s free surface (Fig. 1b).
Stone-skipping by the seaside or lakeside is another popular pastime activity. Depending on the surface conditions
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Fig. 1 Illustrations of flooding or partial flooding over various types of body. From top left clock-wise: a a surfboard carrying the
weight of an adult surfer at rest, notice that the board’s equilibrium position is below the free surface; b a surfboard in motion with its
rear section being flooded; ¢ a ship sails through rough sea with waves flooding over its deck; d a snowmobile skims on a shallow layer
of water with its skis partially submerged in water. Note the modelling in a and b ignores the surfer except for a buoyancy effect. a
Surfboard at rest. b Surfboard in motion. ¢ Ship in rough sea. d Snowmobile’s skis partially submerged in water

a stone can penetrate into waves/tides and experience flooding over its entire body. With regard to industrial appli-
cations in addition to the aerodynamics ones, a ship sailing through rough seas typically experiences flooding over
the top of its deck, see Fig. lc. A snowmobile travelling at speed is capable of skimming and skipping on shallow
water, with its skis experiencing at least partial flooding as shown in Fig. 1d. Torpedo motion is another application
together with related military uses. Needless to say, understanding such interactions between liquid (water), solid
body and air has a wide range of applications.

The skimming problem of a thin flat finite body over shallow water is investigated in [1,3] (see also [7]); other
closely related shallow water entry problems can be found in [11-16]. They model the physical conditions under
which a skimming body obtains sufficient lift to achieve liftoff. One of the model assumptions is that the water’s
free surface is in contact only with the lower section (the underneath) of the body, while its upper section is in
contact with air. The present interest, by contrast, is in circumstances where the body may not attain sufficient lift
and may sink wholly or partly into the water. The skimming body loses its forward jet (splash) when such flooding
occurs. The present aim is to investigate the effects of flooding over a body in skimming motion, to predict whether
sinking or re-emergence takes place and in the former case to predict the time for complete sinking to occur.

In the theoretical background close to our concerns, Bowles and Smith [17] investigate a flow past successive
multi-blades. The feature of a stream-wise pressure jump in a localised Euler region is deployed at the leading edge
of each blade, and the pressure and streamline profiles of the flows are obtained inside the viscous boundary layer
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Fig.2 Sketch of a thin body immersed in shallow water. The body travels leftwards into water at rest. However, the Cartesian coordinate
system is introduced such that the x-axis rests at the flow bed pointing rightwards, and the Y -axis points upwards and passes through
the body’s centre of mass. We shall assume the body has uniform density and is symmetric about its centre of mass. Under this frame
of reference the horizontal position of the body’s centre of mass is fixed and the fluid flows from left to right in the diagram. a Partial
flooding over the body. b Complete flooding over the body

around the blade as well as in the wake of the flow. Smith and Wilson [18] analyse flow between two solid walls
past a blade with a variable thickness and camber, the blade being free to move in the channel and bounce and clash
with the solid boundary walls. Kaur [19] studies a flow past a tethered blade. The body of the blade is fixed about
a pivot point but is free to rotate so that its angle of attack goes through an unsteady evolution with the flow. The
entire blade is again assumed to be immersed in water at all times. Relevant papers including an unknown interface
are by [1,3,14].

For most moving bodies of interest here, viscosity and surface tension play negligible roles. We also assume
the fluid is incompressible and its flow is two-dimensional (2D). The water layer is shallow such that its depth,
which is comparable with the body thickness, is much less than the body length. This assumption of shallowness is
relevant for various applications. Section 2 describes the detailed model of flooding and sinking. The example of
the surfboard is referred to on occasion since it is perhaps most observable; we are aware though of the limitations,
e.g. through 3D effects. Sections 3, 4 then present linear and non-linear solution properties, respectively, for the
fluid-body interactions involved here while Sect. 5 presents conclusions.

2 The flooding and sinking model
The 2D model consists of a thin body skimming at a small angle on or in a shallow layer of water, with the water
flowing both over and below the body. The flow of concern here can be separated into four regions, see Fig. 2. We

conduct our analysis in a frame travelling horizontally with the (constant) initial horizontal velocity of the body,
such that the horizontal position of the body is fixed for a significant period of time and the water flows from left
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to right of the frame, with the body free to move vertically and horizontally as well as rotate about its centre of
mass. (The horizontal movement in this frame is found to be negligible over the time scales of present concern, see
Sect. 2.3.)

2.1 Scales and interaction structure

Let u = (u, v) denote the flow velocity; except in certain small zones we expect i >> v everywhere. In the far
upstream and downstream regions the undisturbed flow velocity is given by ty = (g, 0). Supposing the length
scale of the body is L and the undisturbed water depth is o, we non-dimensionalise the model system as

r

ot P
Z ki

__2 M
pUy

; i
, y=%, h=z 1= . p= (1)

Here the bar sign is used to denote dimensional variables, with p, p denoting the dimensional pressure and water

density, respectively.
The non-dimensionalised Navier—Stokes equations in 2D can be thus written in the following form:

au+u Vu=-V : 0, 1) + L o2 (V-u=0) )
Jat o p Fr Re ’ o

with Fr and Re being the Froude and Reynolds numbers, respectively,

Fr=u—9 Re = ﬁﬁoi.

gL M

In the problems of current interest Re is typically large whereas Fr may be of order unity or large, and so viscous
forces are nominally negligible (provided there is no substantial separation [1-3,18,20,21]) whereas gravity effects
may not be. Capillary effects are similarly negligible here.

We exploit the large aspect ratio of our model by introducing the following scaling:

h h

€ € €

Assuming the flow is irrotational, the horizontal flow velocity is essentially uniform across the vertical dimension:
u = u(x, t). Given that viscous forces are negligible and the ratio € is small, the Navier—Stokes equations (2) reduce
to thin-layer equations at the leading order:

ou ou ap

= = £ 4

ar " 'ax T Tax )
p .

0=—-—— -3, 4b
oy ¢ (4b)

where g is a scaled gravity term:

g = 5)

&= Fr’

The vertical pressure distribution in our shallow water model is essentially hydrostatic according to (4b).
For the depictions given in Fig. 2 then, the flow from upstream in region O has a velocity of ug = (ug, 0) and
flow depth of Hp. (The horizontal velocity of the body is taken to be supercritical.) This flow is split by the thin
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body into two regions: one above the body in region 1; the other below in region 2. We let u; = (11, € V1) and H;
denote the flow velocity and depth (measured from the top of the body to the free surface), respectively, in region 1,
while the pressure pj(x, Y, t) is hydrostatic given the shallowness of the water. In region 2 the pressure is denoted
as pa(x, Y, t), and the flow velocity and depth are given as up, = (u2, €V>) and H>(x, t), respectively. The angle ¢
made between the body and the bed implies the body rotates with scaled angular velocity w = d¢/dt. The typical
angle of attack in applications is small, usually in the range of (—20°, 20°).

From the water depths of the regions 1 and 2, we can obtain the height of the free-surface elevation n(x, t):

n(x, 1) = Hi(x, 1) + H(x, 1). (6)
If the upper surface of the body is completely flooded, the flow in region 1 joins the downstream region 3, where
the pressure is hydrostatic everywhere and the flow velocity past the body eventually returns to ug as in the original
skimming paper [1]. No substantial gravity waves act over these length scales. If on the other hand the board’s upper
surface is at least partially dry, then there is a gravity-driven wetting process over the dry surface.

Supposing the non-dimensional atmospheric pressure po is zero without losing generality, we integrate the
vertical momentum equation (4b) to obtain:

pi(x, Y, ) =¢gmn—Y). (N
Hence the pressure in region 1 is hydrostatic. By a similar argument the pressure for region 2 has the form
p2(x, Y, 1) =mo(x, 1)+ 8(n—Y), ®)
with 5 denoting the pressure difference on the lower and upper surfaces of the body:

mo(x, 1) = pa(x, Ho—, 1) — p1(x, Hay, 1). ©)
Note that in the case of a body with negligible thickness such that H,_ ~ Hj., the hydrostatic pressure above and
below the body cancels out, and the hydrodynamic pressure 77 is the only dominant force from the fluid acting on

the board. We finally have the pressure conditions (7), (8) in the two regions above and below the board. The flow’s
horizontal momentum equation (4a) in these two regions can thus be written as

ouy ouy 0N

w0 10
ot + 0x g&x (10a)
dur duy omy 07

dup  dup  Om 00 10b
ar T2y ax  Cox (106)

2.2 Boundary and end conditions
As the body moves in the water we assume the flow separates smoothly from its sharp trailing edge into the

downstream wake, i.e. a Kutta condition applies here. This is equivalent to imposing the following pressure condition
at the trailing edge where x = x5:

pi(x2, Ha, t) = pa(x2, Hp, 1) = §H1(x2, 1). (11)

What happens at the leading edge is worth a more detailed discussion. First, in a 2D model the flow from upstream
splits into two streams, above and below the body, and therefore the mass conservation law dictates that
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42 F. T. Smith, K. Liu

uoHo =1 =u1Hy + uyH>, (12)

which is the flux condition imposed at the leading edge of the body. (Note that uy = Hp = 1 in the non-dimensional
variables.) Second, the flow layers above and below the body are different in the sense that if they start with the
same pressure conditions they would usually produce different pressure conditions at the trailing edge [17,18]. This
inconsistency with the Kutta condition is resolved by introducing a localised Euler region at the leading edge, where
the interactions between the upstream and downstream flows are concentrated; the length scale of this Euler region
is O(eL) [17]. Therefore on the large horizontal scale what we witness is a flow discontinuity, whereby a pressure
jump is present when the flow crosses the leading-edge station into region 1 or 2. Across this discontinuity the
stream-wise Bernoulli quantity is conserved from the upstream region through the Euler region around the leading
edge, so that

1 2 1 2 1 2
po+ sug = p1+ 5“1(X1+, 1) =p2+ 5“2(X1+, 1). (13)

2

The comparatively short length scales within the Euler region lead to quasi-steadiness there due to the spatial
derivatives being dominant, which yields the jump conditions in (13). Note that unlike the case of a flat body
skimming on water, there is no thrown-forward jet at the leading edge in the flooding case. Moreover from (13) the
free surface is discontinuous (with a jump) at the leading edge.

Regarding the normal boundary conditions, at the flow bed ¥ = 0 the non-penetrable boundary implies

V(x,0,t) =0. (14)

On the free surface, given the large aspect ratio the leading order kinematic boundary condition in region 2 is

0H»> 8H2
V(x, Hy, 1) = — +u (15)
at 8x

Additionally the incompressibility condition for the fluid can be vertically integrated in region 2 to give

9
Vix. Hy. 1) = —Hy 222 (16)
0x

Combining the two conditions (15) and (16), we obtain the following (shallow water) conservation equation:

0H
3£+—%mHﬁ—0 an

Similarly in region 1 we find

0H,
37+—wwo—o (18)

2.3 The free body movement

Concerning the motion of the body itself, using arguments similar to the flat body skimming case in [1,3] we have
the vertical and angular momentum equations:
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X2 X2 € R dZym 1

/)q (p2 — prdx = /XI [nz(x, t+ ET(X)]dx =m < i + ﬁ> , (19a)
X2 X2 € ,:dzd)

/XI (p2 — pr)xdx = fXI [ﬂz(x, 1+ ET(x)]xdx =i—7 (19b)

to leading order, since the angles involved are small and as such cos¢ ~ 1. Here T (x) denotes the scaled body
thickness; m and 7 are the scaled mass and moment of inertia such that /i1 = m / /31:2, i=i / ,51:4; the f ;1 2 T (x)dx term
represents the (scaled) water mass displaced by the solid body. We further take the horizontal positions (xp, x2) of
the leading and trailing edges as (—1, 1). The momentum equations for the body (19) can be written in the following
form:

/1 (x. 1)d M ERCE le/lT()d (20a)
o (x, )dx = —_—t = —— x)dx |, a
7 a2 €Fr MFr ),

! d?e € !
/_1 m(x, H)xdx = IW 5 y xT (x)dx, (20b)

with Y, = y,,/€ and with M, I, 0 given as

M = em, (21a)
I =ei, (21b)
¢ = €o. (21c)

Note that M, I, 6 take on order unity values typically.

The term — 4 f_ll T (x)dx in (20a) represents the buoyancy force exerted on the body. Without taking such
force into account, a surfboard carrying the weight of a human would sink when not in surfing motion, which is
different from reality (see Fig. 1a). The buoyancy effect also can play an important role in numerous industrial and
other applications. It is convenient for us to introduce a buoyancy parameter A as follows:

1
A= L _ ii/ T(x)dx. (22)
r J_

This is the Archimedean gravity force representing the acceleration due to the net effects of buoyancy and gravity.
For the case A = 0, the body’s buoyancy cancels out its gravitational effect; A>0 represents the case that gravity
overcomes buoyancy and vice versa. We shall further neglect the torque force due to buoyancy in the angular
momentum equation (20b)—and assume the body has a uniform density so that any change in angular momentum
is purely due to the hydrodynamic effect of the flow. We can now re-write the body momentum equations as

1 dZYm R
/1712(x, Hdx =M < o2 + A) , (23a)
! d?e
 dx = [—. 23b
| wmatendx =153 (23b)

The horizontal momentum balance in the body motion, on the other hand, is such that the horizontal momentum
must remain constant since the horizontal forces are comparatively small [1,5,7,11] (The scaling after (3) indicates
that the horizontal pressure force is of order € compared with the vertical one.) Hence the body and the coordinate
frame of reference continue to move horizontally with equal uniform speed over the current time scales.
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2.4 Summary of fluid-body interaction

To summarise, we have the following governing equations for the flow above the body in region 1:

dH,

T+—(ulhm—0 (242)
duq oup R

-1 = _4—(H| + H), 24b
o +up °x gax( 1+ Hp) (24b)
p1(x, Y, t) =g(H + Hy = Y), (24c¢)
up(—1,1) = 28[1 — Hy(=1,1) = Hy(=1,0)] = 1 =0, (24d)
pi(l, Hy, 1) = gHy (1, 1). (24e)

The condition (24e) is equivalent to requiring smooth behaviour at the trailing-edge point, given the relation (24c).
Also in region 2 we have

JdH;

=g —(quz) =0, (252)
ouy 3142 b9

) = _ 45— (H H 25b
8t+u28x ox g (1-|- h), (25b)
Hy(x,t) =Y, +x0, (25¢)
pa(x, Y, 1) =mo(x, 1)+ g(H + Hy — Y), (25d)

1

m(—1,1) + 5[u%<—1,r) — 1+ g[Hi(=1,1) + Ha(=1,1) = 1] =0, (25¢)
ur(=1,0)Hi(—1,t) + ur(—1,t)Hy(—1,1) =1, (251)
p2(1, Hy, t) = §Hy (1, 1). (25g)

Finally for the solid body we have the following governing equations:

1 dZYm R
f m(x, t)dx =M ( 5+ A) , (26a)
1 dt
! d?e
[1 xmo(x, dx = IW' (26b)

We have therefore developed a complete flooding model, as shown in Fig. 2b, for a thin body that is originally in
planing motion. The initial conditions are covered case by case below. The scenario shown in Fig. 2a of partial
flooding is also covered by allowance for changes in the conditions within any dry part. This flooding model (24)-
(26) consists of six unknowns uy, u, Hy, Yy, 0 and m,, with g, A being static parameters (assumed to be constant
forces) prescribed according to the specific physical context. For the remainder of this study we analyse this flooding
model via both analytical and numerical treatments.

3 Linearised analysis of the flooding interaction
The integro-differential system (24)—(26) is difficult to analyse in its current form. Any solution will need to be
pursued numerically. Before we pursue such solutions, it is possible to gain some insights by working with a

linearised version of this flooding system. We introduce a small amplitude parameter § such that § <« 1, and
asymptotically expand the system variables in the following manner:
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g =14z, (27a)
A=354, (27b)
Y =14+68Y1(2), (27¢)
0 =1+86,(t), (27d)
Hi =0+ 8H (x,1), (27¢)
Hy =1+ 8Hy (x,1), (27f)
uy =14dui(x,t), (27g)
up = 1+ duzy(x, 1), (27h)
p1 =0, (271)
p2 =0+ 8moy (x, 1). Q7))

The basic state here has uniform horizontal velocities of unity in regions 1, 2 for a body which is thin relative to
the thickness of the liquid layer, and the flow depth above the body is shallow (~O(§)) compared with the depth
below (~O(1)). Note that to limit the complexity of our linearised system, the gravity and buoyancy effects in our
flow model are restricted to be small (~O($)).

3.1 Linearised system

Substituting these expansions into the system (24)—(26), we obtain the following relations for the flow in region 1:

H H

0fn | 9Hu _ (28a)
ot 0x

d
ui | Oun 0. (28b)
at 0x

up(—1,1) =0. (28¢)

Likewise in region 2 we have the following relations after the asymptotic expansions:

0H. 0H. du
21, 9f71 , Oual

=0, 29
at dx ax (292)
ouy| duy| 07121
—0, 29b
or T ox T ox (29b)
w1 (=1,1) +uz1(=1,1) =0, (29¢)
Hy =Y + x04. (29d)

The flux conditions at the leading edge and the Kutta condition at the trailing edge can be written as follows:

m1(1,1) =0. (30b)
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The momentum equations of the immersed body become

32Y1 - 1
M <F +A) = /;1 mdx, (31a)
%6, !
IW :/_1 xnzm’x. (31b)

The flow velocity and depth in (28a) and (28b) can be solved analytically, their solutions being arbitrary functions
of the composite variable x — ¢:

Hip =b(x —1), (32a)
upp =ulx —1). (32b)

Provided that the initial and leading-edge boundary conditions for H; and u; are known, their solutions can be
fully traced out along the straight characteristics x — ¢ = c. For our current analysis we suppose there is no flooding
over the top of the body initially, that is to say

Hii(x,0) =0, (33a)

u1(x,0) = 0. (33b)

The initial condition (33a) for the flow velocity u1; together with its boundary condition (28c) implies that it has
the following trivial solution:

uy(x,t) =0, (34)

and therefore the flooding over the top of the body occurs at the same speed as the undisturbed upstream velocity,
ie. uy =ug= 1.

In region 2, the flow velocity u>; can be solved by substituting (29d) into (29a) and directly integrating with
respect to x:

2
xd91 le
=——— —x——x01 - U 35
Uz AT TR U(), (35)

where U{(¢) is an unknown function of time as a result of the spatial integration. Substituting this solution into (29b)
and integrating with respect to x we obtain the following solution for 75;:
x>d*0,  x*d*vy . ,d0  dU

dYy
rén el ATVl ", 36
6 a2 T2 ar g Ta T TR PO (36)

1 =
where P(¢) is an unknown function of time resulting again from spatial integration. From the solutions of the
flow velocity uz; and the dynamic pressure 7o) in region 2, we find the following relation based on the linearised
Bernoulli principle at the leading edge (29¢):

1d%y,  1d%*, 1d6, du
et St St ST > S | 37
2 dt? 6 dt? Jr2a1t dt + G

Similarly the flux condition at the leading edge (30a) implies

dY, 1d6,
—1—1t — ——— 4+ Y1 -U=0. 38
h( )+ 2 " 34 +1 (38)
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The Kutta condition at the trailing edge (30b) together with the pressure equation (36) then gives

1d%0, 1d%*Y, do dy, du
T4 4 +P=0. 39
6 dr? 2dt2+dt+alt+altJrlJr (39)

The immersed body’s momentum equations can be now written as

M 1\ d?y; 2do; 2P+ MA=0 oo
[ —_— e — — a
3) di? 3 dt ’
1\ d%6, dy, du
3/[—=-)——-2——-2— =206, =0. 40b
< 5) dr? dt dt : (40b)

We have finally rearranged the linearised flooding model into a system of five equations (37)—(40) with five unknowns
Y1, 601, 5(—1 —t), U and P. These five equations can be further simplified to the following form:

d*y, 5d9; dY,

K+l)—=—Z——— -0/ +U—-MA, 41
K+D75 6ar ar T A (41a)
1\ d%6, 1do, dY;
LA -—)— =+ 40, - U, 41b
( 3>dt2 2ar T U (41b)
du dYy, 3Ldo,
D) = — p) Pl 2)6; — 41
(6L + )dt (BL+ )dt T (BL+2)61 —3LU, (41c)

for Y1, 61, U where K and L are constants given by

1

K=M-3. (42a)
1
£=31-<. (42b)

3.2 Solution properties

Equations (41a) to (41c) can be written as a system of linear equations

7 0 0 0 1 0 " 0
4, 0 0 0 0 1 o, 0
. 3L+2 3L 3L+2 3L
U | =10 —375 —or2 ~otv2 T4 u - 9 | (43)
v 0o -1 _ 1 __5 ||y MA
1 K+1 K+1 K+1 6(K+1) K+1
. 3 3 3 3 ]
@1 0 s/ —3rm soFn Tere 0
where V| and w; are defined, respectively, as
v = (44a)
= —, a
! dt
do,
=—. 44b
w1 =— (44b)

We solved the system (41) via a finite-difference scheme with the following initial conditions: A=1,Y0) =0,
01(0) =0, Vi(0) = —1, w;(0) =0, h(—1) =0 and U(0) = Y1(0) + V;(0) — 0.5w(0), with M = 1 and I = %.
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(b)

t t

Fig. 3 The linearised vertical and angular motions of a thin body becoming flooded over time. This system is configured with initial
conditions of 01 (0) = 0, w1(0) = 0 and scaled vertical velocity of V{(0) = —1. The scaled gravity for the body is setto . A = 1. a Y.
b Vl .C 91, d w1

Under such configurations, the body is able to obtain sufficient lift to ascend in water, which is signified by the
slope of the vertical velocity V; of the body turning positive at ¢+ ~ 0.6, as shown in Fig. 3b. The linear system
(43) configured with such initial conditions has the following five eigenvalues: (0, 0, 0.269, —0.873 £0.284i). The
existence of a positive eigenvalue indicates that our solutions grow exponentially with time: the body’s vertical
position continues to rise and its contact angle becomes more acute until the solutions grow beyond the linearised
regime. We ensure, however, that /; is never negative.

Figure 4 shows the solutions for the water depth above the body. Figure 4a shows the depth of flooding over
the leading edge of the body, while Fig. 4b demonstrates the water depth over the entire body at various times. We
terminate the solution at around ¢ ~ 2.56, at which point the body is in vertical ascendency while the water depth
above its leading edge is decreased to zero. From that time onwards the body is in a skimming process without
flooding as analysed in [1,3]. Figure 5 gives the corresponding evolution of velocity and pressure under the body.

Once the board’s initial velocities (V1(0), w1(0)) and vertical position Y7 (0) are known, Eq. (38) shows that
h(—1) can be configured to match the incoming flood depth at the leading edge by setting an appropriate value of
U(0), which in turn also has an effect on the velocity of the flow underneath the body and thus on the lift.

Figure 6 shows the effect of the gravity parameter A (or g) on our linearised flooding model. The greater the
gravity effect, the deeper this body sinks into water before reversing its course. From a modelling perspective, a
greater A corresponds to a body with less buoyancy in the water.

4 Non-linear flooding: numerical solutions

In this section, we introduce a numerical scheme for solving the flooding system of (24)—(26). The solutions to the
flow in region 1 and 2 are coupled with each other via the flux condition at the leading edge and Kutta condition at
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Fig. 4 a Shows h(—1 — 1), i.e. the depth of the water above the plate at the leading edge. At t ~ 2.56, the depth becomes negative,
which signifies the leading edge of the body emerges from water and the flooding process terminates. b Shows the water depth profile
at various times. a h(—1 —¢). b Hy;
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Fig.5 Solutions of the flow velocity and pressure underneath the body at various times. The flow velocity becomes negative in a region
including the leading edge, which corresponds to a positive pressure in such region. a uy;. b o)
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Fig. 6 Solutions of the linearised flooding system for h(—1— 1) and ¥; for varying values of gravity parameter A. The initial conditions
for the system are set to 91 (0) = 0, @1 (0) =0and V;(0) = —-l.aH(—1—1¢).b Y]
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the trailing edge. A time-marching finite-difference scheme is presented here, which for any given time step first
solves the flux condition and the flow in region 1, then solves the flow in region 2 and iterates these two steps until
the Kutta condition at the trailing edge is satisfied. We then present our numerical findings as well as analyse the
circumstances under which the thin body is able to skim or sink under various flooding conditions.

4.1 A finite-difference scheme

It is useful to rearrange the governing equations into a format more suitable for numerical discretization. We begin
by re-writing the flux condition (25f) as a boundary condition for H; at the leading edge:

1
H](—l, I) = m[l — Mz(—l, I)Hz(—l, t)] (45)

The Bernoulli equation (24d) for region 1 has the following leading edge boundary condition for u:

ur(=1,1) = 142801 — Hi(=1,1) — Hy(=1,1)]. (46)
In region 2 we spatially integrate Eq. (25a) from the leading edge to a given point on the body such that

1
Hy(x,1)

ux(x,t) = |:Cu —x+1DV - %(x2 - l)a)i|, (x e[-1,1] 47)

with C,, being a variable that captures the leading-edge boundary conditions of region 2:

Cu =ua(—1,t)Ha(—1,1). (48)

Likewise we can spatially integrate the fluid momentum equation (25b) from the leading edge to a given point on
the body so that

X ou 1 .
mo(x, 1) = —/1 d—tzds - Eu% —&(H + H)+Cp (x e[-1,1]) (49)

with C,, given as

1
Cp = Sud(=10) + ma(=1.1) + §IHi (= 1.1) + Ha(= 1. D)) (50)

Observe that Bernoulli’s equation (25€) in region 2 is

1 . .1
Eug(—l, H+m(=Lo+glHi(=1.0+ H(E1LDl=g+ 2. (D)
and therefore C,, can be expressed in the following equivalent form:
.1
Chr=g+ 5 (52)
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The dynamic pressure equation (49) can be applied at the trailing edge to obtain

_ U du, 1
m(l,t) = — 1 B_d — —u2(1 t) — g[H(1,1) + Hy(1,1) — 1]+ 3 (53)

The Kutta condition (25g) implies this dynamic pressure should be zero at this edge, hence

ouy 1
L St L3 0 + BT (1) + (L, 1) — 1-3=o. (54)

The condition (54) is extremely useful for checking the consistency of our numerical solutions, particularly for u»
over the grid of x € [—1, 1]. We shall use this condition at each time iteration for solution accuracy checking.

The flooding system can now be discretized using a finite- difference scheme. To do so we introduce a time grid
t € (0, T] and spatial grid x € [—1, 1]; these two grids are discretized as t = iAt (At =T/J,i =1,2,...J)
andx = —14 jAx (Ax =2/K, j=0,1,2,...K). The boundary conditions (45) and (46) for #; and H; can be
discretized, respectively, as

ulgz\/l +2801 — HI ' — H2i N, (55a)
H1h = (1 —u2i " H2L Y full), (55b)

Here the subscript and superscript denote a variable’s spacial and time indexing, respectively.
The flow equations (24a) and (24b) in region 1 are discretized using an implicit forward Euler method as

ull, — 1! ull — ull HUZ —HUZY
J - Syl T/l =—3% [le +0i7, (56a)
HU — HUTY yliH1E —uli (H1E
j I i -l _o. (56b)
At Ax

These two equations can be rearranged into the following forms for u1, H; for j € [1, K]:

uli = 1 (ul’ +£)2—4A(Hli ! Hl’ L Ax0i) 4+l Ax (57a)
iT2 =T Ay T ! VT A
i Ax -1 A

Hl, = ——  (HI'""'+ —ull_ HI,_| (57b)
7 Ax+Atul’j J Ax =

For each time step i we solve the boundary conditions in (55), and then solve the flow equations (56) over the rest
of the spatial grid for j € [1, K].

In region 2, the flow velocity and dynamic pressure equations (47) and (49) can be discretized via a forward
Euler scheme as

. 1 . : 1 ,
w2l = P [c;, — jAxviTh— 5(jzsz — Zij)w’_l]; (58a)
j
‘ AX <~ : 1. : . 1
i _ i oAi—1y T iN2 _ &4 i i-1 _ -
72 =—— > @2) —u2ih 5 (2 = §(H1; + H2; D+ 5 (58b)
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The Kutta condition (54) at the trailing edge is discretized as

N
Ax ‘ , 1. o — 1
~ > 2f —u2i7h + E(1425\,)2 +&(HUy + H2 ! = 1) — ~ =0. (59)

2
k=0

For a given time step i, once the flow equations of (58) are solved over the entire spatial grid (x € [—1, 1]), we
verify these solutions by checking the Kutta condition (59) is satisfied at the trailing edge.
The left-hand side of (59) can be viewed as a function of CL, i.e.

N
. Ax . . 1 . . . . 1
FC) =5 > w2 —u2ih + 5(ule)2 +E(HUy + H2T — 1) — 5 (60)
k=0

In order to find the root of F (C,i), we start with an initial estimate of C,i = u2671H 2671, then use the Newton—
Raphson method to iteratively find the accurate value of C; and therefore u». The accurate solution of u5 is in turn
used to update the rest of the flow solutions in region 1 and 2 via an iteration cycle.

The vertical and angular momentum equations of the thin body in (26) are discretized as

) - .
Y, =Y~ 4 AV, (61a)
K A
: . AxAt . MA
_yi—1 _
vi=vi-l 4 m > w2 ~ | (61b)
Jj=0
o' =071 + Are, (61c)
AxAr &
i i—1 . i
o =0T+ = Z(:)(]Ax—l)rﬂj. (61d)
]:

Finally the depth of the region 2 H> can be solved as
H2, =Y, + (jAx — o' (i €(0,J],j €0, K. (62)

The scaled body mass, moment of inertia and acceleration due to gravity, M, I and A, respectively, are user-
defined input parameters. It should be noted that even though in theory these parameters can be freely prescribed,
their values have an impact on the global errors of the numerical scheme.

To see this we first observe that the vertical and angular momentum equations (61b) and (61d) have the terms
AxAt/M and AxAt/I in their coefficients. Supposing the values of M and [ are extremely small such that
AxAt/M > 1 and AxAt/I > 1, then the rounding and local truncation errors in 7> are magnified and grow
with time, thus increasing the global errors of the solutions and rendering the numerical scheme possibly unstable.
Therefore for small values of M and I, the grid’s mesh sizes need to be sufficiently fine in order to prevent this
“error magnification” effect, and consequently increase the computational demand of the numerical scheme. In a
similar principle, if the buoyancy parameter Ais large such that the body’s vertical acceleration in (61b) is essentially
buoyancy driven, the numerical approximation errors in 7t will have a smaller impact on the flooding system’s overall
solutions.

In the next section we shall analyse the behaviour of the flooding model via numerical solutions. In particular,
we investigate the circumstances under which the solid body is either able to overcome the effects of flooding and
achieve eventual lift off from water, or sinking deeper under water and the associated flow behaviour.

@ Springer



Flooding and sinking of an originally skimming body 53

(a)
06
05 P
04k
03
02p t-0.00
t~0.92
04 t-1.85
- t-2.77
t-3.69
0 . . .
=1 -05 0 0.5
X
(© (GY)
1.005 2.6
1 2.4 — t-0.00 %
22 t-0.92 .
0.995 2 — t-1.85
—t-277
0.99 18 t-3.69
0.985 16
0.98 14 -
12 B
0.975 ] _—
/
0.97 08 L
[
0965 L L L J
-1 -05 0 05 1 -1 -0.5 0 05 1
X X
(e) ®

0.45 0.95

4
(€] (h)
1.4
: 105 hy(=1,) + hy(-1,t |
1 . . .
4 0 1 2 3 4
t t

Fig.7 A body re-emerging from under water over time. The body has scaled mass and moment of inertia of M = 4, I = 1, respectively,
and is configured so that ¥,,,(0) = 0.6, 6(0) = —0.2, V,,,(0) = —0.1 and w(0) = 0. The scaled gravity and buoyancy terms are ¢ = 0.1,
A = 0. The body is initially completely submerged in water and has fresh flood coming over its body from the leading edge. At time
t ~ 3.69, the leading edge of the body is able to rise above the incoming flood and re-emerge from water. a H;. b Hy. cu;.d us. e mp.
£ Y. g H(=1,0).h H(=1,1) + Hy(—1,1)
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Fig. 8 Complete sinking: a flooded body whose trailing edge impacts upon the flow bed (asymptotically). The body has scaled mass
and moment of inertia of M = 4, I = 1, respectively, and is configured so that ¥,,(0) = 0.5,0(0) = —-0.2, V,,(0) = —0.1 and
w(0) = —0.5. The scaled gravity and buoyancy terms are § = 0.1, A = 0. The body is initially completely submerged in water. As the
trailing edge of the body gets close to the flow bed, at # ~ 1.98 for instance, singularities in the flow speed u> and pressure m, begin to
develop at thisedge. a Hy.b Hy.cuj.dus.emny. £ Y,

4.2 Results

For an originally skimming body subject to flooding from its leading edge, depending on the flooding conditions
as well as the body’s physical characteristics such as buoyancy, the flooding model (24)—(26) yields two distinct
outcomes: the body is either able to withstand the effects of flooding, go through a transition phase fully or partially
under water and eventually emerge from the water again; or it is unable to obtain sufficient lift from the ambient
flow and sinks further into water until eventually hitting the solid flow bed. See Figs. 7, 8,9, 10, 11 and 12. As part
of our analysis, we shall investigate the conditions under which such two distinct outcomes may be produced, as
well as the effects of gravity and body buoyancy in our flooding model.

4.3 Complete sinking or re-emergence

For the purpose of the current numerical study, the sinking of a body is characterised by the water depth H>
decreasing close to zero under a section of the body. For a thin flat body with non-zero contact angle this can be
at either its leading or trailing edge, and as we shall see such a phenomenon is associated with singularities in the
solutions of flow velocity and hydrodynamic pressure u, and m in finite time. Hence when the body becomes
sufficiently close to the flow bed it produces an extreme ground effect, whereby the flow speed and pressure in a
surrounding region become extremely large. At such time our numerical scheme breaks down and a new flooding
model taking account of boundary layer and other possible effects will need to be developed.
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Fig. 9 Complete sinking: the leading edge of the flooded body impacts upon the flow bed. The body has scaled mass and moment of
inertiaof M = 4, I = 1, respectively, and is configured so that Y, (0) = 0.6, 0(0) = —0.2, V,;,(0) = —0.1 and w (0) = 0.5. The scaled
gravity and buoyancy terms are § = 0.1, A = 0. The body is initially completely submerged in water. As the leading edge of the body
comes close to the flow bed, at # ~ 1.17 for instance, singularities in the flow speed u; and pressure 72 begin to develop at this edge. a
Hi.bHy.cui.duz.em.fY,

The re-emergence of the body from underneath the flood, on the other hand, is signified by its leading edge rising
above the free surface of the incoming displaced stream. In the numerical solutions this phenomenon is captured
by the water depth variable H;(—1, ) at the leading edge decreasing to zero. From that point the body ceases to be
flooded over by the incoming stream, and any residual water above the body will eventually exit into the downstream
flow via the trailing edge. As soon as the upper surface of the body becomes dry the body resumes a skimming
motion which is extensively discussed in [1,3]. Note that if the scaled acceleration due to gravity § = €/Fr is
small, then any hydrostatic effect of the flow above the flooded body can be neglected in our model (24)—(26), i.e.
we can apply the atmospheric pressure condition at the upper surface of the body as soon as the flooding over the
leading edge stops. In such a case the body effectively transitions into a skimming motion as soon as the flooding
over the leading edge stops before its upper surface is completely dry.

For the purpose of computational simplicity we stop our numerical scheme as soon as H{(—1, t) becomes zero or
close to zero, even though we could carry on with the solution by modifying the flux condition at the leading edge to
account for Hy(—1, ) = u1(—1, t) = 0 and marching our solutions until the upper surface becomes completely dry.

Figure 7 shows the response for a body that makes an initial angle of 8 = —0.2 with the flow bed and has an
initial downward velocity of V,, = —0.1. This body is initially completely submerged in undisturbed water with
free-surface height of one, i.e. H(x,0) + H>(x,0) = 1, (x € [—1, 1]). The solutions of the water depth H; at
various times are given in Fig. 7a; note at the leading edge its depth at # = 0 has a positive value of 0.2. As time
progresses this body first sinks deeper into water, but a short time after (t ~ 0.99) it begins a process to emerge
from the water again. This can be seen in the solutions of the body’s vertical centre of mass position Y,,, over time
in Fig. 7d. The flooding over the body comes to a stop at ¢t ~ 3.7, at which point the leading edge of the body rises
to the same height as the incoming displaced stream, which is signified by the water depth H; decreasing to zero
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Fig. 10 Numerical solutions of u>, 7> in the flow region under the body for various grid step sizes. The initial conditions are the same
as those given in Fig. 9, and the solutions of u, and 7, are sampled at# = 1.17, which corresponds to the leading edge touching down on
the flow bed. The grid step sizes of D| = (Ax, At) are set to (1072,107%), and D5, D3 are set to (1073, 10™%) and (1073, 5 x 1075),
respectively, a uz(x, 1.17). bmwa(x, 1.17). c up(—1,¢). d mp(—1,t)

at the leading edge as shown in Figs. 7a, e. Since the flood from the leading edge propagates above the body in
the form of shallow water waves, at early times when part of the flow close to the trailing edge has not yet felt the
effects of flooding, “sharp-corners” can be seen in the solutions of Hy, u1, (i.e. Fig. 7a,bat¢ ~ 0.92 and t ~ 1.85).

Figure 7g shows the depth of the water over the body at the leading edge over time, Hi(—1, t). At early times
(t < ~0.99) the body descends deeper into water while the flow depth above the body Hj(—1, ) increases; as the
body eventually begins to ascend (r > ~0.99) this depth H;(—1, t) decreases. Figure 7f shows the height of the
free surface at the leading edge, i.e. Hi(—1,t) + Ha(—1, t). Note this height increases from t = 0 to t ~ 3.69, the
time at which the body’s leading edge re-emerges from water.

Figures 8 and 9 demonstrate cases where the body’s leading and trailing edges come close to hitting (impacting
upon) the flow bed, respectively. Under such circumstances we witness an extreme ground effect where the hydro-
dynamic pressure in a surrounding region under the body becomes large, while the flow speed goes through rapid
adjustments in such a region.

In the case of the body’s trailing edge moving close to the flow bed, the hydrodynamic pressure under the body
increases rapidly in a region close to this edge. However, the Kutta condition demands the hydrodynamic pressure
to be zero at the edge of flow separation. We therefore witness a rapid decrease of pressure near the trailing edge
of the body, see Fig. 8e; corresponding to such a rapid pressure drop, Fig. 8d shows that the flow speed grows
very close to this edge. The pressure and flow velocity gradients dmp/dx, duaz/dx become almost discontinuous
at this edge as the body moves sufficiently close to the flow bed and our numerical algorithm is terminated. (This
non-linear impact within finite time is consistent with the linearised findings of Sect. 3).

On the other hand when the leading edge of the body comes close to hitting the flow bed, a strong adverse pressure
gradient develops in region 2 at the leading edge and in a small region after, and the hydrodynamic pressure grows
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Fig. 11 Solutions of the flooding system with various values of the body buoyancy parameter A. The body has scaled mass and moment
of inertia of M = 4, I = 1, respectively, and is configured so that Y,, (0) = 0.6, 0(0) = —0.2, V,;,(0) = —0.1 and w(0) = 0. The scaled
gravity term is ¢ = 0.1. The body is initially completely submerged in water and has fresh flood coming over its body from the leading
edge.a Y, (t).bO(t).c V(t).d w(t). e Average uy over time. f fll 2(s, t)ds over time

extremely large close to this edge, see Fig. 9e. This high pressure phenomenon is also accompanied by a reversed flow
in a small region enclosing the leading edge, see Fig. 9d. As the body gets closer to the flow bed and H(—1,¢) — 0,
the flow speed at this edge becomes negative and unbounded as implied by the conservation relation (47). As with
the case of the body’s trailing edge hitting the flow bed, the pressure and flow velocity gradients dm,/dx, dus/dx
grow extremely large, and our numerical algorithm terminates before their solutions become singular.

Given such rapid change of flow velocity and dynamic pressure in a subregion of the under-body flow, we check the
accuracy of our numerical algorithm by solving the flow problem shown in Fig. 9 over three increasingly fine grids.
The first grid, denoted as D1, on which we perform our numerical procedures is set to (Ax, At) = (1072, 1073).
Repeating the procedures on two finer grids D, and D3, which are set to (10_3, 10_4) and (10_3, 5 x 10_5),
respectively, yields further two sets of solutions. The solutions of u, and 7, derived from these three grids are given
in Fig. 10. The comparisons tend to demonstrate that the set of solutions is largely robust as the grid step sizes are
refined gradually.

4.4 Effects of gravity and body buoyancy

In this section, we analyse the effects of the body buoyancy as well as gravity in the ambient flow on the body that
is subject to flooding.

The scaled buoyancy parameter A represents the body’s acceleration due to the net effects of buoyancy and
gravity. Here A=0 represents the body’s buoyancy cancelling out its gravitational effect; A>0 represents
gravity overcoming buoyancy and vice versa. Figure 11 shows solutions of the flooding system for the cases of
A ={=1,0, 1}, and in all cases the body is initially submerged in water. A buoyant body is able to emerge from the
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Fig. 12 Solutions of the flooding system with various values of the scaled gravity parameter g. The body has scaled mass and moment
of inertia of M = 4, I = 1 respectively, and is configured that A= 0, Y,,(0) =0.6,0(0) = —0.2, V,,(0) = —0.1 and w(0) = 0. The
body is initially completely submerged in water and has fresh flood coming over its body from the leading edge. a Y,,,(t). b 6(¢). ¢ V (¢).
d w(t). e Average u, over time f f_ll (s, t)ds over time

water rapidly as can be seen for the case of A = —1, whose solutions terminate at 1 ~ 0.3 as its leading edge becomes
dry. Note the net pressure force under the body is negative in this case (see Fig. 11f), i.e. there is a “suction” effect on
the buoyant body as it rapidly emerges from water. The solutions for the case of A = 0 have been given previously
in Fig. 7, where the body is able to emerge eventually from water at r ~ 3.69 after a relatively longer underwater
transition period. For the reduced-buoyancy case of A = 1 where the body’s acceleration due to buoyancy is less than
that of gravity, the body sinks rapidly towards the flow bed as can be seen in Fig. 11a, and at ¢ ~ 1.24 the solutions
break down. Note that the pressure force on the body, given by |’ _11 1 (s, t)ds, becomes large as Aincreases (see Fig.

11f), whereas the average flow speed in region 2 decreases more rapidly with increasing values of A (see Fig. 11e).

To analyse the effects of gravity we prescribe our flooding system with three configurations of scaled gravity
g =1{0,0.5, 1}, where ¢ = ¢/Fr withe <« 1 and Fr ~ O(l), A = 0 for our given surfboard problem. Notice
that the flux condition at the leading edge (46) in certain ways controls how large the scaled gravity can be—large
values of g force the solution of u; to become imaginary as the free-surface height at the leading edge becomes
large, and specifically our flooding model fails when

1
Hi(=1.0) + Hy(=1.0) > 1+ o= (63)
g

Figure 12 demonstrates the solutions for the three cases of scaled gravity. As the effects of gravity increase, the
time required for the body to emerge from water also increases. This can be seen in Fig. 12a as the body’s leading
edge emerges from water at 1 ~ 3.7 for ¢ = 0, whereas the required time for the case of ¢ = 0.5 increases to
t ~ 5.9. For the case of ¢ = 1 our flooding system breaks down due to the solution of #; becoming imaginary in a
very short time (¢ ~ 0.2). The hydrodynamic pressure force exerted on the lower section of the body decreases as
the gravity effect increases as can be seen in Fig. 12f.
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5 Conclusions

The main issue in this paper, on flooding of a body that is originally in a skimming motion, is whether the body sinks
or erupts from the surrounding fluid (water) layer, a matter which has not been addressed previously as far as we know.

The water is assumed to be relatively shallow. The mechanisms active in deep water for a thin body which may
either sink in or erupt out of the water could have an analogy or qualitative similarity to the mechanisms found in
the present study for shallow water layers. For the latter, assuming the flow above and below the body detaches
smoothly at the trailing edge, a localised pressure jump applies across the leading-edge station as if to satisfy the
Kutta condition at the trailing edge. The 2D model also accommodates if necessary the buoyancy effect of the body,
which in reality has an important role to play in the motions of a surfboard for example. Equally important for
further study are 3D influences which for instance give flow around the sides of the body.

In the results, bounded instability is found first. A linearised analysis where the flow depth above the body is small
in comparison to that underneath shows the original flooding model reduces to a system of linear equations. Under the
pre-defined conditions the system has a finite positive eigenvalue, and perturbations eventually grow exponentially
with time. Second, the complete non-linear flooding model allows investigation of various conditions under which a
body is able to either emerge from the water or sink to the flow bed. The initial conditions play a key role. In particular
when the body impacts upon the flow bed an extreme ground effect occurs, where the pressure becomes extremely
large and reversed flow begins to develop. The finite-time touchdown analyses of [18,20] describe leading-edge or
mid-chord impacts but it remains to be seen whether similar analysis applies to trailing-edge impact.

We further analysed the buoyancy and gravity effects on the flooding model. It is found that the less buoyant the
body is, the greater the dynamic pressure force and the slower the flow speed under the body. Depending on how
large the gravity effect is, the leading-edge flux and pressure jump conditions impose a limit on the free-surface
height at this edge. The larger the effect of gravity, the smaller the leading-edge free-surface height the flooding
model can sustain. The present work estimates the sink-times or eruption-times and their dependence on parameter
values as in Figs. 7-12, the times being comparable with the characteristic ratio of body length divided by horizontal
speed in general. In particular the analysis shows that a larger gravity effect decreases the hydrodynamic lift force
on the body and therefore prolongs the time the body spends under water, a finding which is perhaps surprising.
Finally here, this work gives the first self -consistent account of complete sinking as far as we know and likewise
the first account of either submergence or part submergence followed by eruption of a body from the water. The
question of which ending (sinking or eruption) occurs depends on the detailed flow and body parameters and also
on the initial conditions of the fluid-body interaction involved throughout.
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