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ABSTRACT 13 

Heatwaves can lead to a range of adverse impacts including increased risk of illness and mortality; 14 

the heatwave in August 2003 has been associated with ~70,000 deaths across Europe. Due to 15 

climate change, heatwaves are likely to become more intense, more frequent and last longer in the 16 

future. A number of factors may influence risks associated with heat exposure, such as population 17 

age, housing type, and location within the Urban Heat Island, and such factors may not be evenly 18 

distributed spatially across a region. We simulated and analysed two major heatwaves in the UK, in 19 

August 2003 and July 2006, to assess spatial vulnerability to heat exposure across the West 20 

Midlands, an area containing ~5 million people, and how ambient temperature varies in relation to 21 

factors that influence heat-related health effects, through weighting of ambient temperatures 22 

according to distributions of these factors across an urban area. Additionally we present 23 

quantification of how particular centres such as hospitals are exposed to the UHI, by comparing 24 

temperatures at these locations with average temperatures across the region, and presenting these 25 

results for both day and night times. We find that UHI intensity was substantial during both 26 

heatwaves, reaching a maximum of +9.6°C in Birmingham in July 2006. Previous work has shown 27 

some housing types, such as flats and terraced houses, are associated with increased risk of 28 

overheating, and our results show that these housing types are generally located within the 29 

warmest parts of the city. Older age groups are more susceptible to the effects of heat. Our analysis 30 

of distribution of population based on age group showed there is only small spatial variation in 31 

ambient temperature that different age groups are exposed to. Analysis of relative deprivation 32 

across the region indicates more deprived populations are located in the warmest parts of the city.  33 

KEYWORDS: urban heat island, spatial vulnerability, heat waves, health effects. 34 
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Heatwaves, or extended periods of hot weather, are associated with various risks to health 1 

including heat exhaustion, heatstroke, emergency hospitalisations, and death.  A severe 2 

heatwave in August 2003 has been associated with up to 70,000 excess deaths across Europe 3 

(Robine et al., 2008), with over 2,000 excess deaths estimated in England (Johnson et al., 2005), 4 

and a record breaking maximum temperature of 38.5°C reached in south east England. High 5 

temperatures were also recorded throughout much of the UK during the summer of 2006. In 6 

the West Midlands, the two heatwave events of 2003 and 2006 were comparable in terms of 7 

estimated excess mortality, being around 10% higher than baseline rates at this time of year in 8 

both cases (Health Statistics Quarterly, 2006; Johnson et al., 2005). In the future, heatwaves are 9 

projected to become more frequent, more intense, and last longer, due to climate change (Kirtman 10 

et al., 2013), which will likely lead to increases in heat-related mortality (Hajat et al., 2014; Mitchell 11 

et al., 2016; Vardoulakis et al., 2014). Some evidence suggests there is an upper limit to which 12 

humans can adapt to temperature (Arbuthnott et al., 2016; Sherwood and Huber, 2010). 13 

In the UK, the risk of temperature-related mortality is projected to increase steeply in the UK over 14 

the 21st century under climate change and demographic change scenarios, reaching 260% by 2050, 15 

and 540% by 2080 (compared with the 2000s heat-related mortality baseline of around 2,000 16 

premature deaths), with the elderly being most at risk (Hajat et al., 2014; HPA, 2012).  17 

Future climate projections are often produced at relatively coarse spatial resolution, due to the 18 

cost of computing power required. Factors relevant for the study of heat-exposure and human 19 

health, including population age, socioeconomic factors, and the built environment such as 20 

dwelling type and the urban heat island, are at a much finer spatial scale. Our study aims to 21 

simulate ambient temperature across an urban area during a heatwave period, and subsequently 22 

quantify the variation in ambient temperature with other factors that relate to and influence heat-23 

related health effects. This includes population-weighting of ambient temperatures, as well as 24 

calculating the ambient temperature weighted according to distributions of different housing types, 25 

population age, and deprivation score, all factors that influence heat-health relationships. Using 26 

environmental modelling techniques in this way to look at human health in relation to heat 27 

exposure during heatwaves (which will become increasingly important in the future with climate 28 

change) is a novel way of analysing spatial distribution of risks across a large urbanised region. 29 

While we have used a detailed case study here, the technique and metrics are applicable to any 30 

scenario, which we feel is useful for a wider scientific community.   31 

1.2 The Urban Heat island (UHI) 32 

Populations may be particularly at risk from heat due to the Urban Heat Island (UHI) effect 33 

(Heaviside et al., 2017), whereby ambient temperatures are often observed to be higher than 34 

those in surrounding less-urbanised areas, particularly at night. The main cause of the UHI is the 35 

modification of land surfaces, for example, replacing natural surfaces (e.g. vegetation which 36 

provide natural shading and cooling via evaporation) by paving or construction of buildings. 37 

Urban construction materials (such as concrete, tarmac and asphalt) generally absorb, retain 38 

and re-radiate heat more than natural surfaces. Buildings also provide multiple surfaces to 39 
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reflect and absorb sunlight, increasing urban heating, and impeding air circulation. Heat from 1 

human activities (such as air conditioning, vehicles, and industrial processes) can also add to 2 

the UHI effect. The UHI effect is often most extreme during anticyclonic summer weather 3 

conditions, which are associated with heatwaves. In England and Wales, 82% of the population 4 

reside in urban areas (ONS, 2011), leaving them vulnerable to the impacts of heat exposure due 5 

to the UHI effect. The West Midlands is a highly urbanised area of the UK, which includes the city 6 

of Birmingham with a population of 1.1 million, and has a notable UHI (Bassett et al., 2016; 7 

Heaviside et al., 2015; Tomlinson et al., 2012). A health impact assessment for the heatwave of 8 

2003 based on high resolution meteorological modelling suggested that in the West Midlands, 9 

around half of the heat-related mortality during the heatwave could be attributed to the UHI 10 

(Heaviside et al., 2016). The UHI intensity is often defined as the difference in temperature 11 

between urban and rural areas, and can be quantified by comparing ambient air temperature 12 

observations at a location in the centre of an urban area, and at a location in surrounding rural 13 

areas (Bassett et al., 2016; Hatchett et al., 2016; Ketterer and Matzarakis, 2014; Kim and Baik, 2002; 14 

Oke, 1973, 1982), or from satellite measurements (Azevedo et al., 2016; Benz et al., 2017; Du et al., 15 

2016). However, observation stations are limited in number, are often not sited within urban 16 

centres, and may only cover certain time periods, while satellite measurements record land surface 17 

temperature (rather than air temperature), and are often temporally limited and may have missing 18 

data if it is cloudy. The use of meteorological computer simulations makes it possible to investigate 19 

spatial variations in temperature across urban areas, and to quantify the UHI intensity, by 20 

comparing temperatures simulated both with and without urban surfaces such as buildings and 21 

roads. 22 

1.3. Mapping spatial variation in heat-exposure and risk 23 

Heat exposure for urban populations will vary across urbanised areas, due to spatial variations in 24 

physical infrastructure that influences the UHI. Susceptibility to health risks associated with heat 25 

exposure is also influenced by other factors, including population age, housing type, socio-26 

economic factors, pre-existing health conditions, and location within the UHI (Taylor et al., 2015; 27 

Wolf and McGregor, 2013). It is therefore important in terms of health protection to understand 28 

the pattern of risk across a region, which may help target resources to reduce heat risk in the most 29 

vulnerable areas, since it is possible that environmental risks and vulnerable population groups are 30 

co-located within urban areas.  31 

A number of studies have investigated heat risk across the Greater London area. Wolf and 32 

McGregor (2013) developed a Heat Vulnerability Index (HVI) for London based on principal 33 

component analysis of socio-demographic factors relating to heat vulnerability, combined with land 34 

surface temperatures (derived from a satellite measurement), finding clustering of high 35 

vulnerability in the east and central areas of the city. Heat risk has also been mapped across London 36 

using a building physics model and monitored weather data, together with information on 37 

modelled UHI, housing type and population age, finding that building type and UHI have a 38 

significant influence on the distribution of risk across the city for summer 2006 (Taylor et al., 2015). 39 
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Building fabric types and characteristics, and thus thermal properties, will depend on the age of the 1 

building, and may be an important modifier for thermal comfort and energy efficiency, in addition 2 

to behavioural aspects of building occupancy that can also modify heat exposure risk (Vardoulakis 3 

et al., 2015). An existing spatial heat risk assessment of Birmingham combined information derived 4 

from credit reference agencies on groups such as the elderly, those with ill health, high population 5 

density, and high-rise living, finding that population sub-groups with ill health, and who reside in 6 

flats were located in the overall warmest and therefore highest heat risk areas of Birmingham 7 

(Tomlinson et al., 2011). This study used remote satellite sensing of the land surface temperature at 8 

high spatial resolution (1 km), although only a single snapshot over one night during a heatwave is 9 

used, and as such, does not fully represent the range of temperatures that population is exposed to 10 

during the heatwave period. Similar studies in large urban areas worldwide have found spatial 11 

overlap of sensitive populations and inequity in exposure to the UHI, according to age, occupation, 12 

income, and other socio-demographic indicators, and that mapping can help target efforts to 13 

reduce heat risk (e.g. via planning the location of parks, cool or green roofs, and social care efforts) 14 

(Mitchell and Chakraborty, 2015; Weber et al., 2015; Wong et al., 2016).   15 

While mapping of risks can be a useful tool for raising public awareness of risks, it is not clear if 16 

producing maps in this way leads to policy or mitigation actions, possibly due to uncertainty in 17 

relation to policy and decision making that are difficult to address in such studies (Wolf et al., 18 

2015). There is an increasing amount of temperature data available from satellite measurements, 19 

but this dataset only gives the temperature of the surface the satellite detects (e.g. the ground, tree 20 

tops or building roofs and walls), rather than air temperature which is more relevant for health, 21 

while the relationship between ground and air temperature is difficult to quantify. We address 22 

these issues by using simulated temperatures and quantifying heat exposure due to the UHI for 23 

populations which could be seen to be at risk. 24 

1.4. Centres for health and social care 25 

Care homes and hospitals are places where sensitive populations may reside. During the 2003 26 

heatwave across Europe, of the recorded the recorded mortality among the under 75s in the UK, 27 

more of the excess deaths were distributed in residential and nursing homes than would have been 28 

expected, and among the over 75s, more of the excess deaths were distributed in hospitals and 29 

nursing homes (Kovats et al., 2006). In these settings there may be issues surrounding dependency 30 

on care-givers in nursing and residential homes, and the impact this may have on patients’ and 31 

residents’ behaviour in responding to environmental changes (e.g. disempowerment or loss of 32 

autonomy), as well as availability of assistance for daily living tasks in institutions (Belmin et al., 33 

2007; Brown and Walker, 2008). Reports suggest care schemes have a ‘culture of warmth’, a 34 

perception that the elderly are vulnerable only to cold (not excessive heat), and that design for 35 

overheating is rare, with low prioritisation for future climate change and overheating (Gupta et al., 36 

2016). 37 

Those in prisons or custodial facilities are not able to directly access health care services, and 38 

effective ways to reduce exposure to heat may be limited. While there are few studies examining 39 
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heat risk in prisons, lawsuits were successfully brought against prisons in Texas and Louisiana in the 1 

US, where inmates had died or suffered as a result of heat exposure (Human Rights Clinic, 2015; 2 

The Promise of Justice Initiative, 2013). The population in the UK is ageing, as is the prison 3 

population. Not only has the prison population in the UK increased from 56,000 to over 85,000 in 4 

the last ten years, the number of those aged 60 and over in custody are the fastest growing group, 5 

increasing by 120% from 2002-2013 (House of Commons, 2013; Offender management statistics 6 

quarterly, 2016). Other factors such as drug use, as well as prevalence of mental health conditions 7 

amongst those in custody may also contribute to health risk from exposure to heat.  8 

1.5. Social and demographic factors 9 

As well as the elderly, babies and young children are also vulnerable to effects associated with heat 10 

exposure (PHE, 2015). Studies have shown that warmer classrooms (25°C compared to 20°C) are 11 

detrimental to educational attainment (Wargocki and Wyon, 2007), and school children feel 12 

lethargic when temperature and relative humidity are high (Salthammer et al., 2016). Urbanisation 13 

and climate change adversely affect thermal comfort and air quality in schools, and the impact of 14 

such exposure may go beyond discomfort or ill health, leading to a lifelong burden of disease  15 

(Salthammer et al., 2016). 16 

Relationships between heat-related mortality and socio-economic and demographic factors vary 17 

regionally across the globe. Relationships have been found in some regions between heat-related 18 

mortality and factors such as age, gender, those classed as urban-poor, and areas with a lack of 19 

high-income earners (with income believed to be a good proxy for access to air conditioning), 20 

however, these are often not consistent between countries, in some cases showing no clear 21 

relationship for other socio-economic indicators (Hondula and Barnett, 2014; Johnson and Wilson, 22 

2009; Yu et al., 2010). In the UK, regional long time-series analysis showed the strongest heat-23 

mortality effects were in London, and the strongest cold effects in the East of England. A stronger 24 

heat effect was found for those living in urban areas, with no difference for cold effects. Indices of 25 

deprivation were not found to be a modifier for heat effects, and only slightly for cold effects in 26 

some rural areas, though this is influenced by how well individual circumstances are represented by 27 

area-level indicators (Hajat et al., 2007).  28 

The World Health Organization (WHO) identified common heat risk factors including being elderly, 29 

having pre-existing cardiovascular or respiratory disease, living alone, working outdoors or being 30 

involved in heavy labour indoors close to industrial heat sources (World Health Organization, 2015). 31 

In some places, gender, nature of dwelling (e.g. hospital or care home), being urban and poor, and 32 

having certain medical conditions such as diabetes may also be linked with greater temperature-33 

health effects, though causality is complex to determine as certain types of factors may interact 34 

with other determinants of health, as well as access to health-care systems (World Health 35 

Organization, 2015). Some indicators of socioeconomic status may be associated with heat-related 36 

health effects, though inconsistencies exist between studies, with different associations reported 37 

between countries, regions and cities within. There is also some evidence that temperature 38 
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modifies the health effects of some air pollutants, such as ozone (Jerrett  et al., 2009; World Health 1 

Organization, 2015).  2 

1.6 Summary and aims 3 

We have identified a wide range of factors that are likely to influence the risk of heat-related health 4 

effects, including housing type, population age, deprivation indices, and those residing in care and 5 

health facilities. People who experience multiple risk factors may be more vulnerable during 6 

periods of hot weather. An analysis of the spatial distribution of multiple risk factors across a region 7 

may reveal co-location of such factors, and identify places when strategies to mitigate heat risk 8 

might be most effective. 9 

We address these issues as part of an urban case study for two recent significant heatwave events. 10 

We investigate firstly variations in environmental risk factors across the city (temperature, UHI 11 

intensity, and thermal comfort indices), and secondly, distribution of other factors which may relate 12 

to vulnerability from environmental risks (age, housing type, and deprivation index). A spatial 13 

analysis allows us to determine whether these sets of risks are co-located within our study city of 14 

Birmingham and the West Midlands region of the UK. Thirdly, we investigate the position of specific 15 

locations where sensitive populations are likely to be based, such as hospitals, care-homes, schools, 16 

and prisons, with respect to the intensity and position of the UHI, with the hypothesis that since 17 

these types of institutions are often situated in urban centres, populations may be at risk from 18 

exposure to high temperatures as a consequence of the effects of the UHI.  19 

 20 

2. METHODS AND DATA 21 

In this study we first modelled the ambient air temperature at a height of 2 metres across the West 22 

Midlands, and quantified the UHI intensity across the region for the heatwave periods (August 2003 23 

and July 2006) using a mesoscale meteorological model. Using GIS techniques we then extracted 24 

(from the modelled data) and analysed the ambient temperatures that correspond to different risk 25 

factors such as population age, dwelling type, and deprivation indices.  26 

2.1 Modelling temperature 27 

The Weather Research and Forecasting (WRF) model is a regional weather model that can be run at 28 

high resolution (1 km) to simulate the meteorology across a region (Chen et al., 2011). We used the 29 

WRF model with four nested domains (Figure 1a) each with grid resolutions of 36 km, 12 km, 3 km, 30 

and 1 km in the smallest (central) domain, with feedback of variables from smaller grids to parent 31 

grids. The model time-step was 180, 60, 20 and 5 s for the four domains, respectively, with output 32 

every hour. Initial and lateral boundary meteorological conditions were provided by the European 33 

Centre for Medium-range Weather Forecasts (ECMWF) ERA-interim reanalysis (Dee et al., 2011) at 34 

a spatial resolution of 0.5° every 6 h. There were 39 pressure levels above the surface to 1 hPa. We 35 

used an urban canopy scheme, Building Energy Parameterisation (BEP), which models the effect of 36 
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buildings on energy and momentum fluxes inside and immediately above the urban street canyons 1 

(Heaviside et al., 2015; Martilli et al., 2002). Information on building and road properties (e.g. 2 

building height, street canyon width, material properties such as albedo, thermal conductivity and 3 

heat capacity) is included for three urban categories: Industrial/commercial, high-intensity 4 

residential, and low-intensity residential across the West Midlands region (Figure 1b). Details of 5 

parameters used for each urban category are given in Table 1a. Land-surface data used as an input 6 

to WRF for all domains were based on the US Geological Survey (USGS) 24-category land-use data, 7 

and for the inner domain we used two local datasets to generate the urban categories. We used the 8 

Noah Land Surface Model, a relatively complex community model, which is often coupled with an 9 

urban canopy scheme, and has four layers of soil moisture and temperature (Tewari et al., 2004). 10 

(a)  (b)  

Figure 1: (a) The domains covered by the WRF model simulation. The central domain (red box) is expanded in Figure 
1(b); (b) Urban classifications used in the urban canopy scheme in the WRF model in the central domain. The area 

shown covers approximately 80 x 80 km. 

 11 

Table 1 : (a) Details of urban categories used in BEP. (b) General WRF model setup details. 12 
(a)     

Category 1: Industrial/ 
commercial 

2: High-intensity 
residential 

3: Low-intensity 
residential 

 

Albedo 

Roof 0.1989 0.1997 0.2027  

Wall 0.1989 0.1997 0.2027  

Ground 0.1989 0.1997 0.2027  
      

Surface 
emissivity 

Roof 0.9239 0.9274 0.9292  

Wall 0.9239 0.9274 0.9292  

Ground 0.9239 0.9274 0.9292  
Average building 
height 

25 m 15 m 10 m  

(b)    

Model setting Option Reference  

Long wave radiation Rapid Radiative Trabsfer Model (RRTM) Mlawer et al. (1997)  

Short-wave radiation Dudhia scheme Dudhia (1989)  

Boundary layer physics Bougeault–Lacarrere (designed for use 

with BPE urban scheme) 

Bougeault and 

Lacarrere (1989) 

 

Urban physics  BEP urban scheme Martilli et al. (2002)  

 13 

The model has been previously run for this region for the August 2003 heatwave; details of the 14 

model simulation and validation are detailed in Heaviside et al. (2015). We have extended the 15 
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analysis by re-running the 2003 heatwave using an updated version of WRF (v3.6.1), and including a 1 

further simulation run during a heatwave period in July 2006. In order to test performance, the 2 

model output is compared with observations from MIDAS observational weather stations across 3 

the West Midlands (Met Office, 2012). During heatwave periods, air temperature becomes more 4 

sensitive to surface moisture properties, which can be difficult for the model to capture. Soil 5 

moisture was adjusted in the model to better account for the unusually dry conditions, which led to 6 

improvements in the model performance (Figure 2 and Table 2). 7 

(a)  (b)  

Figure 2 : (a) Modelled and observed ambient temperatures at MIDAS sites across the West Midlands in July 
2006. (b) Taylor diagram showing statistical comparison between adjusted and unadjusted model. Unadjusted 
simulation is shown in red, and simulation with reduced initial moisture is shown in blue. A better comparison 

with observations is indicated by proximity to ‘REF’ on the horizontal axis. 

Table 2 : Statistical comparison between observed air temperature, and modelled temperatures (with soil moisture 8 
adjustment). 9 

 Edgbaston Coventry Coleshill Church Lawford 
 Observed Modelled Observed Modelled Observed Modelled Observed Modelled 

Mean (°C) 22.54 22.59 22.31 22.64 22.12 22.44 22.32 22.24 

Standard deviation 

(°C) 

4.54 4.95 4.78 5.11 5.19 5.15 5.21 5.40 

RMSD (°C) – 1.62 – 1.81 – 1.79 – 1.79 

Correlation – 0.94 – 0.94 – 0.94 – 0.94 

We ran the model for two heatwave periods (2nd – 10th August 2003, and 16th – 27th July 2006), and 10 

in order to quantify the UHI intensity, two simulations were run for each heatwave period. An 11 

‘urban’ simulation was run as described above, using the urban categories shown in Figure 1b, and 12 

is intended to represent the urban morphology of Birmingham and the West Midlands. The 13 

simulation is then run again, but with urban land cover replaced by rural cropland and pasture in 14 

the innermost domain, as a theoretical ‘rural’ case. By comparing results between the ‘urban’ and 15 

‘rural’ simulations, the UHI intensity can be quantified.  16 

The temperature that people experience or ‘feel’ can be influenced by a number of factors such as 17 

humidity, wind speed, exposure to direct solar radiation, and the amount of clothing they are 18 

wearing (Höppe, 1999; Steadman, 1984). National weather services sometimes provide a ‘heat 19 

index’ or ‘apparent temperature’ as part of weather forecasts during periods of warmer weather, to 20 

account for the effect of humidity, with assumptions about human body mass, height, clothing, 21 

amount of physical activity, sunlight and ultraviolet radiation exposure, and the wind speed. The 22 

heat index is calculated from temperature and relative humidity following the method of the NOAA 23 
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Weather Prediction Center (www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml). This 1 

calculation is a refinement of a result obtained by multiple regression detailed in National Weather 2 

Service (NWS) Technical Attachment (SR 90-23). Accounting for the humidity only significantly 3 

influences the heat index above about 26°C, and this calculation is not valid for extremes of 4 

temperature or humidity (Steadman, 1984). 5 

2.2 Population and built environment characteristics  6 

Population data are taken from the National Population Database (2015) gridded at 100 m 7 

resolution, which gives total population at each grid point. Information on age groups is available at 8 

Output Area1 (OA) level from the most recent census (2011), and attached to each 100 m 9 

population point based on which OA the point falls within. The information is then summed across 10 

each WRF 1 km grid box.  11 

Data on housing type was obtained at Lower Super Output Area2 (LSOA) level from the most recent 12 

census (2011, available from infuse.ukdataservice.ac.uk). Data is available on the number of 13 

dwellings of each type within each LSOA. The number of dwellings of each housing type in each 14 

WRF model grid box is calculated by summing the fractions of each LSOA that intersect with each 15 

grid box, with housing assumed to be distributed evenly across each LSOA. This is combined with 16 

the 2 m air temperature simulated in the model during the heatwaves of 2003 and 2006, to 17 

estimate the average ambient temperature that different housing types across the West Midlands 18 

are co-located with. Information on housing type was available (e.g. detached, terrace, flat, etc.) 19 

but information on housing age was not recorded spatially.  20 

The locations of hospitals, care homes, child care centres, schools, and prisons were considered 21 

where ‘sensitive populations’ are more likely to reside. The National Population Database provides 22 

information on these locations as they may have high densities of residents, many of whom may 23 

not be able to protect themselves (others have a duty of care towards them). People at these 24 

locations may be more vulnerable to harm and potentially harder to evacuate in an emergency 25 

situation. The temperature at the location of each of the centres of interest is extracted from the 26 

(hourly) model output using bilinear interpolation to the nearest modelled grid points. The mean 27 

temperature anomaly for each location is calculated by taking the mean temperature at the 28 

selected location over the heatwave period, and subtracting the mean temperature across the 29 

entire domain for the same period. 30 

The English Indices of Multiple Deprivation (IMD) scores and ranks are produced periodically by the 31 

Department for Communities and Local Government, and are the official measure of relative 32 

deprivation for small areas (LSOA based on the 2011 census) in England. The IMD brings together 33 

37 different indicators which cover specific aspects or dimensions of deprivation, such as income, 34 

                                                      
1
 Output Areas are the lowest geographical level at which census estimates are provided. There are 181,408 Output 

Areas in England and Wales. The average population per OA is 309.  
2
 Lower Super Output Areas have an average of ~1500 residents and 650 households. Measures of proximity (to give a 

reasonably compact shape) and social homogeneity (to encourage areas of similar social background) are also included. 
There are 34,753 LSOAs in England and Wales. http://neighbourhood.statistics.gov.uk/ 
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employment, health and disability, education, skills and training, barriers to housing and services, 1 

living environment, and crime, which are then weighted and combined to create the overall IMD 2 

scores for each LSOA (ONS, 2007). For this work, IMDs for 2007 were used, as this is the closest 3 

available year to those modelled using WRF. The IMD score at LSOA level is attached to each 100 m 4 

population grid point, and then these are used to calculate population-weighted IMD scores for 5 

each WRF 1 km grid-box. Once the IMD scores for each WRF grid box are calculated, these are then 6 

associated with the temperatures from the WRF model, and ranked relative to each other, from 7 

least- to most-deprived. The data is then split into population deciles (in order of least to most 8 

deprived), and the associated temperatures plotted. 9 

 10 

3. RESULTS 11 

3.1 Environmental risks 12 

3.1.1 Temperature/Heat index. 13 

Figure 3a shows the modelled mean 2 m air temperature from 2nd – 10th August 2003, and Figure 14 

3b shows the same for 16th – 27th July 2006. The observed average and the overall minimum 15 

temperatures are higher by 1.3°C in 2006 compared with 2003. Average daily maximum ambient 16 

temperatures are similar (difference of 0.3°C), though temperatures reached at least 30°C on more 17 

days in 2006 than 2003 (see Figure S1 in supplementary material). Comparison of Figure 3 with the 18 

land use in Figure 1b shows that urban areas are generally warmer than the surrounding rural areas 19 

in the West Midlands modelled domain.  20 

(a)  (b)  

Figure 3: Mean 2 m air temperatures simulated across the West Midlands during (a) heatwave period 
from 2nd – 10th August 2003, and (b) for the heatwave period during 16th – 27th July 2006. Lettered 

points show monitoring stations used for model validation. EB=Edgbaston; CH=Coleshill; 
CV=Coventry; CL=Church Lawford. 

 21 
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The average calculated heat index for each of the heatwave periods is shown in supplementary 1 

Figure S2. The pattern and magnitude are very similar to the 2 m temperatures shown in Figure 3. 2 

Additional discussion of the heat index may be found in the supplementary material.   3 

3.1.2. Urban Heat Island 4 

The average UHI intensity across the whole period (defined as the difference in 2 m temperature 5 

between a simulation with urban land cover and a simulation with rural land cover) for both 6 

heatwave periods is shown in Figure 4. Statistics for the two heatwaves are shown in Table 2.  7 

Table 2: Statistics for modelled temperature and the UHI intensity for the two heatwave periods in August 8 
2003 and July 2006. 9 

  
Average 

temp (°C) 
Average 
UHI (°C) 

Daytime† 
average 
UHI (°C) 

Nighttime† 
average 
UHI (°C) 

Max UHI (°C) 

Aug 2003 
Regional‡ 20.5 +0.7 +0.5 +1.0 +6.1 (5pm 10th; 11pm 5th; 

9pm 9th) City centre* 21.7 +2.2 +2.0 +2.7 

July 2006 
Regional‡ 21.7 +0.6 +0.1 +1.2 

+9.6 (11pm 17th) 
City centre* 23.0 +2.0 +1.0 +3.1 

†Daytime is defined as 08:00 – 19:59; Nighttime is 20:00 – 07:59 
‡ Regional is the whole area shown in Figure 1a.   * City centre is a point in the centre of Birmingham city. 

 10 

While higher average temperatures were reached across the domain during the 2006 heatwave 11 

than the 2003 heatwave (Figure 3), the magnitude and spatial distribution of the UHI intensity 12 

remains remarkably similar (Figure 4). There are broad similarities in the spatial and temporal 13 

diurnal patterns of the UHI intensity between the two heatwaves (Figure 4, Figure S2), although 14 

some localised differences exist. The average UHI intensity in the city centre was slightly higher in 15 

2003 (+2.2°C in 2003 compared with +2.0°C in 2006), but the UHI intensity at night time was larger 16 

in 2006 (+3.1°C in 2006 compared with +2.5°C in 2003).  17 

(a)  (b)  
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(c)  (d)  

Figure 4:  Mean UHI intensity for the whole time-period across the West Midlands (a) 2
nd

 – 10
th

 
August 2003, and (b) 16

th
 – 27

th
 July 2006. Snapshots of high UHI intensity for each period are 

shown in (c) 11pm 5
th

 August 2003, and (d) 11pm 17
th

 July 2006. Lettered points show monitoring 
stations used for model validation. EB=Edgbaston; CH=Coleshill; CV=Coventry; CL=Church Lawford. 
Note that the colour scales are not all equal. 

 1 

By combining the data from the two heatwave periods, we have a larger dataset available to 2 

analyse the distribution of temperatures, and the UHI effects typical during heatwaves across the 3 

region. Figure 5 shows the spatial distribution of the UHI intensity across the West Midlands, 4 

determined from both the August 2003 and July 2006 heatwaves combined, and illustrates the 5 

more intense UHI effect at night time compared with during the day. 6 
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(a)  

(b)  

(c)  

Figure 5: (a) Average UHI intensity during heatwave periods (2-10 Aug 2003 and 16-27 

July 2006) across the West Midlands; Averages over (b) daytime and (c) night time. 

Average UHI intensity was +2.1°C (+1.4°C in daytime, +2.9°C at night time). 

 1 

The heat index and the difference in heat index between urban and rural simulations are shown in 2 

supplementary material (Figures S2 and S3), and very similar patterns to the UHI are shown. The 3 

specific humidity (i.e. water vapour mixing ratio) is lower in the urban simulation (supplementary 4 

Figure S4) due to the presence of urban surfaces replacing vegetated ones that would otherwise 5 

provide a supply of moisture to the surrounding air. Overall the average impact of urban surfaces 6 

on 2 m temperature and the average impact on the heat index are almost identical (Figure 5 and 7 

Figure S3).  8 

 9 

3.2. Social factors 10 

3.2.1 – Housing 11 

Buildings are an important modifier to population exposure to heat, with different types of housing 12 

being more or less susceptible to overheating, for example top-floor flats are more likely to 13 

overheat than detached houses (Beizaee et al., 2013; Symonds et al., 2017; Taylor et al., 2015). 14 

Figure 6 shows the average 2 m air temperature that different housing types across the West 15 
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Midlands are co-located with during heatwave periods, compared to the average temperature 1 

across the whole region. The anomaly represents the difference from the average temperature 2 

across the entire region for the time period considered (this temperature, representing zero 3 

anomaly, is labelled at the base of the vertical axis on the right). The average temperature across all 4 

housing types in the region is shown by the horizontal bar (again with absolute value labelled at the 5 

right axis). Detached houses, which tend to be located towards more suburban areas, are co-6 

located with ambient temperatures almost 0.2°C lower than the average for all housing types. By 7 

contrast, terraced houses and flats are co-located with ambient temperatures over 0.1°C higher 8 

than the average for all housing types in the region, and 0.6°C warmer than the whole domain 9 

average temperature. Our analysis shows that housing types which are more likely to overheat (e.g. 10 

flats) are often located in the warmest parts of the city, and the effects are much larger at night 11 

(Figure 6b). The differences between ambient temperatures for each housing category are all 12 

statistically significant (p<0.05; see supplementary material for details). While the temperature 13 

variation between different housing types is less than 1°C, it should be noted that the average UHI 14 

intensity for the region was about 0.6 to 0.7°C (and just over 2°C in the centre of the urban area) 15 

during heatwaves. 16 

(a) 

 

(b)  

(c)  

Figure 6: (a) Average outdoor temperature anomaly (compared with the average across the 

domain during the heatwave period) with standard deviations plotted over the bars. The 

analysis is also broken down into (b) night time and (c) day time.  

 17 

3.2.2 – Population age  18 

Figure 7 shows the average outdoor temperature anomalies different age groups are exposed to, 19 

based on residential address. The anomaly represents the difference from the average temperature 20 

across the entire region for the time period considered (this temperature, representing zero 21 

anomaly, is labelled at the base of the vertical axis on the right). The average across all age groups 22 
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is shown by the horizontal bar (again with absolute value labelled at the right axis). The whole West 1 

Midlands population is exposed to temperatures about +0.6°C higher than the regional average (as 2 

populations reside in more urbanised areas) (Fig. 9a). Young adults and the very young are exposed 3 

to slightly higher temperatures than the population average (e.g. 20-24 year olds reside in areas 4 

+0.7°C warmer than the regional average of +0.6°C), while the elderly are exposed to slightly lower 5 

temperatures than the population average (e.g. 65-75 year olds reside in areas +0.5°C). During the 6 

daytime, there is only a modest difference in ambient temperatures exposure in comparison to the 7 

regional average; however at night time, population-weighted temperatures are over 1°C higher 8 

than the regional average (Figure 7b,c). It should be noted that these figures are based on 9 

residential population, so those present in health and care centres are not considered here. Overall, 10 

the differences in exposure to ambient temperatures for different population groups are modest, 11 

likely a reflection that population age groups are less heterogeneously distributed across this 12 

region. The differences between ambient temperatures for each age group are all statistically 13 

significant (p<0.05; see supplementary material for details), with the exception of the 15 and the 14 

16-17 year old age groups (p=0.25), the 60-64 and 65-69 year old age groups (p=0.069), and the 85-15 

89 and 90+ year old age groups (p=0.055). 16 

(a)  

(b)  

(c)  

Figure 7: (a) Average outdoor temperature anomaly (compared with the average across the domain 

during the heatwave period) for different age groups across the West Midlands, with standard 

deviations plotted. The analysis is also broken down into (b) night time and (c) day time.  

 17 

3.2.3 – Deprivation. 18 
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Figure 8 shows the average ambient temperature exposure for increasingly deprived population 1 

deciles, calculated from population weighted scores across the domain ranked relative to each 2 

other. The anomaly represents the difference from the average temperature across the entire 3 

region for the time period considered (i.e. day, night, or all times). The horizontal line shows the 4 

population weighted temperature for the time period. The most deprived decile of population 5 

across the region is exposed to temperatures +1.0°C higher than the average for the region (+0.5°C 6 

during the day, and +1.5°C at night). The most deprived decile of population for the region 7 

experiences temperatures consistently higher than the average for the region, even during the 8 

daytime (each decile represents ~0.5 million people). The overall deprivation scores for all LSOAs in 9 

England range from 0.37 to 85.46. For comparison, the deprivation scores calculated for each decile 10 

in Figure 8 range from 6.08 to 56.17, placing them around the 12% and 96% most deprived relative 11 

to England. The differences between ambient temperatures for each deprivation decile are all 12 

statistically significant (p<0.05; see supplementary material for details), with the exception of 13 

deciles 4 and 5 (p=0.989). 14 

(a) 

 

(b)  

(c)  

Figure 8: (a) Average outdoor temperature anomaly (compared with the average across the domain during 

the heatwave period) for population deciles ranked by deprivation across the West Midlands, with standard 

deviations plotted. The analysis is also broken down into (b) night time and (c) day time.  

 15 

 16 

3.3 Location based assessment of vulnerability from heat. 17 
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Sensitive receptors such as hospitals, care homes, child care facilities, schools, and prisons tend to 1 

be located in the most highly urbanised areas of the region, with the exception of prisons which are 2 

often located on the outskirts of the city. The distribution of temperature anomalies for each 3 

location type is shown in Figure 9. The anomalies are based on the number of receptors (i.e. 4 

buildings), and not the population at each location, as this will fluctuate. The majority of hospitals, 5 

care homes, schools and child care centres are located in areas warmer than the domain average 6 

(94% of hospitals, 90% of care homes, 87% of schools, and 88% of child care centres). There are 7 

seven prisons located within the study area, with only two of these being warmer on average 8 

(Figure 9e).  9 
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Figure 9 : Distribution of average ambient 2 m temperature at (a) hospitals, (b) care homes, (c) schools, (d) child care 

centres, and (e) prisons across the West Midlands. The first column shows the distribution of these locations across the 

West Midlands, and the next three columns represent the average anomaly averaged first across all times of day, and 

then broken down into average daytime anomaly (8am – 8pm), and average night time anomaly (8pm – 8am). The 

average temperature across the domain (used as the reference temperature) is 21.8°C. Red = positive anomaly 

(warmer); Blue = negative (colder). 

 1 

 2 
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4. DISCUSSION  1 

In this study we used hourly ambient temperature data at high spatial resolution (1 km) across a 2 

densely populated region of the UK, capturing temperature variation across the period of two 3 

different heatwave episodes. We employ environmental modelling techniques to examine human 4 

health in relation to heat exposure during heatwaves, which will become increasingly important in 5 

the future as climate change is projected to increase heat-health impacts. Previous studies have 6 

examined the spatial distribution of vulnerability to heat risk across a region, often using ambient 7 

temperatures that are time-varying but have no spatial variation, or that are well represented 8 

spatially but only for a single or limited time frame (Taylor et al., 2015; Tomlinson et al., 2011; Wolf 9 

and McGregor, 2013). By using well-validated meteorological modelling techniques, we have 10 

generated an ambient temperature dataset, based on modelled output, at high temporal and 11 

spatial resolution from which to calculate ambient temperatures exposure co-located with various 12 

risk factors that relate to and influence heat-related health effects. These include population-13 

weighted temperature exposure and the relationship between UHI intensity and demographic 14 

factors such as age group. Previous studies have mapped such risks, but our work extends this 15 

analysis by calculating the ambient temperature weighted according to distributions of different 16 

housing types, population (including age), and deprivation score, all being factors that influence 17 

heat-health effects. We have also broken down the analysis by day and night; while the whole 18 

region is warmest during the daytime (and urban areas are still warmer than rural ones at this 19 

time), the spatial variation in temperature across the region is much greater at night, due to the 20 

influence of the UHI (Figure 5). While there is no clear indicator of which temperature metric is 21 

most strongly correlated with mortality, and there is variation between countries and cities (Davis 22 

et al., 2016), high mortality ratios have been associated with high night time land surface 23 

temperatures during the August 2003 heatwave in Paris (Dousset et al., 2011), and there is 24 

evidence that higher night time temperatures have a detrimental impact on sleep quality, which is 25 

linked with other negative health outcomes (Lack et al., 2008). 26 

We found that almost all locations where sensitive populations are likely to be located (hospitals, 27 

care homes, schools, colleges) were warmer than the regional average by up to 2°C, and the 28 

number that are warmer is greater at night time (Figure 9). Of the seven prison locations within the 29 

study area, most were located in more rural or suburban areas, and therefore were not exposed to 30 

higher average ambient temperatures for this region. 31 

Locations classified as hospitals here include a few small treatment centres such as family planning, 32 

dialysis centres, etc., and therefore do not necessarily have resident populations who might be 33 

exposed to the larger temperature anomalies at night. Locations classed as care homes have a high 34 

density of residents, present day and night, and also include centres with specialised facilities for 35 

those with mental health issues, sensory impairment, learning difficulties, and those who misuse 36 

drugs and alcohol. Child care centres have a duty of care to protect people who cannot protect 37 

themselves, with potentially high populations, including nurseries, crèches, toddler groups, 38 

afterschool clubs, holiday schemes, and youth clubs. School locations are unlikely to be occupied at 39 
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night, when temperature anomalies are higher, and those of school age are exposed to ambient 1 

temperatures close to the average for the population (though still above regional average). While 2 

colleges have very high populations, they again are unlikely to be occupied at night. 3 

The anomalies presented here are based on ambient temperature, although buildings play an 4 

important role in determining actual exposure, particularly at night time. Studies using building 5 

simulations to estimate indoor temperatures find a significant influence of building characteristics 6 

on indoor temperatures (Taylor et al., 2015). However these studies often use a single ambient 7 

temperature across all dwelling types, whereas this study shows that different building types are 8 

likely to be exposed to different ambient temperatures across a region. Our study could help inform 9 

development of inputs to building models by providing a modifier to ambient temperature based 10 

on the likely outdoor temperatures for a particular building type.  11 

While we have included the highest spatially resolved data that was available at the time, the 12 

analysis makes some assumptions about distribution of certain factors. Data for housing types at 13 

LSOA level, and population ages at OA level was the finest level of data that was available. Any 14 

variations that may exist within an individual LSOA or OA respectively could not be captured by this 15 

analysis. The BEP multi-layer urban canopy scheme used with WRF can capture the effects of the 16 

built environment on energy and momentum fluxes (accounting for shading and reflections by 17 

buildings) at sub-grid scale, providing a suitable representation of how urban areas influence 18 

meteorology in a weather model such as WRF. However, microclimatic effects at individual building 19 

level are not explicitly captured, as regional weather models can only be run down to 1 km 20 

horizontal grid scale constrained by the valid sub-grid scale turbulence schemes, and therefore 21 

results for individual locations interpolated from the 1 km grid may have additional variation. The 22 

IMDs are a measure of relative deprivation, calculated by weighting data on different indicators 23 

that can be used as measures of deprivation. The IMDs are calculated periodically, and although it 24 

is a good measure for comparing areas with each other, this measure cannot be easily compared 25 

with other years or used to identify trends, as the ranking is performed separately each time a new 26 

dataset is released. 27 

This study focuses primarily on the effects of heat, although other environmental or socioeconomic 28 

factors in cities that may impact health could be considered in future studies. Such factors may 29 

include air pollution, flood risk, social isolation or greenspace. Cold effects could also be 30 

investigated. These and other factors identified as influencing health may be included in future 31 

studies to develop and overall environmental risk map for cities. Finally, this study examines past 32 

heatwave events in two years across the UK, allowing model validation against observations. Future 33 

scenarios under climate change could be considered in further work. 34 

 35 

5. CONCLUSIONS 36 
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Previous research suggests that the UHI may contribute around half of the heat related mortality 1 

experienced during  heatwaves (Heaviside et al., 2016). Increasing urbanisation and climate change 2 

will increase heat related health risks in urban areas. We have developed a novel risk mapping 3 

methodology that combines high spatial resolution modelling of temperature, population age, and 4 

building types to identify locations and population sub-groups at higher health risk during 5 

heatwaves. We have simulated and quantified the magnitude and characteristics of the UHI in the 6 

West Midlands during two heatwave periods (August 2003 and July 2006), using the WRF-BEP 7 

model. The UHI intensity across the region is on average 2.1°C, reaching up to 9.4°C, and there is 8 

strong spatial heterogeneity in ambient temperature across the region, particularly at night. Spatial 9 

analysis using GIS techniques shows that locations where people already more vulnerable to the 10 

effects of exposure to heat (e.g. the elderly, those with pre-existing health conditions, and those 11 

dependent on others for care) may reside, tend to be located in the hotter parts of the region. 12 

Sensitive receptors (94% of hospitals, 90% of care homes, 87% of schools, and 88% of child care 13 

centres) are co-located with higher than the average air temperatures across the West Midlands. 14 

Buildings that are more susceptible to overheating, such as flats, are exposed to higher ambient 15 

temperatures than other housing types. 16 

Interventions such as urban greening or building modifications such as cool roofs may help offset 17 

some of the UHI intensity, and reduce the spatial disparity in ambient temperatures, particularly at 18 

night. The results from this work could help identify which factors are most strongly correlated with 19 

ambient temperature, and help target resources and interventions, as well as focus health 20 

messaging during heatwaves to the greatest effect. 21 

Further research is needed to estimate the spatial heterogeneity of factors influencing heat risk in 22 

cities. In addition, future work should consider the health impacts and potential benefits that UHI 23 

mitigation techniques in a UK city would have on building overheating, as well as the co-benefits or 24 

other unintended environmental consequences that may occur in a city. 25 
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