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We study the phase ordering of parametrically and incoherently driven microcavity polaritons after an
infinitely rapid quench across the critical region. We confirm that the system, despite its driven-dissipative
nature, satisfies the dynamical scaling hypothesis for both driving schemes by exhibiting self-similar
patterns for the two-point correlator at late times of the phase ordering. We show that polaritons are
characterized by the dynamical critical exponent z ≈ 2 with topological defects playing a fundamental role
in the dynamics, giving logarithmic corrections both to the power-law decay of the number of vortices and
to the associated growth of the characteristic length scale.

DOI: 10.1103/PhysRevLett.121.095302

Two-dimensional (2D) driven-dissipative Bose systems
display rich critical phenomena due to the interplay
between drive, dissipation, and their collective phase-
ordering dynamics induced by the Bose degeneracy [1].
The picture is quite complex even at the level of the steady
state, where the transition towards the ordered state has
been predicted to be of either Kardar-Parisi-Zhang (KPZ)
[2] or Berezinskii-Kosterlitz-Thouless (BKT) [3] type,
depending on the subtle interplay between the drive and
dissipation, and a finite size and effective anisotropy [4,5].
To date, the more advanced question of how continuous
drive and dissipation affect the dynamics of nonequilibrium
phase transitions remains largely open.
In this vein, one of the most useful concepts is the scaling

hypothesis when the long-distance statistical properties of a
complex system remain constant in time modulo a global
change of scale [6]. While steady-state scaling behaviors
are a generic feature of critical points, a dynamical scaling
is found when the late-time dynamics after a quench is
governed by a single characteristic length scale. Its value
typically grows in time as a power law of elapsed time, the
exponent being a universal quantity that does not feel the
microscopic details but depends only on general features
such as dimensionality, symmetry, and, of course, the
equilibrium vs nonequilibrium condition.

In the past decade or so, quantum gases of exciton
polaritons in semiconductor microcavities have been
widely used to study different aspects of the nonequili-
brium Bose-Einstein condensation transition [7,8] and
appear as a promising workhorse to investigate time-
dependent features for which theoretical predictions are
still subject to debate. On general grounds, 2D driven-
dissipative systems described by KPZ-like phase dynamics
are expected to show the dynamical critical exponent z ≈
1.61 [9–11], while we expect z ¼ 2 when the KPZ non-
linearity ceases to be important. For the specific nonequili-
brium case of microcavity polaritons, it has been suggested
that the dynamical critical exponent z takes values of either 1
or 2, depending on the system parameters [12], putting in
question the universality of the phase ordering in this system.
In this Letter, we contribute to this exciting debate by

exploring the dynamical critical properties of the phase-
ordering dynamics of polariton gases after an infinitely
rapid quench from the disordered to deep in the (quasi)
ordered [6,13] phase. In particular, we look for scaling
behaviors and associated universal exponents in the temporal
evolution of the coherence length and of the density of
topological defects (vortices). In order to capture the uni-
versal properties of the phase-ordering process, we study the
polariton system in three among the most popular pumping
regimes, namely, coherent pumping in the optical parametric
oscillator (OPO) regime and the incoherent pumping (IP)
with and without a frequency-selective pumping mecha-
nism [7].
In spite of their marked differences, our calculations

show strong numerical evidence that the critical behavior is
the same in the three models, namely, a dynamical critical
exponent z ≈ 2 characteristic of a diffusive dynamics, plus
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logarithmic corrections. This is a good indication that
refinement of the microscopic details of the model will
not change the universal features properties: For the
realistic system sizes considered in this work, the universal
properties of the system, also in the dynamical case, are
dominated by BKT type of physics in analogy to the static
case considered recently theoretically [14] and experimen-
tally [15], while the KPZ nonlinear terms do not play a role
during dynamical crossing of the critical point.
System and method.—Our system consists of an ensem-

ble of bosonic particles [excitons (X) and photons (C) for
the parametrically pumped and lower polaritons (LP) for
the incoherently driven case] with a finite lifetime interact-
ing via contact interactions in two dimensions and driven in
two distinct ways: parametrically and incoherently. The
dynamical equations can be derived using the Keldysh field
theory by including the classical fluctuations to all orders,
but quantum fluctuations to the second order, which is
appropriate in the long-wavelength limit, and employing
the Martin-Siggia-Rose formalism (for a review, see [1]).
An alternative derivation can be performed using Fokker-
Planck equations for the Wigner function truncated to the
third order [7,16]. Both methods lead to the same stochastic
equation for the field ψðr; tÞwith the noise term accounting
for quantum and thermal fluctuations.
For the parametrically driven case, the finite grid version

with ℏ ¼ 1 reads [14]
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where ψX;C ¼ ψX;Cðr; tÞ [with r ¼ ðx; yÞ] are the exciton
and cavity-photon fields, respectively, and dWX and dWC
are the complex-valued zero-mean white Wiener noise
terms with hdW�

l ðr; tÞdWmðr0; tÞi ¼ δr;r0δl;mdt. The exter-
nal monochromatic coherent pump Fp ¼ fpeiðkp·r−ωptÞ

injects photons with momentum kp and frequency ωp

while both fields decay with their corresponding rates κX
and κC: Here we use a shorthand notation
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with mX and mC (¼ 2.3 × 10−5me) the exciton and cavity-
photon masses, respectively. Since mX ≫ mC, we consider
the limit mX → ∞, and, consequently, the exciton field
kinetic energy term disappears from Eq. (1). The exciton-
photon Rabi splitting is given byΩR and the exciton-exciton
interaction strength by gX, and dV ¼ a2 is the numerical grid
unit cell area (lattice spacing a). We solve Eq. (1) for
parameters typical of current OPO experiments [7,14,17],

namely, ΩR ≈ 4.4 meV and gX ≈ 2 × 10−3 meV μm2. We
consider κX ¼ κC, with κC ¼ 1=τC and photon lifetime
τC¼6.58ps. We set kp¼ð1.6;0Þμm−1 and ωp ¼ωLPðkpÞ,
whereωLP is the lower-polaritondispersion.Here,wepresent
results for a grid of 5122 lattice points with lattice spacing
a ¼ 0.87 μm (total unit cell of Lx ¼ Ly ¼ 444.42 μm).
Since we are interested in the universal properties of

driven-dissipative systems, we also consider the alternative
typical setup of incoherent driving. Under the assumption
that the high-energy reservoir follows adiabatically the
condensate evolution and that the exciton and photon are
locked into a single lower-polariton branch, the equation
reads (ℏ ¼ 1) [18]
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with ψLP ¼ ψLPðr; tÞ, and the lower-polariton field density
reads (after subtracting theWigner commutator contribution)
jψLPj2− ≡ ðjψLPj2 − 1=2dVÞ. The Wiener noise dWLP has
zero mean and fulfills hdW�

LPðr; tÞdWLPðr0; tÞi ¼ 2δr;r0dt.
P defines the incoherent saturable and homogeneous driving
strength and ns the saturation density, and we restrict
ourselves to values jψLPj2− ≪ ns. We use typical experimen-
tal parameters [19]: γLP ¼ 1=τLP with the polariton life-
time τLP ¼ 4.5 ps, polariton mass mLP ¼ 6.2 × 10−5me,
and polariton-polariton interaction strength gLP ¼ 6.82×
10−3 meV μm2. To improve the physical relevance of the
model when approaching the critical region, following
Refs. [18,20], we implement frequency-selective pumping
mechanism so that relaxation to low-energymodes is favored
over energies higher than the cutoff frequency ωcut ≃
Ω=½1þ ðjψLPj2−Þ=ns� which are now suppressed. We use
here P=Pth ¼ 1.06, where Pth ¼ γLP is the mean-field
critical pump, Ω ¼ 50γLP ¼ 11.09 ps−1 and ns ¼
500 μm−2 (labeled as IPΩ¼50) for the frequency-dependent
pumping, and P=Pth ¼ 1.1, Ω ¼ ∞, and ns ¼ 1500 μm−2

for the frequency-independent driving (labeled IPΩ¼∞). We
solve Eq. (2) in a square lattice of 3012 points, lengths
Lx ¼ Ly ¼ 295.11 μm, and a periodic boundary condition
and average over a sufficiently large number (400) of

realizations in all schemes. The healing lengths ξ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mC;LPgC;LPjψC;LPj2−

q
at the end of the evolution

are, respectively, ξIPΩ¼50 ≃ 2.2 μm, ξIPΩ¼∞ ≃ 0.8 μm, and
ξOPO ≃ 1.84 μm, with the condition LðtÞ ≫ ξ fulfilled in
all cases [21].
In both models, a nonequilibrium steady state with finite

particle density jψX;C;LPj2 is established once the pumping
strength overcomes the cavity losses. Also, by tuning the
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strength of the pump power, both the OPO and the IP
system (with or without a frequency-dependent pumping
mechanism) undergo a BKT type of phase transition
between a disordered phase with an exponential and an
ordered phase with a power-law decay of spatial coherence,
governed by the binding or unbinding of vortex-antivortex
pairs (see Fig. 1). For the parametric pumping, the BKT
transition in the steady state is analyzed in detail in
Ref. [14]. A similar transition takes place for the IP system
(Fig. 1, bottom). It is worth noting that, in this case,
stronger fluctuations at higher modes (Ω → ∞) and a
smaller saturation density (ns → 0) lead to a larger shift
of the pump power of the BKT transition with respect to the
mean-field onset of macroscopic population growth.

Universal dynamical scaling.—We now study an infi-
nitely rapid quench across a critical point. For the para-
metrically pumped case (see Fig. 1, top), we quench
through the upper critical threshold fupp . The system is
prepared in the steady state of a deeply disordered phase at
a given pump power fip > fupp , where bound and unbound
vortices proliferate (see the inset), and is instantaneously
quenched to a deep quasiordered regime by adjusting the
external drive to ffp, with ffp < fupp . For the incoherently
pumped case (see Fig. 1, bottom), we quench from the
random initial configuration deep in the disordered phase
(i.e., steady state for Pi ¼ 0) to a quasiordered regime by
setting the external drive to Pf > Pth at t ¼ 0 and letting the
system evolve. We explore the dynamical scaling properties
of the system during the phase ordering by considering the
first-order two-point correlation function [14]:

gð1Þðr; tÞ ¼ hψ�ðrþ u; tÞψðu; tÞi − δrþu;u=2dVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjψðrþ u; tÞj2−ihjψðu; tÞj2−i

p ; ð3Þ

where h…i denotes averaging over both noise realizations
and the auxiliary positionu and t is the time after the quench.
For the parametrically pumped scheme, ψ in Eq. (3) corre-
sponds to the signal, which is obtained by filtering the cavity-
photon field ψC from Eq. (1) around the signal momentum
ks. For the incoherently pumped system, ψ is the polariton
field ψLP.
In the phase-ordering kinetics of the planar XY model

in two dimensions [24,25,28], the non-steady-state two-
point correlator (3) fulfills the dynamical scaling form

gð1Þðr; tÞ ∼ gð1ÞSS ðr; tÞF½r=LðtÞ�, with the steady-state corre-
lation function decaying algebraically at long distances, as

gð1ÞSS ðrÞ ∼ r−α. The scaling function F tends to 1 when
r ≪ LðtÞ, indicating that the critical correlations have been
established at distances much smaller than LðtÞ at time t,
which defines the characteristic length scale of the system
LðtÞ. Since our system is highly nonequilibrium, it is far
from obvious whether similar scaling behavior holds here
in the presence of strong drive and dissipation. Indeed, we
obtain a perfect collapse when plotting the two-point

correlation function gð1Þ=gð1ÞSS as a function of the rescaled
length r=LðtÞ at different times of the late dynamics for
both driving schemes (see Fig. 2). For consistency, we

extract the length scale LðtÞ when ðgð1Þ=gð1ÞSS Þ(LðtÞ; t) ¼
0.5 (white dots in insets in Fig. 2), with the independence of
our conclusions on the intersection value verified in
Supplemental Material [21].
This collapse of the two-point correlation function is a

strong indication that our polariton system fulfills the
scaling hypothesis. We can then access the universal
dynamical critical exponent z of our driven-dissipative
system by analyzing the growth of the characteristic length
LðtÞ and the decay of the number of topological defects
(vortices) at late times after a sudden quench. Note that an

FIG. 1. BKT transition with parametric and incoherent pump-
ing. Top panel: Noise-averaged density from stochastic equations
of the signal (blue), idler (red), and pump (green) as a function of
pump power fp for parametrically driven polaritons across OPO.
Bottom panel: Mean-field (dotted lines) and noise-averaged
(solid lines) densities for frequency-independent (green) and
frequency-dependent (blue) incoherent pumping. In both panels,
arrows indicate the infinitely rapid quench protocol across the
critical region, and pump powers are scaled to their correspond-
ing mean-field threshold values. The insets show typical snap-
shots of the real space phase profile for the initial and late-time
states.
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equilibrium analogue of the phase degree of freedom
for the polariton system is the planar XY model,
where free vortices and bound vortex-antivortex pairs exist
even in the steady state below and above the BKT phase
transition, respectively. The existence of the steady-state
vortices plays a fundamental role in the phase-ordering
process and introduces the characteristic logarithmic cor-
rection into the late-time dynamics of both LðtÞ and a
number of vortices nv following a sudden quench [24,29],
such that LðtÞ∼(ðt=t0Þ=logðt=t0Þ)1=z and nvðtÞ ∼ (ðt=t0Þ=
logðt=t0Þ)−ð2=zÞ, where t0 is a nonuniversal microscopic
system timescale (taken here as t0 ¼ 1 ps [21]). The two
relations follow from the fact that nvðtÞ ∼ 1=LðtÞ2 when
there is a unique length scale in the system, which is true at
late times in the dynamics [21].
To demonstrate the emergence of this universal scaling

from our numerical data, Fig. 3 plots the characteristic
length LðtÞ and number of vortices nvðtÞ for the three
different pumping schemes considered. The OPO (top) and
IPΩ¼∞ (center) cases are qualitatively identical in the sense

that gð1Þ collapses in the same time window as that in which
the respective vortex dynamics reaches the converged z ≈ 2
value. We are careful to fit LðtÞ and nv late enough in the
quench so the dynamics becomes universal (indeed, both
reveal z ≈ 2) but before size effects, power-law correla-
tions, or a very small vortex number affect our analysis.
However, in the case of IPΩ¼50 (bottom), strong damping of
collective fluctuations, introduced by the explicitly fre-
quency-dependent nature of the pump, is responsible for

FIG. 2. Scaling of the two-point correlation function. First-
order correlation function gð1Þ (normalized by the corresponding

steady state correlator gð1ÞSS ) for the parametrically pumped (top)
and incoherently pumped polaritons with (bottom) frequency-
dependent pumping as a function of the rescaled distance r=LðtÞ
at different times during the phase-ordering process. The evident
collapse of the curves confirms the dynamic scaling hypothesis.

The insets show gð1Þ=gð1ÞSS at different times, from which the
characteristic length scale LðtÞ is obtained by considering

ðgð1Þ=gð1ÞSS Þ(LðtÞ; t) ¼ 0.5 (white dots).

FIG. 3. Topological defects and LðtÞ during phase ordering.
Density of vortices (blue) and the characteristic length scale LðtÞ
(green) as a function of time after an infinite rapid quench for
parametric (top panel), frequency-independent (central panel),
and frequency-dependent (bottom panel) incoherently pumped
polaritons. The size of the numerical grid is marked by the
horizontal (brown) dashed lines. The late-time dynamics show
characteristic diffusive behavior described by logarithmic cor-
rections ðt=t0Þ= logðt=t0Þ to the dominant power-law scaling due
to the presence of the topological defects. For all configurations,
we obtain a nonequilibrium dynamical critical exponent z ≈ 2
within the gray-shaded regions.
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the collective modes to reach z ≈ 2 at a much earlier time
than the topological modes. Nevertheless, both channels
show the dynamical critical exponents to be z ≈ 2 in their
appropriate late-time windows. A more detailed discussion
about the fitting criteria can be found in Supplemental
Material [21].
We stress that the sufficiently late-time analysis is

essential to allow all channels to equilibrate properly and
fulfill the scaling hypothesis, whereas fitting early in the
phase-ordering process, and before the dynamics becomes
universal (light green regions in Fig. 3), can lead to the
incorrect conclusion of z ≈ 1 [30]. Note that, for the
experimentally realistic parameters considered in our sim-
ulations, the phase ordering takes place on timescales
similar to the polariton population growth [21], which is
the case for which Ref. [12] predicted z ≈ 1.
Summary and outlook.—In this work, we have theo-

retically studied the universal critical properties of two-
dimensional driven-dissipative Bose systems after an
infinitely rapid quench into a quasiordered phase.
Focusing on exciton-polariton gases in semiconductor
microcavities under different pumping configurations, our
work reveals clearly that universal physics emerges in the
late-time, long-distance dynamics of both the topological
defects and smooth phase fluctuations, whereas the nonuni-
versal early dynamics can givemisleading information about
the critical exponents. The required system size in the
100 μm range needed to access this physics appears reach-
able in the new generation of samples [15,31]. In particular,
our z ≈ 2 prediction for the dynamical critical exponent of
realistic size systems is different from the ones of
conservative Bose systems [26,27,32,33] and of nonequili-
briumKPZ systems and rather recovers a diffusive dynamics
in the planar XY model [24,25,28].
Additional metadata are available by following the link

in Ref. [34].
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