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1 Introduction 
 

Energy system optimization models (ESOMs) are used to support energy policy analysis worldwide 

(DeCarolis et al. 2017). They are used both to address questions relating to long-term strategic 

choices (such as decarbonization targets), and to inform energy technology policy (by illustrating the 

relative potential for different energy technologies) (Chiodi et al. 2015). For example, the UK has 

used both MARKAL/TIMES models and the similar ESME model to inform R&D priorities for energy 

technologies (Taylor et al. 2014). 

 

ESOMs cover the full life-cycle of fuels from extraction to end-use, including the associated direct 

CO2 emissions1. Nevertheless, the emissions associated with manufacture or construction of the 

necessary technologies and infrastructure are not modelled explicitly. This prevents analysis of 

questions relating to the relative importance of emissions associated with the build-up of 

infrastructure and other equipment required to shift to a low-carbon economy. Unless the emissions 

arising from energy technology manufacture are considered explicitly, ESOMs will likely 

overestimate the mitigation potential of certain renewable technologies that are zero emitters 

during the use phase, but lead to higher emissions during the construction phase.  

 

The magnitude of this effect is unknown, since ESOMs do not model the life-cycle emissions of 

energy infrastructure explicitly. In contrast, life cycle assessments (LCAs) – which do have a detailed 

                                                           
1 This paper addresses only CO2 emissions. The term ‘emissions’, unless otherwise indicated, always refers only 

to CO2. 
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representation of energy infrastructure – do not capture the complexities of the energy system and 

the interactions between technologies in a way that enables dynamic macro-level assessments of 

the whole energy system on their own (Gibon et al. 2015). The combination of different tools can 

help overcome the shortcomings of each type of model, as has been recently highlighted by Pauliuk 

et al. (2017). 

 

Against this background, we have soft-linked an environmentally-extended input-output (EEIO) 

model to an ESOM. Indirect emissions from power sector technologies were obtained from a 

disaggregated EEIO model (see Usubiaga et al. 2017) and were then incorporated into the UCL 

European TIMES Model (ETM-UCL; (Solano-Rodriguez and Pye 2014)) with the aim to address the 

following questions:  

- In what ways does the inclusion of indirect emissions change the optimal abatement 

pathway? 

- How much does the present value of key low-carbon technologies change when indirect 

emissions are accounted for in a decarbonization scenario for Europe? 

 

Models that can examine such questions can help inform R&D prioritization decisions, since they can 

reveal how the relative attractiveness of specific technologies changes when indirect emissions are 

taken into account. Hybrid models that combine the techno-economic realism of an energy systems 

model with the full environmental accounting of disaggregated environmentally-extended input-

output (EEIO) analysis can thus contribute to the development of ‘consequential’ life-cycle analysis, 

in which models inform the possible consequences of adding or removing additional units of a 

technology to a system (Plevin et al. 2014).  

 

This paper first reviews previous relevant efforts to bring energy system models and life-cycle 

assessments together. In section 3, we set out the method we have used, including the details of the 

EEIO model, the TIMES model, the procedures for linking them, and the scenarios examined. Section 

4 then provides results relating to each of the research questions, while section 5 draws key 

conclusions. The paper is accompanied by a supplementary file that includes considerable further 

detail on the modelling approach, the data used, and the results.   

2 Literature review 
 

Bottom-up ESOMs (such as MARKAL [Loulou et al. 2004] and TIMES [Loulou et al. 2004]) and 

MESSAGE (Messner and Schrattenholzer 2000)) provide a detailed depiction of the energy system, 

with explicit representation of primary extraction of energy resources, processing and conversion, 

delivery to consumers, and end-use (DeCarolis et al. 2017). Such models account for some emissions 

associated with upstream extraction (flaring, for example), and they account for the efficiency losses 

and energy inputs associated with conversion and processing (e.g. in refineries and power stations), 

with transmission and distribution (losses in electricity transmission lines, energy use in fuel 

distribution, etc.), and efficiency losses in end use devices. Many sources of fossil fuel chain indirect 

emissions are thus already included in the default setup of TIMES (see the supplementary file for 

further details). ESOMs are “demand-driven” in the sense that the energy service demands across 

the economy are a key exogenous input into the models. Energy service demands associated with 
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residential consumption, transport, industry and service sectors are all key inputs (DeCarolis et al. 

2017).  

 

However, various relevant upstream processes are frequently not incorporated into the model in an 

explicit way. In particular, emissions associated with the manufacture of energy technologies2 are 

not directly linked to the model’s decisions to deploy energy technologies (Scott et al. 2016). 

Instead, the emissions associated with these activities are tracked through the satisfaction of 

exogenously specified energy demands in the industrial, service, agricultural and other sectors. The 

energy demands – and hence emissions – arising from the manufacture of energy technologies are 

implicitly assumed to be constant across scenarios. Yet in the real world, the indirect emissions 

associated with processes such as the construction and manufacture of low-carbon energy 

technologies differs from their high-carbon alternatives, and structural shifts to low-carbon 

technologies (such as wind, for example) might be expected to lead to increases in activity and 

hence emissions from the industrial sector relative to the case in which fossil fuels continue to be 

used (at least during periods of installation and deployment of low-carbon technologies; (Usubiaga 

et al. 2017)). Such endogenous changes in industrial production implied by energy transition 

scenarios have previously been ignored by most ESOMs (including dominant modelling systems such 

as MARKAL/TIMES and MESSAGE), suggesting that there is value in integrating life-cycle or similar 

approaches with ESOM analysis.  

 

Several recent papers have suggested a need to better integrate life-cycle assessment and energy 

system (or integrated assessment) modelling approaches (Pauliuk et al. 2017; Hertwich et al. 2015; 

Masanet et al. 2013). Two broad strands of research can be identified that respond to this call.  One 

strand of research has responded to this challenge by using the outputs of ESOMs as an input into 

detailed prospective life-cycle assessment studies. Studies taking this approach have developed LCAs 

of long term energy scenarios, developing dynamic life-cycle inventories that are fully consistent 

with the energy mix depicted in the scenario, focusing for example on wind power (Arvesen and 

Hertwich 2011), renewables in Australia (Wolfram et al. 2016) or in Europe (Peter et al. 2016), and 

low-carbon technologies more generally (Hertwich et al. 2015). These scenarios are typically 

generated using energy system optimisation models, such as the IEA’s ETP model, a member of the 

MARKAL/TIMES family, which was used by (Gibon et al. 2015; Arvesen and Hertwich 2011; Hertwich 

et al. 2015; Gibon et al. 2017). These studies provide valuable insights into the relative 

environmental impacts associated with various technologies in different possible futures: they have 

shown that technologies with low use-phase carbon emissions also provide considerable co-benefits 

(Hertwich et al. 2015), as well as performing well in terms of whole-life-cycle carbon emissions 

(Wolfram et al. 2016). However, they have not addressed how the consideration of life-cycle 

emissions might influence the optimal decarbonisation pathway, and thus the scenarios developed 

by the ESOM tools. 

 

A second, smaller strand of research has approached the linkage of life-cycle emissions and energy 

system optimization models from the other way around. This second strand of research (and the one 

to which the present paper makes a contribution) has used the outputs of life-cycle assessments as 

                                                           
2 The same is true for indirect emissions associated with the operation of energy technologies; or emissions 

associated with inputs used in the cultivation of bioenergy, such as fertilizer manufacture.  
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inputs into energy optimization models. In early studies, several authors used LCA as a basis for 

calculating the full life-cycle CO2 associated with different electricity generation technologies and 

applied these as external costs in MARKAL models of the whole world (Rafaj and Kypreos 2007), 

western Europe (Röder 2001) and Val d’Agri in Italy (Pietrapertosa et al. 2009). These studies have 

aimed to show whether and how full life-cycle accounting for energy technologies can influence the 

techno-economically optimal energy system under a carbon constraint. However, while these 

studies have provided insights into system responses to life-cycle costs, the approach they use 

results in an internal inconsistency between the marginal CO2 abatement cost generated 

endogenously within the model and the value of external costs of CO2 applied exogenously.  

 

More recently, Rentizelas and Georgakellos (2014) built an ESOM of the Greek power sector that 

used life-cycle emissions rather than those arising from the use-phase of technologies. There are 

clear limitations to their approach: the direct emissions from energy technology operation should be 

an endogenous variable within the model, since the model should determine how much to use each 

technology once built; whereas indirect emissions associated with construction should be fixed per 

unit capacity.  

 

Three recent studies incorporate indirect emissions into an ESOM. Menten et al. (2015) and (García-

Gusano et al. 2016) both incorporate emissions derived from process-LCA into TIMES models (of 

France and Norway, respectively). Their work represents an improvement on previous approaches to 

incorporating indirect emissions, but the resulting model suffers from double-counting of the 

indirect emissions (as explained in Menten et al., also see the Supplementary Information for a fuller 

explanation). In the third study Daly et al. (2015) have used indirect emissions from an EEIO model, 

and incorporated these into a TIMES model of the UK. The work presented in this paper builds on 

their approach. In particular, the work presented here uses indirect emissions factors derived from 

hybrid input-output based LCA, resulting in a more accurate mapping of indirect emission factors to 

specific energy technologies, realizing the strengths of both process-LCA and EEIO analysis. This 

enables greater insights into the extent to which indirect emissions influences the optimal 

technology portfolio under a carbon constraint. The work presented in this paper also offers a more 

consistent approach to overcoming the double-counting problem.  

 

In the following sections we show the implications of incorporating the indirect emissions associated 

with the build-up of infrastructure and other equipment of energy technologies. 

3 Method, data and scenarios 

3.1 ETM-UCL: overview of the model 

 

UCL’s European TIMES model (ETM-UCL; (Solano-Rodriguez and Pye 2014; Solano Rodriguez et al. 

2017)) is a cost optimization model that investigates decarbonization and energy technology 

pathways for 11 European regions covering the EU-28 countries plus Norway, Switzerland and 

Iceland.  The Integrated MARKAL-EFOM System (TIMES) has been developed by the Energy 

Technology Systems Analysis Program (ETSAP) of the International Energy Agency (IEA), and is used 

worldwide to implement both national and global models (Chiodi et al. 2015).  
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TIMES is a technology rich, bottom-up, linear programming model that minimizes total discounted 

energy system cost (Loulou et al. 2016). Energy service demands and carbon targets are exogenous 

inputs. The model then finds the least-cost energy system for meeting energy service demands 

subject to carbon constraints from its large menu of energy technologies and resources. 

 

The model is calibrated to its base year of 2010, with energy service demand projected into the 

future using the exogenous drivers GDP, population, household numbers and sectorial output 

(linked to GDP), for each region. Energy consumption is available for each region for end-use sectors 

(transport, industry, agriculture, commercial and residential), and the upstream and power sectors.  

 

Each region in ETM-UCL has its own energy system. These regions are described and modelled in 

their supply sector (fuel mining, primary and secondary production, exogenous import and export), 

their power generation sector and their demand sectors (residential, commercial, industrial, etc.). 

The 11 regions are linked through the trade in crude oil, hard coal, pipeline gas, LNG (liquefied 

natural gas), petroleum products (diesel, gasoline, naphtha, heavy fuel oil), biomass and electricity.  

A wide range of energy supply and demand technologies for future years are included in the model.  

For example, power sector technologies are modelled considering investment and operating cost 

parameters, efficiency factors, construction time, utilization factors, etc. Subject to resource, 

technology and policy constraints such as the EU 2050 greenhouse gas (GHG) emission target, the 

model then chooses the cost-optimal set of electricity generation technologies to meet demand in 

each time period up to 2050. 

3.2 Developing indirect emission factors for power sector technologies 
 

The indirect CO2 emission factors (IEF) associated with the construction of power sector technologies 

have been calculated by means of input-output based hybrid LCA – a variant of EEIO analysis (full 

details of the method are reported in (Usubiaga et al. 2017)). This method consists of a 

disaggregation of an input-output table and its environmental extension(s) based on data from life-

cycle inventories (LCI), and the use of EEIO analysis to calculate consumption-based pressures (Suh 

and Huppes 2005) – in this case, CO2 emissions. Disaggregating an EEIO model using LCI data allows 

overcoming the main limitations of each of them, i.e. the high aggregation of EEIO models and the 

incomplete system boundaries in LCA (Lenzen 2000). 

 

In this exercise, the 2007 EU27 Eurostat symmetric input-output tables (Eurostat 2011) and the 

corresponding carbon emission accounts (Eurostat 2014a) have been disaggregated from the 59 

original product groups to 125 product groups. The additional product groups depict either 18 

electricity supply technologies or their most relevant life cycle stages, including the infrastructure 

required (Table 1). The resulting disaggregated EEIO table thus includes explicit representation of 

the sectors that produce energy technologies, enabling identification of the indirect emissions 

associated with the production of a unit of each energy technology.  
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Table 1. Detail of the infrastructure related to electricity production 

Technology Description 

Wind onshore 
Wind power plant onshore - fixed parts 

Wind power plant onshore - moving parts 

Wind offshore 
Wind power plant offshore - fixed parts 

Wind power plant offshore - moving parts 

PV 

Inverter 

Multi-Si PV panel 

Multi-Si PV cell 

Multi-Si PV wafer 

Electric installation, photovoltaic plant, at plant 

Slanted-roof construction, mounted, on roof 

Coal 
Hard coal power plant -  CHP 

Hard coal power plant -  no CHP 

CCGT 
Combined cycle gas power plant - CHP 

Combined cycle gas power plant - no CHP 

Conventional gas 
Conventional gas power plant - CHP 

Conventional gas power plant - no CHP 

Nuclear PWR nuclear power plant 

Hydro Run-of-river hydropower plant 

Oil 
Oil power plant - CHP 

Oil power plant - no CHP 

Biomass / Waste 
Municipal waste incineration plant - CHP 

Municipal waste incineration plant - no CHP 

 
Note: CCGT: Combined Cycle Gas Turbine; CHP: Combined Heat & Power; Multi-Si: Multicrystalline Silicon, PV: Photovoltaic 

 

The disaggregation has been carried out by combining direct input coefficient data (as a production 

recipe) and product output data such as annual capacity additions and power generated in the 

European power sector. The disaggregation process combines physical input coefficients of the 

representative technology taken from the Ecoinvent LCI database (ecoinvent Centre 2010, 2013), 

prices (Gaulier and Zignago 2010) and monetary input coefficients the EXIOBASE v2 database (Wood 

et al. 2015) with their corresponding outputs, which are either calculated in the previous step or 

obtained from alternative sources such as Eurostat’s Structural Business Statistics (Eurostat 2014d, 

2014b, 2014c). The direct input coefficients of manufactured products have been adapted to EU27 

efficiencies with data from the International Energy Agency (IEA 2013a, 2013b). As for the carbon 

emissions of each of these subproduct groups, the direct emission intensities from Ecoinvent have 

been multiplied by the corresponding product output. More details are provided in the original 

source (Usubiaga et al. 2017). 

 

In a last step, the standard formulation of EEIO analysis is used to estimate the direct and upstream 

CO2 emissions related to the infrastructure associated with selected electricity production 

technologies as shown in the following equation.  
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𝑚 = 𝐵 ∙ (𝐼 − 𝐴)−1 ∙ 𝑦 

 

where m denotes direct and upstream pressures, B represents direct pressure intensity, (I-A)-1 

represents the Leontief inverse and y refers to the final demand of a good or service. In this case, the 

final demand y is set to 1 for selected energy technologies and related infrastructure in order to 

obtain the direct and indirect carbon emissions associated therewith.    

 

The indirect emissions factors generated by (Usubiaga et al. 2017) were compared against emissions 

factors identified in the wider LCA literature (Masanet et al. 2013). By making assumptions about 

average load factors, the CO2/MW factors generated by Usubiaga et al. were compared with those 

from Masanet et al. (which are expressed in terms of gCO2/kWh). This comparison suggested that 

the estimates from Usubiaga et al. are at the low end of the range in the literature. Exploring 

sensitivity scenarios using higher emissions factors thus is useful both in testing the model and in 

exploring real-world uncertainty. 

3.3 Mapping IO sectors to ETM-UCL technologies 

 

For most existing power sector technologies, the mapping process was straightforward (i.e. the new 

sector in the disaggregated EEIO table that produces coal-fired power plants was mapped to the 

TIMES coal-fired power plant technologies). New technologies that were not included in the EEIO 

table (because they did not exist in 2007, the snapshot year from which the IEFs were developed) 

were assigned IEFs based on judgements about which other energy technologies they are most 

similar to in terms of physical characteristics, though it is acknowledged that this process introduces 

considerable uncertainty in the IEFs. A full mapping of IO sectors to TIMES technologies is included in 

the supplementary information.  

 

The units for emissions factors from the EEIO table are in monetary units (tCO2/Euro monetary 

output of the sector), and must be converted into physical units (tCO2/MW capacity). In order to do 

this, estimation of the historical EU annual capacity additions, which corresponds to the years of the 

EEIO table, was used to convert output of each sector in monetary terms into output in physical 

terms.  

 

3.4 Avoiding double counting 

 

The system boundaries of the energy system model and EEIO model overlap: the EEIO table 

incorporates the whole economy including the energy system, while the energy system model 

includes detailed representation of the energy system alongside exogenous assumptions about 

energy demand in different sectors of the economy. This creates a double-counting problem, 

because some of the activities associated with manufacture of energy technologies (and hence the 

direct and indirect emissions associated with the energy inputs into those activities) are implicitly 

represented by the energy demands within ETM-UCL. In other words, the ETM-UCL end-use 

demands already include within them the demands that arise from the construction and operation 

of energy technologies – these are implicitly included within exogenously specified industrial energy 
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service demand (e.g. steel production implicitly includes that steel required for power station 

construction), service sector demand (construction activities) and others. By including indirect 

emissions factors, the emissions associated with this energy are accounted for twice; once explicitly 

by the TIMES model through the various processes that satisfy sectoral energy demands, and once 

through the indirect emissions attached to the construction of energy technologies.  

 

Daly et al. (2015) adjust for this double-counting by summing the indirect emissions, and relaxing the 

emissions target by this amount. In other words, the emissions and activities associated with them 

are not removed from the model; rather the emissions target is adjusted such that the marginal 

abatement cost of meeting a particular target is unchanged. Daly et al.’s method works around the 

double counting, but remains technically inconsistent, with overlapping system boundaries. A 

conceptually clearer alternative approach is to remove the energy service demands from the final 

demand sectors in ETM-UCL that correspond to these double-counted emissions. E.g. if 2% of the 

steel sector is producing steel that is ultimately destined to be used in wind turbine manufacturing, 

then the energy service demands of the steel sector in ETM-UCL should be reduced by 2%, since this 

activity is now represented by the IEF. To estimate this, one must identify the portion of steel 

demand that is specific to the construction and manufacture of energy technologies. This can be 

estimated from the disaggregated input-output table. A more detailed explanation of this approach 

is provided in the supplementary information. 

 

It is helpful here to examine the demand structure of ETM-UCL. Table 2 illustrates ETM-UCL sectors 

that are equivalent to IO sectors that produce goods and services that are used in the construction, 

manufacture or operation of energy technologies. 

 
Table 2. Typical TIMES model demand categories 

TIMES demand sector Demand sub-sector 

Agriculture Agriculture 

Services Services  

Industry Pulp and Paper 

 Chemicals 

 Iron & Steel 

 Non-metallic minerals 

 Other industry 

Transport Heavy goods vehicles 

 Light goods vehicles 

 

ETM-UCL end-use energy demands that are associated with the energy used in the production of 

goods and services for intermediate consumption (rather than final energy consumption by 

households) can be matched to the IO sectors that describe those production activities. Note that a 

major exception is IO sectors that produce energy commodities (such as the IO sector “coke oven 

products”), since the demands for these commodities are produced endogenously by the energy 
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system model, rather than being an exogenous input. A sample of such a mapping process is shown 

in Table 3 (the full mapping is provided in the supplementary material). 

 

 
Table 3. Illustrative mapping of IO sectors to TIMES exogenous demand categories 

IO Sector TIMES equivalent demand 

Products of agriculture, hunting and related services Agriculture 

Products of forestry, logging and related services Agriculture 

Coal and lignite; peat N/A (demand created 

endogenously within TIMES) 

Leather and leather products Other industry 

Wood and products of wood and cork (except furniture); articles of 

straw and plaiting materials 

Other industry 

Pulp, paper and paper products Pulp & Paper 

Printed matter and recorded media Pulp & Paper 

Coke oven products N/A (demand created 

endogenously within TIMES) 

Nuclear fuel N/A (demand created 

endogenously within TIMES) 

Chemicals, chemical products and man-made fibers Chemicals 

Rubber and plastic products Chemicals 

Other non-metallic mineral products Non Metallic minerals 

Fabricated metal products, except machinery and equipment Other industry 

 

 

The second step is to calculate the share of intermediate consumption, for these aggregated sectoral 

categories, that is accounted for by the production of energy technologies for which IEFs are being 

derived. This step requires applying the ‘structural path analysis’ method. This is done to derive 

direct and indirect demands associated with the manufacture and construction of energy 

technologies, distributed across the industrial, service and transport demands in TIMES. Ideally, 

these indirect energy service demands should be calculated on an identical basis to the indirect 

carbon emissions that are represented by the indirect emissions factors.  

  

Finally, the third step is to reduce the energy service demands for each of the aggregated sectoral 

categories. If the share of total agricultural output used in the manufacture of energy technologies is 

1%, then the ‘agriculture’ demands in the TIMES model should be reduced by 1%, and so on with 

other sectors (see Table 4).   

 

The approach is based on a snapshot of the intermediate demands associated with the production of 

energy technologies at a given point in time. Note also that this approach makes the assumption 

that there is a simple linear relationship between demand for production for these aggregated 

sectors and energy demand.  
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Table 4. Energy service demands in TIMES attributable to the manufacture of energy technologies. NB: in the EEIO table, 
the ETM-UCL categories Iron & Steel and non-ferrous metals are represented by a single IO sector, ‘basic metals’. We 
assume that the share of demand of these sectors associated with energy technologies is the same. 

ETM-UCL demand sector Total use by sectors 
manufacturing 
power sector 
technologies (m€) 

Total use by all 
sectors at basic 
prices (m€) 

Share of 
total use 
that goes to 
power 
sector tech. 

Coefficient for 
energy service 
demands 

Agriculture                  223                 413,850  0.05% 99.95% 

Other industry              9,228             4,390,832  0.21% 99.79% 

Pulp & Paper                  169                 397,462  0.04% 99.96% 

Chemicals                  965                 917,922  0.11% 99.89% 

Iron & Steel; Non-ferrous              1,780                 359,346  0.50% 99.50% 

Services            14,717           13,589,209  0.11% 99.89% 

HGVs                  707                 497,000  0.14% 99.86% 

Aviation                    33                 125,193  0.03% 99.97% 

Shipping                  360                   98,369  0.37% 99.63% 

Non-metallic minerals              3,203                 216,489  1.48% 98.52% 

 

3.5 Limitations and simplifying assumptions 

 

3.5.1 Assumptions on decarbonization of energy technology manufacture 

In the real world, the IEFs associated with technologies are expected to decline over time, as both 

the economic structure and production processes change in response to decarbonization policies. It 

seems likely that decarbonization rates for the production of energy technologies are likely to be 

similar to those in other sectors. The analysis here explores both scenarios in which IEFs are 

assumed to be static across time (i.e. no technological change) and dynamic, in which IEFs decrease 

across time in a decarbonization scenario. The rate of decrease in IEFs is derived from the 

decarbonization rate of the TIMES industry sector in a model run that meets targets, i.e. the sectors 

producing energy technologies are assumed to decarbonize at the same rate as the rest of the 

industry sector. Further detail on these rates is given in the supplementary material.  

 

3.5.2 Geographic system boundaries 

The EEIO table used in this analysis is fully described in Usubiaga et al. (2017). It is a single region 

table covering all 27 countries of the EU (before the addition of Croatia). In estimating IEFs, Usubiaga 

et al. 2017 adopt the ‘domestic technology assumption’, i.e. they assume that production structures 

and technologies are identical globally. The IEFs thus include emissions from outside the borders of 

the EU, embodied in imported goods. This is a weakness of the current analysis, since it precludes 

strong conclusions about the importance of IEFs in the ability of the EU to meet targets3.   

 

                                                           
3 EU emissions targets are of course calculated on a production basis, not a consumption basis. However, if the 

indirect emissions associated with infrastructure can be estimated on a common geographic basis as production-

based emissions, then the relative importance of infrastructure-related emissions could still be used to inform 

analysis of carbon targets.  
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3.5.3 Sectoral coverage and model balancing 

In the current analysis, IEFs were applied only to power sector technologies, which creates an 

imbalance in the model, since other sectors do not generate indirect emissions. As a result, the 

interpretation of results must be avoid drawing conclusions that could be distorted by this 

imbalance. For example, drawing conclusions about the relative attractiveness of electric vehicles vs. 

biofuels in such a model would be unwise, since electricity will be effectively penalized by carrying 

the burden of indirect emissions, whereas biofuels would not. Ideally, a fully hybridized EEIO-ESOM 

model would include all indirect emissions factors for all technologies in the energy system model, 

including end-use technologies (lights, ovens, cars, etc.), conservation technologies (such as 

insulation) and upstream and industrial sector technologies (refineries, steel mills).  

 

3.6 Scenarios 

 

The first research question set out in the introduction is: In what ways does the inclusion of indirect 

emissions change the optimal abatement pathway? Addressing this question requires comparison of 

scenarios in which indirect emissions are included with those in which they are excluded, with 

various sensitivity tests to examine key uncertainties in both the time-path of indirect emissions, and 

the magnitude of emissions factors. The scenarios required to do this are presented in Table 5.  

 

 

 
Table 5. Summary of scenarios 

 

 

The high IEFs scenario examines the model’s response to higher indirect emissions, which is useful 

because of the considerable uncertainty in the estimation of the emissions factors. In addition, EEIO-

derived emissions factors exclude emissions associated with end-of-life and decommissioning 

processes. The resulting underestimation of the real values of indirect emissions across the full life-

Scenario names Description 

No IEFs 

Basic model run, with direct emissions constrained to meet carbon 

targets, but with indirect emissions not included in the scope of the 

emissions constraint.  

Constant IEFs 

As above, but with indirect emissions included in the scope of the 

emissions constraint. The IEFs used in this scenario are constant across 

time, based on the EEIO snapshot from the 2007 symmetrical EEIO 

table). 

Declining IEFs 

As above, but with declining IEFs, rather than static. In this scenario, 

IEFs are reduced according to the decarbonization trajectory of the ETM 

industry sector in the previous low-carbon runs) 

High IEFs  

 

This sensitivity scenario examines higher IEFs (five times higher than in 

the constant indirects scenario). Indirect emissions are included in the 

constraint in this scenario, and are constant over time.  
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cycle, though not expected to be large, provides a further rationale for sensitivity testing with 

inflated emissions factors. 

 

The second research question is: How much does the present value of key low-carbon technologies 

change, when indirect emissions are accounted for in a decarbonization scenario for Europe? 

Assessing the value of a single specific technology requires running scenarios in which that 

technology is excluded as an option, and comparing the total discounted system costs of that 

scenario with an equivalent scenario in which the technology is available to the model. The scenarios 

in which wind and solar PV are prevented from diffusing provide a way of estimating the change in 

value of the technologies to the energy system when indirect emissions are taken into account.   

 

Note that these scenarios, while exhibiting key differences, hold a number of common assumptions:  

- Energy service demands: The scenarios share common energy service demand projections, 

which are themselves based on projections for GDP, population growth and number of 

households. These values are taken from the IEA’s “Energy Technology Perspectives 2012” 

(ETP) for the European Union (IEA 2012).  

- Carbon targets: Low carbon scenarios in this study constrain the model to reduce GHG 

emissions by 80% below 1990 levels by 2050.  

- Exogenous fuel import prices: While the model generates prices of energy commodities 

within Europe endogenously, the rest-of-the-world prices (i.e. the price for imports into 

Europe of oil, coal and gas) are exogenous. In all scenarios, these prices are derived from the 

IEA ETP 2DS scenario prices for oil, gas and coal imports (IEA 2012). 

 

4 Results and discussion 

4.1 Research question 1: does the inclusion of indirect emissions change the optimal 

abatement pathway? 
 

Though the overall share of indirect emissions is relatively small in most scenarios (<10% of power 

sector emissions in the constant IEFs scenario), these additional emissions do result in changes in the 

optimal configuration of the power system – in particular in the sensitivity scenario with high IEFs. As 

expected, the overall power sector capacity is reduced when indirect emissions are included, and 

further reduced in scenarios with high IEFs. Recall that this is an expected result where the model is 

imbalanced (i.e. because indirect emissions have only been applied to the power sector).  

 

The changes that occur within the power sector itself are more interesting. When indirect emissions 

are included, the model responds by reducing the deployment of solar PV (see Figure 1). In the 

declining IEF case, in which IEFs are reduced over time, the optimal installed capacity of PV across 

Europe is around 30 GW less in 2050 than in a case in which indirect emissions are ignored. This is 

around a 7% reduction in cumulative installed capacity of PV in 2050—not dramatic, but certainly 

not negligible.  This result is unsurprising: solar becomes less attractive under a decarbonization 

scenario once it is no longer a zero carbon energy source. This effect is strongly observed in the high 

indirect emissions sensitivity scenario. 
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This pattern is similar for renewables as a whole: the impact of including indirect emissions results in 

a 4% reduction in renewable energy installed capacity in 2050 (ranging from 1% in the declining IEFs 

scenario to 27% in the high IEFs scenario). These results provide a quantification of the intuition that 

accounting for the full life-cycle of the infrastructure of energy technologies will reduce the apparent 

attractiveness of technologies that have zero emissions in the use-phase. It is worth noting that in 

the most plausible scenario (empirically derived indirect emissions that fall as the wider economy is 

decarbonized) the effect is small, both for renewables in general (1% reduction in cumulative 

installed capacity in 2050) and for PV in particular (a 7% reduction in 2050).  

 

 
Figure 1. Change in PV and Wind capacity relative to No IEFs scenario, in which indirect emissions are not constrained. A 
version of this figure showing absolute changes in GW is available in the supplementary material.  

 

The results are more interesting for wind. In 2030 the installed capacity of wind decreases between 

35 and 100 GW when indirect emissions are included (Figure 1). However, in 2050 the reduction in 

PV is compensated by increases in wind deployment at baseline indirect emissions factors. This 

occurs even when emissions factors are constant across the time horizon (which implicitly assumes 

that while the rest of the economy decarbonizes, the production of wind turbines generates 

identical indirect emissions in 2040 as it did in the EEIO base year of 2007).  This is a surprising 

finding: one would expect that adding indirect emissions to a zero-carbon technology would result in 

a decrease in its optimal levels of deployment in a carbon-constrained scenario, and that this pattern 

would be consistent across the model time horizon. Here, instead, the low-carbon technology 

portfolio shifts as a whole, such that the decline in PV is partially offset by relative increases in wind 

deployment. Wind also appears to be subject to a threshold effect in these 2050 results: in 

sensitivity runs with higher levels of indirect emissions, wind follows the pattern of PV and shows 

declines in deployment.  

 

One possible explanation for the reductions in PV shown in Figure 1 is that the addition of indirect 

emissions results in a reduction of power generation as a whole (for example, the model may use 
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less electricity in the transport sector, since the addition of indirect emissions to electricity will result 

in higher emissions burdens associated with electricity consumption). Thus the reduction in PV could 

be a response to a smaller overall power sector, rather than a result of the model preferring other 

power generation technologies over solar. This could occur if solar PV is the marginal technology 

that the model is deploying in order to meet power generation requirements. If that were the case, 

then when the overall power sector is reduced, solar PV would be disproportionately reduced. A 

similar effect might be expected to occur for renewable energy technologies on aggregate.  

 

In order to confirm that the reduction in the contribution of particular power sector technologies to 

the electricity generation capacity of the system under different scenarios is not solely due to the 

reduction in power sector capacity, we have also run scenarios in which power sector capacity has 

been fixed in all scenarios to the level found in the scenario without indirect emissions constraints. 

In other words, the model is forced to continue to use the same size of power sector across 

scenarios in these runs, and can only respond to the introduction of indirect emissions by changing 

the power sector technology portfolio. The results (shown in Figure 2) show that even under the 

same power capacity there is a change in the optimal power sector portfolio chosen by the model. 

The figure shows that the overall patterns remain unchanged, though the magnitude of the effects is 

reduced.  

 

 

 

 
Figure 2. Difference in capacity in the ‘constant IEFs’ scenario in 2050, relative to the ‘no IEFs’ scenario. The figure shows 
both the case in which power sector size is fixed, and when the power sector is allowed to shrink. A version of this figure 
showing absolute changes in GW is available in the supplementary material. 

 

 

 

In addition to altering the model’s choices with respect to installed capacity, the addition of 

capacity-related indirect emissions shifts the way in which power generation plants are used. As 

might be anticipated, in general dispatchable technologies have a higher load factor when indirect 
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emissions are included. This is illustrated in Figure 3, showing usage of Europe’s coal generating 

capacity in the high indirect emissions scenario and the scenario in which indirect emissions are not 

constrained.  

 

 
Figure 3. Load factor of European coal plant (%) 

 

Since the introduction of new power generation assets now results in indirect emissions, the model 

prefers to use existing assets more intensively. In the No IEFs scenario, coal fired power stations are 

being retired long before the end of their technical life, as it is techno-economically optimal under a 

carbon constraint to switch away from coal to other power generation options. In the High IEFs case, 

many of these coal plants remain operational, since shutting them down would require the 

construction of alternative power generation technologies, incurring indirect emissions. Moreover, 

the no IEFs scenario sees higher deployment of renewables, resulting in higher levels of part-load 

operation of coal-fired plants.  

 

A similar result is found across all dispatchable technologies: the lowest load factors are found in the 

scenario when indirect emissions are unconstrained. In scenarios where indirect emissions are 

constrained, the lowest load factors are found where the IEFs reduce over time, while the highest 

load factors are found in scenarios in which IEFs are highest.  

 

4.2 Research question 2: changing value of specific technologies 

 

ESOM analysis can be used to generate a direct measure of the value of a particular technology to 

the energy system (or, equivalently, the cost of excluding that technology from the energy system). 

Such measures can be used by policymakers to inform analysis of R&D portfolios and prioritization 

for energy innovation support. Here, we explore how the inclusion of indirect emissions effects the 

value to the energy system of solar PV and wind.  

 

In order to do this, scenarios were run in which PV and wind are excluded from the energy system. 

When a technology is excluded, the model must identify a replacement, and the additional cost of 

doing so is captured by differences in the total discounted energy system cost between the scenario 

in which the technology is available, and the scenario in which it is excluded.  
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When constant IEFs are included, the additional energy system costs in a scenario in which PV is 

excluded are $32bn. This rises to $41bn when indirect emissions are ignored. In other words, the 

present value of solar PV to the European energy system is $9bn less when indirect emissions are 

taken into account, a reduction of around 20%. Importantly, these numbers are based on a constant 

emissions factor that ignores the potential for the decarbonization of the sectors that produce 

energy technologies. When IEFs are reduced in line with industry sector emissions, the reduction in 

the net present value of PV arising from indirect emissions is halved, to $4.5bn. 

 

For wind, the findings are completely different. When indirect emissions are included, the 

deployment of wind is higher than when they are ignored, since higher levels of wind compensate 

for the reduction in solar PV. The value of wind is thus increased in a scenario in which indirect 

emissions are included, though the effect is small (less than 1%).  

 

5 Conclusions & limitations 
 

The analysis conducted here demonstrates the feasibility and value of incorporating indirect 

emissions into an energy systems optimization model. The analysis provides a novel perspective and 

highlights previously neglected issues. In particular: 

1. Indirect emissions are a relatively small portion of overall power sector emissions, but 

including them in the model leads to changes in the optimal power sector portfolio.  

2. Renewable energy technologies (with zero direct emissions) become relatively less attractive 

once indirect emissions are included within the optimization framework. However, the 

effect is not large (1% change in installed capacity in 2050 in the most plausible case, using 

empirically-derived IEFs and declining emissions factors).  

3. The changes to the relative attractiveness of specific renewable energy technologies are 

more pronounced than the reduction in attractiveness of renewable energy as a whole: In 

our main scenarios wind energy saw increased relative deployment by 3% in 2050 when 

indirect emissions are accounted for, since it displaced other technologies with higher life-

cycle emissions (notably solar PV, which had cumulative deployment 7% lower in 2050 when 

indirects were taken into account).  

4. The net present value of solar PV (a technology with zero direct emissions) is reduced by 

around 20% once indirect emissions are included within the emissions constraint; though 

this is subject to considerable uncertainty.  

5. The model responds to indirect emissions not only by adjusting the capacity mix, but also by 

changing the operational profile of dispatchable plants resulting in higher load factors when 

indirect emissions are taken into account.  

 

The results do not overturn the key insights of other attempts to evaluate the full life-cycle 

implications of long-term energy system scenarios. Renewable energy sources remain a key part of 

the optimal power sector mix, and contribute to a cost-effective decarbonisation of the European 

economy. However, the results do suggest that existing analytic tools, including the IEA’s Energy 

Technology Perspectives model, may overestimate the extent to which renewables contribute to a 

cost-optimal decarbonisation pathway.  
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The analysis shows that the results of ESOMs, which are widely used by policymakers to inform 

climate policy development (Chiodi et al. 2015), are influenced by assumptions about the relative 

burden of life-cycle emissions. While the effects are not large for most technologies, the results 

highlight that indirect emissions are not negligible for some technologies. Where ESOMs are being 

used to inform policy: whether informing long-term abatement strategies (e.g. Strachan et al. 2009), 

or technology-specific R&D policies (e.g. (LCICG 2014), analysts should ensure that results are robust 

to this effect.  

 

Several key assumptions must also be understood in interpreting our results. In particular, the scale 

of uncertainties in input assumptions is very large. This is true for the indirect emissions factors, 

which here consider both the domestic and nondomestic emissions – but no less true for other 

technology data, such as costs and efficiencies. Moreover, the model operates according to a linear 

optimization procedure across time horizons—it is not an accurate depiction of how energy systems 

evolve over time, but an illustration of what is technically possible and economically cost-optimal. 

The insights are in the comparison between scenarios and the relative orders of magnitude and 

types of dynamics, rather than the precise quantitative outputs.  
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