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Abstract 

Rh-doped and Rh/Sb codoped TiO2 and SrTiO3 powders have been synthesised by solid state 

reaction of the titanate with the appropriate dopant oxides. The resultant materials have been 

extensively analysed in order to elucidate their physical, electrical and optical properties in 

order to determine their characteristics as photocatalyst materials. Powder X-ray diffraction 

provided information regard phase purity of the samples and indicated that for SrTiO3, direct 

synthesis of doped materials from the titanate is not possible for total dopant concentration > 

1.5 mol. %. A preliminary study indicated that the Sb dopant oxidation state cannot be inferred 

from photoelectron core line position measured by X-ray photoelectron spectroscopy (XPS) 

and so X-ray absorption measurements were recorded in both cases. For TiO2 the presence of 

Sb (V) was strongly indicated both by the Sb K-edge energy and the EXAFS derived Sb-O 

bond lengths. In SrTiO3, due to the low concentrations of dopant ion, results were 

inconclusive. Since the existence of Rh4+/Rh3+ in these materials affects the Fermi level 

position, which is calibrated as 0 eV in XPS, careful handling of XPS data was required. The 

valence band and O 1s core line spectra were utilised to indicate the position of Fermi level in 

these materials. Transient absorption spectroscopy was used to probe the charge carrier 

dynamics of some selected materials and indicated that while the high dopant concentrations 

in TiO2 appeared to supress charge carrier formation and increase recombination, low 

concentrations of dopants in SrTiO3 show no negative effects with respect to pristine SrTiO3 

powder. 
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Chapter 1: Introduction 

1.1 General introduction and aims 

Water splitting is a potential route towards the clean production of hydrogen (H2), which has 

many vital uses for energy demand, for example it can be used as a fuel in an internal 

combustion engine or as an energy carrier in a hydrogen fuel cell1, 2. Photocatalysis, which 

relies on the absorption of light in order to catalyse a reaction, is one such viable route. This 

phenomenon utilises semiconducting materials to overcome the energy barrier to the water 

splitting reaction. This thesis presents the results of an investigation into the development and 

characterisation of materials used for photocatalytic water splitting. 

First, some background is given to illustrate the global need for a clean route to hydrogen 

production. Here the political demands and definitions are given, alongside a description of 

current hydrogen and alternative hydrogen production methods. A discussion of the 

requirements for a material to be suitable for photocatalysis follows. Semiconductor band 

theory and methods of altering the band structure of a semiconductor are described, alongside 

the general principles of photocatalysis using single materials and combinations of materials 

(Z-schemes). Finally a summary of the current research landscape is given in a literature 

review of studies relevant to the work completed in this thesis, regarding titanium dioxide and 

strontium titanate. 

Chapter 2 describes the synthesis methods used to make the photocatalyst materials and the 

theory behind the techniques used to analyse them. The materials investigated in this thesis 

are Rh/Sb doped TiO2 and SrTiO3, which have both been reported in the literature to exhibit 

photocatalytic activity for H2 production. The aim of this thesis is to investigate the possible 

reasons behind this observed activity in order to determine principles that could be applied to 

other materials and dopant regimes. It should be noted therefore, that the analysis of the 

materials produced for these investigations focuses heavily on their characterisation, rather 

than testing their photocatalytic activity which has been proven elsewhere. 

Chapter 3 describes a preliminary investigation using Sb oxides undertaken due to issues 

regarding the analysis of Sb dopant ions in TiO2 and SrTiO3. There are mixed opinions in the 

scientific community regarding the presence or absence of chemical shift in Sb XPS between 

the (III) and (V) ions. Since XPS was used widely in this thesis as a diagnostic tool to 

determine the presence and environment of dopant ions, it was important to understand how 
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Sb core-line spectroscopic data should be most appropriately handled. The results presented 

in this chapter provide the foundation for Sb XPS analysis in subsequent chapters. 

Chapter 4 describes an investigation into Rh-doped and Sb codoped TiO2. In this chapter, the 

effects of doping are described from a study of varying Rh concentration (1-9 mol. %) and 

varying Sb/Rh (Rh = 5 mol. %, Sb = 1-9 mol. %) dopant ratio. The characterisation aims to 

explain possible reasons for previously observed photocatalytic activity and to understand the 

interesting ways that the dopants in these materials change the electronic structure. 

Chapter 5 describes a similar study into Rh and Sb codoped SrTiO3. Here the effects of 

synthesis method are also investigated; the direct synthesis of SrTiO3 with dopant oxides is 

attempted, by comparison with the previously reported reaction of SrCO3 and TiO2 with 

dopant oxides. An interesting difference between the effects of Sb as a codopant on the 

electronic structure of SrTiO3 with respect to that of TiO2 is highlighted and discussed, 

alongside other similarities and differences between the two systems. 

Finally, Chapter 6 concludes this thesis, summarising the findings of all three results chapters 

in context of each other. 

1.2 The need for clean energy 

The drive towards a decline in the production of greenhouse gases and a reduction in the rate 

of global warming is a prevailing topic in governmental discussions across the world. At the 

35th G8 summit in 2009, EU and G8 leaders declared the aim to reduce greenhouse gas 

emissions by 80% (from 1990s levels) by 20503. In order to achieve this it will be necessary 

to move away from dependence on fossil fuels and towards cleaner forms of energy. 

Clean energy was defined by the U.S. Energy Information Administration4 as:  

1. “Electricity generated at a facility placed in service after 1991 using renewable 

energy, qualified renewable biomass, natural gas, hydropower, nuclear power or qualified 

waste-to-energy; and  

2. Electricity generated at a facility placed in service after enactment that uses qualified 

combined heat and power (CHP), generates electricity with a carbon-intensity lower than 0.82 

metric tons per megawatt-hour (the equivalent of new supercritical coal), or as a result of 

qualified efficiency improvements or capacity additions at existing nuclear or hydropower 

facilities. 

3. Electricity generated at a facility that captures and stores its carbon dioxide 

emissions.” 
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Electricity is a clean energy carrier (i.e. zero carbon emission in use), though some of the 

methods currently used to produce large scale electrical output use fossil fuels, like coal, oil 

and gas, that contribute immensely to the generation of greenhouse gasses, namely carbon 

dioxide (CO2). Data, published by the U.K. Department for Business Energy and Industrial 

Strategy and shown in Figure 1, illustrates the distribution of sources from which electricity 

was generated in the UK in 2011 and 20165. Over the five year span shown, use of renewable 

sources has more than doubled and reliance on coal has diminished to 4% from 29%. However, 

use of oil (and “other”) has remained the same and use of gas has increased by 4%.   

 

Figure 1: Electricity generation by fuel source from U.K. Department for Business Energy and Industrial Strategy 

Electricity is produced by using these fuels to heat water, creating steam to drive a turbine and 

convert this kinetic energy into electrical energy6. In addition to general electricity production, 

transport is another source of high demand for fuel. The majority of current automotive 

vehicles rely on the internal combustion engine, which burns carbon based fuel to drive pistons 

and generate kinetic motion. Projections across the globe agree that these methods are 

unsustainable with the latest predictions indicating that there could be a maximum of only 90 

years of energy production from conventional fossil fuel sources7. 

1.2.1 Hydrogen as a fuel 

One viable alternative to fossil fuel combustion is hydrogen gas (H2 (g)) as a fuel source. 

Hydrogen can be burnt in order to heat water and create steam, used in an adapted internal 

combustion engine 1, 8 or as an energy carrier in a hydrogen fuel cell 6.  

The product of hydrogen combustion in the presence of oxygen is water, as shown by the 

reaction in Equation 1. 
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2𝐻2 +  𝑂2  →  2𝐻2𝑂 

Equation 1 

If undertaken in air, as in an internal combustion engine, there are additional products such as 

nitrogen oxides (NOx) from reaction with nitrogen in the air and some carbon oxides (COx) 

and hydrocarbons from reaction with lubricating oils found inside the engine 2;  however, 

research is being undertaken in order to minimise these issues 9, 10.  

A fuel cell intakes hydrogen at the anode and oxygen (or air) at the cathode. Hydrogen is 

catalytically split into an electron and a proton, allowing the electron to create an electrical 

circuit before re-joining the proton at the cathode with oxygen, generating water 6. This type 

of fuel cell is already used in some vehicles 11, and plans to develop the hydrogen economy 

by introducing hydrogen fuelling stations are well underway in some locations, such as 

California12. 

1.2.2 Current methods of hydrogen production 

Current methods used to produce hydrogen involve the use of natural gas as a precursor. The 

main component of natural gas is methane (CH4) alongside smaller concentrations of larger 

hydrocarbons such as ethane, propane and butane. Trace amounts of nitrogen, carbon dioxide, 

sulphur and helium can be found in gas sourced from some regions and the general 

composition of natural gas varies from region to region13. Steam-methane reforming is the 

predominant method for the production of hydrogen in the current energy market14. Although 

the mechanism for the production of H2 from methane in this manner is complex and widely 

unknown, research into the rates of formation of the products has been based upon the 

following reactions15: 

𝐶𝐻4 (𝑔) + 𝐻2𝑂(𝑔)  →  𝐶𝑂(𝑔) +  3𝐻2 (𝑔) 

Equation 2 

𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔)  →  𝐶𝑂2 (𝑔) +  𝐻2 (𝑔) 

Equation 3 

Overall, 

𝐶𝐻4 (𝑔) + 2𝐻2𝑂 (𝑔)  →  𝐶𝑂2 (𝑔) +  4𝐻2 (𝑔) 

Equation 4 

It can be easily concluded that CO2 is a major by-product from the production of H2 from 

methane. A major concern regarding steam methane reformation is the reliance on fossil fuels. 

Whilst hydrogen as a fuel itself only produces water as a by-product, there is inevitably 

production of carbon oxides when it originates from carbon based sources, which contribute 
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as greenhouse gases to climate change. Thus the search for a viable clean alternative method 

of hydrogen production is a vital area of research. 

1.2.3 Water Splitting 

Water splitting is an endothermic reaction (Equation 5) and can be expressed as its redox 

components shown in Equation 6 (oxidation) and Equation 7 (reduction). 

2𝐻2𝑂 → 2 𝐻2 + 𝑂2   

Equation 5 

2 𝐻2𝑂 ⟶  𝑂2 + 4 𝐻+ +  4 𝑒−      (1.23 𝑒𝑉) 

Equation 6 

2 𝐻+ + 2 𝑒−  ⟶  𝐻2      (0.00 𝑒𝑉) 

Equation 7 

As can be deduced from the above reactions, four electrons are required per two water 

molecules to successfully split them into two hydrogen molecules and an oxygen molecule, 

with the overall potential of the reaction measuring -1.23 eV. The energy required to split 

water can be provided in different forms; an overview of notable methods follows. 

1.2.3.1 Thermal Decomposition 

Dissociation of water into various combinations of its component parts (H2, O2, H2O2, H, O 

etc.) occurs at temperatures above 2000˚C16. Since many other industrial processes occur at 

similarly high temperatures, this has been considered as a potentially viable form of hydrogen 

production. Two main issues surround this method: separation of the products and the low 

mole fraction of H2 that is formed.  

One solution is to incorporate filtration membranes in the reactor 17 to collect H2 as it is 

formed, however these tend to decompose when in contact with water at high temperatures 18. 

Another solution is to rapidly quench the hot reaction mixture; however, since this essentially 

suspends the process, the low mole fraction of H2 available limits the efficiency of this method. 

Only around 4 % of the mixture is H2 19, hence the yield is poor.  

1.2.3.2 Photobiological Decomposition 

The use of biological organisms in order to generate hydrogen was first experimented with in 

1942, where research focussed on green algae which could ferment hydrogen under a nitrogen 

atmosphere 20. The key component of the green algae is the enzyme hydrogenase which has 

been determined as important to photosynthetic electron transport in the cells 21. These systems 
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use light to convert water into oxygen and hydrogen following a complex biological pathway 

much the same as photosynthesis in plants. 

A limitation of green algae is its low capacity for hydrogen production, which does not show 

improvement with increasing light intensity. A competitive pathway for the involved electrons 

exists, whereby they are able to be employed in CO2 fixation, and furthermore a back reaction 

between H2 and O2 is facilitated in the absence of light 22.  

1.2.3.3 Electrochemical Decomposition 

Following the findings of Henry Cavendish in 1784 that an electrical spark would cause H2 

and O2 to combine and form water23, the reverse reaction was observed and water electrolysis 

using a battery to evolve H2 and O2 first reported  the early nineteenth century24, 25.  

 

Figure 2: Schematic of photoelectrochemical cell setup showing the water splitting half reactions 

A common electrochemical setup is shown in Figure 2, where evolution of H2 and O2 is driven 

by the electrical current provided by a cell. Two electrodes are submersed in electrolytic 

solution, providing a source of water and electrolytes to carry charge and complete the circuit. 

The source of electrical energy in this kind of setup is the cell, which can be a conventional 

battery but could also be a photovoltaic, whereby electrical energy is generated by the 

absorption of light. When a photovoltaic is used, the system can be termed 

photoelectrochemical. 

1.3 Principles of Photocatalysis 

Light induced water splitting was first achieved in 1972 by Fujishima and Honda26 with their 

photoelectrochemical cell containing a TiO2 electrode  at which water oxidation occurs and a 

Pt counter electrode at which H+ reduction occurs. Light absorbed by the TiO2 photoelectrode 

enabled the electrical requirements of the electrochemical cell to be reduced, since the 

absorbed light energy was facilitating part of the reaction. Following this discovery light 
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induced water splitting became highly researched in the literature, as can be seen in the citation 

report in Figure 3, which was generated from a literature search for the phrase “solar water 

splitting” through the Web of Science search engine on 04/02/2017.  

 

Figure 3: Citation report for articles resulting from a Web of Science search using the term “solar water splitting” 

Photocatalytic water splitting differs from that discovered by Fujishima and Honda in that all 

of the energy requirements for the reaction are satisfied by the absorption of light. This 

requires photocatalyst materials to fulfil certain electronic requirements, which are outlined in 

the following sections. The band theory of semiconductors, the materials used for 

photocatalysis, is described in order to lay foundations for further discussion of the 

requirements for a material to be a successful photocatalyst. 

1.3.1 Basic semiconductor Band Theory 

The general electronic structures of a conductor, semiconductor and insulator are shown in 

Figure 4. In contrast to a simplistic molecular model whereby distinct orbitals are occupied by 

single or paired electrons, a solid material with an extended crystal structure possesses “bands” 

of orbitals, contributed to by molecular orbitals of the atoms making up the structure that are 

very close in energy. These bands are termed the “valence band” (VB), a lower energy band 

of orbitals containing the valence electrons of the structure and the “conduction band” (CB), 

a higher energy band of orbitals through which electrons can move more freely, allowing 

conduction to occur27. The energy difference between the valence band maximum (VBM) and 

the conduction band minimum (CBM) is termed the band gap (Eg) and is of primary 

importance in both classification of materials and when choosing a semiconductor for 

photocatalysis. 
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Figure 4: Band structure schematic for conductors, semiconductors and insulators 

In a conductor, substantial overlap between the CB and VB means that the CB is partially 

occupied and thus a proportion of electrons can move freely throughout the solid. In contrast, 

an insulator has a large band gap meaning that electrons cannot be excited into the CB, which 

remains empty. Semiconductors can be defined as having a band gap of between 0.5-4 eV28. 

In a semiconductor the size of the band gap is such that electrons can be excited from the VB 

to the CB upon absorption of energy. The excitation of a negative electron leaves a net loss of 

charge from the VB which is then described as having a positively charged “hole” (h+). The 

electron and hole are termed “charge carriers”; their generation, mobility and lifetimes are of 

the highest importance in semiconductor catalysis. 

Defects in semiconductors 

A semiconductor with a perfect crystal structure is termed “intrinsic” where the number of e- 

and h+ are equal. Semiconductors that differ from their pure form are “extrinsic”, where either 

the e- > h+ (n-type) or e- < h+ (p-type). Semiconductors can be doped to form n-type or p-type 

materials by introducing donor or acceptor impurities, respectively. The introduction of donor 

states just below the CB means that small amounts of thermal energy (i.e. room temperature) 

can cause an electron to move into the CB, leaving behind an oxidised donor ion. For example, 

the introduction of Ti3+ into a TiO2 lattice has this effect. The singly occupied Ti3+ 3d orbitals 

lie just below the CB minimum (CBM)  in TiO2, injecting electrons into the CB and resulting 

in the formation of Ti4+, which is then stable in TiO2. In p-type doping an acceptor state is 

introduced close to the VB maximum (VBM) such that electrons from the VB can be thermally 

excited at room temperature into these acceptor states and thus leave a hole behind. 

In practice, most materials are extrinsic semiconductors due to inherent defects that cause 

them to be n- or p-type. The Fermi level can be considered to be a hypothetical energy level 

that, at thermodynamic equilibrium, has a 50% probability of being occupied by an electron 

at any given time 27. In an intrinsic semiconductor this would lie exactly ion the middle of the 
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band gap, since there are equal number of electrons and holes. However, in extrinsic 

semiconductors the position of the Fermi level, EF, is dependent on the nature of the 

semiconductor. An n-type semiconductor will have an EF close to the CBM, due to the donor 

states which are able to inject electrons into the CB and a p-type semiconductor will have an 

EF close to the VBM, due to the acceptor states present there.  

The band diagrams for p- and n-type semiconductors are shown in Figure 5 below.  

 

Figure 5: Schematic band diagrams for p-type and n-type semiconductors 

Band bending and Fermi level equilibration 

Combining two semiconductors via a physical interface (a heterojunction) results in 

equilibration of the Fermi levels across the junction; the EF must be the same throughout the 

material. Equilibration of the Fermi level occurs by “band-bending” at the interface. A p-type 

semiconductor, placed in contact with an n-type semiconductor forms a p-n junction, which is 

a simple example of when band bending may occur.  

In a heterojunction the alignment of the CBM and VBM of the two materials is important. In 

order to know the relative positions, these values are measured with respect to the vacuum 

level, that is, the energy of a free electron (outside of the semiconductor) at rest, with respect 

to the semiconductor. Thus the alignment of semiconductor band edges is dictated by the 

electron affinity. When combining materials in a heterojunction, different alignments of VBM 

and CBM are of course possible. These can be classified into three types: type I (straddling 

gap), type II (staggered gap) and type III (broken gap), which are illustrated in Figure 6. 

 

Figure 6: The three types of heterojunction interface type I (straddling gap), type II (staggered gap) and type III 

(broken gap) 
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When p-type and n-type materials are combined, electrons move across the junction from n-

type to p-type material, combining with positive ions (holes). Thus a layer depleted of charge 

carriers forms around the junction, called the depletion region denoted between -xp and xn on 

Figure 729. The ionised donors and acceptors in the depletion zone have charge, causing an 

intrinsic electrical field and thus a drift of charge carriers in the opposite direction. This 

diffusion of carriers continues until the drift current balances the diffusion current, thereby 

reaching thermal equilibrium as indicated by a constant Fermi level29.  

 

Figure 7: Band-bending diagram for a p-n junction, showing the depletion zone between -xp and xn. 

Heterojunctions are of importance in photocatalysis due to the intrinsic field they produce and 

its effect on charge migration, an essential factor in photocatalytic activity. In-depth 

understanding of the electronic structure of photocatalytic materials, in order to maximise their 

effectivity is therefore an essential part of photocatalysis research. 

1.3.2 Principles of photocatalytic water splitting 

Photocatalysis involves the absorption of light to reduce the energy requirement of a reaction. 

A photon of light, hν, is absorbed by an electron in the VB of a material, resulting in 

photoexcitation of the electron into the CB and formation of a positively charged hole in the 

VB. This photoexcitation process is shown schematically in Figure 8. Once generated, the 

electron and associated hole can go on to catalyse redox reactions for molecules adsorbed to 

the surface of the semiconductor material 30.  
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Figure 8: Photoexcitation of an electron and consequential formation of a photogenerated hole in a semiconductor 

An excited electron and hole proceed via any of the following pathways: 

i. Recombination 

ii. Migration to surface where they can: 

a. Recombine 

b. React with adsorbates (which can potentially back-react with the semiconductor) 

Charge carrier migration is therefore a very important factor within photocatalysis. Charge 

carriers must be able to reach the surface of the material in order to have the opportunity to 

react with any adsorbed molecules. Once at the surface, the e- and h+ must have enough 

potential to partake in the water splitting redox reactions. This translates to the band edge 

requirement that the CBM must be more negative than the potential for H+ reduction (0.00 eV 

vs NHE) and the VBM must lie more positive than the oxidation potential of H2O to O2 (+1.23 

eV vs NHE). That is, the band edges of the photocatalyst must straddle the redox potentials 

(see Figure 9)31. The band edges of WO3, shown in Figure 9, only straddle the water oxidation 

potential and therefore cannot be used for overall water splitting alone but can be combined 

with another material capable of H+ reduction. The combination of materials in this way will 

be discussed in section 1.3.2.1.  

In order to achieve excitation of an e- from VB to CB, the energy of an incident photon must 

be equal to or greater than the band gap of the semiconductor. Therefore, the size of the band 

gap is equal to the minimum energy necessary for photoexcitation to occur using that material. 

This energy requirement is related to light wavelength by the following: 

𝐸𝑔 =
ℎ𝑐

𝜆
 

Equation 8 

where Eg = band gap energy, h = Planck’s constant, c = speed of light (and thus the constant 

hc = 1239.8417 eVnm) and λ = wavelength of incident light. Using the known potentials of 

H+ reduction and water oxidation, it can be determined that the minimum energy required to 

split water can be satisfied by light of wavelength ~1008 nm (if Eg = 1.23 eV), which correlates 
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to the infrared (IR) region of the electromagnetic (EM) spectrum. However, since some 

activation energy is still required for the reaction to initiate32, the ideal band gap for a single 

material to be able to achieve overall water splitting is usually cited as ~1.5 eV, with band 

edges slightly outside of the redox potentials of water splitting, as shown by the ‘ideal 

position’ marker in Figure 933. 

 

Figure 9: Band edge positions and band gap values for some key semiconductors alongside the ideal position for 

semiconductor band edges for water splitting 

The band gaps of stable semiconductors tend to be wider than this ideal energy; many 

photocatalysts are only effective under ultraviolet (UV) light which lies at the higher energy 

end of the electromagnetic spectrum. UV light accounts for only 4-5 % of solar radiation that 

reaches the earth’s surface, whereas visible light accounts for around 40 % of solar photons 

34; hence there is a drive in current photocatalytic research to find stable narrower band gap 

semiconductors that can utilise visible light (λ = 400-700nm). Such materials could increase 

the efficiency of the photocatalytic processes since a greater range of wavelengths of incident 

light would be effective in photogeneration of charge carriers. Many semiconductor 

conduction band edges lie close to the reduction potential for H+, though the valence band 

edges are far from the oxidation potential for H2O; a common approach to band gap reduction 

is therefore to alter the valence band in some way to bring the VBM to a less positive potential, 

whilst maintaining its position as positive with respect to the water oxidation potential. 

As mentioned, recombination of electrons and holes in the bulk of the catalyst is an alternative 

mechanism available to compete with the desirable redox reactions. Whilst a certain 

proportion of photogenerated electrons and holes are expected to recombine, a high 

recombination rate (often described as short charge carrier lifetime) negatively affects the 

efficiency of a photocatalyst. Prevention of recombination involves promoting charge 

separation, which can be achieved by introducing electron or hole scavengers (other species 
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that react with e- or h+
 and can then go on to react with the desired oxidant or reductant) or by 

improving charge carrier separation to prevent recombination. If the concentration of charge 

carriers is too high with poor charge separation, recombination is facile; if the concentration 

of charge carriers is too low, catalysis is slow35. Therefore, charge carrier generation alone 

cannot ensure an effective photocatalyst.  

Long term stability of materials must be a consideration when designing photocatalysts. 

Photocorrosion is an issue most associated with cadmium sulfide (CdS), though other 

promising semiconductors (for example ZnO36, AgNO3
37) can also be prone to it. Using CdS 

as an example, the catalyst is degraded by photogenerated holes by the following pathway: 

2h𝑣𝑏
+ + 𝐶𝑑𝑆 ⟶  𝐶𝑑2+ + 𝑆 

Equation 9 

In the case of CdS it is believed that this mechanism is promoted by traces of cadmium oxide, 

which can be minimised if the synthesis is carried out in the absence of air38. As well as 

photocorrosion, other catalyst degradation pathways can be problematic, for example Cu2O 

possesses an ideal band gap for proton reduction, but is susceptible to oxidation and thus its 

efficiency diminishes over time. 

Stability in water and under light, charge carrier lifetime and band edge alignment are some 

of the difficulties that must be overcome when designing a photocatalyst system. Synthesis of 

functioning photocatalysts requires thoughtful design and comprehensive knowledge of the 

properties of the materials being used. 

1.3.2.1 Z-schemes 

An alternative to the search for a single material for overall water splitting is the Z-scheme. 

This involves a combination of two semiconductor photocatalysts, one able to catalyse 

oxidation of water and the other proton reduction. This two-step photoexcitation mimics the 

photosynthesis pathway found in plants, in that there are two redox centres at which each 

process occurs upon the absorption of a photon39.  

In photosynthesis, upon the absorption of a photon of solar light (hν) photosystem II (PS II) 

oxidises water, receiving the resultant two electrons and promoting them to a higher energy 

state. Charge transfer occurs between the elevated PS II electrons into the lowest photosystem 

I (PS I) state. Absorption of a secondary photon occurs and the electrons are elevated to the 

PS I high energy state, at which they have enough energy to facilitate the production of ATP 

and NADPH- the energy carriers in green plants40. 
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Figure 10: Electron pathway in photosynthesis of green plants using photosystems I and II 

The Z-scheme works in much the same manner, the O2 evolution photocatalyst being 

equivalent to PSII and the H2 evolution catalyst being equivalent to PSI. In a Z-scheme the 

charge transfer process, which in photosynthesis happens across a complex pathway of 

proteins41, can be mediated by a redox couple such as IO3
-/I-. These redox couples can be 

generalised as an electron donor (Y) and an electron acceptor (X), as in Figure 11. At the 

hydrogen evolving catalyst, Y can be oxidised to X (“Y+”), while H+ is reduced to H2, 

conversely at the oxygen evolving catalyst, X is reduced to Y (“X-”) while H2O is oxidised to 

O2 and H+. 

 

Figure 11: Schematic representation of Z-scheme photocatalysis showing A: single material photocatalysis, B: 

water oxidation catalyst, C: hydrogen reduction catalyst (where B+C together are mediated by two different ion 

pairs X/X- and Y/Y+) D: where B+C together are mediated by one ion pair 

Back reactions of interconversion between A and D can serve to inhibit the forwards water 

splitting reactions and so it is important to regulate the reactions that will occur by careful 

design of the z-scheme. The redox mediator must be preferentially reduced on the water 

oxidation catalyst and preferentially oxidised over the proton reduction catalyst for the system 

to proceed successfully. Redox potentials of all components must therefore be carefully tuned 

in order to complement each other. 
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Z-schemes can be formed by simply combining both the reduction and oxidation catalyst 

together in solution and using a redox mediator to shuttle electrons between the two, or by 

forming a direct contact between the two materials42. This second option forms a 

heterojunction, described previously in section 1.3.1. Due to the field created at the junction 

interface, heterojunction Z-schemes can offer enhanced charge separation, lengthening charge 

carrier lifetimes and thus improving the efficiency of the photocatalysts. Another advantage 

of Z-schemes over single material photocatalysts is the wide range of materials that are 

available to be used. When both the redox potentials of water must be straddled, the band 

edges of potential photocatalysts must be very specific, however, when only one or other 

potential needs to be straddled, many more materials, in different combinations can be 

combined. Additionally, because of the separation of the two parts of the reaction, materials 

with band gaps < 1.23 eV can be experimented with. A disadvantage of Z-scheme systems is 

that the quantum efficiency is immediately halved with respect to a single-step photocatalyst, 

since two photons are required to do the job of one photon in the single-step system. However, 

due to the low efficiencies experienced by single- material photocatalysts Z-schemes offer an 

interesting alternative solution. 

Initially, research naturally focussed on the combination of two TiO2 materials (one anatase, 

one rutile) assisted by Pt co-catalysts as a z-scheme system 43, though visible light active 

systems are of higher interest since both anatase and rutile are only active in the UV region of 

the EM spectrum. Strontium titanate is another wide band gap semiconductor that has been 

observed to exhibit visible light activity when doped and can be used for H2 evolution44.  A 

number of co-catalysts have been tested alongside doped STO; for example rhodium doped 

SrTiO3 with a ruthenium cocatalyst (Ru/SrTiO3:Rh) found to be an effective system for H2 

production (with WO3 as the O2 catalyst throughout comparisons)45. In this investigation by 

Sasaki et al. the difference between photodeposited Ru metal and impregnated RuO2 was 

examined due to a large discrepancy between the activities of the two systems. It was found 

that impregnated RuO2 is not an effective co-catalyst and that, since metallic Ru is oxidised 

once deposited, is most likely due to the poor dispersion of RuO2 throughout the SrTiO3.  

For many z-schemes the I-/IO3
- redox couple has been used as a mediating pair to shuttle 

electrons between catalysts. An alternative mediatory couple is Fe2+/Fe3+, which can be 

included in solution as FeCl2
46. Some investigations report that the reduction of the mediator 

can proceed preferentially to water reduction at high concentrations47. In order to prevent this 

and other undesirable side effects of mediators (i.e. shielding the catalysts from incident light) 

investigation into systems that can split water under visible light using only the catalysts has 

been undertaken. Sasaki et al. determined that it is possible to split water stoichiometrically 
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across Ru/SrTiO3:Rh and two different O2 evolution catalysts (BiVO4, WO3) as long as the 

materials were in contact with each other as well as the reaction solution48.  

1.4 Titanium Dioxide  

Titanium dioxide (TiO2) has been investigated heavily for its light harvesting properties. The 

low cost, low toxicity and stability- both chemically and thermally- make it an ideal material 

in many applications. 

1.4.1 Crystal Structure 

Three polymorphs exist: rutile, anatase and brookite. Rutile is the most thermodynamically 

stable and brookite has not been as actively investigated as the other polymorphs due to its 

relative thermodynamic instability49-51. The Gibbs free energy change between rutile and 

anatase is small (< 15 kJmol-1) and rutile beings to form at 400 – 600 ˚C52. All three 

polymorphs consist of octahedra containing a Ti4+ cation coordinated to six O2- anions. Chains 

of octahedra are connected via edges in rutile, vertices in anatase and both edges and vertices 

in brookite- shown in Figure 1253. 

 

Figure 12: Structures of anatase54, rutile55 and brookite56 TiO2  

TiO2 is easily reduced, with bulk reduction causing a characteristic colour change in thin films, 

from transparent to blue57. Diffusion of defects from the bulk to the surface can greatly affect 

the surface structure; the diffusion pathways for different defects vary; O defects generally 

migrate by vacancy diffusion and Ti defects interstitially. Relaxations of a lattice change the 

structure of the surface, affecting adsorption and catalysis rates; adsorbates can have the 

corresponding effect of “re-relaxing” the surface58. 
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Anatase and rutile surfaces differ in a number of ways. Their most thermodynamically stable 

faces are (101) and (110), respectively. Scanning Tunnelling Microscopic (STM) images of 

the (110) rutile face, revealed alternating rows of titanium and oxygen ions59. The following 

atoms exist at the surface: five-fold coordinated titanium with a dangling bond, in-plane three-

fold coordinated oxygen, six-fold coordinated titanium connected to bridging oxygen. The 

coordinative unsaturation of bridging oxygen atoms makes their removal facile58. By 

comparison, the anatase (101) surface has pm symmetry, which gives rise to preferential 

orientation of step-edges. Here there are five and six-fold coordinated titanium atoms in the 

terraces, with four-fold titanium and two-fold oxygen atoms at the step edge60. 

Oxygen vacancies- a common defect in TiO2- leave an accumulation of electrons in the TiO2 

lattice making it an n-type semiconductor. These vacancies can be created by electron 

bombardment, followed by interatomic Auger process or by thermal annealing. Resultant 

defects differ depending on their formation method, the former process tending to give rise to 

ejection of bridging oxygen, whereas the latter removes two-fold coordinated oxygen atoms61. 

This is an accessible method of tuning the lattice since these vacancies can easily be refilled 

by thermal treatment under oxygen. 

Studies have determined that oxygen defects in the anatase (101) surface are energetically 

unfavourable in comparison to vacancies in the bulk62. This suggests that, since atoms can 

only leave a material via a surface, oxygen dissociates from the surface and the vacancy 

subsequently migrates into the lattice. This phenomenon is linked to the stability of the 

remaining Ti atoms; an oxygen defect leaves one five-fold coordinated and a second, highly 

unstable, four-fold coordinated Ti3+ at the surface, whereas in the bulk all Ti3+ are five-fold 

coordinated and thus stable 

1.4.2 Electronic Structure 

There is widespread agreement that the electronic structure of bulk TiO2 and surface TiO2 is 

similar63. The valence band of TiO2 is constructed mainly of O 2p orbitals, with a significant 

amount of Ti-O covalence63. Ti 3d orbitals dominate the conduction band though there is some 

contribution from Ti4s and Ti4p orbitals at higher energy levels.  

Crystal-field splitting of the conduction band d-orbitals occurs due to the octahedral 

coordination around Ti4+. The direct interaction of oxygen ligands with eg orbitals causes these 

to exist at a higher energy and form σ-type bonds. At lower energy, due to orbitals pointing 

between ligands, the t2g levels form π-type bonds with the remaining oxygen atoms.  
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Clearly the electronic structure is influenced by the positions of individual atoms in the lattice 

and so variations in crystal structure can affect the band positions. 

1.4.3 Modifying TiO2 to improve its photocatalytic activity 

Although there are examples of photocatalytic TiO2 in commercial applications (for example 

self-cleaning surfaces64) in order to extend their activity to the visible light region, 

modifications must be made to the electronic structure. One of the most active fields of 

research with respect to TiO2 modification has been doping. Both anions and cations can be 

incorporated into TiO2, in either a substitutional or interstitial manner. If the size of anion or 

cation is similar to that of Ti4+ or O2-, respectively, then a substitutional mechanism will 

predominate. Conversely, if the dopant ion is much smaller then they will lie in the interstitial 

space between the main lattice ions65. The addition of different elements into the crystal 

structure incorporates their accessible electronic states; the VBM position can change to red 

shift the band gap (i.e. make it smaller narrower and thus able to usefully absorb lower energy 

light). Alternatively, isolated but accessible intra-band energy levels can be created. 

Transition metals have been successfully doped into TiO2, iron 66, cobalt 67, copper 68 and 

manganese 69 being some examples. The main function of transition metal doping is to 

increase the light absorbance into the visible range by inserting donor/acceptor states into the 

band gap. The dopant d-electrons can inject into the conduction band by absorbing lower 

energy light than required for the VB → CB transition70. However, the transition metal dopant 

ions can act as electron or hole traps (by the mechanisms shown in equations 10, 11 and 12, 

for example), which promote recombination and decrease photocatalytic activity70. 

𝐶𝑟3+ + ℎ+  → 𝐶𝑟4+ 

Equation 10 

𝑀𝑛2+ +  𝑒−  →  𝑀𝑛+ 

Equation 11 

𝑀𝑛2+ +  ℎ+  → 𝑀𝑛3+ 

Equation 12 

Rare earth metals including Yttrium 71, Praseodymium, Lanthanum, Cerium, Neodymium, 

Europium, Dysprosium, Gadolinium 72 and Holmium 73 have been incorporated into TiO2 and 

analysed for their photocatalytic properties. Improved photocatalytic activity is observed and 

attributed to the 4f orbitals of the rare earth dopants, which are partially occupied70. This 

results in a red shift of the band gap, increasing the visible light activity. Additionally, with 

the incorporation of lanthanum, for example, a decreased particle size and increase in particle 
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uniformity is observed74. A resultant increase in photocatalytic activity can be ascribed here 

to increased adsorption due to larger specific surface area. 

Of all non-metals that have been investigated as dopants, nitrogen is by far the most prolific 

in literature, though carbon 75 and sulfur 76 have also received attention. Nitrogen doping, 

originally investigated by Asahi et al.77 has the effect of increasing visible light absorption and 

thus increasing photocatalytic activity by improving quantum efficiency. The original 

researchers suggested that doping results in mixing of oxygen and nitrogen 2p valence states 

and that since N2p states lie more positive than O2p the absorption edge is red-shifted. 

However, following this study there has been much debate in the literature as to the source of 

this increase in activity. An alternative explanation is that intra-band states are created by the 

nitrogen dopant ions and that oxygen defects in the lattice (doped or otherwise) give rise to 

colour centres (also intra band states) that photoactivate TiO2. 65 Both experimental analysis 

and computational calculation appear to point toward the latter explanation 78; defect tailoring 

could become an important area of future research. 

Usually there is an optimum doping concentration, below which the effects of the dopant are 

minimal and above which degradation of the catalyst or higher rates of recombination can 

occur79, 80.  However, as noted by Daghrir et al.81, variances between synthesis techniques 

make it difficult to directly compare different TiO2 dopants.  

1.5 Strontium Titanate 

1.5.1 Crystal structure 

Strontium titanate crystallises in the cubic perovskite structure, ABO3 (space group Pm3m) 

with Sr2+ and Ti4+ ions on the A and B site respectively. A central Ti4+ ion is coordinated 

octahedrally to 6 O2- ions (on each face of the unit cell), with Sr2+ ions situated at the vertices 

of the cubic unit cell. Each Sr2+ ion is thus 12 coordinated to O2- ions.  

 

Figure 13: SrTiO3 cubic perovskite crystal structure with a central Ti4+ ion (blue) octahedrally coordinated to 6 O2- 

ions (red) and Sr2+ ions (green) situated on the unit cell vertices 
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At low temperatures or when doped, the structure of SrTiO3 can become distorted due to the 

size of a dopant ion, non-stoichiometry or the Jahn-Teller effect. 

1.5.2 Electronic structure 

The valence band of SrTiO3 is made up mainly of O 2p states82, 83, which overlap considerably 

with Ti 3d orbitals and therefore there is a high degree of covalence between Ti and O ions in 

the structure. By contrast Sr 2+ and O2- exhibit more ionic character84. The conduction band is 

made up mainly of Ti 3d-orbitals82; the bulk electronic structure is highly comparable to that 

of TiO2. 

Eglitis et al. determined that the surface electronic structure of ABO3 perovskites could differ 

from that of the bulk. Building on work by Erdman et al.85, they determined from ab initio 

calculations of the SrO-terminated (001) surface that O 2p electronic states did not contribute 

to the VBM, with VBM consisting mainly of central oxygen orbitals in this case, whereas the 

TiO2 terminated surface retained its O 2p contribution83. This surface termination of SrTiO3 

is an important factor in design of photocatalysts based on this structure. Work by Kawasaki 

et al. has shown that surface preparation to selectively etch the SrO layer can be undertaken 

and may enhance adsorption of reactants molecules86.  

The predominant intrinsic defects in SrTiO3 are Sr and O vacancies; Ti vacancy formation has 

a high energy barrier and therefore are seldom found in this material87. Dopant ions can alter 

the electronic structure of SrTiO3 by introducing additional states or by increasing the number 

of intrinsic defects for the purpose of charge compensation. 

1.5.3 Modifying SrTiO3 to improve its photocatalytic activity 

Strontium titanate has been less intensely investigated for its photocatalytic properties than 

TiO2, despite their similar physical and electronic properties. However, these similarities mean 

that research into band gap modification has followed a similar path to those used with TiO2 

and doping has been an effective strategy for extending the photocatalytic activity of SrTiO3 

into the visible light region.  

B-site doping with Cr, Ru, Rh, Mn and Ir has been shown to introduce in-gap states to 

effectively reduce the energy requirement for photoexcitation. Doping SrTiO3 can make it 

effective for O2 evolution or for H2 evolution and has shown reasonable activities with a 

number of metals including Cr, Mn, Rh, Ir and Ru88-92. Thus SrTiO3 can be used as the basis 

material for both sides of a Z-scheme. This has been achieved by Hara et al. who doped SrTiO3 

with V/Na and Rh to evolve O2 and H2 respectively.  This system achieved stoichiometric gas 

evolution (2:1 ratio of H2:O2) under visible light using IO3
-/I- as a redox mediator93. 
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Rh-doping in SrTiO3 has been of particular interest to enhance its activity for use as a H2 

evolution catalyst in a Z-scheme. In a number of studies it has been paired with BiVO4, WO3, 

AgNbO3, Bi2MoO6 as O2 evolving catalysts; its combination with BiVO4 has been shown to 

be particularly effective for overall water splitting, achieving quantum yield of .6 % under 420 

nm light. Synthesis method has been shown to be particularly important when making Rh 

doped SrTiO3 catalysts and the use of excess Sr for hydrothermal synthesis allowed improved 

apparent yield with respect to stoichiometric reactant amounts.  

Lanthanum doping, where La substitutes the A-site, has also been investigated. A study 

combining La-Cr doped SrTiO3 and La-Cr doped Sr2TiO4 also showed visible light activity 

for H2 evolution. Codoping Rh:SrTiO3 with La has been determined by density functional 

theory to passivate localised mid-gap states and supress formation of oxygen vacancies 

thought to inhibit photoactivity in Rh doped SrTiO3
94.  

1.8 Principles of Solid State Synthesis 

Solid state synthesis is a widely used technique for the fabrication of solid polycrystalline 

materials; powders are ground together and heated to high temperatures in order to produce a 

different phase product, which is a combination of the elements from the starting materials. 

This is a simple route to making new structures and can also be used to introduce dopant ions 

into a structure, as completed in this work. 

Ions in a solid are normally regarded as thermodynamically trapped on lattice sites and are 

therefore only able to move when at high temperature. Even at the elevated temperatures 

utilised for these reactions (> 1000 °C) the reaction is slow and long heating times are 

necessary to ensure reaction completion. These long reaction times are the major disadvantage 

of the technique as they make it highly energy intensive and inhibit the reaction from being 

easily monitored. Thus homogenous products can be difficult to synthesise and it can take 

much trial and error to produce the desired material.95 

A schematic representation of what happens in a solid state reaction is shown in Figure 14. 

Here MgO and Al2O3 are reacting to form the new phase MgAl2O4. The original interface 

between MgO and Al2O3 is the site of reaction, where Mg2+ ions are diffusing from left to 

right and Al3+ ions are diffusing from right to left. The product layer begins to grow according 

to the following reactions: 

At the MgO/MgAl2O4 interface   2𝐴𝑙3+ − 3𝑀𝑔2+ + 4𝑀𝑔𝑂 → 𝑀𝑔𝐴𝑙2𝑂4 

At the MgAl2O4/Al2O3 interface  3𝑀𝑔2+ − 2𝐴𝑙3+ + 4𝐴𝑙2𝑂3 → 3𝑀𝑔𝐴𝑙2𝑂4 
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These equations illustrate the reason behind the Kirkendall Effect, the observation that a phase 

boundary will move as a consequence of the difference in rates of diffusion of the ions 

involved. Since the reaction at the MgAl2O4/Al2O3 interface produces three times as many 

product units than the reaction at the MgO/MgAl2O4 interface, the reaction is faster at this 

interface and thus the product grows faster into the Al2O3 layer96. 

 

Figure 14: Schematic representation of two materials before solid state reaction (top) and during solid state reaction 

(bottom) showing a product layer that forms at the interface 

Although the Kirkendall Effect will not be pronounced in semiconductor doping, due to the 

low amount of dopant material with respect to bulk material, it can still be concluded that the 

contact between the two (or more) materials is of high importance to maximise the likelihood 

of successful solid state reaction. In practise this translates as ensuring that the starting material 

particles are small, in order to increase their surface area and that they are well-ground prior 

to heating. As well as ensuring a good contact between dopant precursor and bulk material, 

care taken over the grinding step of a solid state reaction will also ensure the homogeneity of 

dopant distribution throughout the sample. Often, multiple grinding steps are included in 

syntheses since a homogenous product may not be formed after one calcination. Usually, 

PXRD is utilised to confirm if any starting materials remain after synthesis, this data is used 

to inform if any further grinding and heating steps are required to complete the reaction. 

In the laboratory, powders can be ground by hand, using a pestle and mortar or by mechanical 

methods, such as ball milling. Hand grinding is effective for powders that already have small 

particulate size, whereas ball milling is useful for reducing the particulate size of agglomerated 

powders. On a small scale, ball-milling can result in the loss of a large proportion of powder 

and is therefore considered an inappropriate method for preparation of small scale samples. 

However, the human element to hand-grinding can lead to lack of continuity between samples. 

It is therefore important when producing multiple, comparable samples by hand grinding, that 

a methodical approach is taken; the total volume of powder should be kept constant, as well 

as grinding time.  

MgO Al2O3

MgO Al2O3

Product Layer
Original interface
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Chapter 2: Experimental 

Methodology  

This chapter describes the methods used to synthesise various samples made, their preparation 

for analysis and the techniques used to characterise them. The theoretical background for each 

analysis technique is also discussed.  

2.1 Syntheses 

2.1.1 Synthesis of Doped Semiconductor Powders 

Rh-doped TiO2 and SrTiO3 samples were synthesised by solid state reaction (SSR) of the 

titania/strontium titanate powder (Aldrich 99.99%) with the appropriate molar amount of the 

Rh2O3 (Sigma Aldrich 99.8 %). The reactant powders were ground together using an agate 

pestle and mortar for 5 continuous minutes and calcined in a ceramic combustion boat for 10 

hours at 1100 ˚C.  All syntheses were carried out in air, at a ramp rate of 10 ˚C min-1and 

reaction mixtures left to cool passively, overnight. Co-doped samples were produced by 

grinding 5 mol. % Rh-doped powders with the appropriate molar amount of Sb2O3 followed 

by calcination for 10 hours at 900 ˚C. Table 1 outlines the samples made, dopant oxide used 

in each instance and calcination temperature. Where codoped samples were made both the 

single dopant and the codopant oxides are listed, separated by a backslash.  

2.1.2 Single Crystal Dopant Diffusion 

Single crystals (TiO2 <110> and SrTiO3 <100>) were doped by solid state diffusion of dopants 

from the appropriate doped powder. Crystals (10 x 10 x 0.5 mm, purchased from Alineason) 

were pressed, by hand, between the doped powder, to ensure dopant diffusion into both sides. 

The crystals were calcined at 1100 °C for 10 hours. 
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Dopant  Sample Dopant oxide(s) used 
Calcination Temperature 

(°C) 

Rh 

TiO2:Rh[1%] Rh2O3 1100 

TiO2:Rh[3%] Rh2O3 1100 

TiO2:Rh[5%] Rh2O3 1100 

TiO2:Rh[7%] Rh2O3 1100 

TiO2:Rh[9%] Rh2O3 1100 

    

Rh/Sb 

TiO2:Rh[5%]Sb[1%] Rh2O3/Sb2O3 1100 

TiO2:Rh[5%]Sb[3%] Rh2O3/Sb2O3 1100 

TiO2:Rh[5%]Sb[5%] Rh2O3/Sb2O3 1100 

TiO2:Rh[5%]Sb[7%] Rh2O3/Sb2O3 1100 

TiO2:Rh[5%]Sb[9%] Rh2O3/Sb2O3 1100 

    

Rh/Sb 

SrTiO3:Rh[5%]Sb[1%] Rh2O3/Sb2O3 1100 

SrTiO3:Rh[5%]Sb[3%] Rh2O3/Sb2O3 1100 

SrTiO3:Rh[5%]Sb[5%] Rh2O3/Sb2O3 1100 

SrTiO3:Rh[5%]Sb[7%] Rh2O3/Sb2O3 1100 

SrTiO3:Rh[5%]Sb[9%] Rh2O3/Sb2O3 1100 

    

Rh/Sb 

SrTiO3:Rh[0.5%] Rh2O3 1100 

SrTiO3:Rh[0.5%]Sb[0.1%] Rh2O3/Sb2O3 1100 

SrTiO3:Rh[0.5%]Sb[0.5%] Rh2O3/Sb2O3 1100 

SrTiO3:Rh[0.5%]Sb[0.9%] Rh2O3/Sb2O3 1100 

Table 1: list of samples made, the dopant oxide powders used and the calcination temperature  

2.2 Physical Analysis Techniques 

2.2.1 Powder X-ray Diffraction (PXRD) 

X-ray diffraction is based upon the interaction of X-ray radiation with regions of electron 

density surrounding the atomic nuclei in a crystal. The periodic arrangement of atoms in a 

crystalline solid causes the formation of Miller planes, effective layers made up of repeating 

patterns of atoms and ions that can be “observed” by the X-rays due to the ordered packing 

that occurs. Since the interatomic and interplanar distances between atoms and layers in a 

crystal structure are on the order of 0.1 nm, X-rays (0.01-10 nm) are of the appropriate 

wavelength to interact with the atoms in solid materials. If a Miller plane is present in a crystal 

structure, X-rays will diffract at a specific angle, θ, with respect to the sample surface. If the 

path difference between X-rays diffracted by layers of differing depths is an integer multiple 

of the X-ray wavelength, λ, constructive interference of the diffracted X-rays occurs and the 

detector receives a signal. Alternatively if the path difference is not an integer multiple of λ, 

destructive interference will occur and no signal will be detected. This is the basis from which 

Bragg’s law is derived. Bragg’s law relates wavelength of an incident X-ray, λ, the interplanar 

spacing, d, and the angle of diffraction, θ. Figure 15 illustrates its derivation, which is outlined 

below97. 
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Figure 15: Schematic representation of X-ray diffraction 

Simple trigonometry of the triangle ABX tells us that, 

𝑠𝑖𝑛𝜃 =
𝐴𝐵

𝑑
 

 13 

therefore, 

𝐴𝐵 = 𝑑𝑠𝑖𝑛𝜃 

 14 

Since, 

𝑝𝑎𝑡ℎ 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐴𝐵 + 𝐵𝐶 

 15 

where  

𝐴𝐵 = 𝐵𝐶 

 16 

then 

2𝐴𝐵 = 2𝑑𝑠𝑖𝑛𝜃 

 17 

For constructive interference to occur 2AB must be an integer multiple of the incident X-ray 

wavelength and therefore Bragg’s law is stated as, 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃From 

PXRD is primarily used for phase identification since analysis over a range of angles results 

in a pattern of peaks of varying relative intensities which can be used to classify a material as 
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having a certain structure. This is useful for distinction between different structures of the 

same material i.e. anatase and rutile TiO2, or for detection of impurities in the product of a 

reaction. 

PXRD data were collected on a Bruker D4 diffractometer using Cu Kα radiation (λ = 1.54 Å) 

or a Bruker STOE diffractometer in foil mode using Mo Kα radiation (λ = 0.71 Å). On the 

Bruker D4 patterns were collected between 10 and 70˚ 2θ, at a step size of 0.05˚ and with a 

sampling time of 2 s step-1. On the STOE, patterns were collected between 2 and 40˚ 2θ, at a 

step size of 0.5 ˚ step-1 and a dwell time of 10 s step-1. All STOE data were transformed to 

correlate to angles collected with Cu Kα radiation using Bragg’s law: 

𝑑 =  
𝜆𝑀𝑜

2𝑠𝑖𝑛 (
2𝜋

360
. 2𝜃𝑀𝑜)

 

𝑠𝑖𝑛𝜃𝐶𝑢 =
𝜆𝐶𝑢

2𝑑
 

Equation 20 

𝜃𝐶𝑢 = 𝑠𝑖𝑛−1 (
𝜆𝐶𝑢

2𝑑
.

2𝜋

360
) 

Equation 21 

2𝜃𝐶𝑢 = 2𝑠𝑖𝑛−1 (
𝜆𝐶𝑢

2𝑑
.

2𝜋

360
) 

Equation 22 

Once collected, the data were compared with Inorganic Crystal Structure Database (ICSD) 

standard patterns to determine phase purity and to index observed peaks. Using the indexed 

pattern least squares refinement was performed and the lattice parameters determined.  

2.2.2 Ultraviolet-Visible (UV-Vis) Spectroscopy 

UV-Vis spectroscopy provides information regarding the interaction of a substance with light 

of wavelengths 10 nm < λ <2500 nm. For photocatalysts and photoelectrodes, the range of 

wavelengths of light that a material absorbs is vital information that will greatly impact the 

effectivity of the catalysis that can occur.  

Most UV-Vis spectrometers utilise a deuterium/tungsten dual lamp setup, whereby the 

tungsten lamp provides light of visible and near-IR wavelengths and the deuterium lamp 

provides UV-light. The light passes through a scanning monochromator, filtering out all but a 

very narrow range of wavelengths of light, which then interact with the sample. UV-Vis 



49 

 

spectroscopy can be completed in one of three modes: absorbance, transmittance or 

reflectance. The sample is placed between the monochromator and a photodiode detector in 

both absorbance and transmittance modes; the data are reported as either the amount of light 

at a given wavelength that did not pass through the sample (absorbance), or the percentage of 

light at a given wavelength that did pass through the sample (transmittance).  

When a sample is not transparent to any of the incident light, reflectance spectroscopy can be 

used. Reflectance of incident light off a powder sample is diffuse, where the light is reflected 

in multiple directions. Therefore, when recording reflectance spectra an integrating sphere is 

used to collect and direct the reflected light towards the photodiode detector as shown 

schematically in Figure 16. All UV-Vis spectra in this work were taken in diffuse reflectance 

(DR) mode. These data were subsequently transformed into absorbance units using the 

relation shown below (Equation 23).98 

𝐴 = 𝑙𝑜𝑔10

1

𝑅
 

Where A = absorbance and R= reflectance In order to determine the position of the band edge 

and thus the band gap energy for the materials, DR spectra were also converted using the 

Kubelka-Munk transformation (Equation 24) in order to produce a Tauc plot and extrapolate 

the band gap energy.99, 100 

𝑓(𝑅) =
(1 − 𝑅)2

2𝑅
 

 24 
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Figure 16: Schematic diagram of diffuse reflectance UV-Vis experiment. Monochromatic incident light is 

reflected diffusely by the sample and collected by an integrating sphere, which directs the light to the photodiode 

detector to intensify what would otherwise be a weak signal. 

From this, f(R) is plotted against photon energy (eV) and the function of the linear portion of 

the plot is determined according to the general function 𝑦 = 𝑚𝑐 + 𝑐. Thus the x-intercept can 

be defined; this is the band gap energy of the material. 

2.2.3 X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) is a technique based upon the photoelectric effect, 

which states that an electron can be excited and ejected from an atomic orbital upon absorption 

of a photon of sufficient energy. XPS utilises X-rays to photoexcite electrons from the atoms 

in a material, in order to measure their kinetic energy, which can be related to their binding 

energy by Equation 25: 

𝐾. 𝐸. = 𝐸 − (𝐵. 𝐸. +𝛷) 

Equation 25 

Where E = energy of incident photon, K.E. = measured kinetic energy of the photoelectron, 

B.E. = binding energy of the electron before ionisation and Φ = work function of the 

instrument, the small amount of energy lost by the photoelectron to the detector. The photons 

used in XPS possess enough energy to excite core electrons, which are bound in orbitals of 

specific energies characteristic to each element. Thus the core electron binding energies 

determined can be used to identify the chemical entities that are present in a given sample. 

Since XPS relies on the detection of electrons of specific energies, the entire experiment must 

be completed under Ultra High Vacuum (UHV) conditions in order to ensure that these 

electrons do not interact with any other matter and are allowed to reach the detector. While 
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the kinetic energy of the electron is measured, it is usual for an XP spectrum to be plotted on 

a binding energy scale, though conventionally the binding energy x-axis is reverse-labelled 

with low energies to the right and high energies to the left. 

2.2.3.1 How XPS works (in Fixed Analyser Transmission, or FAT, mode) 

Figure 17 shows a schematic representation of the excitation and detection process in an XPS 

experiment. Points 1-5 labelled on the figure are explained below.101 

1. An X-ray source (metal anode) is bombarded with electrons, causing the emission of 

X-rays, which are then monochromated through an optic to ensure that the photons 

used in the experiment are of quantised energy.  

2. Upon irradiation the core electrons in a sample, as long as their binding energy is less 

than that of the energy of the incident photon, are excited and photoejected from the 

sample, according to the photoelectric effect.  

3. The Hemispherical Analyser (HSA) has a fixed potential applied across it (negative 

on the outside and positive on the inside) thus only allowing photoejected electrons 

of a certain energy to pass through it. This energy requirement of the electrons is 

called the “pass energy”.  

4. The photoejected electrons are directed to the entrance of the HSA by transfer lenses. 

These transfer lenses use a voltage to retard the velocity of the electrons such that they 

are at the pass energy and thus able to pass through the HSA to the detector. The 

transfer lenses scan through voltages to allow detection of electrons over a range of 

energies. 

5. The detector records the number of electrons of the corresponding energy and a 

spectrum is produced.  

Analysis of semiconducting or insulating samples will result in accumulation of positive 

charge in the analysis area, due to the ejection of electrons from the sample. Without correction 

this inevitably leads to an apparent increase in the binding energy of the photoelectrons. This 

charging can be compensated by use of a low-energy electron flood gun. 
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Figure 17: Schematic diagram of XPS setup correlating to 5 steps outlined above. The electron path is 

represented by a purple line, which is dashed as it becomes attenuated by the transfer lenses and hemispherical 

analyser. 

2.2.3.2 XPS Spectra- Peak shape, quantification and analysis 

An XP experiment usually starts with collection of a survey spectrum. This is a wide range, 

low resolution, spectrum that gives an indication of the elements present. Typically this will 

be taken over an energy range from around -5 eV binding energy to just below the energy of 

the X-ray source photon energy. High resolution spectra can be taken over much smaller 

ranges, detecting only the photoelectrons from specific elemental core levels. From these high 

resolution core line spectra much information regarding the abundance and environment of 

the corresponding element can be determined.  

Several factors contribute to the intensity of the peak generated for each core level electron. 

The photoionisation cross section, a measure of how likely an electron from a specific core 

level of a specific element is to be produced by the incident radiation, combined with the 

inelastic mean free path (IMFP) of the photoexcited electron and the abundance of the element 

from which the electron is emitted generates the intensity of the peak. Instrumental factors 

also play a part in the generation of peak intensity, for example detection probability (the 

likelihood that the instrument’s detector will detect the photoelectron) and angular asymmetry 

factor (the variations in photoelectron intensities on the unpolarised X-ray and angle). Thus, 

peak intensities must be normalised in order to determine relative abundances of the elements 

present. This normalisation is encompassed in the relative sensitivity factor (R.S.F.) for an 
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element, determined by the instrument software, to allow comparison of data across different 

instrument geometries.102 

For core electrons photogenerated from s orbitals a single peak will be observed. However, 

for those originating from p, d, or f orbitals a doublet peak is observed. This is due to the spin 

orbit coupling effect on these electrons. According to the j-j coupling rules defining the 

splitting and intensities of the effect (Equation 26 and Equation 27) the observable peaks and 

their relative intensities to each other are outlined in Table 2 below. 

𝑗 = 𝑙 ± 𝑠 

 26 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 2𝐽 + 1 

 27 

Type of orbital l value j value(s) Relative Intensity 

s 0 0 0 

p 1 1
2⁄  

3
2⁄  

1 

2 

d 2 3
2⁄  

5
2⁄  

2 

3 

f 3 5
2⁄  

7
2⁄  

3 

4 

Table 2: Orbital types, their associated l and j values and the relative intensities 

Spectral resolution is dependent upon three parameters: 

(a) The full-width half maximum (FWHM) of the photon source 

(b) The line width of the photoelectron emission 

(c) The energy resolution of the analyser 

Monochromation of the photon source reduces the line width of incident X-rays, usually Al-

Kα radiation (as used in all experiments presented in this work) is capable of providing X-rays 

with FWHM of between 0.2 and 0.3 eV. The emitted photoelectron line widths vary, 

dependent on sample. This results in a Gaussian-Lorentzian peak shape, due to the irreducible 

linewidth (Γ) and phonon line broadening, respectively. 

The energy resolution of the detector can be fine-tuned by altering the pass energy of the HSA. 

The detector has a resolution of 𝐸
𝛿𝐸⁄  and so electrons with a low kinetic energy will result in 
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high resolution. A low pass energy will therefore result in well-resolved peaks, though this 

comes at the expense of sensitivity, as fewer photoelectrons will satisfy the low energy 

requirement. It is important to determine optimum pass energy when analysing different 

energies; a valence band spectrum, which is often poorly resolved at higher pass energies and 

not used for quantification purposes, benefits from a lower pass energy whereas core lines 

used for quantification would benefit from a higher pass energy.101, 103 

As well as information regarding the amount of an element present in a material, XPS can 

elucidate the oxidation state(s) and environmental information of the element in question. 

These initial state effects can be inferred from the position of the peak maximum for a 

photoelectron signal. The position of the peak maximum is determined by the binding energy 

of the photoelectron represented, which will be greater or less than that of the ground state 

atom if it has been oxidised or reduced, respectively. Combining knowledge of the material 

being analysed- for example which species are likely to be present due to the synthesis 

conditions- with data produced by XPS can produce a complete picture of the composition of 

the surface of a material. Sometimes, when multiple oxidation states of an element are present 

or if the binding energies of core electrons for different elements are very similar, peak fitting 

must be employed. Typically, a Gaussian-Lorentzian (G-L) function is used in order to 

account for both the instrumental factors causing peak broadening such as X-ray line shape 

and thermal broadening (Gaussian) and the natural peak broadening determined by the lifetime 

of an excited energy level (Lorentzian). Photoelectrons from an s- core level (angular 

momentum quantum number l=0) can be easily fitted by a G-L function since they produce a 

singlet, while those arising from p, d or f orbitals, with l > 0, produce doublets due to spin-

orbit coupling, and must be fitted with multiple G-L functions in the appropriate ratio. XPS 

analysis software therefore allows the mathematical fitting of collected data with functions 

that can be constrained to each other via different variables (full-width half-maximum, peak 

area, peak position etc.) in order to deconvolute the spectrum. Fitting XPS data is often a 

compromise between the “perfect” mathematical fit and a “sensible” representation of what is 

known to exist in the sample.102 

Binding energy values and photoelectron spectra can also be affected by so-called “final state 

effects”. These effects arise from photoelectron-induced rearrangement and polarisation due 

to perturbation of the electronic structure that results from photoemission of an electron. 

Koopmans’ theorem, which states that “the negative of the eigenvalue of an occupied orbital 

from a Hartree Fock calculation is equal to the vertical ionisation energy to the ion state 

formed by removal of an electron rom that orbital, provided the distributions of the remaining 

electrons do not change104”, assumes that rearrangement doesn’t take place after 
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photoemission of an electron, however the observance of final state effects in XPS provides 

evidence that it does. 

Rearrangement occurs when a core-hole is created by photoemission. The core-hole is rapidly 

filled by an electron from a higher energy orbital, the transfer of which can result in 

fluorescence or emission of a secondary (Auger) electron, depending on the energy levels 

involved. These excitations and de-excitations can affect the kinetic energy, and thus derived 

binding energy value, of a photoemitted electron. As well as Auger emission, final state effects 

include excitation of valence band electrons, termed ‘shake-up’ processes, removal of valence 

band electrons, termed ‘shake-off’ processes and excitation of conduction band electrons or 

‘plasmon generation’. Whereas Auger peaks are found in different energy regions to the core 

line with which they are associated, shake-up, shake off and plasmon effects, when intense 

enough to be measureable, often appear as satellite peaks alongside their core line, since they 

perturb photoelectrons by a relatively small amount of energy. These satellites can assist in 

the assignment of oxidation state and local environment of an atom/ion. 

Although X-rays are highly penetrating, XPS is a surface sensitive technique, due to the IMFP 

of the photoelectron. This is the average distance that a photoelectron can travel before it 

interacts and loses energy to its surroundings. Since IMFP depends not only on the kinetic 

energy of the photoelectron, but also the structure of the material from which the electron is 

being excited, the exact sensitivity depth of each experiment is different. An upper detection 

limit of 10 nm is often quoted, though for some materials the limit will be lower than this. In 

order to probe below the surface of a material, depth profiling can be completed using an Ar+ 

ion beam to etch surface matter. However, the process of etching can alter the oxidation state 

of the atoms and ions below the surface, making species identification difficult. Usually 

elemental quantification is the only information that can be reliably inferred from depth 

profiled XP spectra. 

For this work XP data were collected on a Thermo K-alpha instrument utilising a 72 W 

monochromated Al-Kα X-ray source (with photon energy of 1486.6 eV). A dual beam flood 

gun was used to compensate for sample charging, instrument specific relative sensitivity 

factors were used to normalise the data and the binding energy scale was referenced by setting 

the C 1s peak from adventitious carbon to 284.8 eV. Depth profiles were completed using an 

Ar+ ion gun at 3000 kV. 

Typically a set of XP spectra were taken using pass energy of 200.00 eV over the range -5.00 

to 1350.00 eV for the survey spectrum (x 3 scans at this energy and range). High resolution 

core line spectra were taken at a pass energy of 50.00 eV and the appropriate number of scans 
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altered for each element. Valence band spectra were collected over the range -5.00 to 15.00 

eV, pass energy 50.00 eV and at least 100 scans recorded to ensure high quality data. 

2.2.4 Transient Absorption Spectroscopy (TAS) 

Transient Absorption Spectroscopy (TAS) is a pulsed laser spectroscopic technique utilising 

a pump-probe setup to observe the dynamics of transient changes in absorption after an 

excitation pulse. The presence (or absence) of photogenerated electrons or hole carriers in a 

sample cause an increase in the sample’s absorbance at particular wavelengths and thus their 

dynamics can be studied by tracking these changes.  It has been shown that mobile carriers in 

anatase TiO2 absorb in the visible region (500 - 900 nm) but trapped holes and electrons absorb 

in the near UV (λ < 500 nm) and near IR (λ > 800 nm), respectively.105  

A typical TAS experiment involves a laser pulse to excite the sample (termed the “pump” 

pulse), followed by a weaker “probe” pulse after a time delay, τ. This is represented 

schematically in Figure 18. The absorbance dynamics are tracked and as photoexcited charges 

recombine, the absorbance decreases. This process is recorded multiple times and the signal 

averaged in order to achieve a representative spectrum.  

By varying the probe pulse spectra over different wavelengths can be collected. Subtraction 

of the ground state spectrum from the photoexcited spectrum leaves a ΔAbs spectrum, which 

can be plotted as a function of τ and λ if the time delay is varied. Thus the kinetics of charge 

carriers in the photoexcited material can be determined.106 

 

Figure 18: Schematic representation of the TAS experiment. A pump pulse generates charges followed by a 

probe pulse whose absorption changes dependent on the concentration of photoexcited charges. It is this 

absorption which is tracked for the remainder of the time after Δt, up to complete recombination (i.e. the ground 

state absorption prior to excitation) 
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The TAS experiments completed in this piece of work were taken in collaborations with the 

Durrant Group at Imperial College London, with the assistance of Dr Andreas Kafizas. They 

were completed in reflectance mode to allow the analysis of powders, which were pressed 

between two glass microscope slides and analysed in air at ambient temperature and pressure. 

A 355 nm excitation pulse (6 nm pulse width, 0.4 mJ.cm-2.pulse-1, pulse every 1.1 s) was used. 

2.2.5 X-ray Absorption Spectroscopy (XAS) 

2.2.5.1 XAS background 

X-ray Absorption Spectroscopy (XAS) involves irradiation of a material with X-rays and 

measurement of the absorption coefficient, μ, as a function of X-ray energy. These two 

properties are linked by the function outlined in Figure 19 and Equation 28 and Equation 

below, which illustrate a basic schematic of the XAS experiment.  

By using synchrotron radiation to vary the incident X-ray energy, a range of absorption 

coefficients can be determined. However, at a given value the incident X-ray energy will 

match the energy required to photoexcite an electron from an atomic core level in the material. 

At this energy, the amount of radiation transmitted, It, sharply decreases. This abrupt change 

in transmittance is called the absorption edge and corresponds to the core electron of a specific 

element. Absorption edges are named according to the principle quantum number of the 

excited electron (K-edge for n=1, L-edge for n=2, M-edge for n=3).  

 

 

Figure 19: Schematic representation of a simple X-ray absorption experiment 

𝐼𝑡 = 𝐼0𝑒−𝜇𝑥 

Equation 28 

𝜇 =
− ln

𝐼𝑡
𝐼0

𝑥
 

The spectrum produced by an XAS experiment can be split into two sections, the near edge 

and the extended X-ray structures. These are termed X-ray Absorption Near Edge Structure 
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(XANES) and Extended X-ray Absorption Fine Structure (EXAFS) and are distinguished in 

Figure 20 below. Each can give information regarding the oxidation state and coordination 

environment of an atom in the material. Unlike XPS, which is dependent on the IMFP of a 

photoelectron, XAS is a bulk technique as it relies on the detection of X-rays, which are highly 

penetrating. 

 

Figure 20: An example X-ray absorption spectrum, outline the XANES and EXAFS sections of the spectrum 

2.2.5.2 X-ray Absorption Near Edge Structure (XANES) Analysis 

Interpretation of the absorption edge of an XA spectrum involves three segments: the pre-edge 

section, which occurs before the sharp increase, the absorption edge itself and the XANES 

section just after the absorption edge. The pre-edge and XANES sections can both provide 

information regarding geometry around the element being probed, whereas the absorption 

edge mainly provides information regarding oxidation state. As expected, an increase in 

oxidation state results in an increase in absorption edge.107, 108 

Extended X-ray Absorption Fine Structure (EXAFS) Analysis 

Extended X-ray Absorption Fine Structure (EXAFS) corresponds to the region of an XAS 

spectrum approximately 50 eV after the absorption edge and extending out to around 1000 

eV.  

Once an electron is photoexcited it interacts with the other electrons in the atom from which 

it originated. These interactions generate waves, which are backscattered by the surrounding 

atoms and can either constructively or destructively interfere. In the EXAFS region, after the 

absorption edge, a series of decreasing oscillations are observed corresponding to constructive 
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(peak maxima) or destructive (peak minima) interference. Hence these oscillations can be 

related to the distances between atoms.109, 110 

Sb and Rh k-edge XAS data of TiO2 samples were taken at beamline (B18), Diamond Light 

Source, UK. The beamline is equipped with Si (111) double crystal monochromator, ion 

chambers for measuring incident and transmitted beam intensity and operates at 3 GeV and 

300 mA. All measurements were carried out in absorption mode and typically 12 scans were 

averaged to produce the data. Sb k-edge XAS data of SrTiO3 samples were taken at beamline 

BM23, European Synchrotron Radiation Facility, France. The beamline is equipped with Si 

(111) double crystal monochromator, ion chambers for measuring incident and transmitted 

beam intensity and operates at 3 GeV and 300 mA. All measurements were carried out in 

absorption mode and typically 2 scans were averaged to produce the data. All spectra from 

both facilities were processed using Athena software. 

2.2.6 Scanning Electron Microscopy (SEM) 

Scanning Electron Microscopy (SEM) is an imaging technique allowing much higher 

resolution at high magnification than optical microscopy. Under ultra-high vacuum (UHV) 

conditions, a focussed beam of high-energy electrons is fired at the sample and interacts with 

the sample surface. A variety of signals can be generated from these electron-sample 

interactions, which can be collected by detectors inside the instrument and used to produce an 

image of the sample. The detectors have a positive bias to attract electrons, including those 

from the sample sides, which can greatly reduce the amount of shadowing in images. 

Two main detection modes can be employed in SEM utilising two of the different signals 

generated by the electron-sample interaction. Secondary electrons are those electrons that are 

knocked out of the atoms in the sample by incident electrons from the electron gun. Detection 

of these helps to produce an image showing the topography of a sample, since a greater number 

will be detected from atoms closer to the detector and fewer will be detected from atoms 

further away from the detector. This results in bright spots indicating projections from the 

sample surface and dark spots indicating depressions in the sample surface.111, 112 

Alternatively, backscattered electrons can be detected. These are electrons from the electron 

gun that interact with the atomic nucleus and are scattered from the sample. They are used to 

generate an indication of sample density since the likelihood of an electron being 

backscattered is dependent on the amount of matter (i.e. number of nuclei present to scatter). 

Images of samples were taken on a Jeol JSM-6700F. Samples were coated with gold and 

mounted on carbon tape in order to minimise electrical charging.  
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2.2.7 Wavelength Dispersive Spectroscopy (WDS) 

Elemental characterisation of the sample bulk can be completed using Wavelength Dispersive 

Spectroscopy (WDS). This technique utilises the X-rays emitted when a valence electron 

drops down into the hole created by emission of a secondary electron in SEM. Since these 

transitions are quantised, series of them are characteristic to each element and can thus be used 

to identify the elements present in a sample. The X-rays produced can penetrate through a 

sample (unlike photoexcited electrons in XPS) and therefore WDS signals represent an 

average composition over the entire depth of the sample. 

 

Figure 21: Explanation of X-ray nomenclature and schematic energy level diagram using X-ray notation, which 

is more commonly used for X-ray techniques, rather than standard spectroscopic notation. 

X-rays generated by downward transitions of electrons are characterised by the element from 

which they are emitted, the energy level the electron comes from and the energy level of the 

hole it goes to replace. For example in Figure 21 and element ‘E’ has three orbitals, K 

(principle quantum number, n=1), L (n=2) and M (n=3). Three possible transitions are 

described and named in Figure 21, these would provide the characteristic fingerprint of this 

element and indicate its presence in a sample. 113 

The geometry of the sample stage is aligned to ensure that emitted X-rays hit an analytical 

diffracting crystal, or bank of analytical crystals. These crystals have specific lattice spacings 

allowing only certain wavelengths to be successfully diffracted at a specific angle, θ. Although 

the take-off angle from sample is constant due to the geometry of the machine, the crystal or 

crystals can be moved in order to vary the wavelengths of radiation successfully diffracted. If 

a bank of crystals is being used, each will have a different lattice spacing to allow diffraction 

of a wide-range of wavelengths, thus providing a wide-range of detectable elements.114 

Since WDS is taken in a SEM, the analysis area is the area being imaged. This allows for a 

general composition to be determined by low magnification images, but also for high 

selectivity when working at high magnifications. 



61 

 

Chapter 3: An XPS investigation into 

the differences between antimony 

(III) oxide and antimony (V) oxide 

3.1 Introduction 

Chapter 3 describes an investigation into the differences between orthorhombic antimony (III) 

oxide (Sb2O3) and antimony (V) oxide (Sb2O5). Literature surrounding the analysis of Sb 

oxidation state by XPS shows differing approaches to the analysis of the Sb core lines. The 

primary Sb core line is the 3d doublet pair, though due to the high degree of overlap between 

the Sb 3d5/2 and O 1s peaks, both of which reside around 530 eV, the Sb 3d3/2 core line is 

primarily used for analysis. The Sb 3d3/2 core line has been shown to exhibit a small, variable 

peak shift and broadening upon oxidation from Sb (III) to Sb (V). This has led to some 

researchers fitting the Sb 3d core lines with two distinct components, the chemical shift values 

for which range from 0.5 eV to 2.0 eV between the (III) and (V) states (see Table 3 later). In 

contrast, other researchers have used a one component model when fitting their Sb XPS 

positing that the two states are not resolvable and that peak positions are highly variable and 

not reliably attributed to formal oxidation state.115-119 These conflicting reports in the literature 

regarding the observation of a chemical shift in Sb 3d peak binding energy due to oxidation 

of antimony (III) to antimony (V) have led to debate of whether or not the effects of oxidation 

can be observed in XP spectra.  

When identifying only one species of Sb, most accounts attribute a 3d3/2 photoelectron binding 

energy of between 539 and 540 eV to Sb (III) 120-128 and those above 540 eV to Sb (V).129, 130 

Nilsson et al.130 investigated vanadium doped Sb2O5, reporting a slight decrease in Sb 3d3/2 

binding energy when Sb/V > 1; 540.1 eV when Sb/V = 1 to 539.7 eV when Sb/V = 6. For 

their sample Sb1V1 (equimolar SbxVyO4) they assign the Sb 3d3/2 peak at 540.1 eV as being 

“intermediate between those for Sb2O4 and Sb2O5” and therefore conclude that both Sb (III) 

and (V) are present in the sample. Wang et al.131 assign two distinct regions in their Sb 3d3/2 

core line spectrum of an Sb2O5 standard compound. In this analysis, they have modelled the 

Sb 3d3/2 peak to contain an Sb (III) component at 540.4 eV, the binding energy at which the 

Sb 3d3/2 signal was assigned for their standard Sb (III) oxide, and an Sb (V) component, which 

makes up the majority of the signal (94.8 %) at 540.9 eV. The region at around 530 eV 

containing both O 1s and Sb 3d5/2 peaks has been modelled to account for Sb (V) 3d5/2, Sb (III) 
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3d5/2 and O 1s components for the Sb2O5 standard. This model generated binding energy 

assignments of 532.7 eV and 530.7 eV for Sb 3d5/2 (V) and (III) respectively, which 

corresponds a (III)/(V) peak shift of 2.0 eV, whereas the peak shift of the Sb 3d3/2 (III) and 

(V) peaks for the same sample is 0.5 eV, which indicates that the peaks have not been modelled 

correctly. This difference in peak shift could arise from not utilising the Sb 3d3/2 peak as a way 

of constraining the Sb 3d5/2 models by position and therefore binding energies for the Sb 3d 

5/2 and O 1s  in this analysis are unreliable. Both the Sb (III) and (V) 3d doublet pairs would 

be expected to have the same (or very similar) doublet separation; the values extracted here 

are Sb (V) DS = 8.6 eV and Sb (III) DS = 9.7 eV. In addition, the O 1s contribution has been 

assigned one broad peak, where it may have been more appropriate to assign an O 1s, with an 

M-OH peak to the higher binding energy side of it. Both these amendments could alter the 

values for photoelectron binding energy considerably. This study serves to highlight the 

importance of complete and correct fitting in Sb oxides, since the only information available 

is from Sb and O peaks, the primary core lines for which are easily misinterpreted due to their 

overlap. 

A compilation of Sb 3d3/2 literature data assigned to Sb (III) and Sb (V) cations from XP 

spectra of the relevant antimony oxides is shown in Table 3. The peak shifts between the 

reported values for the (III) and (V) cations range from 0.5 eV to 2.0 eV, showing considerable 

disagreement between researchers as to the nature of these photoelectrons. In all cases the data 

reported are from mono-valent oxides Sb2O3 or Sb2O5. The FHWM values are also shown 

since many studies use this characteristic to infer that the peaks could be made up of multiple 

environments and therefore indicates that a sample is impure and therefore a mixture of Sb 

(III) and Sb (V) oxides. Some researchers acknowledge the difficulty in resolving Sb (III) and 

Sb (V) environments and don’t infer the oxidation states that could be present using XPS. 

Instead they use XPS simply to quantify the Sb in their samples, taking the sum of both 

environments. 116-119 Birchall et al.115 compared a large range of Sb containing compounds, not 

limited to the oxides. From this extensive comparison, they concluded that binding energy 

values for Sb 3d3/2 photoelectrons are highly variable but that correlation to formal oxidation 

state is poor.  

A 1972 study by Tricker 132 into the mixed valence compound Cs4Sb(III)Sb(V)Cl12, showed a 

broad Sb 3d3/2  peak of FWHM = 3.4 eV, which was modelled as two peaks with a 1:1 ratio 

and peak shift of 1.5 eV. Another study of Cs2SbCl6 by Burroughs et al. reported a Sb 3d 

spectrum containing two well-separated peaks, with a shift of 1.8 eV between the Sb(III) and 

Sb(V).133 By comparison, a study by Izquierdo et al.134, recorded values for mixed valence 

compound Sb2O4 intermediate between those for the Sb(III) and Sb(V) oxide. 
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Author (Year) 3d3/2 Eb  Peak Shift FWHM  

 Sb 3d (III) 3/2 Sb 3d (V) 3/2  Sb 3d (III) 3/2 Sb 3d (V) 3/2 

Birchall (1975)115 538.6 540.6 2.0 -  

      

Delobel (1983)135 539.8 540.4 0.6 1.8 1.7 

      

Wang (1991)131 540.4 540.9 0.5 -  

      

Benvenutti (1991)136 539.5 540.5 1.0 2.0 2.0 

      

Izquierdo (1989)134 539.7 540.6 0.9 1.6 1.9 

      

Nilsson (1994)130 - 540.3 - -  

      

Sundarsan (2001)137 537.29 538.11 0.8 -  

      

Zhang (2006)138 539.7 540.7 1.0 -  

Table 3: Binding energy, reported peak shift and FWHM values for Sb 3d 3/2 peaks from various sources 

The FWHM for the Sb 3d3/2 of this mixed valence Sb oxide was recorded as 1.8 eV and binding 

energy was 540.3 eV. Comparison of these values with their recorded data for Sb2O3 and 

Sb2O5 (reported in Table 3) led them to draw the conclusion that the Sb2O4 3d3/2 peak was not 

a combination of two peaks representing Sb (III) and Sb (V) components, since a combined 

peak composed of Sb (III) and Sb (V) with chemical shift 0.9 eV should result in a FWHM 

much larger than the observed 1.8 eV.  

Orchard et al. also observed a difference in Sb 3d3/2 FWHM dependent on the treatment of 

their mixed valence Sb2O4.139 Their modelling of the data produced Sb (III) and Sb (V) 

components with a peak shift of 0.6 eV and FWHM 1.7 and 1.9 eV respectively. Using a point 

charge model to estimate expected chemical shift, they concluded however that in order to 

achieve the observed chemical shift of 0.6 eV it was necessary to assume the ionic charges 

were half their formal value. Thus the conclusion, again, is that the mixed valence oxide Sb 

3d peaks cannot be resolved into Sb (III) and Sb (V) components. 

Further work in chapters 4 and 5 of this thesis relied heavily on the XPS analysis of oxides 

containing Sb dopant ions and so it was important to investigate this issue, in order to 

determine the most appropriate hypothesis regarding Sb oxidation state analysis from XPS. 

This chapter outlines the analysis of one and two component Sb-component models in order 

to appropriately analyse further results. As well as analysing as-received Sb2O3 and Sb2O5, 

antimony (III) oxide was reacted with hydrogen peroxide (H2O2) to partially oxidise its surface 

creating mixed oxide materials. These materials were then used to test two analytical models 
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to determine if peak shift is resolvable between Sb (III) and Sb (V) components or if a one-

component model, where oxidation state is not determinable, is more appropriate for mixed 

valence Sb-containing compounds. 

Experimental 

As-received Sb2O3 (0.1 g) was dispersed in 30 wt. % H2O2 (15 ml) and stirred in a sealed 

vessel, for varied lengths of time (5 minutes, 60 minutes, 24 hours and 130 hours) before being 

filtered by gravity, washed with water (5 x 10 ml) and left to dry in air. The samples, along 

with as-received Sb2O3 and Sb2O5 were analysed by PXRD and XPS. PXRD patterns were 

taken on STOE diffractometer using Molybdenum K-α radiation, recorded between 2 and 40 

˚ 2θ but converted to values for Cu K-α radiation for ease of comparison between chapters in 

this thesis. 
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3.1 Results and Discussion 

3.1.1 Powder X-ray Diffraction (PXRD) 

Powder X-ray diffraction of as-received Sb2O3 revealed that it was highly crystalline, as can 

be seen by the sharp peaks of the pattern shown in Figure 22a. This pattern was indexed in the 

orthorhombic Pccn space group and through least squares refinement of peak positions the 

lattice parameters and cell volume were determined. The cell volume was found to be within 

0.4 % of that of the standard structure. 

 

 

Figure 22a: (top) PXRD pattern of as-received Sb2O3 and b (bottom) as-received Sb2O5 both by comparison with 

standard patterns from literature140, 141 
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As- received Sb2O5, by contrast, was found to be lacking in crystallinity, as evidenced by the 

broader peaks and higher signal to noise ratio for the pattern shown in Figure 22b. Inspection 

of this pattern by comparison with the standard pattern also shown in Figure 22b, shows that 

there are distinct differences that indicate possible additional phases in the as-received sample. 

Figure 23a shows that the most intense peak ((11-1 ) at 25 °) in the Sb2O5 standard pattern for 

example, whilst present in the as-received sample is shifted to 26 ° and is much less intense 

than the (400) peak found at 27 ° in the as-received pattern. Differences in peak intensity could 

indicate a different growth orientation between the as-received sample and the sample used as 

a standard. However, in this case there are further discrepancies between the patterns. Figure 

23a shows a different intensity ratio between the (400) and (31-1) peaks between the two  

 

Figure 23a: close up views of a) (top) the 9- 19 ° region and b) (bottom) the 19-29 ° region of as-received Sb2O5 
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patterns and the (311) is so diminished in as-received Sb2O5 it is questionable if the peak is 

present, due to the high noise in this region. Figure 23b shows that the (420) and (022) peaks 

in as-received Sb2O5 are shifted in different directions from the standard pattern and therefore 

it is unlikely that they correlate at all. These discrepancies show that the as-received Sb2O5 is 

of a much poorer quality than the as-received Sb2O3. 

Given the uncertain quality of commercial Sb2O5, it could not be used as a standard for XPS 

analysis. In order to study samples with mixed Sb (III) and Sb (V) in a well-defined ratio, 

Sb2O3 was oxidised using 30% H2O2 solution at room temperature. Powder X-ray diffraction 

patterns (Figure 24) show that when treated with hydrogen peroxide for varying amounts of 

time (5 minutes, 1 hour, 4 hours and 24 hours) antimony (III) oxide ostensibly retains its 

orthorhombic structure as compared with a standard pattern obtained from the ICSD 140. 

Minimal peak shift is observed; the most intense (121) peaks found at ~ 13 ° 2θ all lie within 

±0.065 ° of the position of the (121) peak in the standard pattern. The patterns were indexed 

in the Pccn space group and through least squares refinement the lattice parameters and cell 

volumes determined. All lattice parameter and cell volume values for oxidised samples lie 

within 0.7 % of those calculated for the standard pattern. It can therefore be concluded that 

there is no detectable crystallographic change to the materials and no indication of the 

formation of a secondary phase after 24 hours of treatment with hydrogen peroxide.  

 

Figure 24: X-ray diffraction patterns of Sb2O3 powders treated for varying times in H2O2 for oxidation. These 

data were collected on a STOE diffractometer, in foil mode, using Mo radiation (λ = 0.7107 nm) 
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The penetrative nature of X-rays results in the detection of a diffraction signal that represents 

an average of the entire sample. While we can conclude that there has been no substantial 

oxidation of Sb2O3 particles to Sb2O5 in these samples, conclusions cannot necessarily be 

drawn from these PXRD data regarding the extent to which the surface of the materials may 

have been oxidised.  

3.1.2 X-ray photoelectron spectroscopy 

XPS was utilised in order to determine the extent of oxidation at the surface. This analysis 

typically has a sampling depth of between 2 and 10 nm and can therefore detect surface 

characteristics that have not shown up in PXRD. Survey spectra were recorded, detailing all 

elements present in the sample within the detection limit of the instrument used, as well as 

high-resolution core line spectra of Sb (3d and 4d) and O (1s). The O 1s and Sb 3d5/2 core lines 

(the principal core lines for these elements) directly overlap at a binding energy of around 530 

eV such that one signal is indistinguishable from the other. For this analysis, the Sb 3d3/2 peak, 

which is well separated from the Sb 3d5/2 and O 1s peaks as it appears 9.4 eV higher, was used 

as the main source of information regarding antimony. In order to quantify the amount of 

oxygen present a constrained model was generated using CASAXPS software; an example 

spectrum can be seen in Figure 25.  

The XP spectrum of the Sb 3d/O 1s core line region showed a peak at 540 eV (Sb 3d5/2) and 

at 530 eV (Sb 3d5/2, O 1s and surface hydroxyls). The peak at 530 eV was fitted with a Sb 

 

Figure 25: O 1s / Sb 3d core line region of Sb2O3 after 4 hours of exposure to H2O2. Sb 3d components can be 

seen modelled in blue, with O 1s and M-OH components modelled in orange. 
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3d5/2 component, which was constrained in position, area and FWHM relative to the Sb 3d3/2 

peak. All Sb peaks were generated with a 40 % Gaussian, 60 % Lorentzian contribution to 

their line shape since this provided best fit for the Sb 3d3/2 component. The remainder of the 

peak at 530 eV was fitted with components representing the lattice oxygen and surface 

hydroxyls which manifest as a broad shoulder to the high binding energy side of the O 1s. 

Both O 1s and M-OH models were generated with 70 % Gaussian contribution and 30 % 

Lorentzian contribution, which has been used previously to fit these components in the 

absence of Sb. The OH peak was constrained such that its FWHM value did not exceed 2.5 

eV and it’s position relative to the O 1s peak was + 2 eV (±0.1 eV). 

Relative atomic percentages and a Sb/O ratio were determined by integration of the fitted 

spectra to determine the peak area of each component, followed by normalisation using the 

appropriate R.S.F., obtained from the instrument used. Sb/O ratio was determined using the 

combined atomic percentages of Sb 3d5/2 and Sb 3d3/2 peaks and the atomic percentages of 

lattice oxygen and surface hydroxyls. These ratios are plotted in Figure 26. As expected, the 

Sb/O ratio decreases as the reaction progresses, eventually reaching that of Sb2O5, 0.4. The 

Sb/O ratio calculated for as-received Sb2O3 and samples exposed to H2O2 for 5 minutes gave 

higher values than the theoretical Sb/O for Sb2O3, 0.667, which is shown as a horizontal bar 

on the graph. This can be partially attributed to oxygen vacancies at the surface of Sb2O3 and 

has been observed by other researchers.122, 128 However, the ratio is so high that this 

explanation alone would indicate an implausibly large number of oxygen vacancies. For 

example a Sb/O of ~0.77, such as found in as-purchased Sb2O3 corresponds to 13 % of its 

oxygen sites being vacant.  

 

Figure 26: XPS calculated Sb/O ratio of Sb2O3 as-purchased powders exposed to hydrogen peroxide for 5 

minutes, 1 hour, 4 hours and 24 hours. Reference lines for Sb2O3 and Sb2O5 Sb/O theoretical ratios have been 

included for clarity. 

5 50 500 5000
0.3

0.4

0.5

0.6

0.7

0.8

Sb
2
O

5

Sb/O = 0.4

 

 

S
b

/O
 r

at
io

Log
10

 Time / mins

Sb
2
O

3

Sb/O = 0.667

Sb2O3 as-received



70 

 

A second contributing factor to consider is a possible difference in detection of Sb and O 

photoelectrons. XPS sampling depth is dependent on the IMFP of the photoelectron, thus it 

follows that if the IMFP values are different for the elements being analysed then the sample 

volume and consequent relative concentrations would be different for the elements; other 

researchers have attributed high Sb/O ratios in their studies of Sb2O3 to this.142 The IMFP of 

an electron can be determined using Equation 30 143  below (K.E. = photoelectron kinetic 

energy and λIMFP = IMFP in Å) and for a Sb 3d 5/2 electron is approximately 1.67 Å.  

𝜆𝐼𝑀𝐹𝑃 =  
143

𝐾. 𝐸.2
+ 0.054. √𝐾. 𝐸. 

Equation 30 

This value can be used to determine the probability of an electron being photoemitted from 

the material by the relation shown in Equation 31 below: 

𝑃 = 𝑒
−𝑑𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛.

𝜆𝐼𝑀𝐹𝑃
⁄

 

Equation 31 

Where P = probability of photoemission and demission. = distance photoelectron must travel to 

be ejected.  

Since Sb 3d5/2 and O 1s photoelectrons have the same kinetic energy (~956 eV) they must also 

have the same IMFP (1.67 nm). Therefore, in order to explain the high Sb/O ratio observed in 

terms of differences in photoelectron detection, it can be concluded that the distance the 

respective photoelectrons must travel is different.  

Sb2O3 is effectively Sb-O-Sb layered in the c-direction as shown schematically in Figure 27. 

Assuming emission along the c-axis, which is perpendicular to these Sb-O-Sb layers, the high 

Sb/O ratio for Sb2O3 and samples with a high proportion of Sb2O3 could be accounted for by 

the termination of the surface by a layer of Sb ions. Fewer photoelectrons would be detected 

from the O-layers since these photoelectrons would have further to travel and therefore fewer 

of them would be emitted from the material.  

Wyckoff positions of the Pccn space group have been used to calculate the probability of 

photoemission of an electron from each position. The distance an electron would have to travel 

to be emitted, demission, can be determined by relating its position, W, along the c-axis to the 

length of the c-axis, c, by Equation 32: 

𝑑𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑊𝑐 

Equation 32 
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Thus from Equation 31, the probability of electron photoemission from each position can be 

determined using their known IMFP values. Table 4 lists the calculated c-axis positions for 

orthorhombic Sb2O3, the calculated demission values and therefore the probability of 

photoemission for these electrons. 

 

Figure 27: Layered structure of orthorhombic Sb2O3, where O atoms are shown in red and Sb atoms shown in 

blue. 

Atom 
Position along 

c-axis, W 

Distance e- travels, 

demission (Å) 

Probability of 

photoemission, P 

    

Sb (x2) 

0.178 0.96 0.56 

0.678 3.67 0.11 

0.822 4.45 0.07 

0.322 1.74 0.35 

    

O1 (x1) 

0.023 0.12 0.12 

0.523 2.83 2.83 

0.977 5.29 5.29 

0.477 2.58 2.58 

    

O2 (x2) 

0.855 0.063 0.06 

0.355 0.32 0.32 

0.145 0.63 0.63 

0.645 0.12 0.12 

Table 4: Positions of Sb and O atoms in orthorhombic Sb2O3 along the c-axis and thus the calculated demission and 

probability of photoemission values 

Using these calculated probabilities it is possible to determine a theoretical Sb/O, which takes 

into account the higher likelihood of Sb ion detection if the exposed surfaces are Sb rich. The 
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quotient of the sum Sb probabilities of photoemission and O probabilities of photoemission 

using the values calculated in Table 4 yields a Sb/O ratio of 0.81. This is much higher than the 

theoretical Sb/O ratio if taking into account only the molar amounts of Sb and O ions in Sb2O3. 

However, it is higher than the Sb/O calculated by XPS for as-received Sb2O3 and Sb2O3 

exposed to 30 % H2O2 for 5 minutes, which are around 0.77.  

Oxygen vacancies are a common defect in metal oxides144-146 and have been documented as 

present in Sb2O3 in other studies.147-150 By taking into account a small number of surface 

oxygen vacancies and accompanying Sb vacancies deeper in the structure (i.e. discounting 

some contributions from O with small demission values and some Sb with large demission values), 

the theoretical Sb/O calculated from values in Table 4 is 0.76.  

This explanation of a combination oxygen vacancies and a structural basis for low O 1s 

detection is corroborated by Sb 4d Sb/O data. A full summary of results from XPS of these 

samples can be seen in Table 5. Columns 9 and 10 list Sb/O ratios calculated from Sb 3d and 

Sb 4d core line spectra, respectively. Sb/O values for Sb2O3 calculated from Sb 4d spectra are 

higher than those from Sb 3d spectra. Since Sb 4d photoelectrons have a higher IMFP (2.06 

nm) than Sb 3d and O1s (1.67 nm), a higher photoemission probability would be expected for 

Sb 4d electrons (following the methodology outlined above to calculate P). Both sets of Sb/O 

values tend to the accurate Sb/O ratio for Sb2O5 (0.4) as the reaction progresses. As oxidation 

occurs and the structure changes from orthorhombic Sb2O3 (Pccn) to rutile-like Sb2O5 (C12/c 

1), XPS detects a more accurate surface Sb/O ratio. This serves to further highlight that high 

Sb/O values for Sb2O3 originate from the structural characteristics of the surface. Sb2O3 clearly 

has a higher proportion of Sb terminated ab-planes at the surface. 

A larger M-OH contribution was observed for one of the 24h exposed samples, which is 

reflected in its low Sb/O ratio (0.3972) and could be due to improper drying of the sample. A 

longer reaction of 5 days (130h) resulted in Sb/O = 0.3995, the ratio expected on Sb2O5, which 

suggests that the oxidation had reached completion at the surface of this sample. This sample 

was subsequently used in all XPS analysis to represent Sb2O5 due to the poor quality of the 

as-received Sb2O5 material. For the purposes of the surface analysis performed on the rest of 

the data, it was of primary importance that the reference for Sb (V) was representative of an 

oxidised material and Sb2O3 exposed to H2O2 for 130 hours was the most appropriate sample 

from which to base further results. From here on in this sample will be referred to as Sb2O5*, 

as while the bulk of this sample (from XRD) remains Sb2O3, the Sb/O ratio within the XPS 

sampling depth matched that expected of Sb2O5. 

A summary of the results, including measured peak position of O 1s, Sb 3d and Sb 4d (after 

charge correction to C1s at 285.0 eV), FWHM of Sb 3d3/2 and Sb 4d3/2 and Sb/O ratio, is 
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shown in Table 5.  All O 1s data are those of the oxide anion component determined by 

modelling of the Sb 3d O 1s core line region.  

Sample Sb Peak positions (eV) FWHM (eV) 

O 1s peak 

positions 

(eV) 

Sb/O 

 Sb 3d Sb 4d 

Sb 3d3/2 Sb 4d3/2 

 
from Sb from Sb 

 3
2⁄  5

2⁄  3
2⁄  5

2⁄   
3d 4d 

Sb2O3  539.15 529.75 34.9 33.61 1.353 1.255 530.44 0.6748 0.9062 

5m_1 539.34 529.94 35.1 33.81 1.523 1.444 530.68 0.7702 0.9152 

1h_1 539.70 530.30 35.49 34.23 1.566 1.619 530.90 0.5919 0.6893 

4h_1 539.77 530.47 35.52 34.27 1.610 1.650 531.00 0.5186 0.6080 

24h_1 539.87 530.47 35.72 34.47 1.587 1.625 531.15 0.4369 0.4413 

5m_2 539.58 530.18 35.31 34.03 1.579 1.518 530.94 0.7569 0.8546 

1h_2 539.76 530.36 35.47 34.21 1.609 1.622 531.02 0.6583 0.7447 

4h_2 539.78 530.43 35.58 34.33 1.608 1.657 531.04 0.5924 0.6891 

24h_2 539.78 530.38 35.67 34.40 1.685 1.715 531.11 0.3972 0.6630 

130h 540.2 530.8 35.94 34.68 1.704 1.658 531.57 0.3995 0.4482 

Table 5: Peak positions and FWHM for Sb 3d 3/2,Sb 4d3/2, O 1s and Sb/O ratio for all samples   

3.1.2.1 Valence Band Analysis 

The Sb/O ratio indicates that Sb2O5 character increases as oxidation occurs, however it is 

difficult to quantify the amount of Sb (III) and Sb (V) due to the non-stoichiometric Sb/O 

determined for as-received Sb2O3. Therefore a novel valence band analysis was utilised to 

determine this proportion and corroborate the Sb/O findings.  

The valence bands of antimony oxides are made up of contributions from the O 2p and Sb 5s; 

these 5s are all filled and therefore present in the valence band of in antimony (III) oxide but 

empty in antimony (V) oxide and so the orbitals contribute to the conduction band. 

Computational studies by Scanlon et al.151 propose that the valence band edge of Sb2O5 is 

dominated by O 2p since there are no Sb 5s or p electrons. In the model presented below XP 

VB spectra of Sb2O3 and Sb2O5* were generated from standard compounds and these fits 

compiled into the XP VB spectra of compounds of mixed oxidation state in order to determine 

the proportion of Sb2O3 and Sb2O5-like character. 

The valence band spectra of Sb2O3 as-purchased powder and Sb2O5* are presented in Figure 

28. In each spectrum four modelled components (A-D and E-H) can be seen, which have  
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Figure 28: Valence band spectra of bottom: Sb2O3 as-purchased powder and Sb2O5* used as the ‘standard’ 

valence band models. Top and middle: example time resolved valence band spectra modelled with Sb2O3 and 

Sb2O5* models. 

been generated using a Shirley background and a 70 % Gaussian 30 % Lorentzian peak shape. 

Both spectra possess a small peak at the higher binding energy side of the valence band, these 

features (A and E) lie at 10.88 eV (A) in Sb2O3 and 12.68 eV (E) in Sb2O5*. Feature D in 

Sb2O3 is likely due to population of 5s states in Sb (III). This strong feature lies at 2.6 eV and 
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masks the rest of the valence band edge. It is not present in the oxidised sample (Sb2O5*) - the 

feature labelled H in this sample is more comparable in position to feature C in the Sb2O3 

valence band, lying at 4.68 eV (Sb2O5*, H) and 4.48 eV (Sb2O3, C).  

The fitted valence band components for Sb2O3 as-purchased and Sb2O5* powders were 

constrained to one another by their position, area and FWHM values, with only the binding 

energy and area of component A in each spectrum left to vary freely. The shapes of the valence 

bands were therefore fixed, with only their relative areas and overall positions free to vary.  

In order to further track the progress of Sb2O3 oxidation, both the Sb2O3 and Sb2O5* fits were 

copied into the valence band region of samples at each time resolution and allowed to generate 

the most appropriate fit ratios. In Figure 28 these fits are shown; Sb2O3-like components are 

shown in blue and Sb2O5*-like components are coloured orange. As can be seen, the amount 

of Sb2O3-like character in the valence band, decreases with hydrogen peroxide exposure time, 

whereas the Sb2O5-like character of the valence band increases with hydrogen peroxide 

exposure time. That each valence band was successfully modelled as a simple linear 

combination of the two standard valence band models, with a minimal residual standard 

deviation (< 5.0) in all cases, is a significant finding. Here only the relative intensities and 

positions of the Sb2O3 and Sb2O5* valence band models were variable; the shapes were fixed 

and when combined (as shown in Figure 28) were able to coherently account for valence bands 

made up of a combination of the two components. The valence band components were 

quantified and the increasing amount of Sb2O5*-like contribution to the valence band can be 

seen in Figure 29; the values have also been presented in Table 6. The standard Sb2O3 as-

purchased and Sb2O5* powders have been assigned as 0 and 100 % Sb2O5* contribution, 

respectively. After 5 minutes of exposure to hydrogen peroxide, the amount of Sb2O5* 

contribution to the valence band had increased from 0 to 21 % and 39 %. This increased 

further, to 44 % and 51 % after 1 hour of hydrogen peroxide exposure, to 59 % and 64 % after 

4 hours of exposure and finally 74 % and 75 % after 24 hours of exposure.  
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Figure 29: Proportion of Sb2O3-like contribution to the valence band as determined by fitting of constrained 

Sb2O3 and 130h H2O2 exposed sample valence band components shown in Figure 28. 

 Sample 

(Time) 

% Sb2O3 

contribution 

% Sb2O5* 

contribution 

Sample 

(Time) 

% Sb2O3 

contribution 

% Sb2O5* 

contribution 

Run 1 Run 2 

5m 79.50 20.50 5m 60.96 39.04 

1h 48.62 51.38 1h 56.24 43.76 

4h 36.49 63.51 4h 41.04 58.96 

24h 24.95 75.05 24h 26.01 73.99 

Table 6: Percentage contribution of Sb2O3 and Sb2O5 characterfor oxidised samples as determined by valence 

band fitting 

It is clear that oxidation occurs rapidly in the initial instance; differences in sample handling 

(for example time taken to filter the sample) at the lower time resolutions have likely affected 

the amount of oxidation that has occurred. Even small differences between the times the 

samples were exposed to H2O2 have caused large changes in the degree of Sb2O5* character 

in the valence band. This linear relationship on a Log scale indicates a logarithmic relationship 

between time and oxidation amount. 

Since oxidation occurs from the sample surface inward towards the bulk, the proportion of 

Sb2O5 can be thought of as a proportion, d, of the total sampling depth, as shown in Figure 30. 

From Equation 31, in XPS the probability of an electron being photoemitted is proportional 

to the exp(−𝑥
𝜆⁄ ). This function is shown in Figure 31 where a specific depth of Sb2O5, d, is 

labelled.  
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Figure 30: Schematic diagram of Sb2O3 layer at the surface of Sb2O3 during the oxidation reaction. 

At depth d, the proportion of Sb2O5 can be found by integration of Equation 31 between the 

limits 0 > x > d to find area A. Similarly the proportion of Sb2O3 can be evaluated by 

integration of Equation 31 between the limits d > x > ∞ to find area B. Thus an expression for 

the change in proportion of Sb2O5 as a function of x can be determined.  

 

Figure 31: Probability of and electron being photoemitted as a function of depth, x. 

Integration between the limits 0 > x > d and d > x > ∞ to find areas A and B in Figure 31 

follow in Equation 33 Equation 34. 

𝐴 = ∫ 𝑒
(−𝑥

𝜆⁄ )
𝑑𝑥

𝑑

0

= −𝜆𝑒
−𝑑

𝜆⁄ − (−𝜆) 

Equation 33 

𝐵 = ∫ 𝑒
(−𝑥

𝜆⁄ )
𝑑𝑥

∞

𝑑

= 0 − (−𝜆 𝑒
(−𝑑

𝜆⁄ )
) 

Equation 34 

To determine area A as a proportion of the total area (A+B) these expressions can be combined 

in the following way: 

Sb
2
O

3
 

Sb
2
O

5
 d 
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𝐴

𝐴 + 𝐵
=

−𝜆𝑒
(−𝑑

𝜆⁄ )
+ 𝜆

−𝜆𝑒
(−𝑑

𝜆⁄ )
+ 𝜆 + 𝜆𝑒

(−𝑑
𝜆⁄ )

 

Equation 35 

=
−𝜆𝑒

(−𝑑
𝜆⁄ )

+ 𝜆

𝜆
 

Equation 36 

= 𝑒
(−𝑑

𝜆⁄ )
+ 1 

Equation 37 

= 1 − 𝑒
(−𝑑

𝜆⁄ )
 

Equation 38 

Thus, by knowing the proportion of Sb2O5-character from VB analysis and assuming oxidation 

occurs at the same rate over all exposed faces, the depth of oxidation can be calculated. These 

results are shown below in Table 7 and plotted in Figure 32, to which a logarithmic trend line 

can be fitted and a rate equation extrapolated. 

Sample 

(Time) 
d (nm) 

% Sb2O5* 

contribution 

Sample 

(Time) 
d (nm) 

% Sb2O5* 

contribution 

Run 1 Run 2 

5m 0.38 20.50 5m 0.83 39.04 

1h 1.20 51.38 1h 0.96 43.76 

4h 1.68 63.51 4h 1.49 58.96 

24h 2.32 75.05 24h 2.25 73.99 

Table 7: Oxidation depth per sample as determined by Sb2O5-like character from valence band analysis 

The rate of oxidation is therefore defined, in this experiment, as: 

𝑦 = 0.3 𝑙𝑛(𝑥) + 0.024 

Equation 39 

where y is oxidation depth in nm and x is time in minutes.  

The results above show that a sample of Sb2O5 can be oxidised to Sb2O5 at the surface by the 

action of 30% H2O2 solution, that this reaction can be tracked by analysis of the valence band 

of the mixtures and that a rate for the reaction can be determined from this valence band 

analysis. This series of samples will now be used to study the behaviour of the Sb core lines 

and look for evidence of a chemical shift between Sb (III) and Sb (V). 

 



79 

 

 

Figure 32: Oxidation depth versus reaction time for Sb2O3 to Sb2O5 oxidation by H2O2. A logarithmic increase is 

observed and trend line fitted with function as shown on the graph. 

3.1.2.2 Quantification of Sb Oxidation State 

The oxidation state of an element is usually identified in XPS by the chemical shift of the 

photoelectron binding energy. When electrons are lost through ionisation, the net nuclear 

charge felt by the remaining electrons increases. It follows that core electrons of elements in 

higher oxidation states will have higher binding energies and require more energy to 

photoexcite them from the element. However, when comparing the same element in materials 

of different structures, as when Sb2O3 is converted to Sb2O5, additional factors must be taken 

into consideration. Firstly, XPS is calibrated with the Fermi level of the material as 0 eV, 

meaning that all core line binding energy values are in reference to the Fermi level. Therefore, 

when tracking the progress of a reaction using XPS, differences in the Fermi level energy 

between compounds render the absolute core line binding energy values incomparable.  

A second issue with the comparison of XPS data from Sb2O3 and Sb2O5 is that the antimony 

ions in samples being analysed in this investigation can be in vastly different environments. 

In this study, since Sb2O3 is being oxidised the Sb environment is dependent on the degree of 

oxidation due to the differing structures of the two oxides. Antimony (V) oxide adopts a rutile-

like structure, whereas antimony (III) oxide, at low temperatures, is most stable in the 

orthorhombic crystal structure (both pictured in Figure 33). These differences will mean that  
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Figure 33: Ball and stick representations of the unit cells of orthorhombic Sb2O3 (left) and rutile-like Sb2O5 

(right). Antimony atoms are green and oxygen atoms are red. 

the Madelung constant for each crystal is different. Therefore when the two structures exist 

close to each other for example in mixed valence compounds like Sb2O4 or in oxidised Sb2O3, 

which could be thought of as an Sb2O3 core with a Sb2O5 shell, there will be an impact on site 

potentials experienced by ions in the lattice, which may affect the photoelectron energy and 

thus the XPS peak position. The differences in Sb core line data between samples show a trend 

of increasing binding energy as oxidation occurs. This can be seen clearly in Figure 34a, where 

the Sb 3d 3/2 core lines are overlaid, and is more clearly observed in Figure 34b, which is 

annotated with the absolute binding energy, as determined from fitting.   

 

Figure 34: a)  Normalised Sb 3d3/2 core line spectra of Sb2O3 (black) and Sb2O3 samples exposed to H2O2 for 5 

minutes, 1 hour, 4 hours and 24 hours (light blue to dark blue and b) the top of the peaks for clarification of 

position 

Though not immediately evident from observation of the core line spectra alone, a broadening 

of the Sb 3d3/2 peak was observed in the samples in this investigation, as oxidation progressed. 

Analysis of Sb 4d spectra revealed similar trends to those found for the 3d photoelectrons. 

Figure 35a shows the change in Sb 3d and 4d peak positions in  plotted against Log10 reaction 

time; orange points (left x-axis) show positions of the 3d peaks whereas blue points (right y- 

axis) represent the 4d peaks. The trends are almost identical. Overall, both 3d and 4d 

photoelectrons increase in binding energy by around 1 eV as the reaction progresses and the 
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samples become more oxidised. The increase in FWHM observed for the 3d photoelectron 

peaks, is also observed in the 4d photoelectron peaks (Figure 35b). However, the overall trend 

for Sb 4d FWHM is an increase followed by slight decrease at 130h. This could indicate the 

presence of a mixture of Sb oxidation states in samples at intermediate time resolutions, which 

would cause more considerable peak broadening than the presence of a single oxidation state.  

The increase in Sb 3d3/2 peak position is also replicated, almost exactly, for the O 1s 

photoelectron. As can be seen in Figure 36, the O 1s peak position determined by modelling 

of the Sb 3d /O 1s core line region increases linearly as the reaction progresses. This has been 

plotted alongside Sb 3d3/2 peak position for ease of comparison. The change in O 1s peak 

position with oxidation is a significant and unexpected result; it would be expected to be 

approximately constant since the O 1s peak position does not vary largely between metal 

oxides; here a difference of > 1.0 eV is observed.  

In order to determine the origin of Sb 3d peak broadening and to determine if the changes in 

peak position are solely due to the varying oxidation state of the Sb ions, all Sb 3d and 4d 

spectra have been be modelled with Sb (III) and Sb (V) components. If there is a genuine, 

resolvable chemical shift between Sb (III) and (V) photoelectron peaks it would be expected 

that this chemical shift between modelled components would be constant and also that the 

resultant O 1s peak position would therefore be approximately constant across all samples. 

 

Figure 35: a Peak positions of Sb 3d and 4d photoelectrons as a function of H2O2 exposure time and b) FWHM 

values for Sb 3d (orange, left axis) and Sb 4d (blue, right axis) plotted against Log10 time. Peak broadening is 

experienced by both core lines to the same degree 
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Figure 36: Sb 3d3/2 and O 1s peak position determined from modelling of the Sb 3d and O 1s core line region, 

plotted against reaction time. 

In light of the results presented above, which show an increase in binding energy of Sb 3d 3/2 

peaks, an increase in FWHM, and change in binding energy of the O 1s core line as oxidation 

progresses, two models for Sb peaks were proposed. The aim of testing these models was to 

determine if either provided a reasonable answer to the question of whether Sb 3d3/2 or Sb 4d 

peaks should be treated as resolvable combinations of Sb(III) and Sb(V) contributions or not. 

These models are outlined below. 

Model 1: 

 The Sb 3d and Sb 4d peaks are each modelled with components corresponding to 

Sb(III) and Sb(V) 

 The relative intensity of these components is fixed by the Sb(III)/Sb(V) ratio 

determined from the core lines and VB analysis above (see Table 6) 

 The binding energy of the Sb(III) component is constrained to be lower than that of 

the Sb(V) component 

 The FWHM of these components are maintained as equal to each other at 1.255 eV, 

the FWHM determined for as-purchased Sb2O3 

Model 2: 

As above except: 

 The FWHM of each component is set to the value obtained from Sb2O3 (1.255 eV) 

and Sb2O5* (1.704) 
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The hypothesis here is that if either model is appropriate (i.e. if the Sb 3d and 4d peaks are 

able to be resolved into contributions from Sb (III) and Sb (V)) then the following should be 

satisfied: 

1. Fit should be reasonable, i.e. a low residual STD (measure of goodness of fit from 

CASAXPS software used)  

2. Peak shift between Sb(III) and Sb(V) should be consistent 

3. O 1s peak positions generated from fitted Sb 3d/O 1s core line region spectra should 

be approximately constant 

Model 1 is based upon the hypothesis that both Sb (III) and Sb (V) photoelectron spectra 

should have the same FWHM and that increases in FWHM are observed due to mixed valence. 

FWHM values from as-purchased Sb2O3 were used due to the purity of the materials as 

determined by XRD and XPS. This hypothesis does not take into account the data obtained 

for Sb2O5* as a representation of Sb (V) and so Model 2, where Sb (V) components have their 

FWHM set as that for Sb components in Sb2O5* was also proposed. 

Model 1 (Equal FWHM) 

For this analysis it was initially assumed that the FWHM of both the Sb(III) and Sb(V) 

components were equal and the value used was that measured for the standard Sb2O3 powder, 

1.25 eV (±0.05 eV). An example modelled spectrum is shown in Figure 37a and Table 8 shows 

the resultant data for binding energy and FWHM of Sb modelled peaks and the peak shift 

between Sb(III) and Sb(V)) calculated by the models. The peak shifts derived using this model 

range from 0.57 to 0.7 eV. In general these models resulted in a reasonable degree of fit; the 

residual standard deviation (STD) was found to be below 10.0 in all cases. Table 9 outlines 

the results for the same analysis performed on Sb 4d core line spectra, and example for which 

is given in Figure 37b. Again, the residual STD was low, below 5 in all cases; the range of 

peak shift values was from 0.57 eV to 0.73 eV. Neither the Sb 3d nor 4d peak shift values 

from this analysis appeared to show any trend across the series. This analysis also does not 

rectify the issue surrounding the observed increase in O 1s photoelectron binding energies 

since the resultant O 1s peak positions from this analysis vary by >1.2 eV and show no trend. 

These results indicate that Model 1 does not satisfy the requirements set out as necessary for 

the model to be considered successful. Therefore Model 1 is not an appropriate method of Sb 

peak fitting. 
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Figure 37: top O 1s / Sb 3d core line region of Sb2O3 and bottom Sb 4d core line region. Both spectra show 

samples after 1 hour of exposure to H2O2 modelled with Sb (III) (blue) and Sb (V) (orange) components of equal 

FWHM.  O 1s and M-OH components can be seen in the 3d spectrum with black hatched lines 
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Sample 

(Time_repeat) 
Peak 

Binding 

Energy 

(eV) 

FWHM 

(eV) 

Sb III/V 

Peak Shift 

(eV) 

Residual 

(STD) 

O 1s 

position 

(eV) 

       

5m_1 

Sb(III) 3d3/2 539.21 1.26 

0.69 8.03 530.61 
Sb(V) 3d3/2 539.9 1.26 

Sb(III) 3d5/2 529.81 1.26 

Sb(V) 3d5/2 530.5 1.26 

       

 

5m_2 

Sb(III) 3d3/2 539.34 1.26 

0.64 8.23 530.69 
Sb(V) 3d3/2 539.98 1.25 

Sb(III) 3d5/2 529.94 1.26 

Sb(V) 3d5/2 530.58 1.25 

       

1h_1 

 

Sb(III) 3d3/2 539.4 1.26 

0.57 5.58 530.97 
Sb(V) 3d3/2 539.97 1.26 

Sb(III) 3d5/2 530 1.26 

Sb(V) 3d5/2 530.57 1.26 

       

1h_2 

Sb(III) 3d3/2 539.49 1.26 

0.59 9.92 531.36 
Sb(V) 3d3/2 540.08 1.26 

Sb(III) 3d5/2 530.09 1.26 

Sb(V) 3d5/2 530.68 1.26 

       

 

4h_1 

Sb(III) 3d3/2 539.45 1.26 

0.64 6.55 531.08 
Sb(V) 3d3/2 540.09 1.26 

Sb(III) 3d5/2 530.05 1.26 

Sb(V) 3d5/2 530.69 1.26 

       

 

4h_2 

Sb(III) 3d3/2 539.41 1.26 

0.70 7.01 531.84 
Sb(V) 3d3/2 540.11 1.26 

Sb(III) 3d5/2 530.01 1.26 

Sb(V) 3d5/2 530.71 1.26 

       

24h_1 

Sb(III) 3d3/2 539.39 1.25 

0.67 8.70 531.16 
Sb(V) 3d3/2 540.06 1.26 

Sb(III) 3d5/2 529.99 1.25 

Sb(V) 3d5/2 530.66 1.26 

       

 

24h_2 

Sb(III) 3d3/2 539.19 1.26 

0.72 7.23 531.58 
Sb(V) 3d3/2 539.91 1.26 

Sb(III) 3d5/2 529.79 1.26 

Sb(V) 3d5/2 530.51 1.26 

Table 8: Peak position, FWHM, Sb III/V peak shift, residual standard deviation and resultant O 1s position for 

Sb3d XPS spectra using model 1  
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Sample 

(Time_repeat) 
Peak 

Binding 

Energy (eV) 
FWHM (eV) 

Sb III/V Peak 

Shift (eV) 

Residual 

(STD) 

      

5m_1 

Sb(III) 4d3/2 34.93 1.22 

0.68 3.83 
Sb(V) 4d3/2 35.61 1.22 

Sb(III) 4d5/2 33.71 1.22 

Sb(V) 4d5/2 34.38 1.22 

      

 

5m_2 

Sb(III) 4d3/2 35.05 1.28 

0.57 4.09 
Sb(V) 4d3/2 35.62 1.28 

Sb(III) 4d5/2 33.83 1.28 

Sb(V) 4d5/2 34.40 1.28 

      

1h_1 

 

Sb(III) 4d3/2 35.15 1.28 

0.58 3.15 
Sb(V) 4d3/2 35.74 1.28 

Sb(III) 4d5/2 33.94 1.28 

Sb(V) 4d5/2 34.51 1.28 

      

1h_2 

Sb(III) 4d3/2 35.17 1.28 

0.61 4.28 
Sb(V) 4d3/2 35.78 1.28 

Sb(III) 4d5/2 33.95 1.28 

Sb(V) 4d5/2 34.56 1.28 

      

 

4h_1 

Sb(III) 4d3/2 35.07 1.28 

0.66 3.89 
Sb(V) 4d3/2 35.73 1.28 

Sb(III) 4d5/2 33.85 1.28 

Sb(V) 4d5/2 34.51 1.28 

      

 

4h_2 

Sb(III) 4d3/2 35.17 1.28 

0.66 3.83 
Sb(V) 4d3/2 35.83 1.28 

Sb(III) 4d5/2 33.94 1.28 

Sb(V) 4d5/2 34.6 1.28 

      

24h_1 

Sb(III) 4d3/2 35.16 1.28 

0.7 2.74 
Sb(V) 4d3/2 35.86 1.28 

Sb(III) 4d5/2 33.93 1.28 

Sb(V) 4d5/2 34.64 1.28 

      

 

24h_2 

Sb(III) 4d3/2 35.23 1.28 

0.73 5.29 
Sb(V) 4d3/2 35.96 1.28 

Sb(III) 4d5/2 33.98 1.28 

Sb(V) 4d5/2 34.69 1.28 

Table 9: Peak position, FWHM, Sb III/V peak shift and residual standard deviation for Sb4d XPS spectra using 

model 1 
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Model 2 (Unequal FWHM) 

This alternative analysis was also completed whereby the FWHM of Sb peaks were 

constrained to within ±0.05 eV of their standard values, i.e. that of the Sb2O3 standard powder 

for Sb (III) and Sb2O5* for Sb (V). From table 2 the FWHM values can be seen as 1.25 eV 

and 1.70 eV for Sb2O3 and Sb2O5* respectively. Using these values for FWHM produced 

models of reasonable fit (an example spectrum can be seen in figure 13a) with STD varying 

from as low as 2.84 for sample 24h_2 and increasing to 14.75 for sample 5m_1, though 

residual STDs were consistently higher than those using equal FWHM values. Peak shift 

values between Sb (III) and Sb (V) can be seen in column 5 of Table 10; they vary from 0.17 

eV to 0.62 eV and there is evidently no trend between level of oxidation and peak shift using 

this model. The results from this analysis also do not satisfy the requirement of producing a 

consistent O 1s binding energy value for the fitted Sb 3d/O 1s core line region, since the fitted 

O 1s peak positions from this analysis vary by 0.5 eV. 

Table 11 outlines the results for the same analysis performed on Sb 4d core line spectra, an 

example for which can be seen in in Figure 38b. The residual STD was consistently low, again 

below 5 in all cases; the range of peak shift values was from 0.43 eV to 0.65 eV though with 

no evident trend over this series. 

These results indicate that Model 2 does not satisfy the requirements set out as necessary for 

the model to be considered successful. Therefore Model 2 is not an appropriate method of Sb 

peak fitting. 
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Figure 38: a) top O 1s / Sb 3d core line region of Sb2O3 and b) bottom Sb 4d core line region. Both spectra show 

samples after 1 hour of exposure to H2O2 modelled with Sb (III) (blue) and Sb (V) (orange) components of 

differing FWHM.  O 1s and M-OH components can be seen in the 3d spectrum with black hatched lines. 
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Sample 

(Time_repeat) 
Peak 

Binding 

Energy (eV) 
FWHM (eV) 

Sb III/V Peak 

Shift (eV) 

Residual 

(STD) 

O 1s position 

(eV) 

       

5m_1 

Sb(III) 3d3/2 539.24 1.26 

0.62 14.75 530.72 
Sb(V) 3d3/2 539.86 1.71 

Sb(III) 3d5/2 529.84 1.26 

Sb(V) 3d5/2 530.46 1.71 

       

 

5m_2 

Sb(III) 3d3/2 539.46 1.26 

0.41 13.15 530.88 
Sb(V) 3d3/2 539.87 1.71 

Sb(III) 3d5/2 530.06 1.26 

Sb(V) 3d5/2 530.47 1.71 

       

1h_1 

 

Sb(III) 3d3/2 539.61 1.26 

0.20 9.60 531.05 
Sb(V) 3d3/2 539.81 1.71 

Sb(III) 3d5/2 530.21 1.26 

Sb(V) 3d5/2 530.41 1.71 

       

1h_2 

Sb(III) 3d3/2 539.61 1.26 

0.50 10.85 531.09 
Sb(V) 3d3/2 540.11 1.71 

Sb(III) 3d5/2 530.21 1.26 

Sb(V) 3d5/2 530.71 1.71 

       

 

4h_1 

Sb(III) 3d3/2 539.68 1.26 

0.17 8.95 530.71 
Sb(V) 3d3/2 539.85 1.70 

Sb(III) 3d5/2 530.28 1.26 

Sb(V) 3d5/2 530.45 1.70 

       

 

4h_2 

Sb(III) 3d3/2 539.72 1.26 

0.17 9.86 531.06 
Sb(V) 3d3/2 539.95 1.71 

Sb(III) 3d5/2 530.32 1.26 

Sb(V) 3d5/2 530.55 1.71 

       

24h_1 

Sb(III) 3d3/2 539.92 1.25 

0.23 10.11 530.93 
Sb(V) 3d3/2 539.92 1.70 

Sb(III) 3d5/2 530.52 1.25 

Sb(V) 3d5/2 530.52 1.70 

       

 

24h_2 

Sb(III) 3d3/2 539.55 1.23 

0.35 2.84 531.23 
Sb(V) 3d3/2 539.9 1.70 

Sb(III) 3d5/2 530.15 1.23 

Sb(V) 3d5/2 530.50 1.70 

Table 10: Peak position, FWHM, Sb III/V peak shift, residual standard deviation and resultant O 1s position for 

Sb3d XPS spectra using model 2 
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Sample 

(Time_repeat) 
Peak 

Binding 

Energy (eV) 
FWHM (eV) 

Sb III/V Peak 

Shift (eV) 

Residual 

(STD) 

      

5m_1 

Sb(III) 4d3/2 34.95 1.25 

0.65 4.44 
Sb(V) 4d3/2 35.60 1.56 

Sb(III) 4d5/2 33.72 1.25 

Sb(V) 4d5/2 34.38 1.56 

      

 

5m_2 

Sb(III) 4d3/2 35.05 1.23 

0.53 3.46 
Sb(V) 4d3/2 35.62 1.56 

Sb(III) 4d5/2 33.83 1.23 

Sb(V) 4d5/2 34.40 1.56 

      

1h_1 

 

Sb(III) 4d3/2 35.15 1.28 

0.51 3.21 
Sb(V) 4d3/2 35.74 1.56 

Sb(III) 4d5/2 33.94 1.28 

Sb(V) 4d5/2 34.51 1.56 

      

1h_2 

Sb(III) 4d3/2 35.17 1.28 

0.56 3.50 
Sb(V) 4d3/2 35.78 1.56 

Sb(III) 4d5/2 33.95 1.28 

Sb(V) 4d5/2 34.56 1.56 

      

 

4h_1 

Sb(III) 4d3/2 35.07 1.28 

0.52 2.53 
Sb(V) 4d3/2 35.73 1.56 

Sb(III) 4d5/2 33.85 1.28 

Sb(V) 4d5/2 34.51 1.56 

      

 

4h_2 

Sb(III) 4d3/2 35.17 1.28 

0.52 3.28 
Sb(V) 4d3/2 35.83 1.56 

Sb(III) 4d5/2 33.94 1.28 

Sb(V) 4d5/2 34.6 1.56 

      

24h_1 

Sb(III) 4d3/2 35.16 1.28 

0.43 4.14 
Sb(V) 4d3/2 35.86 1.56 

Sb(III) 4d5/2 33.93 1.28 

Sb(V) 4d5/2 34.64 1.56 

      

 

24h_2 

Sb(III) 4d3/2 35.37 1.21 

0.58 1.61 
Sb(V) 4d3/2 35.95 1.55 

Sb(III) 4d5/2 34.11 1.21 

Sb(V) 4d5/2 34.69 1.55 

Table 11: Peak position, FWHM, Sb III/V peak shift and residual standard deviation for Sb4d XPS spectra using 

model 2 
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3.3 Conclusions 

This investigation focussed on the differences between Sb2O5 and Sb2O3 and the use of XPS 

as a characterisation tool for Sb valence in oxide compounds. Since PXRD of the as-purchased 

powders revealed poor crystallinity and phase impurity in Sb2O5, a study of the oxidation of 

Sb2O3 by H2O2 was used to produce a sample oxidised to an Sb/O ratio of 0.4 (the theoretical 

Sb/O ratio for Sb2O5). XPS quantification of the elements present in Sb2O3 samples exposed 

to H2O2 for 5 minutes, 1 hour, 4 hours and 24 hours revealed an approximately logarithmic 

decrease in Sb/O ratio of the surface of the powders. Since XRD, a bulk analysis technique, 

of all samples showed single phase orthorhombic Sb2O3 it can be concluded that the oxidation 

observed through XPS is surface localised. 

Reports in the literature raise the question of whether Sb XPS core line peak position and 

FWHM can be used as reliable indicators of the oxidation state of the ions.  Some researchers 

postulate that the Sb 3d3/2 core line peak, which is not obstructed by the O 1s as its 5
2⁄  spin 

orbit pair is, increases in binding energy with Sb oxidation state and that peak broadening 

occurs in the spectra of mixed valence compounds, which could indicate the presence of two 

unresolved peaks. Contrary arguments that the observed increase in FWHM does not correlate 

with the proposed III-V chemical shift leave the XPS interpretation of Sb unclear. The data 

presented in this chapter show an increase in both Sb 3d3/2 photoelectron binding energy and 

peak FWHM. Furthermore, modelling of the 525 - 548 eV region (Sb 3d and O 1s core line 

XP spectra) revealed an increase in binding energy of the O 1s photoelectron as oxidation 

progressed.  

The analyses performed on XPS data in this investigation relied upon the accurate 

determination of the proportion of Sb(III) and Sb(V) in each sample, in order to generate 

‘models’ to account for Sb(III) and Sb(V) components under the Sb 3d and 4d core lines. It 

has been shown that the degree of oxidation can be modelled via valence band analysis using 

standard compounds. This analysis showed a trend of increasing % Sb2O5-like character with 

increasing time exposed to H2O2, which reflected the trend observed for Sb/O ratio; that as the 

oxidation progressed, Sb/O decreased and therefore the percentage of Sb2O5* contribution to 

the valence band increased. While all care was taken to ensure that the OH contribution to the 

O-environment peak was minimal, further systematic drying of the samples could be 

performed in corroborative experiments. In order to ensure that the oxidation reaction is not 

augmented by the drying process this could be completed at temperature (~ 80 ˚C), in an inert 

atmosphere (N2, Ar). 



92 

 

Both Sb 3d and 4d core lines were fitted to account for Sb (III) and Sb (V) environments, in 

the proportions determined from the valence band analysis described above. Two fits were 

generated for each sample, one where the FWHM values were constrained to be the same as 

each other (those of the as-purchased Sb2O3) and one where the FWHM values were 

constrained to be Sb(III)FWHM = FWHM of core lines from Sb2O3 (“equal FWHM”) and 

Sb(V)FWHM = FWHM of core lines from Sb2O5* (“unequal FWHM”). It would be expected 

that a genuine III-V chemical shift would be approximately constant across the samples, if 

either of these interpretations were correct. However, all analyses produced III-V peak shifts 

that differed by >0.15 eV. Additionally, it would be expected that O 1s position would remain 

constant if these interpretations were correct. However, both models (equal FWHM and 

unequal FWHM) result in an increase in O 1s photoelectron binding energy as oxidation 

progresses. 

The combination of inconsistent Sb III-V peak shift and the increase in O 1s photoelectron 

binding energy for both equal and unequal FWHM models leads to the conclusion that neither 

analysis is a correct interpretation of these data. Thus the conclusion must be that a one-

component model for Sb ions is most appropriate and that there is no resolvable III-V chemical 

shift between Sb (III) and Sb (V) ions in mixed valence oxide compounds; it is likely that the 

chemical shift is too small to accurately observe. Well-defined separation has been recorded 

for mixed valence compounds of different composition, for example the Cs2SbCl6 studies 

reported in the introduction to this chapter, where the Sb ions differ in oxidation state but are 

crystallographically identical. By comparison in Sb2Ox samples Sb ions of different oxidation 

state are not crystallographically identical. These differences indicate that the identity of 

nearest neighbours and coordination environment has a discernible influence on the 

polarisability of the Sb ions and therefore the binding energy of Sb (III) and Sb (V) core 

electrons. 

The observed increases in Sb FWHM and Sb 3d, 4d and O 1s photoelectron binding energy 

must still be accounted for. Changes in FWHM can be caused by a number of factors such as 

X-ray line width, charging, core-hole lifetime, or by differences in the background used for 

modelling.101, 102  For the analyses described in this chapter X-ray line width, charging and 

differences in background can be discounted as causes of peak broadening due to the use of 

monochromatic X-rays, a flood gun for charge compensation and consistent use of a Shirley 

background for fitting, respectively. Thus a likely cause of the changes in FWHM between 

samples could be differences in the core-hole lifetimes generated by photoexcitation. Core 

hole lifetime, τ, is related to FWHM by Equation 40 below.  
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𝐹𝑊𝐻𝑀 ∝
ℎ

𝜏
                           (ℎ = 𝑃𝑙𝑎𝑛𝑐𝑘′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) 

Equation 40 

Thus when core-hole lifetime decreases, the peak is broadens. It is possible that core holes 

generated in Sb2O5 have a shorter lifetime and therefore result in the broader peaks observed 

throughout the study and in other literature. Mixed valence compounds would appear to have 

intermediate FWHM due to a small number of Sb (V) ions with a shorter core hole lifetime 

causing some broadening of these peaks. 

Changes in the O 1s binding energy are consistent across all interpretations of the data. Since 

it is known that metal oxide O 1s binding energies fall within a narrow range152-154, the 

differences in these samples are only the relative compositions of Sb2O3 and Sb2O5. It is 

possible that the Fermi level of the two materials lie at different energies and therefore the 

Fermi level of the mixture is changing in energy as oxidation progresses. Since Ef in XPS is 

calibrated as 0 eV this explanation would account for the apparent change in O 1s 

photoelectron binding energy. This would also account for the identical change in Sb 

photoelectron binding energy, which was also observed. 

It can be concluded that changes to the peak position and FWHM in Sb XP spectra cannot be 

attributed to changes in oxidation state and that the spectra should be fitted with just one 

component to account for both the (III) and (V) ions. Further investigation could be undertaken 

into the exact reasons behind the apparent changes in peak position, which could be caused 

by a change in Fermi level as oxidation occurs. In light of the results from this chapter, further 

Sb analyses in this thesis were completed using a one-component model for all Sb 

contributions. 
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Chapter 4: Investigation of the effects 

of Sb codoping on the electronic 

structure of Rh:TiO2  

 

4.1 Introduction 

Despite decades of intensive research, there is currently no single-phase material, which is 

capable of efficient overall water splitting using only pure water and sunlight. Doping, as 

explored in Chapter 1, has been a widely researched method of altering the properties of 

materials that have shown initial photocatalytic promise but whose applications under light of 

wavelengths >400 nm (i.e. non-UV) are limited. Noble metal doping in titanate semiconductor 

materials has been an area of interest for a number of years, with much research indicating 

that these materials produce a visible light response, but may not be ideally electronically 

aligned for efficient overall water splitting. 

An alternative to single material catalysts is to combine materials, forming a heterojunction in 

order that photoexcited electrons and holes can be separated by migrating across the junction 

according to the relative energies of the valence and conduction bands of the materials. A 

notable type of heterojunction currently receiving much attention is the Z-scheme (outlined 

comprehensively in Chapter 1), a mechanism that mimics biological photosynthesis and is 

based on two photosystems. This approach also allows for a wider variety of materials to be 

utilised, since the band gaps of the individual materials do not need to straddle the redox 

potentials of the reaction to be catalysed. Instead, one material with band edges aligned to 

catalyse oxidation and another to catalyse reduction can be utilised. Hence, materials with 

narrower band gaps than the redox potential of the reaction can be considered and visible light 

activity can be easier to achieve. When selecting materials to combine to form a water splitting 

Z-scheme it is necessary to consider how the band edges of the two materials align with each 

other and the redox potentials of water. This can be achieved by comparing the band edges 

relative to the Fermi level (EF) for each material. To date, materials that naturally exhibit band 

edges at appropriate offsets have been used to construct Z-schemes, for example, 

Ta3N5/TaON. 

Expanding the functionality of well characterised materials, such as TiO2, to be used in a Z-

scheme has proven an interesting line of research, and many studies focus on the titanates as 
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a starting point for construction of more complex systems. Simplistic mono-ionic doping 

regimes are being discarded in favour of more complex doping regimes, which may prove 

necessary in order to achieve efficient visible light photocatalysis. TiO2 and other titanates 

doped with two or more ions together have been studied. The greater complexity afforded by 

using multiple dopants offers opportunities for fine tuning of electronic, optical and chemical 

properties that may lead to the desired visible light active catalysts and requires a more detailed 

understanding of the physical and chemical effects of the dopants on the host material. 

In this chapter a better understanding of the effects of a complex doping regime on the 

properties of TiO2 is sought. Rh/Sb codoped TiO2 and related titanates, such as Y2Ti2O7, 

SrTiO3 and BaTiO3, have been recently developed as effective photocatalysts, both as single 

phase materials and as part of a Z-scheme. A summary of the findings of various studies can 

be found in Table 12. Domen et al. produced a Z-scheme combining Ta3N5 and Rh doped 

SrTiO3, achieving visible light water splitting, with H2 evolution at rates of up to 48 μmol h-

1g-1, when loaded with an Ir co-catalyst. Rosseinsky and co-workers have achieved >7 μmol 

h-1g-1 O2 evolution using visible light over a Rh-doped Y2Ti2O7 catalyst. Kudo and co-workers 

reported visible light photoactivity of Rh and Sb codoped TiO2 (where Sb/Rh ratios of 0, 0.5, 

1, 2 and 3 were investigated) and showed that, with Sb/Rh ≥ 2, O2 evolution exceeds 16 μmol 

h-1. Their Sb/Rh doped SrTiO3 system has also achieved sacrificial O2 and H2 evolution under 

visible light. 

Author 
Materials 

Used 
Co-catalyst Gas evolution 

Domen155 LaRh:SrTiO3 Ru H2 48 μmol h-1g-1 

 Ta3N5 Ir/CoOx O2 24 μmol h-1 g-1 

Kudo156 Rh:SrTiO3 Pt H2 52 μmol h-1 g-1 

 RhSb:SrTiO3 IrOx O2 42 μmol h-1 g-1 

Rosseinsky157 Rh:Y2Ti2O7 none O2 7.2 μmol h-1 g-1 

Asai158 Rh:SrTiO3 Pt H2 3.4 μmol h-1 g-1 

 RhSb:SrTiO3 IrOx O2 1.5 μmol h-1 g-1 

Nishiro159 RhSb:TiO2 none H2 16.9 μmol h-1 g-1 

 RhSb:TiO2 none O2 6 μmol h-1 g-1 

Table 12: Gas evolution data for doped titanate photocatalysts 

Doping TiO2 with Rh ions introduces 4d t2g states into the band gap, as has been shown in 

studies by Kitano and Oropeza.160, 161 The oxidation state of the Rh dopant naturally influences 

the occupancy of the Rh 4d states. It has been found that Rh4+ is the most stable oxidation state 

of dopant ions, presumably in order to maintain overall charge neutrality when substitutionally 

inserted onto the Ti4+ cation site. A schematic representation of the effect of Rh doping and 
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Sb/Rh codoping on TiO2 is shown in Figure 39. Since Rh4+ possesses a partially filled 4d t5
2g 

energy level, the inclusion of this ion causes the Fermi level to be positioned at a lower energy 

than that of pristine TiO2 presumably diminishing the photocatalytic activity of TiO2 for H2 

production. Codoping with Sb (V) increases the number of electrons in the system and allows 

t5
2g Rh (III) to exist in the system. The resultant material, codoped with Sb (V) and Rh (III) 

retains the n-type character of pristine TiO2.161  

 

Figure 39: Schematic band diagram showing the change in Fermi level energy between Rh (III) and Rh (IV) 

doped TiO2 

This chapter describes the extensive characterisation of rhodium and antimony codoped TiO2 

in powder and single crystal forms, the synthesis of which were described in detail in Chapter 

2. Doped powders were made via SSR of TiO2 and the appropriate molar amount of Rh2O3 

followed by further SSR of TiO2:Rh[X%] with the appropriate molar amount of Sb2O3. The 

amounts of dopant ion were 1, 3, 5, 7 and 9 molar % for singly doped TiO2:Rh. In codoped 

samples the Rh mole % was held at 5 % and the Sb mole % varied from 1-9 % in 2 % 

increments. The samples were loaded with high amounts of dopant ions in order to exaggerate 

the electronic properties of these materials, in order that their electronic structure can be fully 

analysed and understood. All samples were analysed by XRD, XAS, XPS, UV-Vis 

spectroscopy, SEM, WDS, and TAS. 
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4.2 Results and Discussion 

4.2.1 X-ray Diffraction 

4.2.1.1 Phase Identification- TiO2 starting material and TiO2 control 

PXRD of the TiO2 rutile starting material used revealed that a small proportion of TiO2 was 

present in the anatase phase. However, since the anatase structure is only stable to 

temperatures of around 600 ̊ C 162, this phase impurity was eliminated in the synthesis process. 

A control sample of TiO2 rutile fired at 1100 ˚C for 10 hours, with no dopants, was prepared 

in order to distinguish between the effects of heating and the effects of doping. PXRD patterns 

of the starting material and control sample are shown in Figure 40; anatase diffraction peaks 

have been marked with a *. 

 

Figure 40: PXRD patterns of as purchased rutile starting material (purple line, bottom pattern) and the same 

material after 10h calcination at 1100 ˚C (“fired rutile”, black line, top pattern). Bragg angles correlating to the 

anatase phase are marked in red. 

Both patterns were recorded on a Bruker STOE film diffractometer using Mo radiation (λ = 

0.709 Å), though the data have been transformed for ease of comparison with other PXRD 

patterns which were recorded on a Bruker D4 powder diffractometer using Cu radiation (λ = 

1.541 Å). Both patterns exhibit asymmetric line shapes, a characteristic which could be caused 

by crystallite shape effects or instrumental factors.163 Since the asymmetry appears the be 
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identical in each, this is likely to be due to instrumental factors and can be disregarded in 

relation to the current analysis. 

The peaks of both patterns align well, with no easily discernible peak shift. In order to quantify 

any differences, least squares refinement was completed to determine the cell parameters and 

cell volume. For this, both patterns were indexed in the rutile structure, with the anatase peaks 

in the pattern of the starting material omitted. The cell volumes of rutile phases were highly 

comparable, at 62.12 Å3 for the control sample and 62.18 Å3 for the starting material, 

indicating that heating alone brings about no structural changes. Peak widths are 

approximately the same between the patterns with a small decrease after heating. Although it 

is known that diffraction peak width is inversely proportional to crystallite size from the 

Scherrer equation (shown in Equation 41 below), use of this relation to estimate crystallite 

size becomes inapplicable when crystallites are greater than nano-scaled. At the micron scale 

(and above) factors such as dislocation, grain surface boundaries and other microstrain effects 

override the influence of particle size and peak width.164  

𝜏 =
𝜆

𝛽𝑐𝑜𝑠𝜃
 

Equation 41 

To determine the crystallite size distribution, morphology and other physical characteristics 

of the doped samples, electron microscopy was employed and these results are discussed in 

section 4.2.3 of this chapter. 

4.2.1.2 Phase Identification- Rh-doped Samples 

PXRD patterns of TiO2:[RhX%] powders (X = 1, 3, 5, 7 and 9) confirmed single phase TiO2 

rutile (tetragonal, P42/mnm) structure, with no discernible peaks indicating any Rh2O3, Sb2O3 

starting material phases or other additional phases after 10 hours of calcination. Figure 41 

shows the XRD patterns for these Rh doped samples in comparison to a pattern of the TiO2 

control sample.  

It is reasonable to assume that due to the long reaction times and high reaction temperatures 

undertaken for the synthesis of these samples, a degree of particle agglomeration and growth 

will occur in the process. Any preferred orientation growth would result in an increase in 

intensity of peaks indexed to the growth orientation. In all samples the peak intensity ratios 

remain constant and therefore it can be concluded that growth occurs in a homogenous 

manner. 

τ = peak width,  

β = crystallite size, 

λ = X-ray wavelength, 

θ = Bragg angle 
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Figure 41: XRD patterns of TiO2 doped with varying % Rh (1, 3, 5, 7 and 9 %) by comparison with a standard 

TiO2 pattern 

4.2.1.3 Phase Identification- Sb/Rh Codoped Samples 

Figure 42 shows XRD patterns of antimony and rhodium codoped TiO2 samples 

TiO2:[Rh5%][SbY%] powders (Y = 1, 3, 5, 7 and 9) compared with TiO2 control sample. With 

the exception of Y = 9, all codoped samples showed no impurity peaks after 10 hours of 

calcination, and so were assigned as theTiO2 rutile- tetragonal structure, P 42 mnm. Again, the 

peak intensity ratios appear to be constant, indicating homogenous particle growth.  

Figure 43 shows more clearly TiO2[Rh5%][Sb9%] after one calcination at 1100 ˚C for 10h, 

where peaks not indexed in the TiO2 rutile phase are marked with a *. Also shown is the same 

sample after a second calcination also at 1100 ˚C for a further 10 h (total calcination 20 
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Figure 42: XRD patterns of TiO2 doped with 5% Rh and varying % Sb (1, 3, 5, 7 and 9 %) by comparison with a 

standard TiO2 pattern 

h). The additional peaks present after 10 h of calcination had completely disappeared after 20 

h; these impurity peaks were compared with PXRD patterns of Rh2O3 and other possible Sb-

oxide phases. No peaks associated with Rh2O3 were found to match the positions of the 

impurity peaks.  

Table 13 lists the angles at which impurity peaks were observed in TiO2[Rh5%][Sb9%] and 

the indices of the peaks from Sb-oxide patterns that also appear at these angles. The majority 

of the peaks can be indexed to the Sb2O4 (base-centred monoclinic, C12/c1) structure4 and in 

particular the presence of a peak at 26 °, corresponding to the (111) plane, indicates the 

presence of this phase since this reflection is the only reflection observed in Sb2O4 which is 
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Figure 43: TiO2[Rh5%][Sb9%] fired once (bottom pattern) and fired twice (top pattern) for 10 hours at 1100 °C 

each time 

not also observed in the pattern of Sb2O5. However, due to the similarity in symmetry of 

monoclinic Sb2O4 and monoclinic Sb2O5 (both space group C12/c1) and thus the similarity of 

the PXRD patterns produced 4, 5, the presence of Sb2O5 cannot be entirely ruled out. Again, 

the similar peak ratios indicate no preferential growth orientation in the codoped samples. 

Reflection 

observed 2θ (°) Possible SbxOy index 

 Sb2O5 Sb2O4 Sb2O3 

20 (110) (011)  

26  (111) (222) 

29 (400) (112)  

30 (31-1) (004)  

34 (20-2) (113)  

37 (020) (020)  

49 (42-1) (024)  

51 (22-1) (221) (205)  

Table 13: Impurity peak angles for sample TiO2[Rh5%][Sb9%] and possible Sb2Ox reflections to which they 

could correlate 
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4.2.1.4 Lattice Parameters 

All PXRD patterns of single phase materials were indexed in the rutile structure from standard 

pattern 9161 of the Inorganic Crystal Structure Database (ICSD) 3 and least squares refinement 

completed to determine the lattice parameters (a and c) and the cell volume (V). These results 

are discussed below. 

 

Figure 44: Comparison of lattice parameters for undoped TiO2 (red) and a) Rh doped TiO2 lattice parameter a, b) 

Rh doped TiO2 lattice parameter c, c) Rh/Sb codoped TiO2 lattice parameter a  and d) Rh/Sb codoped TiO2 lattice 

parameter c 

Comparison of the lattice parameters of TiO2:[RhX%] powders (X = 1, 3, 5, 7 and 9) in Figure 

44a and b shows an approximately linear increase in both lattice parameter a and c as Rh 

loading increases. The trend is slightly more pronounced in the a-direction where a maximum 

~0.4% increase from standard TiO2 is observed, than in the c-direction where a maximum ~0.3 

% increase is observed.   

In codoped samples where TiO2 is doped with a constant concentration of Rh (5 %) and varied 

Sb concentration (1, 3, 5, 7, 9 %) the a-parameter (Figure 44c) shows no definitive trend, 

though a line of best fit indicates a small overall decrease. The c-parameter increases up to 7 

% Sb loading, but decreases above this. 

As indicated by the small increases in a and c lattice parameters shown above, there is minimal 

overall increase in cell volume, shown in Figure 45, which implies a substitutional doping 
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regime of Rh and Sb onto the Ti site. The largest doped cell volume is 62.75 Å3
 for 

TiO2:[Rh5%][Sb5%] compared with 62.12 Å3 for pristine TiO2. However, trends can be 

clearly observed in both series of samples, whereby the cell volume increases linearly for Rh-

doped samples and increases to equimolar dopant concentration in Rh/Sb codoped TiO2, 

decreasing slightly at higher Sb doping regimes. 

 

Figure 45: Cell volumes of both Rh and Rh/Sb codoped TiO2 by comparison with undoped TiO2 

Comparison of the ionic radii of the cations in this system and correlation of these with the 

observed changes in cell volume allow some explanations to be made regarding the likely 

oxidation states of the dopant ions. Rh4+ and Ti4+ have similar ionic radii at 0.600 Å and 0.605 

Å, respectively. Since Rh3+ has an ionic radius of 0.665 Å, the observed increase in lattice 

parameter implies that in Rh-doped samples, Rh3+ may be present as well as Rh4+. The cell 

volumes are similar for 3, 5 and 7 % Rh doping, suggesting that Rh is being introduced to the 

system as Rh4+, which has a radius of similar size to Ti4+ that it is substituting. However at 9 

% Rh-doping, the cell volume again increases indicating a possible further increase in the 

amount of Rh3+. An alternative explanation could be that doping is not entirely substitutional. 

At high Rh doping regimes, a small number of Rh4+ ions could reside interstitially, causing a 

more pronounced increase in lattice parameters.  

In codoped samples, both a and c parameters were shown to increase as nominal [Sb] increases 

up to 5% Sb doping and then decreased above equimolar dopants; this is reflected in the cell 

volume trend (Figure 45). The addition of Sb5+, which has an ionic radius of 0.600 Å and 

therefore shouldn’t cause lattice expansion, is thought to encourage formation of Rh3+ in TiO2 
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and so an expansion above that of 5% Rh-doped samples is expected. This is true at [Sb] ≥ 3 

%, indicating that the Sb/Rh ratio must be at least 0.6 in order to achieve Rh3+ concentration 

greater than that achieved from Rh doping alone. At high Sb loading (i.e. 9%), a decrease in 

cell volume is observed. It is likely that the presence of Sb5+ in these concentrations is 

accompanied by oxygen defects in the lattice, which could account for this slight decrease. 

It must also be considered that the additional increases in cell volume due to the addition of 

Sb in the +3 oxidation state, which has an ionic radius of 0.76 Å. As evaluated experimentally 

in Chapter 3 of this thesis, it is not possible to distinguish between Sb ions in the +3 and +5 

oxidation state using XPS and so a selection of Sb/Rh doped samples were examined using 

X-ray absorption spectroscopy at both Diamond Lightsource and the European Synchrotron 

Radiation Facility. The results are discussed in section 4.2.2 below. 

4.2.2 X-ray Absorption Spectroscopy 

Selected samples (TiO2:[Rh5%], TiO2[Rh5%][Sb1%], TiO2[Rh5%][Sb3%], 

TiO2[Rh5%][Sb5%]) were analysed using X-ray absorption spectroscopy to determine the 

oxidation state (XANES) and environment (EXAFS) of the dopant ions. These measurements 

and the subsequent data analysis were completed with the assistance and supervision of 

Professor Gopinathan Sankar. 

Rh K-edge X-ray absorption near edge structure (XANES) data for Rh2O3, Rh-metal, and 

doped samples TiO2:Rh[5%], TiO2:Rh[5%]Sb[1%], TiO2:Rh[5%]Sb[3%] and 

TiO2:Rh[5%]Sb[5%] are shown in Figure 46. The XANES edge jump, from low absorbance 

to high absorbance, is caused by the absorption of an X-ray exciting a core electron in the 

element of choice. The edge jump position on the x-axis (energy) can therefore be correlated 

to the element’s oxidation state, since the binding energy of the excited electron will change 

dependent on its parent ion’s oxidation state. By comparing the positions of the Rh K-edges 

to standard compounds Rh2O3 and Rh metal, where Rh has a +3 and neutral charge 

respectively, information pertaining to the oxidation state of the dopant ions can be inferred. 

Figure 46b shows an inset of the Rh K-edge clearly indicating that all doped samples resemble 

Rh (III) more than Rh0, as would be expected. All Rh K-edge energies are lower than that of 

Rh2O3; it appears that the different Rh environments cause minor differences in the K-edge 

energy; in Rh2O3 the only other ions interacting with Rh are O2- nearest neighbours and Rh3+ 

next-nearest neighbours, whereas in doped TiO2 there are Ti4+, O2-, Rhx+ and Sb5+ in the 

system. It is unlikely, for example, that these results are indicating the presence of highly 

unstable Rh+ or Rh2+ ions in the doped materials. However,  
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Figure 46: a) Rh X-ray absorption spectrum of Rh2O3 and Rh metal compared with TiO2:[Rh5%], 

TiO2:[Rh5%][Sb1%], TiO2:[Rh5%][Sb3%] and TiO2:[Rh5%][Sb5%] and b) close up of the Rh k-edge between 

23224 and 23228 eV  

importantly it can be seen in codoped compounds, which are comparable, that there is variance 

across the different doping regimes; as Sb doping increases the Rh K-edge increases in energy, 

indicating that Rh is oxidised by the presence of Sb. The necessity for Sb/Rh to be at least 

equimolar in order to ensure [Rh3+] greater than that of Rh doping alone is also confirmed 

since only the TiO2:[Rh5%][Sb5%] Rh K-edge lies above that of TiO2:[Rh5%]. 

The EXAFS Fourier transform of TiO2:Rh[5%] measured at the Rh K-edge is shown in Figure 

47 along with TiO2 (measured at the Ti edge) and Rh2O3 (also measured at the Rh K-  
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Figure 47: EXAFS Fourier transform of Rh2O3, TiO2:[Rh5%] and TiO2 rutile 

edge). From these data the bond distances between nearest neighbours and next-nearest 

neighbours can be approximated. Peaks have been labelled with the bonds to which they 

correlate- it should be noted that the data in this figure have not been corrected for phase shift 

and therefore bond distances appear short (nearest neighbour ~1.5 and next nearest neighbour 

~ 2.3-3.5). A more detailed analysis of the Rh K-edge EXAFS data indicates Rh-O distance 

of ca. 2.0 Å, which is similar to the bond distances in Rh2O3. This could indicate substitutional 

doping of Rh3+ onto the Ti4+ site, with a longer bond distance due to the higher ionic radius, 

or the presence of a Rh2O3 phase. However, further convincing evidence for Rh3+ substitution 

onto the Ti4+ site comes from next nearest neighbour bond distances. Ti-Ti distances in TiO2 

are 2.96, 3.4 and 3.6 Å, whereas in Rh2O3 Rh-Rh distance are 2.72, 2.99 and 3.52 Å. 

Comparing these Fourier transforms, it appears that the Rh-Ti distances are similar to those 

observed for the TiO2 structure rather than the Rh2O3 structure. Therefore it can be concluded 

that Rh ions are in fact substituted onto the Ti4+ site and that there is no secondary Rh2O3 

phase.  

The Sb K-edge data along with Sb2O3 and Sb2O5 standard samples are shown in Figure 48, 

where it can be seen that all doped sample edge jumps align with Sb2O5 much more than 

Sb2O3. The edge data indicate that the Sb ions in doped samples are in the +5 oxidation state, 

rather than the +3 oxidation state. This example is clearer than the Rh data, where a Rh4+ 

standard compound was not available for comparison of the edge positions. 
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The Sb edge EXAFS Fourier transform data for doped samples TiO2:Rh[5%]Sb[1%], 

TiO2:Rh [5%]Sb[3%] and TiO2:Rh[5%]Sb[5%], Sb2O3, Sb2O5 and comparable Ti edge data 

for TiO2 are shown in Figure 49. These data demonstrate the lack of a distinct position of Sb  

 

Figure 48: a) Sb X-ray absorption spectrum of Sb2O3 and Sb2O5 compared with TiO2:[Rh5%][Sb1%], 

TiO2:[Rh5%][Sb3%] and TiO2:[Rh5%][Sb5%] and b) close up of the Sb k-edge between 30480 and 30490 eV 

dopant ions in the doped samples. However, next nearest neighbour distances indicate that as 

Sb loading increases in doped materials, the Sb environment becomes more Sb2O5-like. Since 

Sb2O5 adopts a rutile-like structure, this could serve as an indicator that Sb ions in samples of 

Sb/Rh ≥ 1 reside on Ti4+ sites. This may account for the reduction in cell volume at higher Sb 

loadings, as Sb ions substitute Ti4+ and cause a smaller lattice distortion. 
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Figure 49: EXAFS Fourier transform of Sb2O3, Sb2O5, TiO2:[Rh5%][Sb1%], TiO2:[Rh5%][Sb3%], 

TiO2:[Rh5%][Sb5%] and TiO2 rutile 

 

4.2.3 Scanning Electron Microscopy 

4.2.3.1 Morphology and Particle Size 

The long times and high temperatures employed for SSRs lead to a high degree of particle 

agglomeration and thus a large particulate size and irregular shape. The samples in this work 

were imaged by Scanning Electron Microscopy (SEM) in order to qualitatively characterise 

the size and morphology of the particles produced.  

All samples produced by SSR resulted in agglomerates in a range of sizes of the order of 

microns. Most are rounded in shape and in some samples grain boundaries between 

agglomerates are easily visible. Figure 50a shows the TiO2 control sample, after calcination 

at 1100 ˚C for 10 hours with no additional metal oxide powders. The agglomeration between 

particles here is evident, since the agglomerates are irregular in shape and resemble groups of 

particles without obvious grain boundaries. 

Figure 50b-f show TiO2 doped with increasing amounts of Rh. In images b, d and f, small 

amounts of gold are present in the images, from excess sputtering in the preparation of the 

samples for microscopic analysis. These have been highlighted with red arrows, though in 

Figure 50b where a high number of these irregularly shaped particles can be seen, not all have 

been highlighted in order retain image clarity.  
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Figure 50: a) TiO2 Rutile control (heated to 1100 °C for 10h), b) TiO2[Rh1%], c) TiO2[Rh3%], d) TiO2[Rh5%], 

e) TiO2[Rh7%], f) TiO2[Rh9%] 

 

Figure 51:: a) TiO2 Rutile control (heated to 1100 °C for 10h), b) TiO2[Rh5%][Sb1%], c) TiO2[Rh5%][Sb3%], d) 

TiO2[Rh5%][Sb5%], e) TiO2[Rh5%][Sb7%], f) TiO2[Rh5%][Sb9%] 

Comparison of the images shows that the addition of Rh appears to encourage particle 

agglomeration, since the doped particles are consistently larger than the TiO2 rutile control, 

which was calcined at 1100 ̊ C for 10 hours. Addition of Sb, as observed in the powders shown 

in Figure 51 b-f, appears to reduce this effect as these agglomerates, while larger than the 

control, are not as large as Rh-doped samples. 
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4.2.4 X-ray Photoelectron Spectroscopy 

4.2.4.1 Surface Dopant Composition 

High-resolution XP spectra of the Ti 2p, O 1s and Rh 3d core line regions were used to 

quantify the surface composition of all samples. As explained in Chapter 3, the Sb 3d 5
2⁄  core 

line peak is masked completely by the O 1s peak. In order to quantify both Sb and O in 

codoped samples, the spectra were fitted by constraining a Sb 3d 5
2⁄  component to the 3d 3

2⁄  

peak, which is found at around 539 eV and is not obscured by any other signals in these 

samples. A Sb 3d 5
2⁄  peak was fitted by constraining its area (2:3 ratio with Sb 3d 3

2⁄ ), full-

width half-maximum (equal to Sb 3d 3
2⁄ ) and doublet separation (9.4 eV lower than Sb 3d 3

2⁄ ) 

to that of the Sb 3d 3
2⁄ .  The remainder of the peak area at 530 eV was fitted with a component 

to represent the O 1s oxide anion contribution (FWHM = 1.8 ± 0.1) and another to account for 

surface hydroxyl groups, which manifest as a shoulder to the high binding energy side of the 

O 1s. As with previous analysis the OH peak was constrained such that its FWHM value did 

not exceed 2.5 eV and it’s position relative to the O 1s peak was + 2 eV (±0.1 eV). All O 1s 

binding energy data presented in the following discussion are values determined by this 

method of fitting. An example fitted high-resolution spectrum showing the O 1s/Sb 3d region 

and associated fitting is shown in Figure 52.  

 

Figure 52: Example of a spectrum of the O 1s/Sb 3d region fitted by constraining an Sb 3d5/2 component to the 

Sb 3d3/2 peak, allowing an O 1s to be generated and its position determined. Sb 3d components can be seen in 

orange, with O 1s and M-OH components in red 

Fitting of all high-resolution spectra, allowed peak areas and thus the relative atomic 

percentage (R.A. %) of each element to be determined by using the appropriate RSFs for 

scaling. Cation data are presented in Table 14 below and are represented graphically in Figure 

53.  
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Sample Ti R.A. % Rh R.A. % Sb R.A. % OH/O2- 
     

TiO2:[Rh1%] 95.2 4.8 - 0.39 

TiO2:[Rh3%] 95.3 4.7 - 0.42 

TiO2:[Rh5%] 95.1 8.9 - 0.39 

TiO2:[Rh7%] 94.1 5.9 - 0.39 

TiO2:[Rh9%] 91.8 8.2 - 0.37 

TiO2:[Rh5%][Sb1%] 89.7 10.3 0 0.40 

TiO2:[Rh5%][Sb3%] 73.9 17.6 8.5 0.43 

TiO2:[Rh5%][Sb5%] 62.2 19.0 18.8 0.38 

TiO2:[Rh5%][Sb7%] 58.8 19.3 21.9 0.41 

TiO2:[Rh5%][Sb9%] 49.2 21.1 29.7 0.39 

Table 14: Relative atomic percentages Ti vs dopant ions in doped TiO2 samples 

TiO2:[RhX%] samples exhibit XPS-measured concentrations of Rh higher than the nominal 

doping amount for X = 1, 3, 5 %, though this trend is not true for the higher doping regimes 

where the measured values are slightly below the nominal amounts. The increase in XPS-

measured amount of dopant with respect to nominal amount is more pronounced for both 

dopant ions in codoped samples.  

Accurate elemental analysis is contingent on accurate peak fitting, particularly with regards to 

the Sb 3d / O 1s region is these spectra since the Sb 3d 5 2⁄  core line peak is masked completely 

by the O 1s peak. The amount of OH contribution, in these fittings could have a considerable 

impact on the resultant data derived from the Sb 3d and O 1s peaks. Table 14 also shows the 

calculated OH/O2- ratio of calculated at. %, which is around 0.4 for all samples. Thus it can 

be concluded that the XPS calculated data for in this chapter are comparable to each other 

since any effect of surface hydroxyls on the quantification, is similar across both series. 

 

Figure 53: Nominal and XPS calculated amounts of dopant ion for Rh-doped samples (left) and Rh/Sb codoped 

samples (right). For ease of comparison between the two datasets, the y-axes are equal. 
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Since XPS is surface sensitive and detection is dependent on the IMFP of the photoelectron, 

these values should be considered. It is important that the sampling depths are similar for 

comparison of elemental data. Using equation 1, Chapter 3, the IMFPs for the principle core 

lines of Ti, O, Rh and Sb excited with Al Kα radiation were determined and can be seen in 

Table 15 below.  

Element IMFP (Å) 
  

  

Ti 2p 3/2 1.73 

O 1s 1.67 

Rh 3d 5/2 1.85 

Sb 3d 3/2 1.66 

Table 15: IMFP values for Ti 2p3/2, O 1s, Rh 3d3/2 and Sb3d3/2 

As determined in section 4.2.1 from examination of the lattice parameters of these samples, 

Rh and Sb ions are likely incorporated into the rutile structure in a substitutional doping regime 

whereby the dopant cations reside on Ti sites in the lattice. The similarity in IMFP of the 

photoelectrons from the core levels used for quantification is close enough that their 

normalised areas can be directly compared (i.e. ratios between Ti and Rh or Sb from relative 

atomic percentages in table 2 are valid) since sampling depths across the range of elements 

differs by < 0.2 Å, considerably lower than the radius of the ions, which range from 0.600 to 

0.665 Å for the cations and 1.4 Å for O2- . Therefore differences in sampling depths are 

negligible and it can be concluded that the dopant enrichment with respect to Ti ions means 

that dopants are surface localised. 

It is clear that the presence of Sb in codoped samples encourages further surface enrichment 

of Rh. By comparison with the analogous TiO2:[Rh5%] sample, which has a calculated surface 

atomic percentage Rh of 8.86 %, all TiO2:[Rh5%][SbX%] samples exhibit substantially higher 

surface Rh atomic percentages, ranging between 10.31 % to 21.12 % for X = 1 and 9 %, 

respectively. These data are presented in Figure 53b.  

Comparison with the average bulk composition of the samples as determined by WDS- shown 

in Table 16- further supports surface localisation of dopants. Although the concentration 

increases with increased nominal doping in WDS calculated amounts, these values are much 

lower than the nominal amounts. All dopant concentrations were calculated to be < 3 % by 

WDS for any dopant in any sample.  

These data suggest that both Rh and Sb are more stable at the surface of TiO2. To investigate 

further a depth profiling study using a TiO2 single crystal was completed. Powder samples 

present the difficulties of random particle size and orientation, meaning that they cannot 

provide meaningful compositional information from depth profiling. To overcome these 
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issues a single crystal diffusion study was completed. In this study a TiO2(110) polished single 

crystal was heated under a TiO2:[Rh5%][Sb5%] powder at 1100 oC for 10 hrs to induce 

diffusion of the dopants into the crystal. XPS depth profiles were recorded after Ar+ ion 

sputtering for 10 seconds.  

Sample 
Rh Sb 

Nominal WDS calculated Nominal WDS calculated 

TiO2:[Rh1%] 1 0.21 - - 

TiO2:[Rh3%] 3 0.24 - - 

TiO2:[Rh5%] 5 0.68 - - 

TiO2:[Rh7%] 7 0.95 - - 

TiO2:[Rh9%] 9 2.66 - - 

TiO2:[Rh5%][Sb1%] 5 0.97 1 0.38 

TiO2:[Rh5%][Sb3%] 5 0.98 3 0.65 

TiO2:[Rh5%][Sb5%] 5 1.10 5 1.19 

TiO2:[Rh5%][Sb7%] 5 0.99 7 2.11 

TiO2:[Rh5%][Sb9%] 5 1.21 9 2.26 

Table 16:Nominal vs WDS calculated dopant concentrations for doped TiO2 samples 

Figure 54 shows a plot of the dopant concentration as a proportion of total cation concentration 

(i.e. [Ti]+[Rh]+[Sb] = 100%) at intervals through the crystal. Depth profiling data from ion 

sputtering in XPS must be carefully considered since the process of sputtering can cause 

changes in the material, which it is possible to misinterpret. It is widely accepted that the 

process of ion sputtering in vacuum can lead to reduction of ions and therefore data concerning 

oxidation state cannot be relied upon. It is also important to consider the possibility of 

preferential sputtering when assessing the validity of depth profiled data pertaining to ion 

concentration.  

Preferential sputtering is the process by which some atoms are removed more easily by an ion 

etch than others, which could lead to inaccuracies in compositional information. The original 

viewpoint was that this process is mass-correlated165, however contradictions to this 

hypothesis were soon discovered; many alloys exhibit behaviour whereby the heavier atom is 

preferentially removed.166-169 After atoms are removed from a surface the remaining structure 

undergoes a rearrangement in order to minimise the surface free energy; this is called Gibbsian 

Segregation (GS). If the sputtering rate is slower than the rate of migration of a particular 

atom, GS can result in their preferential removal. However, GS is most often (and most 

accurately) correlated to the bond energies of the atoms and ions at the surface of a material.170-

172 Since the Sb-O and Rh-O bond enthalpies are similar (372 kJmol-1 and 377 kJmol-1, 

respectively) it is reasonable to assume that they are sputtered at a similar rate and therefore 

the Sb/Rh ratios presented are accurate. 
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Figure 54: Dopant ion concentration as a function of sputter time into a Rh/Sb doped TiO2(110) single crystal 

Rh ions in the single crystal are considerably less surface enriched than in the powder used to 

produce the doped crystal, indicating that the ions are able to diffuse more effectively through 

the ordered structure of a single crystal than through a powder sample of varying orientation. 

While Sb also has a much lower XPS calculated surface concentration in the single crystal 

than in the powder sample, the Sb/Rh ratio increased from 1 in the powder to 1.8 in the single 

crystal. This indicates that Sb ions cannot diffuse as effectively in TiO2 as Rh ions. Previous 

studies have indicated that Sb ions tend to surface segregate in metal oxides, for example 

TiO2
173, 174 and SnO2

175, 176, however these studies postulate that this is due to the presence of 

Sb(III), which sterically favours a surface position due to the presence of a lone pair causing 

the ions to occupy a position where they are able to adopt a less symmetric coordination. 

However, since XAS data confirms the absence of Sb (III) dopants in these samples, this 

indicates that Sb (V) ions must favour surface positions due to thermodynamic stability, rather 

than steric stability. 

The attraction of Rh to Sb dopants at the surface of codoped materials is best explained by a 

defect clustering model. In order to maintain local charge neutrality Sb5+ and Rh3+ dopants 

preferentially reside on neighbouring or closely spaced cation sites. Therefore Sb dopants at 

surface sites effectively tether Rh ions at the surface, not allowing them to diffuse as 

penetratingly as when the materials are doped with Rh alone. This is evidence for both 

electronic interaction between the dopants (i.e. reduction of Rh4+ to Rh3+ through Sb doping) 

and interdependence of the spatial distribution of dopants within the TiO2 matrix. 

4.2.4.2 Valence Band Spectra and Ef position 
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Valence band (VB) spectra were recorded in order to probe the electronic structure of these 

materials. Firstly, the role of Rh as a dopant in TiO2 is to insert donor levels into the band gap, 

since the 4d t2g orbitals reside at a higher energy than those of the O 2p, which make up the 

majority of the TiO2 VB. It is therefore expected that there should be visible changes in the 

valence band spectrum of the doped materials by comparison with the pristine materials. 

Secondly, as outlined in the introduction to this chapter, a major feature of these materials and 

one of the main points of interest for this research is the potential to tune the Fermi level 

position by the dopant ratio in the material. Since the Fermi level is calibrated as 0 eV in XPS, 

changes in the position of the VB could indicate these Ef changes. 

To model the VB spectra of all doped samples a VB spectrum for pristine TiO2 was fitted with 

two Gaussian-Lorentzian components. The low binding energy component was constrained to 

the high binding energy component by area, FWHM and position and the fit was used to 

account for the TiO2 portion of the VB spectra of doped TiO2 samples. In each doped sample 

an additional feature to the low binding energy side of the valence band was required in order 

to fit the data to the lowest residual STD (i.e. best fit). This feature, centred at a binding energy 

of ~1.6 eV, is highlighted in blue in the spectra shown in Figure 55. The area of the additional 

component was found to be proportional to the XPS measured Rh content, and can be assigned 

to the presence of filled Rh 4d t2g states.  

 

Figure 55: Valence band spectra of pristine TiO2 and 1, 5 and 9% Rh doped TiO2. As the nominal amount of Rh 

increases, the prominence of an in-gap feature due to Rh 4d t2g electrons also increases. 
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A comparison between TiO2Rh[5%], TiO2Rh[5%][Sb1%], TiO2Rh[5%][Sb5%] and 

TiO2Rh[5%][Sb9%] is shown in Figure 56. As indicated by the augmented surface enrichment 

of Rh in Sb codoped samples, the Rh 4d t2g band gap feature is more prominent in these valence 

band spectra than in Rh-doped samples and increases with increased Sb doping. 

The spectra shown in Figure 55 and Figure 56 were taken from powder samples and represent 

the average data of 200 scans. Grey markers show the actual data, with the “envelope” line of 

best fit shown in black. Even with a high total number of scans, the data are noisy; in order to 

obtain the highest quality spectra to quantify shifts in the VB position, TiO2 (110) single 

crystals were doped with Rh only and codoped with Rh and Sb in the manner described 

previously for depth profiled single crystals. VB spectra from these materials are shown in 

Figure 57 below, annotated to indicate the changes in VB position with doping and alongside 

schematic energy level diagrams to explain the perceived shift. In Figure 57a, the pristine TiO2 

valence band is shown. Its Fermi level resides approximately 7.3 eV away from the high 

binding energy peak of the valence band. This feature of the VB was chosen as the reference 

point to which the Ef at 0 eV was to be related since it is furthest away from the Rh 4d t2g 

orbitals, the least affected by their presence and therefore the most ideal indicator of changes 

in VB position in these series. Figure 57b and c show clearly that Rh doping causes the VB to 

be positioned at a lower energy, closer to 0 eV (the Ef). TiO2:[Rh] single crystal high binding  

 

Figure 56: Valence band spectra of pristine TiO2 and 1, 5 and 9% Rh doped TiO2. As the nominal amount of Rh 

increases, the prominence of an in-gap feature due to Rh 4d t2g electrons also increases.  
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energy peak is positioned at 6.4 eV, whereas the high binding energy peak of the 

TiO2:[Rh][Sb] single crystal VB is positioned at 7.1 eV, which is considerably closer to that 

of pristine TiO2 at 7.3 eV. The VB in TiO2 is made up of mainly O 2p orbitals and so, on the 

assumption that the oxide anion is chemically unchanged by doping, it can be concluded that 

perceived decrease in VB energy is not due to inherent changes in the VB, caused by structural 

or electronic changes in the material, but in fact a change in the energy of the Fermi level.  

An alternative method to quantify the extent of Ef change which can be applied to materials 

where a VB spectrum of the high quality that is achieved from a single crystal cannot be 

obtained, is to use the O 1s core line as a reference point. Since O 1s peaks from oxide anions 

in metal oxides, of whatever structure and composition, fall within a very narrow range of 

binding energies it is assumed that the any chemical shift in this core line peak is due to a 

change in Fermi level energy.152-154 This premise is explained schematically in Figure 58.  

 

Figure 57: Valence band XP spectra of pristine TiO2, Rh doped TiO2 and Sb/Rh codoped TiO2. Lines on the VB 

spectra of doped samples indicate the position of the high B.E. VB peak and Rh feature in codoped TiO2, clearly 

illustrating the change in position between 

Figure 58a presents pristine TiO2, where the Ef is in its ‘usual’ position, close to the conduction 

band in the band gap. The valence band lies lower in energy and the O1s lower in energy still 

(double grey arrows indicate that the O1s is much deeper than the valence band and that the 

/ eV
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y-axis, not pictured, is not to scale). When the Ef is lower in energy than for pristine TiO2, as 

shown in Figure 58b, it appears closer to both the VB and the O 1s core line. This manifests 

in XPS spectra as both the VB and the O1s core line, appearing lower in energy since they are 

closer to Ef (or 0eV). If Ef is higher in the band gap than it is for pristine TiO2, the inverse will 

be true and the O 1s binding energy (and VB position) will appear higher than that of pristine 

TiO2 (i.e. further away from Ef at 0 eV). 

 

Figure 58: Schematic band gap diagram illustrating actual change in fermi level position with the resultant 

perceived change in O 1s binding energy annotated 

 The O 1s core line binding energies of codoped samples are shown in Figure 21, as a function 

of nominal [Sb%], along with those of pristine TiO2 and TiO2[Rh5%] for comparison. Doping 

with Rh alone causes a considerable 0.4 eV downshift in O 1s binding energy; the O 1s core 

line in pristine TiO2 lies at 529.9 eV by comparison with the O 1s core line in TiO2[Rh5%], 

which lies at 529.5 eV. This can be translated as a reduction in Ef energy; the Fermi level is 

deeper in the band gap, and can be assigned to the introduction of incomplete 4d t2g orbitals 

above the valence band. The vacancy of these orbitals acts as a sink for electrons residing at 

the Fermi level energy, into which they can drop down. The result is a Fermi level at lower 

energy than the undoped material.  

A clear trend can be seen in Figure 59 correlating O 1s peak position to nominal amount of 

antimony codopant. The addition of antimony in increasing amounts increases the O 1s core 

line binding energy, from 529.4 eV in TiO2[Rh5%][Sb1%] to 530.2 in TiO2[Rh5%][Sb9%]. 

This increase in Fermi level energy can be attributed to the filling of the Rh states within the 

band gap through introduction of Sb5+, an electron dopant and reduction of Rh4+ to Rh3+, which 

has a filled t2g
6 configuration in the low spin state. The total variation seen in the O1s peak 

across all samples is 0.8 eV. Thus variable levels Sb doping can be used to tune the Fermi 

Level of these materials within a good proportion of the band gap. 
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Figure 59: O 1s positions correlated with nominal [Sb%]. O 1s positions of pristine TiO2 and TiO2:[Rh5%] 

included for comparison. 

The Rh/Sb ratio can be calculated at each point along the depth profile of the co-doped TiO2 

(110) crystal shown in Figure 54. By matching the dopant ratio as calculated by XPS at each 

point in the depth profile and correlating these values to a curve drawn through the 

experimental points in Figure 59, the Ef energy at each depth profile point can be estimated. 

Assuming that the Fermi level is constant throughout the material and that therefore the CBM 

and VBM change energy with depth (due to changes in dopant ratio), the CBM and VBM 

were determined and have been plotted as a function of depth. The result of this analysis can 

be seen in Figure 60 It is clear that significant band bending, of around 0.5 eV, occurs due to 

the influence of the dopants spatial arrangement. It should be emphasised that only the effects 

of the dopants are shown in Figure 60 – there will be other contributions to surface band 

bending, such as the presence of surface states, as occurs with all semiconductors.  

These results indicate for the first time that a photocatalyst system exhibits spontaneous dopant 

segregation which is expected to cause significant band bending. This may contribute to the 

high photoactivity reported in this system; as previously stated Kudo and co-workers reported 

photoactivity of Rh and Sb codoped TiO2 (where Sb/Rh = 0, 0.5, 1, 2 and 3 were investigated) 

and showed that, with Sb/Rh ≥ 2, O2 evolution exceeds 10 mmol h-1g-1.  

This increased understanding of the electronic properties of these materials may serve as a 

starting point for design of more highly effective photocatalysts. It is important to note that 

the materials synthesised are model systems; the use of solid state synthesis results in low 
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surface area powders due to the high temperatures used. This renders the samples unsuitable 

for photocatalysis, but provides a quick, simple and highly reproducible route to production 

of the materials, allowing a high throughput of varying doping ratios. 

 

Figure 60: VBM and CBM variation with depth in Sb/Rh codoped TiO2 (110) single crystal. The CBM at the 

surface is placed at 0 eV and the band gap is assumed to be 3.06 as in bulk rutile TiO2. 

4.2.4.3 Surface Dopant Oxidation State 

As shown with respect to the O 1s core line, the change in Fermi level energy causes chemical 

shifts in other elemental core lines from XPS spectra of Rh doped TiO2 materials. This creates 

a difficulty in the classification of the oxidation state of Rh in these materials. Usually, 

differences in oxidation state can be determined simply by the binding energy of the element 

in question; a higher binding energy correlates to a higher oxidation state and many materials 

have been classified in the literature such that identification of the oxidation state of a dopant 

is rudimentary. However, the materials studied in this work possess dopant ions of potentially 

differing oxidation states (Rh3+/Rh4+) accompanied by a change in Fermi level energy, the 0 

point in XPS. This results in high resolution Rh spectra where the absolute binding energies 

are irrelevant. Since the extent of change in Fermi level energy was able to be quantified by 
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use of the O 1s core line position, it is reasonable to use this core line as a reference point to 

determine the relative oxidation states of other elements, i.e. Rh. 

 

Figure 61: Binding energy separation between O1s and Rh 3d peaks in TiO2[Rh5%] and TiO2[Rh5%][Sb9%]. The 

energy difference between the core lines increases with Sb doping. Assuming a static oxide O1s peak with no 

chemical shift, the increasing energy difference upon Sb doping can be attributed to a decrease in the binding 

energy of the Rh 3d core line, corresponding to a less positive oxidation state for Rh. 

 As shown in Figure 61a and b, the absolute binding energy of Rh 3d 5
2⁄  electrons in 

TiO2[Rh5%] and TiO2[Rh5%][Sb9%] is 309.3 eV for both samples. Ordinarily, in the absence 

of Fermi level shifts, this would indicate that Rh in these samples is in the same oxidation 

state. However, their separations from the O 1s core line are 220.2 eV and 220.8 eV, 

respectively. Since the Rh 3d core electrons possess a lower binding energy than the O 1s core 

electrons (309 eV and 530 eV, respectively), a greater core line separation indicates that Rh is 

in a lower oxidation state.  

 

Figure 62: Core line separation values for all doped samples. It can be seen that all Rh doped samples have 

similar values for their O 1s-Rh 3d core line separation, but that codoped samples exhibit higher core line 

separation values upon Sb/Rh ≥ 1.4. 
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The O 1s-Rh 3d 5
2⁄  core line separation values for all codoped samples are shown in Figure 

62. Rh doped samples possess a Rh 3d core line separated from the O 1s core line by between 

220.0 eV and 220.3 eV, with no distinct trend. Codoped samples exhibit an increase in O 1s-

Rh 3d 5
2⁄  core-line separation as Sb loading increases indicating that in samples where Sb/Rh 

≥ 1.4 a higher proportion of Rh is found in the +3 state.  

4.2.5 Ultraviolet-Visible Spectroscopy 

The optical properties of the samples were investigated by Ultraviolet-Visible (UV-Vis) 

spectroscopy. Due to the opaque nature of the samples spectra were obtained in diffuse 

reflectance mode and the data were transformed into a Tauc plot using the Kubelka-Munk 

relation, Equation 42 (where R = reflectance), to obtain a spectrum of f(R). Equation 43 shows 

f(R) to be proportional to absorbance, A. From these Tauc plots the band gap energy was 

determined by extrapolation of the absorbance edge to the point at which it would intercept 

the x-axis, where y = 0. 

𝑓(𝑅) =
(1 − 𝑅)2

2𝑅
 

Equation 42 

𝐴 =  𝐿𝑜𝑔10

1

𝑅
 

Equation 43 

Spectra were collected over a 2000-200 nm range, at a step size of 0.5 nm and a dwell time of 

0.36 s. The samples were mounted on to a glass slide using carbon tape, which is black and 

therefore does not contribute to the spectrum produced. However, variation in the amount of 

sample analysed due to loading on the tape and position in the spectrometer (which is highly 

variable sample by sample) leads to variations in spectral intensity that cannot be correctly 

accounted for. Therefore, all spectra have been normalised for ease of analysis and only 

relative intensities will be considered. 

Normalised Tauc plots of TiO2, TiO2:[Sb5%] and TiO2[Rh5%] are shown in Figure 63. Both 

TiO2 and TiO2:[Sb5%] show absorbance edges at around 3.0 eV, which is characteristic of 

TiO2 rutile.177, 178 Sb doping appears to increase the onset energy of the absorption edge only 

very slightly; it can be concluded that any considerable lowering of the band gap is entirely 

caused by the presence of Rh dopant ions.  

The Tauc plot of TiO2:[Rh5%] is different from the those of TiO2 and TiO2:[Sb5%] in two 

ways; the band edge is shifted to lower energy (around 1.8 eV in TiO2:[Rh5%]) and a broad  
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Figure 63: Tauc plot of TiO2 Rutile control (heated to 1100 °C for 10h) (dotted line), TiO2:[Sb5%] (dark cyan) 

and TiO2:[Rh5%] (blue) 

absorption peak exists at around 1.0 eV. The decrease in absorption edge decrease can be 

attributed to the insertion of donor 4d t2g states in the band gap due to the presence of Rh 

dopant ions; discussion of the position of this band edge follows later in the context of 

TiO2:[Rh5%] by comparison with codoped samples.  

The absorption feature at 1.0 eV was not observed in a previous study by Oropeza et al. since 

their spectra were collected over a shorter range of wavelengths and therefore the low energy 

transition was not observed.161 A study using Rh and Sb dopants in SrTiO3 assigned a similar 

feature at the same energy to a Rh d-d transition90, which is spin-allowed in Rh4+. Since 

octahedral Rh3+-O2- is a low spin configuration179, 180, this transition would not be allowed for 

Rh3+ doped on a Ti4+ site in TiO2 (or SrTiO3) and could be seen as an indication of the presence 

of Rh4+. Whilst in agreement that this absorption feature indicates the presence of Rh4+, a 

different explanation is proposed here. Evidence in the literature regarding the electronic 

structure of Rh ions indicates that the Rh4+ d-d transition occurs at around 2.5 eV181, 182 and 

while this will vary in oxides, it does not correlate with the absorption observed, indicating 

that this has been misassigned in other work. Instead, this absorption can be assigned to an O 

2p → Rh t2g transition, i.e. a transition from the TiO2 VB to the partially filled interband gap 

Rh 4d state. As seen previously in the XPS valence band spectra, filled Rh states appear at 

around 1.0 eV above the valence band edge. From this analysis, a quantitative picture of the 

electronic structure of Rh doped TiO2 can be understood. The TiO2 valence band orbitals, 

mainly O 2p, lie 1.0 eV below the Rh 4d t2g donor states in the band gap. Around 2.5 eV above 

these lie the Rh 4d eg states, close to the conduction band edge, which lies around 3 eV above 

the valence band edge. 
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The introduction of Sb5+ into Rh doped TiO2 should cause the reduction of Rh4+ to Rh3+. 

Careful interpretation of XPS data in section 4.2.4.3 has shown that Rh in codoped samples 

exists in a lower oxidation state than when Rh is the only dopant in the system. This is further 

corroborated by the Tauc plots presented in Figure 64, which shows all Sb/Rh samples. It is 

evident from these plots that the absorption at ~ 1.0 eV diminishes with the addition of Sb5+. 

As explained above this absorption is due to an O 2p → Rh t2g transition and is therefore 

indicative of the presence of Rh4+ in the sample. All codoped materials with Sb/Rh < 1 possess 

a strong absorption at ~1.0 eV, which can be seen to decrease when Sb/Rh ≥ 1. Equimolar 

dopant concentration produces the largest reduction in this absorption, indicating that [Rh4+] 

is lowest at this ratio.  

 

Figure 64: UV-Visible absorbance spectra of TiO2[Rh5%][Sb1%], TiO2[Rh5%][Sb3%], TiO2[Rh5%][Sb5%], 

TiO2[Rh5%][Sb7%], TiO2[Rh5%][Sb9%] 

Although codoped samples have a lower band edge than that of pristine TiO2, they all possess 

higher band edges than TiO2:[Rh5%], which is unexpected. Samples that appear to contain a 

large proportion of Rh4+, indicated by the intensity of the absorption at 1.0 eV (TiO2:[Rh5%], 

TiO2:[Rh5%][Sb1%] and TiO2:[Rh5%][Sb3%]), all have a lower band edge than expected to 

be brought about by the insertion of Rh 4d donor states in the band gap. It is likely that the d-

d transitions described previously, which are spin-allowed in Rh4+ are responsible for this 

feature resembling a band edge at ~1.8 eV in  TiO2:[Rh5%] and TiO2:[Rh5%][Sb1%] and 

TiO2:[Rh5%][Sb3%]. This, like the O 2p → VB transition at 1.0 eV is attenuated by the 

addition of Sb, which causes reduction of Rh4+ to Rh3+. 
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Band gap energies were determined for each sample by extrapolation of linear portion of the 

plot to the x-axis, giving the value of the band edge absorption. An example of pristine TiO2 

is shown in Figure 65, with the linear portion expanded in the inset. Table 17shows the 

measured band gaps for all samples. Those denoted with a * are the samples of Sb/Rh < 1, 

which are not believed to be true band gap energies (explained above). 

 

Figure 65: Kubelka-Munk transformed data resultant Tauc Plot, example using TiO2 fired rutile 

All codoped samples with Sb/Rh > 1 exhibit a band gap energy lower than that of undoped 

TiO2 rutile and also of TiO2:Sb[5%]. This is believed to be caused by d-d transitions, explained 

previously, caused by the presence of small amounts of Rh4+, which has not been completely 

eliminated since [Sb] < [Rh] and therefore some Rh ions can still reside in the +4 oxidation 

state. TiO2:[Rh5%][Sb3%] continues this trend, though less dramatically, as it possesses a 

band gap ~0.1 eV lower than samples with Sb/Rh > 1. Samples with Sb/Rh > 1 have similar 

band gaps at 2.25 eV, 2.24 eV and 2.23 eV. From the absorption at 1.0 eV it is known that in 

these samples a minimal amount of Rh4+ exists and therefore this narrowing of the band gap 

is considered genuine and due to Rh 4d t2g → CB transitions. 

Sample Band Gap Energy 

TiO2:[Sb5%] 3.1 

TiO2:[Rh5%] 1.84* 

TiO2:[Rh5%][Sb1%] 1.89* 

TiO2:[Rh5%][Sb3%] 2.11 

TiO2:[Rh5%][Sb5%] 2.25 

TiO2:[Rh5%][Sb7%] 2.24 

TiO2:[Rh5%][Sb9%] 2.23 

Table 17: Band gap energies calculated using Tauc plot extrapolation. *indicates probable d-d transition 
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A summary of the electronic structure of Rh3+ and Rh4+ doped TiO2 as determined from this 

analysis is explained in Figure 66 below. Rh3+ doped TiO2 samples possess complete Rh 4d 

t6
2g energy levels within their band gap. The only allowed transitions in this system are VB → 

CB or Rh 4d t6
2g → CB. These result in a single band edge of around 2.24 eV and can be 

observed in samples with Sb/Rh ≥ 1. Contrastingly Rh4+ doped TiO2 possess incomplete Rh 

4d t5
2g energy levels within its band gap. This configuration can result in additional transitions 

as well as those described for Rh3+. A transition from VB → Rh 4d t5
2g is caused by absorption 

of a photon of around 1.0 eV, which can be clearly seen in Tauc plots for samples of Sb/Rh < 

1. In addition, a d-d transition, which is spin allowed in Rh4+, can be observed after absorption 

of photons of around 2.0 eV. This results in an apparent downshift of the band edge of these 

samples, though this is not a real narrowing of the band gap, since these electrons are confined 

to the Rh 4d energy levels and cannot be accessed for photocatalysis. Instead they will relax 

back down to their ground state.  

 

Figure 66: Energy level diagrams illustrating the possible transitions observed in the doped materials, if they are 

allowed and their approximate energy requirement  

4.2.6 Transient Absorption Spectroscopy (TAS) 

Charge carrier dynamics of selected powder samples were measured using Diffuse 

Reflectance Transient Absorption Spectroscopy (DR-TAS) from the microsecond to second 

time scale at room temperature. A 75 W Xe lamp is used as a probe beam with a 

monochromator placed before the powder sample, which is compacted between two glass 

microscope slides. Changes in the light reflected by the sample are measured by a Si PIN 

photodiode after a UV laser excitation pulse is applied on the sample (355 nm, 6 ns pulse 

width). The laser intensities used were (∼40 μJ cm−2 pulse−1) with a laser repetition rate of 1 
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Hz. Each TAS trace is the result of averaging 100 scans. The samples selected for DR-TAS 

were TiO2:[Rh5%], TiO2:[Rh5%][Sb5%], TiO2:[Rh5%][Sb9%] along with TiO2:[Sb5%] and 

TiO2 rutile (fired at 1100 ˚C for 10 hours) as controls. These measurements were taken at 

Imperial College London, using the Durrant Group DR-TAS setup and with the assistance of 

Dr Andreas Kafizas. Transient Absorption Spectroscopy.  

4.2.6.1 DR-TAS Spectra 

Absorption spectra, shown in Figure 67 and Figure 68, were compiled by taking the average 

absorption of each sample between 550 and 950 nm in 50 nm increments. The spectral shapes 

for each sample remained the same across the microsecond timescale, after which the signals 

were too low to produce a distinctive spectrum.  

Previous studies have shown that photoexcited electrons absorb in the near-IR region (λ = 700 

nm-1000 nm) and that photogenerated holes absorb in the visible region (λ = 400 nm-700 

nm).183 Multiple studies have made use of solution based TAS, immersing the sample in a 

solution of a hole or electron scavenger to quench the respective signals and yield a spectrum 

pertaining to only electron or hole absorption.184, 185 For example, a study by Kafizas et al. 

determined from studies using silver nitrate as an electron scavenger and methanol as a hole 

scavenger, that in rutile TiO2 electrons absorb at 850 nm and holes at 550 nm.105 

Unfortunately, the large particle size of Rh and Sb/Rh codoped samples discussed in this 

chapter adversely affected powder dispersion in both MeOH and AgNO3 solutions, preventing 

solution phase TAS from being carried out with these samples and therefore preventing 

correlation of deconvolution results with the samples examined here. However, assuming that 

doping does not dramatically affect the wavelengths at which electrons and holes absorb, some 

conclusions can be made about the relative proportion of charge carriers in the doped samples.  

TiO2 fired rutile, shown in Figure 67a, produces a spectrum of decreasing absorption as probe 

pulse wavelength increases, indicating that the majority of mobile charge carriers in this 

material are holes. It should be noted here that previously reported TiO2 rutile spectra105 have 

produced spectra with stronger absorption in the n-IR region, corresponding to a more even 

concentration of electrons and holes. Also, nano-sized TiO2 TAS spectra in the same study 

produced a higher overall absorption intensity, indicating that the low intensities reported here 

could be due to particle size effects. For example, the high degree of agglomeration could 

provide an increased number of grain boundaries, which are known to 
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Figure 67: a) TAS spectrum of TiO2 fired rutile powder and b) TAS spectrum of TiO2[Sb5%] mobile electrons 

act as recombination sites for charges in semiconductors.186, 187 By comparison, TiO2:[Sb5%] 

shown in Figure 67b produces absorption signals of more comparable intensity across the 

range of probe pulse wavelengths. While the absorption intensity does still decrease with 

increasing probe pulse wavelength, this decrease is less pronounced in TiO2:[Sb5%] than in 

TiO2 fired rutile. This indicates that the concentration of photogenerated electrons and holes 

is more equal in TiO2:[Sb5%] than in TiO2 fired rutile.  

The doped samples produce spectra of similar shapes to each other, but with significantly 

varying intensities. The TAS spectrum of TiO2:[Rh5%], shown in Figure 68a, shows a 

maximum intensity of 0.9 mΔO.D. at 550 nm, at the 10μs timescale. Absorptions sharply 

decrease as probe pulse wavelength increases, indicating that the majority charge carriers in 

this material at the microsecond timescale are holes, which as previously stated absorb in TiO2 

rutile at 550 nm. This supports results reported earlier in this chapter, where XPS indicates 

that the addition of Rh as a dopant alone decreases the energy of the Fermi level, making the 

material more p-type.  

TiO2:[Rh5%][Sb5%], shown in Figure 68b, produces a spectrum of higher intensities across 

all wavelengths by comparison to TiO2:[Rh5%]. The spectral shape is also different to that of 

TiO2:[Rh5%]; absorptions at higher wavelengths are more intense, indicating a higher 

concentration of electrons in this sample than in TiO2:[Rh5%], though holes are still the 

majority carrier since the sample is more strongly absorbing at lower wavelengths than at λ ≥ 

700 nm. Again this supports XPS results, which indicate that the Fermi level in codoped 

samples exists at a higher energy and that the sample is more n-type. TiO2:[Rh5%][Sb9%] 

(Figure 68c) produced a spectrum of similar shape to that of TiO2:[Rh5%][Sb5%], but with 

lower intensities across all timescales. At the shortest timescale (10 μs after photoexcitation)  
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Figure 68: a) DR-TAS spectrum of TiO2[Rh5%] b) DR-TAS Spectrum of TiO2[Rh5%][Sb5%] and c) 

TiO2[Rh5%][Sb9%] 

TiO2:[Rh5%][Sb9%] absorbed more intensely than TiO2:[Rh5%] across all timescales, though 

this diminished at later timescales. 

It is important to note the timescale of this analysis; these measurements were made, at the 

earliest, 10 μs after photoexcitation. Conclusions drawn regarding relative concentrations of 

photogenerated electrons and holes in different samples do not necessarily indicate that greater 

or fewer charge carriers are generated, but that in samples with less intense signals the 

electrons and holes possibly recombine on a timescale shorter than that of the resolution of 

the setup used. This is important information for materials intended for photocatalytic uses, 

since charge carrier lifetime is an essential property for photocatalytic materials. However, it 

should be noted that information pertaining to the mobility of these charges is not provided 

from TAS; some charges could have a long lifetime if they reside in trap states, which do not 

allow them to recombine, but also do not allow them the mobility required for them to migrate 

to the surface and facilitate photocatalytic reactions. 

4.2.6.2 DR-TAS Kinetics 

The decay kinetics of all three doped samples and the two control materials at a probe pulse 

wavelength of 850 nm are shown in Figure 69. These are indicative of the relative 

concentration of electrons in these samples at time intervals > 10 μs after a 355 nm laser 

excitation pulse. TiO2:[Rh5%] exhibits the lowest concentration of mobile electrons. Since the 
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laser wavelength used is 355 nm, well into the photoexcitation region for any TiO2 material, 

it seems that the majority of photoexcited electrons in this sample have recombined on a much 

shorter timescale than the other samples. Rh doping in TiO2 appears to reduce the 

concentration of long lived mobile electrons. Earlier XPS analysis indicates that Rh doping 

alone introduces Rh4+ with incomplete 4d t5
2g states; the TAS kinetics reported here suggest 

that these states act as a trap for photogenerated electrons, reducing their lifetime after 

photoexcitation. 

 

Figure 69: TAS recombination kinetics of TiO2 fired rutile, TiO2[Rh5%], TiO2[Rh5%][Sb5%], 

TiO2[Rh5%][Sb9%] 

These decay spectra illustrate the effect of the addition of antimony to the system. In equimolar 

amounts, these dopants positively affect the number of charge carriers generated, as can be 

seen by the higher initial absorption of this sample, at 5 μs. Again, this result can be correlated 

with earlier electronic analysis, which indicates that the addition of Sb(V) to the system allows 

n-type character to be retained (the Fermi level in TiO2:[Rh5%][Sb5%] is in a much more n-

type position than that of TiO2:[Rh5%]) by reducing Rh4+ to Rh3+ and filling the Rh 4d t2g 

donor states. Therefore more electrons are present in the material and the electron trap 

presented by Rh4+ t5
2g states are removed. 

By comparison the TiO2:[Rh5%][Sb9%] spectrum shows that further addition of Sb adversely 

affects the properties of TiO2, since it exhibits a much lower initial absorption than both rutile 

and TiO2:[Rh5%][Sb5%]. This indicates that additional Sb (V) ions possibly act as electron 

traps themselves. As shown by XPS depth profiling, Sb (V) ions in these samples reside near 

the surface- excess Sb (V) ions could act as trap states for electrons, being reduced to Sb (III), 

which as previously discussed, has been shown to be sterically stable at the TiO2 surface.  
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An interesting result in this TAS study was that of the Sb doped control. The results presented 

indicate that the addition of Sb to TiO2 alone increases the number of mobile electrons above 

that of the TiO2 rutile control, which was fired at 1100 °C for 10 h. As previously stated in 

this chapter, reports of Sb doped TiO2 also suggest that that Sb, when doped into TiO2 alone, 

is segregated into Sb (III) at the surface and Sb (V) in the bulk with overall charge neutrality 

maintained.173, 174 This would appear to eliminate the possibility that Sb is an n-type donor, 

since there would be no net addition of electrons. Literature studies have reported increased 

electrical conductivity of Sb doped TiO2
188, which could indicate that the introduction of Sb 

5s states into the conduction band makes electrons more mobile and therefore increases their 

lifetime once photogenerated. 

The electron-hole recombination process can be compared in normalised spectra, shown in 

Figure 70. Here we can compare the longevity of the charges that have been produced, 

regardless of their absolute concentration. Fired rutile is shown to be the best performing 

material in this analysis; its shallow gradient indicates that the charges produced are the 

longest lived out of the materials tested. Of the doped samples TiO2:[Rh5%] shows the next 

slowest decay kinetics, however the minimal number of charges produced makes this result 

 

Figure 70: Normalised TAS spectra of TiO2 fired rutile, TiO2[Rh5%], TiO2[Rh5%][Sb5%], TiO2[Rh5%][Sb9%] 

negligible with respect to the others. Interestingly both codoped samples show the fastest 

decay. This could indicate that the dopants may be providing recombination centres, where 

electrons and holes are unable to migrate and therefore recombine quickly. The TAS results 

described here indicate that Rh/Sb codoped samples outperform Rh doped TiO2 in the absolute 

photogeneration of long-lived charge carriers. However, both codoped samples showed faster 
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recombination kinetics by comparison with control samples of fired TiO2 and TiO2:[Sb5%], 

which could indicate that the dopants are acting as trap states. However, previously reported 

visible light activity for these similar systems still makes them promising materials for 

photocatalytic processes. The samples presented in this thesis were all fired at 1100 ˚C, 

meaning that particle agglomeration was extensive. It is possible that increased grain 

boundaries adversely affected the recombination rates of all samples, however this does not 

account for the poor performance of codoped TiO2. All doped samples presented in this thesis 

contained high concentrations of dopant ions (> 1%), which possibly reduced the charge 

carrier lifetimes in a way that would be less pronounced with lower dopant loadings; it is 

possible that an optimum loading could offer visible light activity, without the detrimental 

recombination kinetics observed in this study. 
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4.3 Conclusions 

This investigation focused on the comprehensive characterisation of Rh and Sb doped titanium 

dioxide in the context of assessing their suitability for water splitting. Previous results from 

literature suggest potential superior activity by comparison to other Z-scheme components, 

from visible light activation offered by the addition of Rh 4d t2g energy levels in the band gap. 

The addition of Sb has been shown to be instrumental in the activity of these materials.  

This investigation determined that solid state synthesis can produce phase pure Rh doped and 

Sb/Rh codoped materials, though at higher doping regimes multiple grinding and heating 

stages are necessary to ensure a complete reaction. Scanning electron microscopy indicates 

that doped samples are highly agglomerated and that particle sizes are of the micron scale, 

which is to be expected for this type of high temperature synthesis. Lattice parameters 

determined from PXRD analysis suggest substitutional doping of Rh and Sb ions, since unit 

cell expansion is observed. The cell volume trend for codoped samples is non-linear, with high 

Sb loading resulting in a less pronounced expansion than equimolar doped materials; this 

suggests an increase in the number of oxygen vacancies compensating for additional electrons 

introduced to the system in the form of Sb (V). 

XAS data showed that Rh ions are likely substitutional from nearest neighbour and next 

nearest neighbour bond distances, which are comparable to Ti-O and Ti-Ti distances in TiO2. 

It was also shown that increased Sb loading reduces the oxidation state of Rh ions as the Rh 

K-edge increases in energy as Sb loading increases. While Sb EXAFS Fourier transform data 

were more difficult to interpret than the analogous Rh data, there was an indication from the 

next nearest neighbour distances that as Sb loading increased a more Sb2O5-like environment 

existed around Sb ions. Since Sb2O5 adopts a rutile like structure this indicates a substitutional 

doping regime at higher Sb loadings. This hypothesis is supported by lattice parameter data, 

which shows a decrease in cell volume at higher loadings. Finally, the Sb XANES edge 

indicates strongly that all Sb dopant ions are in the +5 oxidation state in the codoped samples. 

XPS reveals that dopant ions are localised at the surface. In particular Sb ions are more surface 

localised than Rh and Sb appears to augment the degree of surface localisation of Rh ions as 

codoped samples possess higher XPS calculated Rh concentration than their singly doped 

counterparts. Fermi level energy changes due to dopant concentration were demonstrated by 

XPS, confirming previous literature reports. This investigation expanded understanding of the 

effects of this difference by investigating a wider range of dopant ratios than other 

investigations. By using the O 1s core line as an indicator of the change in Fermi level energy, 

it was determined that as Sb/Rh ratio increases the Fermi level energy decreases. The inclusion 

of a single crystal study to probe the change in Sb/Rh ratio as a function of depth in 
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combination with this data pertaining to the Fermi level position at different Sb/Rh ratios 

allowed for the position of the CBM and VBM at each point in the depth profile to be 

estimated. The revealed band bending may also to apply to powders and is likely to strongly 

affect charge carrier migration. The spatial confinement of dopants to affect (and effect) 

charge carrier migration is of fundamental importance in the field of silicon electronics. 

However, despite this the approach has not so far been intentionally taken in designing 

photocatalysts or photoelectrocatalysts. The results presented in this chapter indicate for the 

first time that a photocatalyst system exhibits spontaneous dopant segregation which is 

expected to cause significant band bending. This may explain the high photoactivity reported 

in this system; as previously stated Niishiro and co- workers159 reported photoactivity of Rh 

and Sb codoped TiO2 (where Sb/Rh = 0, 0.5, 1, 2 and 3 were investigated) and showed that, 

with Sb/Rh ≥ 2, O2 evolution exceeds 10 mmol h-1. 

Also shown from XPS, was the change in Rh binding energy with addition of Sb. The Fermi 

level movement renders absolute binding energies meaningless since their relative positions 

in different samples cannot be compared. Instead the separation between O 1s and Rh 3d core 

lines was taken and a decrease in relative binding energy (and thus decrease in Rh oxidation 

state) was observed upon addition of Sb. 

Optical data corroborated this decrease in Rh oxidation state with the addition of Sb in two 

ways. Firstly the strong absorption observed at ~1.0 eV in samples believed to contain high 

concentrations of Rh (IV), which is caused by VB to Rh 4d t5
2g transitions, diminished on the 

introduction of Sb to the system. Secondly, the band edge in samples with low Sb content was 

more blue shifted than samples with Sb/Rh ≤ 1, which lie together at ~2.24 eV. This is 

thought to be due to the presence of low spin Rh (IV) d-d transitions, which are not allowed 

in d6 Rh (III). 

TAS of selected samples indicates lower charge carrier concentrations for the doped samples 

in comparison to undoped rutile. This contradicts literature reports that show similar samples 

exhibiting good photoactivity. It is possible that the samples generated in this investigation 

had absolute dopant concentrations high enough that the dopant ions acted as recombination 

sites and that the electrons and holes generated, recombined on a timescale shorter than the 

resolution of the DR-TAS setup used. The TAS kinetics for doped samples certainly indicates 

that higher doping regimes are detrimental to charge carrier mobility and therefore it is clear 

that an optimum dopant concentration and ratio exist, whereby there is enough Rh and Sb to 

effect a positive change in the electronic and optical properties of the TiO2 without 

detrimentally affecting charge carrier generation and subsequent mobility.  
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Chapter 5: Investigation of the effects 

of Rh and Sb doping on the electronic 

structure of SrTiO3  

5.1 Introduction 

Strontium titanate is a cubic perovskite semiconductor, which has been investigated for its 

solar water splitting potential since 1975189, but with considerably less interest than TiO2. For 

example, a Web of Science search conducted (on 3rd January 2017) using the search term 

“SrTiO3 photocatalysis” revealed 216 results whereas the term “TiO2 photocatalysis” yielded 

17649 results. Interest in SrTiO3 stems from its electronic similarity to TiO2. Their band gaps 

are similar at around 3.2 eV84, the band edges of both materials straddle the redox potentials 

of water splitting and are made up of similar combinations of orbitals: O 2p with some Ti 

covalence for the valence band and mainly Ti 3d for the conduction band.84, 190-193 Strontium 

titanate has therefore been investigated for its water splitting and other photocatalytic potential 

regarding, for example, organic pollutant degradation pathways.194-202 

Like TiO2, the relatively wide band gap also means that without modification SrTiO3 is only 

active under UV light and so research has focussed on reducing this energy requirement. 

Doping is a common method used to alter the electronic structure of a material and work on 

SrTiO3 has mainly focussed on using different dopant ions to reduce its band gap with the 

hopes of activating it under visible light and therefore increasing its efficiency. Much of the 

work on SrTiO3 has been informed by the vast amounts of research done on TiO2 and therefore 

the range of dopants that have been tried with SrTiO3 is reflective of this. Nitrogen has been 

explored as a potential dopant, since the N 2p valence orbitals mix well with O 2p of the 

SrTiO3 valence band. N-doped SrTiO3 has been prepared by various methods, including PLD 

of thin films203, 204, solvothermal205 and hydrothermal206 methods to produce nanoparticles. 

These studies have shown that N-doping can reduce the SrTiO3 band gap and increase the 

visible light activity of photocatalytic reactions similarly to its effect on TiO2. A computational 

study found that co-doping with N/Mo = 2 could theoretically reduce the band gap of the 

material to 2.07 eV and produce a material with minimal recombination centres (which can 

arise in doped materials in the form of defects or partially occupied states close to the band 

edges), whilst also retaining a favourable valence band edge position.207 Wei et al. determined 

from first-principles calculations of N-doped SrTiO3 codoped with a variety of non-metals 

and metals (F, Cl, Br, I, V, Nb, Ta, Sc, Y, La) that the merits of cooping in SrTiO3 include  
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increase primary dopant solubility, improved charge separation by the advent of an internal 

field, defect passivation and band gap narrowing. 208 

Scandium doped SrTiO3 single crystals grown by float zone pulling have been reported as 

having p-type character. A substantial downshift (0.7 eV) in all photoemission core lines and 

the valence band were observed, indicating a change in the Fermi level position to a more p-

type position than in n-type SrTiO3 (Nb-doped).209 A cathodic (p-type) photocurrent was 

observed from Ir doping of SrTiO3; Ir, similar to Rh, can exist in the +3 or +4 oxidation state. 

Films produced by PLD showed that unlike Rh doped TiO2, as discussed in Chapter 4, Ir 

doped SrTiO3 shows better photoelectrochemical activity from Ir4+ incorporation than Ir3+.210 

Rh3+ doped SrTiO3 has been shown to produce cathodic photocurrent, indicating a p-type 

position of the Fermi level. 211, 212 As a photocatalyst SrTiO3:Rh(1%) has been shown to evolve 

H2 from methanol under visible light, with the authors suggesting that an induction period of 

low activity before an increase, is due to reduction of any Rh4+ to Rh3+.90 The colour of the 

material has been shown to be indicative of the Rh dopant oxidation state; Rh3+ produces 

yellow materials and Rh4+ produces purple materials.213 Rh:SrTiO3 has been investigated as a 

H2 evolving side of a z-scheme, in combination with BiVO4.45, 48, 214 

This chapter describes a range of samples of Rh and Sb codoped SrTiO3 made by two solid 

state synthesis routes. The investigation focuses on the oxidation state of Rh in doped samples 

in order to determine if Sb doping can cause Rh to exist in the preferable +3 oxidation state, 

in a similar manner to the effects observed for TiO2 in Chapter 4. Synthesis comparable to that 

of the doped TiO2 samples presented in Chapter 3 was attempted, whereby SrTiO3 was 

directly reacted with the dopant oxide powders. This synthesis method differs from other solid 

state syntheses reported in the literature, where SrCO3 has been reacted with TiO2 and the 

relevant dopant oxide powders. The synthesis presented in this chapter, from which initial 

structural data are presented, was found to not be viable for high concentrations of dopant, but 

successful for low concentrations of dopant. Full characterisation of samples with low-doping 

concentrations (Sb < 1 %, Rh < 1 %) is discussed and the suitability of materials prepared by 

this method as possible photocatalysts is assessed. 
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5.2 Results 

The results in this chapter are presented in two sections; firstly a study of samples doped with 

comparable concentrations of dopants to the doped TiO2 samples presented in Chapter 4 (i.e. 

Rh 5%, Sb 1-9% at 2% intervals), followed by a study of samples doped with lower 

concentrations of dopant (Rh 0.5%, Sb 0.1-0.9% at 0.4% intervals).  

5.2.1 Doped SrTiO3 from direct reaction of SrTiO3 and dopant oxides: Rh 5%, Sb 1-9% 

In this section analysis of SrTiO3 doped through direct synthesis with Rh2O3 and Sb2O5 is 

described. These samples were doped with 5% Rh and codoped with 1, 3, 5, 7 and 9% Sb. 

Throughout the discussion these samples are labelled with this information. 

5.2.1.1 Phase Identification 

PXRD was used to determine the phase purity of doped SrTiO3 samples. Diffraction patterns 

were recorded on a Bruker D4 diffractometer using Cu-Kα radiation, λ = 1.541 Å. After one 

firing at 1100 °C for 10 hours all samples produced PXRD patterns containing impurities. 

Figure 71 shows PXRD patterns of all samples after two firings at 1100 °C for a further 10  

 
Figure 71: XRD pattern of products from solid state reaction of SrTiO3 with the appropriate molar amount of 

dopant to yield doped SrTiO3 with 5 % Rh doping and 1-9% Sb doping at 2% intervals. The data shown are for 

mixtures fired twice at 1100 °C for 10 hours each. 
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hours; again impurity peaks were present. Further calcination, resulting in a total of 30 hours 

of high temperature (1100 °C) heating, did not complete the reaction and the patterns shown 

in Figure 71 are consistent for samples in this series prepared by any length of calcination 

completed in this study. 

The lattice parameter, a, was found to remain the same upon on doping, it was determined as 

3.91 Å in undoped SrTiO3 and  3.91 Å ±0.0005 in all doped samples. Since the impurity peaks 

in these samples are numerous, peaks associated with SrTiO3 were removed from the pattern 

of SrTiO3:[Rh5%][Sb9%]- this pattern exhibited the most impurity peaks- and this impurity 

fingerprint has been compared to other patterns in order to identify the impurities. All impurity 

peaks found in other samples were present in the PXRD pattern of SrTiO3:[Rh5%][Sb9%], 

and so this collection of peaks can be considered as representative of the impurities of all 

samples. The impurity fingerprint is shown in Figure 72 by comparison with starting materials 

Rh2O3 and Sb2O3 (both cubic and orthorhombic polymorphs) and other possible antimony 

oxide impurities Sb2O4 and Sb2O5.  

As can be seen in these comparative figures, there is no single pattern that correlates with the 

impurity fingerprint of SrTiO3:[Rh5%][Sb9%]. The highest intensity peak in the impurity 

fingerprint appears at 26 ° 2θ; this could correlate to the peak found at 25 ° 2θ in Sb2O5, though 

other prominent peaks in the Sb2O5 pattern are absent from the impurity fingerprint, such as 

the peak at 31 ° 2θ. In addition there are additional peaks in the impurity fingerprint that do 

not appear in any of the starting material or antimony oxide patterns, such as those found at 

17 ° 2θ and 32 ° 2θ. XPS quantification (discussed in section 5.2.1.2 below) indicated that the 

surface of the materials was Sr-rich and O-poor. However, patterns for different SrxTiyOz 

compositions, such as Sr3Ti2O7 
215 , Sr4TiO10

216 and Sr2TiO4 
217, 218 (shown in Figure 73) also 

do not correlate with the impurity fingerprint pattern.  

While it is not possible to ascertain the identity of the impurity phases that are present in these 

samples, it is clear from comparison with a variety of PXRD patterns for other phases that 

could possibly have been formed, that the Sb2O5 pattern exhibits the highest similarity to the 

impurity fingerprint pattern. However, it is important to note that this would represent a highly 

distorted Sb2O5 lattice, likely distorted by the presence of Sr, Ti and Rh ions in a mixed phase 

of all elements. The sharp nature of the peaks indicate that this phase or phases  
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Figure 72: XRD patterns for dopant starting materials Rh2O3, both Sb2O3 polymorphs and possible other antimony 

oxide impurities Sb2O4 and Sb2O5 (all in black) compared with the impurity fingerprint from sample 

SrTiO3[Rh5%][Sb9%] 

are crystalline and therefore ordered; due to the lack of existing data on Sb and Rh mixing into 

the SrTiO3 lattice, it is difficult to determine the exact nature of the reaction that has occurred. 

This additional phase was not observed when the same method was used to dope TiO2; in 

Chapter 4, only the most highly doped sample TiO2:[Rh5%][Sb9%] revealed any impurities, 

which were attributed to unreacted antimony oxide and were eliminated by a second firing of 

the powder. Thus it is clear that the differences in the SrTiO3 structure, which is cubic 

perovskite, and the TiO2 structure (rutile) impact the ability of dopant ions to diffuse into the 

titanate and replace Ti4+ cations.  

The cubic perovskite structure of SrTiO3 possesses TiO6 octahedra that are corner sharing; by 

comparison TiO6 octahedra in rutile TiO2 share edges. This difference could result in dopant 

ions being more easily able to diffuse and substitute in TiO2 rutile than in SrTiO3.   
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Figure 73: Impurity fingerprint pattern (red, top) by comparison with Sr-rich phases a) Sr3Ti2O7 (Ruddlesden-

Popper) b) Sr4Ti3O10 (Ruddlesden-Popper) c) Sr3Ti2O7 (Elcombe) and d) Sr2TiO4 (Kawamura) 

5.2.1.2 XPS Quantification 

High-resolution core line spectra were collected for Sr 4d, Ti 2p, O 1s and Rh 3d. As with 

samples in previous chapters, the Sb 3d region overlaps the O 1s region and so these spectra 

were collected together and fitted by utilising the Sb 3d 3/2 peak, which lies 9.4 eV higher than 

the Sb 3d 5/2 / O 1s region. Explanation of this fitting has been described in Chapters 3 and 4 

previously and example spectra have been shown. Elemental quantification of the sample 

surfaces was completed by fitting of core line spectra, determination of peak areas and 

normalisation with the appropriate relative sensitivity factor ascertained from the instrument 

used for analysis. The atomic percentages yielded are shown in Table 18 below alongside 

theoretical ratios for stoichiometric SrTiO3. Comparison of these values with the 

stoichiometric percentages that are shown in row one of the table highlights the Sr-rich, O-

poor composition of the surface of these materials, where the ratio should be Sb/O = 0.33, but 

is consistently around 0.6 in these samples. 

These results confirmed that direct synthesis of SrTiO3 with dopant oxide powders at these 

concentrations would not yield phase pure, stoichiometric materials, suitable for further 

characterisation within the scope of this project. Thus, samples with dopant concentrations 10 
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times lower were prepared, using the same synthesis method. These results are discussed in 

section 5.2.2. 

 Atomic Percentages 

Sample Sr O Ti Rh Sb 

SrTiO3 theoretical 20 60 20-(x+y) x y 

SrTiO3[Rh5%][Sb1%] 28.15 50.90 16.63 1.56 2.77 

SrTiO3[Rh5%][Sb3%] 25.17 53.38 14.53 2.37 4.55 

SrTiO3[Rh5%][Sb5%] 27.80 47.98 16.71 2.03 5.48 

SrTiO3[Rh5%][Sb7%] 27.50 48.30 15.44 2.34 6.42 

SrTiO3[Rh5%][Sb9%] 28.55 42.70 16.67 3.24 8.85 

Table 18: Atomic percentages of all atoms present in doped SrTiO3 samples (total dopant concentration > 1.5 

mol. %) 

 

5.2.2 Doped SrTiO3 from direct reaction of SrTiO3 and dopant oxides: Rh 0.5%, Sb 0.1-0.9% 

In this section analysis of SrTiO3 doped through direct synthesis with Rh2O3 and Sb2O5 is 

described. These samples were doped with 0.5% Rh and codoped with 0.1, 0.5 and 0.9% Sb. 

For brevity the samples have been coded as follows: 

STO 01: SrTiO3:[Rh0.5%] 

STO 02: SrTiO3:[Rh0.5%][Sb0.1%] 

STO 03: SrTiO3:[Rh0.5%][Sb0.5%] 

STO 04: SrTiO3:[Rh0.5%][Sb0.9%] 

5.2.2.1 Phase Identification  

PXRD was used to determine the phase purity of the doped SrTiO3 and as-purchased SrTiO3 

staring material. Diffraction patterns were recorded on a STOE (Mo) STADI P diffractometer. 

The instrument operates with a Mo X-ray source (Mo tube 50 kV 30 mA,), monochromated 

(pre-sample Ge (111) monochromator selects Kα1, λ = 0.709 Å) and a Dectris Mython 1k 

silicon strip detector covering 18° 2θ. Samples were run in transmission mode, with the sample 

rotated in the X-ray beam. As with other data in this thesis the data have been transformed to 

represent data collected with Cu Kα radiation (λ = 1.541 Å) for ease of comparison. 



144 

 

 

Figure 74: PXRD patterns of SrTiO3 and doped samples STO 01, 02, 03 and 04 

As can be seen in Figure 74, PXRD patterns of all doped samples matched well with the 

starting material, with no additional peaks due to Rh2O3 or Sb2O3 dopant sources present. 

Additionally no clear impurity peaks were discernible indicating the absence of Sr-rich phases 

or anything similar to the impurity fingerprint of samples described in section 5.2.1. However, 

it is notable that due to the lower signal to noise ratio of the data collected on the STOE 

diffractometer, small amounts of impurity could be masked. The peaks of all patterns align 

well, with no easily discernible peak shift indicating at first instance that any doping that has 

occurred has resulted in minimal changes to the lattice; section 5.2.1.2 explores this in further 

detail. The intensity ratios of the peaks in all patterns remain the same, indicating that heating 

did not result in preferential growth at any particular face.  

5.2.1.2 Lattice Parameters and Cell Volumes 

In order to quantify any differences between the diffraction data, least squares refinement was 

completed using peak positions to determine the cell parameters and cell volume. Diffraction 

patterns were indexed in the perovskite structure, Pm-3m space group, from a standard 

pattern.219 Lattice parameter and cell volume data for doped samples revealed no 

crystallographic change upon doping. 
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The lack of lattice expansion could indicate the presence of Rh4+ (ionic radius = 0.600 Å) in 

these samples, which has a similar ionic radius to Ti4+ (ionic radius = 0.605 Å) and would 

therefore not affect the lattice parameter. This is likely the case in STO1, where only Rh is 

present as a dopant, since the dopant ions are thought (for reasons of size and charge) to 

substitute onto the titanium site. However, the presence of Sb5+ is thought to encourage the 

formation of Rh3+ which has a larger ionic radius (0.665 Å) and therefore in samples STO2, 

STO3 and STO4 a cell expansion would be expected. 

The presence of Sb3+ in these samples is unlikely; Sb3+ has an ionic radius of 0.76 Å, which 

would cause a substantial lattice expansion. It is possible that the dopant concentrations in 

these samples are too small for any lattice expansion to be observed, since XRD is a bulk 

technique and the data here represent an average value. Thus it is difficult to conclusively 

draw conclusions regarding the nature of the dopants in these materials from XRD data alone. 

It could be possible that, as with samples described in section 5.2.1, a secondary phase has 

been created but that this is masked by the noise in XRD data for these samples, which contain 

dopants at much lower concentrations.  

As well as these explanations, defects associated with the presence of the dopant ions, for 

example O vacancies, could affect the cell volume. Thus, it’s possible that Rh3+ is present in 

codoped samples, but that associated defects allow the lattice to appear to remain the same 

size. In the absence of a definitive answer, it is difficult to definitively state the nature of 

dopants in these samples. In order to further investigate the local structure, X-ray absorption 

measurements were obtained for Sb ions in the structure. This analysis follows in section 5.2.2 

below.  

5.2.2 X-ray Absorption Spectroscopy of Sb K-edge 

Sb K-edge X-ray absorption measurements were taken at the ESRF on BM26.  

Sb K-edge data for STO 02, STO 03 and STO 04 are shown in Figure 75 alongside standard 

compounds, Sb2O3 and Sb2O5. Spectra have been normalised for ease of comparison; the raw 

data for doped compounds has much lower signal to noise ratio than that of the standard 

compounds. These measurements and the subsequent data analysis were completed with the 

assistance and supervision of Professor Gopinathan Sankar. 
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Figure 75: X-ray absorption spectra of STO 02, STO 03 and STO 04 by comparison with Sb2O5, Sb2O3 standards 

It is clear from Figure 75 that the Sb K-edge spectral shapes are very different for Sb ions in 

doped SrTiO3 samples than for Sb ions in Sb2O3 and Sb2O5. X-ray absorption is easily 

influenced by the local structure of the coordination environment surrounding the element 

analysed. The observed difference between doped sample spectra and Sb-oxide spectra is a 

strong indication that Sb is incorporated into a structure very different to that of the native 

(III) and (V) oxides, which are orthorhombic and cubic respectively. Sb3+ in Sb2O3 is 

coordinated to O2- in a distorted tetrahedron140, whereas in Sb2O5 it is in octahedral 

coordination.220 Thus, these data could indicate that it is possible that Sb in these samples does 

not reside on the Ti4+ site, which is octahedral.  

The differences in spectral shape also render the data inconclusive regarding the oxidation 

state of Sb ions in the doped materials. Figure 76 shows more clearly that the K-edges of STO 

02, 03 and 04 do not definitively align with either Sb2O3 or Sb2O5 and therefore from these 

data, the antimony dopant oxidation state cannot be determined. Importantly, although no 

oxidation state information can be determined from these Sb K-edge absorption spectra, all 

three doped samples align with each other well, indicating that Sb ions are likely in the same 

oxidation state and have very similar local environment in codoped STO, regardless of Sb/Rh 

ratio. 
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Figure 76: Close up of the Sb K-edge of STO 02, STO 03, STO 04, Sb2O5 and Sb2O3 between 30500 and 30500 

eV 

In the absence of perovskite B-site Sb-doped SrTiO3 XAS data in the literature, other B-site 

doped SrTiO3 data were considered. Studies using Mn, Nb and Cr have all exhibited a pre-

edge feature, which is indicative of oxidation state.221-223 This feature absent in the data 

collected for doped samples in this thesis, although it is possible that some indicative feature 

lies below the lower limit of incident radiation used in these measurements. Cr-doped SrTiO3 

has been shown to exhibit a difference in K-edge gradient depending on the oxidised or 

reduced nature of the SrTiO3 host material221; a shallower edge was observed for reduced 

samples with respect to oxidised samples. A similar difference was observed in the Fe K-edge 

of Fe-doped SrTiO3 which was attributed to the switch between Fe3+ (oxidised) and Fe2+ 

(reduced).224 This could indicate that the broad K-edge observed in the doped samples 

presented in this thesis is due to reduced Sb, though in the absence of comparative data it is 

difficult for this to be definitively assigned. 

Low concentrations of Sb ions in all three samples also made EXAFS analysis problematic. 

What follows is analysis of the EXAFS Fourier transform data for STO 04, which contained 

the highest concentration of Sb (for phase pure samples) at 0.9 mol. %. Since the XA spectra 

for all three codoped samples appear well-aligned, it is reasonable to tentatively draw 

conclusions pertaining to all three codoped samples, based upon the analysis of STO 04 alone.  
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Figure 77 shows the EXAFS Fourier transform and r-fit of the STO 04 Sb K-edge. The data 

were modelled working from the assumption that Sb in this sample is 6-coordinate, as it should 

be if it resides on the Ti site. This generated a reasonable fit and corroborates cell volume 

values, which all increased upon doping and therefore indicated that both Rh and Sb dopants 

reside on Ti4+ sites, rather than the much larger Sr2+ sites.  

 

Figure 77: STO 04 EXAFS Fourier transform and r-fit data producing Sb-O bond length 1.95 Å. Note that the data 

presented have not been corrected for phase shift and therefore x-axis positions correlating to bond length appear 

short. 

The nearest neighbour bond distance was determined from EXAFS to be 1.95 Å. This is 

indicative of Sb(V)-O bonds225, rather than Sb (III)-O bonds which are slightly longer at 

~1.977 in both orthorhombic and cubic Sb2O3.140, 226 However, since determination of local 

bond lengths by EXAFS is reliable within an error limit of 0.02 Å227, this is not conclusive 

evidence for the presence of Sb(V) in these samples. 

XAS data have resulted in contrasting interpretations of the oxidation state of Sb in these 

samples. The K-edge positions for Sb ions in doped STO samples are not comparable to Sb-

oxides, which would usually provide a reasonable indication of the relative oxidation state. 

Other B-site doped SrTiO3 XAS data however indicates that a broad K-edge shape can be 

attributed to the reduced form of the dopant cation. Contrastingly, EXAFS modelling indicates 

that six coordinate Sb-O bond lengths in STO 04 are more comparative to Sb (V)-O than Sb 

(III)-O. Due to the high degree of similarity between doped sample spectra it is reasonable to 

expect the same to be true of STO 02 and 03. In conclusion, it is not possible to definitively 
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assign the oxidation state or describe the environment surrounding Sb ions in these samples 

without further measurements and investigation. 

5.2.3 X-ray Photoelectron Spectroscopy 

5.2.3.1 Quantification of dopant ions 

High-resolution XP spectra of the Sr 4d, Ti 2p, O 1s and Rh 3d core line regions were used to 

quantify the surface composition of all samples. Since the O 1s and Sb 3d core lines overlap, 

the O 1s region was used to also provide information on Sb dopants. All core lines were 

modelled using Gaussian-Lorentzian fits to determine the relative concentrations of the 

elements present. All spectra were corrected for charging to adventitious carbon at 284.8 

eV.228  Fitting of the Sb 3d/O 1s region required the same consideration as has been outlined 

in Chapters 3 and 4 of this thesis, whereby the Sb 3d 3/2 peak was used to quantify Sb 

contributions and also to provide a way of fitting the Sb 3d 5/2 peak, which is completely 

masked by O 1s contributions. The Sb 3d 5/2 peak can be modelled from the Sb 3d 3/2 peak by 

constraining its area (2:3 ratio with Sb 3d 3⁄2), full-width half-maximum (equal to Sb 3d 3⁄2) 

and doublet separation (9.4 eV lower in binding energy than Sb 3d 3⁄2) to that of the Sb 3d 3⁄2.  

Once the Sb 3d 5/2 component was fitted, the remainder of the area under this peak was fitted 

with an O 1s oxide anion peak at around 530 eV and an OH contribution, which manifests as 

a broad shoulder to the high binding energy side of the O 1s peak. All O 1s binding energy 

data presented hereafter are values obtained from this method of fitting and the OH feature 

was included for all fitting to produce elemental atomic percentages. Example spectra 

demonstrating this fitting have been shown in both Chapters 3 and 4. 

Quantification of the Sb concentration indicated that in all samples containing Sb, these ions 

were highly localised to the surface. Figure 78 shows the XPS calculated percentage of Sb vs 

nominal [Sb]. It is clear that STO 02, STO 03 and STO 04 exhibited surface Sb concentrations 

of at least 3x the nominal amount used. Figure 78 also shows surface enrichment of Rh ions 

with respect to the nominal amount of Rh used for reaction. In contrast to TiO2 doped samples 

discussed in Chapter 4, Sb co-doping in SrTiO3 does not appear to affect Rh surface 

concentration in a significant way. In all STO doped samples the nominal Rh concentration is 

held at 0.5 %; when no Sb codopant is present the XPS measured surface concentration of Rh 

is 0.44 %. As nominal Sb concentration increases across the rage 0.1, 0.5 and 0.9 % the surface 

concentration of Rh is calculated to be 0.46, 0.41 and 0.43 % respectively. The measured 

concentration of Rh is lower than the nominal amount used for reaction. This could indicate 

that some Rh diffusion away from the surface may have occurred. However, error in XPS 

quantification is approximately ± 0.1%.229, 230 
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Figure 78: XPS measured Sb concentrations vs nominal Sb concentrations (right) and XPS measured Rh 

concentrations vs nominal Rh concentrations for STO 01, 02, 03 and 04 (left) 

Since XAS measurements were unable to eliminate the presence of Sb3+ it is possible that the 

surface enrichment of Sb is due to the greater steric stability of Sb3+ at the surface of doped 

materials, as shown to be true in TiO2 and SnO2.173, 174, 176 Here the lone pair of Sb3+ is more 

easily accommodated at the surface where there is greater degree of freedom for the formation 

of compensatory defects in the crystal structure. However, as mentioned in Chapter 4, where 

Sb5+ was confirmed in doped TiO2 by XAS measurements and also exhibited surface 

enrichment, it is possible that there are thermodynamic reasons for Sb5+ to exist at the surface. 

Elemental analysis and quantification of the core line spectra revealed pristine SrTiO3 to be 

slightly O-rich, Ti-poor. The doped samples on the other hand were determined to be Sr-rich, 

which supports the theory that even a small amount of doping via direct reaction of SrTiO3 

and the dopant oxides produces a secondary phase of Sr-rich material. In these samples it is 

possible that this secondary phase was not detected in PXRD measurements due to the low 

concentration.  

Sample Sr O Ti Rh Sb 

 20 60 20-(x+y) x y 

SrTiO3 21.46 63.89 14.64   

STO 01 33.91 46.10 19.55 0.44 - 

STO 02 29.28 54.57 18.22 0.46 0.47 

STO 03 29.18 51.04 16.54 0.41 2.82 

STO 04 29.48 49.87 17.49 0.43 2.74 

Table 19: Atomic percentages of all atoms present in doped SrTiO3 samples (total dopant concentration < 1.5 

mol. %) 

5.2.3.2 Valence band spectra and EF position 
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VB spectra were recorded to probe the electronic structure of the doped materials. Comparable 

to Chapter 4, the role of Rh as a dopant in SrTiO3 is to insert 4d t2g donor levels into the band 

gap, at a slightly higher energy than the O 2p orbitals, which make up the majority of the 

SrTiO3 VB. It is expected that by comparison with pristine SrTiO3, a Rh feature should be 

visible in the spectra of doped samples. Since the doping concentrations in the samples 

presented in this chapter are much lower than those in samples from Chapter 4, it would be 

expected that the Rh 4d feature would be much less prominent than VB spectra presented 

previously. In order to probe the EF position of these materials the VB edge position will be 

considered, along with the O 1s binding energy, which can be used as a marker for changes in 

the EF position of these materials, since it should remain unchanged across the range of sample 

if the EF has not moved. 

To model the VB spectra of all doped samples a VB spectrum for pristine SrTiO3 was fitted 

with three Gaussian-Lorentzian components, as shown in Figure 79. The lowest and highest 

binding energy components were constrained to the central, largest component by area, 

FWHM and position. This fit was used to account for the pristine SrTiO3 portion of doped 

sample VB spectra. Each doped sample required an additional feature to the low binding 

energy side of the valence band in order to fit the data to the lowest residual STD (i.e. best 

fit). This feature is highlighted in purple in the spectra shown in Figure 80, which shows 

comparative VB spectra of STO1, STO2, STO3, and STO4. 

 

Figure 79: Fitted valence band of pristine SrTiO3 
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Figure 80: Valence band spectra of STO1, STO2, STO3 and STO4 showing the SrTiO3 portion in hatched lines 

and the Rh component in purple 

As indicated by quantification of Rh in these samples, the Rh 4d t2g band gap feature is of 

approximately equal size across all samples. The position of component A, to which the rest 

of the VB fit was constrained, in these spectra is observed to change in position, indicating 

that EF changes position. The spectra shown in Figure 80were taken from powder samples and 

represent the average data of 200 scans. Grey markers show the actual data, with the 

“envelope” line of best fit shown in black. Even with a high total scans the data are noisy and 

so, while general conclusions regarding EF position can be drawn, a more firm idea of the 

relative change in position has been taken from O 1s binding energy data, which have been 

plotted in Figure 81. 

The changes in O 1s binding energy, which are reflective of the changes in VB position, with 

respect to those of pristine SrTiO3 do not reflect the trend observed for Rh/Sb codoped TiO2. 

It would is expected that Rh4+ is present when mono-doped and that this causes a decrease in 

EF position, this is certainly observed in SrTiO3 as it was in TiO2. However, upon codoping 

with Sb, the EF position was restored to that of pristine TiO2 once Sb/Rh > 1.4; this is not the 

case in SrTiO3. As can be seen from Figure 81, the O 1s positon of STO1 is considerably 

lower than that of pristine SrTiO3 and while it is raised upon doping with Sb, the dopant ratio 
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has no effect on O 1s BE. In terms of EF position, this translates to a lowering of the EF to a 

more p-type position upon Rh doping and a raising of the EF to a slightly less p-type position 

upon Sb doping. The key difference between doped TiO2 and SrTiO3 is that addition of 

increasing amounts of Sb does not raise the EF position back to that of pristine SrTiO3. Thus, 

all doped SrTiO3 samples in this study are more p-type in than pristine SrTiO3. The 

assumptions made in this study are that all dopants reside in the SrTiO3 lattice, that Sb exists 

as Sb5+ and that Rh dopants exist in the +4 state when doped alone, but the +3 state when 

codoped in at least equimolar amounts. The observation that the amount of Sb does not 

correlate to incremental changes in the EF position as [Sb] increases must mean that one or 

more of these assumptions is incorrect. 

 

Figure 81: O 1s positions correlated with nominal [Sb%] for all doped SrTiO3 samples including pristine SrTiO3 

for comparison. 
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 Sample O 1s - Rh 3d 5/2 Core Line Difference (eV) 

STO 01 220.09 

STO 02 220.20 

STO 03 220.19 

STO 04 220.13 

Table 20: O 1s - Rh 3d 5/2 core line difference for doped SrTiO3 

5.2.4 Ultraviolet-Visible Spectroscopy 

The powders produced from solid state synthesis were pale brown/orange in colour, which 

indicates the presence of Rh3+ as a dopant.213 The optical properties of these samples were 

investigated by Ultraviolet-Visible (UV-Vis) spectroscopy in diffuse reflectance mode. 

Samples were analysed by mounting them to a glass slide with carbon tape and data were 

collected in DRS mode due to the opaque nature of the samples. Spectra were recorded over 

a 2000-200 nm range, at a step size of 0.5 nm, a dwell time of 0.36 s and were subsequently 

transformed into a Tauc plot using the Kubelka-Munk relation, Equation 42 to obtain a 

spectrum of f(R). 

𝑓(𝑅) =
(1 − 𝑅)2

2𝑅
 

Equation 44 

 

Figure 82: Diffuse Reflectance Spectra of STO1, STO2, STO3 and STO4 
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Figure 82 compares the DRS spectra of samples STO 01, 02, 03 and 04. All samples exhibit 

a spectrum characteristic of stoichiometric SrTiO3.231 Tauc plots for all samples, which allow 

the identification of optical absorptions and extrapolation of the energies of these absorptions, 

are shown in Figure 83. These plots for the indirect band gap transition show αE2 (Equation 

42), which is proportional to absorbance, in relation to incident photon energy in eV. The 

linear portions of these plots correlate to the absorption of photons and extrapolation of αE2 = 

0 provides the photon energy responsible for the absorption. This is used as a method for 

identifying the indirect band gap of a semiconducting material and can be used to identify any 

additional absorptions due to the presence of dopant ions. Two transitions were identified for 

all samples; the Tauc plots possess obvious linear portions at around 3.31 eV, as well as 

weaker, secondary linear portions at around 2.76 eV. These secondary linear portions can be 

identified in the DRS spectra in Figure 82 as a small shoulder to the main absorption in the 

region just below 500 nm. Values for transitions observed in doped samples are listed in Table 

21, as well as the standard band gap value for SrTiO3 from the literature.231  

 

Figure 83: Tauc plots of samples STO1, STO2, STO3 and STO4. Linear sections are highlighted with red boxes 

and labelled with their effective transitions 
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Sample Transition Energies (eV) 

SrTiO3  3.27 - 

STO 01 3.31 2.76 

STO 02 3.31 2.77 

STO 03 3.31 2.76 

STO 04 3.31 2.75 

Table 21: Extrapolated energies of transitions observed in optical spectra of doped SrTiO3 

These spectroscopic results indicate that these samples absorb visible light and therefore may 

show superior activity to SrTiO3 alone. Importantly, no absorption at 1.0 eV is observed in 

any of these spectra. As discussed previously, this absorption at 1.0 eV indicates the presence 

of Rh4+ as it can be attributed to a spin allowed VB → Rh 4dt2g transition- this interpretation 

was discussed in Chapter 4 for TiO2. This feature has been observed in other Rh-doped 

SrTiO3.90 Differences in the position of the valence band edges of SrTiO3 and TiO2 could alter 

the energy requirement for this feature in a UV-Vis spectrum and Tauc plot. The VBM of 

SrTiO3 is around 0.14 eV higher than that of TiO2
94, 232; a VB → Rh 4dt2g transition could 

therefore be expected at around 0.84 eV. However, this transition is not observed in any of the 

UV-Vis spectra and Tauc plots of samples in this study, even though XPS data indicated the 

presence of some Rh4+, which acted as a p-type dopant and caused the EF to lie below that of 

pristine SrTiO3.  

Large overlap between O 2p and Ti 3d orbitals in the SrTiO3 valence band84 could contribute 

to increased d-orbital character in the valence band and therefore the d-d transition from VB 

to Rh 4d is not allowed, resulting in the dampening of this feature at low concentrations.  

Magnification of the region around ~2-2.5 eV (Figure 84) show a similar trend to that found 

in TiO2 whereby the spin-allowed Rh4+ d-d transition is observed in Rh-doped STO1, but that 

this feature is diminished in Sb codoped samples STO2, STO3 and STO4. 
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Figure 84: Tauc plot area showing Rh4+ d-d transition, which is diminished in STO2, STO3 and STO4 where the 

presence Sb suppresses formation of Rh4+ in favour of Rh3+ 

5.2.5 Transient Absorption Spectroscopy 

Since visible light absorption is observed in all samples, transient absorption measurements 

were performed to characterise the charge carrier dynamics in these samples. Cr doped 

Ruddlesden-Popper strontium titanate complexes, Cr:Sr2TiO4, have been investigated for H2 

production by water splitting233, as has LaCr:SrTiO3/Sr2TiO4 composite234, indicating that the 

samples presented in this chapter possessing bulk SrTiO3 with a doped Sr-rich phase at the 

surface may be promising materials for further photocatalytic investigation. In order to 

compare  

Charge carrier dynamics of all samples and SrTiO3 as-purchased powder were measured using 

Diffuse Reflectance Transient Absorption Spectroscopy (DR-TAS) from the microsecond to 

second time scale at room temperature. A 75 W Xe lamp is used as a probe beam with a 

monochromator placed before the powder sample, which is compacted between two glass 

microscope slides. Changes in the light reflected by the sample are measured by a Si PIN 

photodiode after a UV laser excitation pulse is applied on the sample (355 nm, 6 ns pulse 

width). The laser intensities used were (∼40 μJ cm−2 pulse−1) with a laser repetition rate of 1 

Hz. Each TAS trace is the result of averaging 50 scans. These measurements were taken at 

Imperial College London, using the Durrant Group DR-TAS setup and with the assistance of 

Dr Andreas Kafizas.  
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5.2.5.1 DR-TAS Spectra 

The DR-TAS spectrum from 500 - 950 nm at 50 nm intervals is shown in Figure 85. The 

excited material absorbs much more strongly at lower probe wavelengths than at higher 

wavelengths. In Chapter 4, the deconvolution of TAS spectra for TiO2 was explained using a 

study by Kafizas et al.105 From this study it was determined that in TiO2 free electrons absorb 

mainly at higher wavelengths (~850 nm) and that holes absorb at lower wavelengths (~550 

nm). Similar results have been reported for other metal oxides; photoholes in α-Fe2O3
235 have 

been shown to absorb at ~580 nm, in BiVO4
236 at ~550 nm and in WO3

184, 237 at ~450 nm. 

Consistently, photoelectrons produce red-shifted signals and photoholes produce blue-shifted 

signals. However, these results do not correlate with the data collected in the present study of 

SrTiO3.  

 

Figure 85: DR-TAS spectrum of SrTiO3 as-purchased powder, from 500 - 950 nm at 50 nm intervals. Spectra are 

shown from the micro second to second timescale 

Figure 85 shows the DR-TAS spectrum of pristine SrTiO3, between 500 nm and 950 nm. This 

spectrum shows stronger absorption at lower wavelengths, which, according to studies of the 

other materials mentioned, indicates a higher concentration of photoholes than photoelectrons 

and thus p-type character. However, SrTiO3 is an n-type material and therefore it appears that 

photoelectrons and photoholes in SrTiO3 do not absorb in the same regions as in other 

materials. Unfortunately the large particle size of the powders produced by solid state reaction 

did not allow for a deconvolution study using electron or hole scavenging solutions to be 
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completed and therefore it is difficult to draw conclusions from TAS regarding the identities 

and relative concentrations of the charge carriers in the photoexcited materials. 

Spectra of all doped samples, which exhibit a similar shape to that recorded for pristine 

SrTiO3, are shown in Figure 86. Although the overall the shapes of the spectra appear the 

same, a comparison of the normalised spectra at 10 μs (Figure 87) illustrates the minor 

differences between them.  STO 01, which is doped with 0.5 % Rh, exhibits a small relative 

increase in absorption around 600 nm - 800 nm with respect to pristine SrTiO3. STO2 exhibits 

a similar shape while STO3 and STO4 are almost identical to each other, with a shape 

intermediate between STO1 and pristine SrTiO3.  

 

Figure 86: DR-TAS spectra of samples STO 01, 02, 03 and 04 across wavelengths 500 - 950 nm at 50 nm intervals. 

Spectra are shown from the micro second to second timescale 

From VB and O 1s XPS data it has been determined that the EF of STO1 is positioned lower 

than blank SrTiO3 and is therefore more p-type. The results presented here indicate that 

photoholes in SrTiO3 may therefore absorb at around 700 nm, which is where the relative 

difference between STO1 and pristine SrTiO3 is greatest. This rationale would also account 

for the relative increase in absorption exhibited by STO2, STO3 and STO4. 
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Figure 87: Normalised DR-TAS Spectra of pristine SrTiO3 and all doped samples 
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Figure 88: Recombination kinetics for all samples and normalised kinetics for all samples at 550 nm, 700 nm and 

850 nm 

1E-5 1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Normalised Kinetics at 700nm

N
o

rm
al

is
ed

 A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 SrTiO
3
 Blank

 STO 01

 STO 02

 STO 03

 STO 04

1E-5 1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Normalised Kinetics at 850nm

 

 

N
o

rm
al

is
ed

 A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 SrTiO
3
 Blank

 STO 01

 STO 02

 STO 03

 STO 04

1E-5 1E-4 1E-3 0.01 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Normalised Kinetics at 550nm

N
o

rm
al

is
ed

 A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 SrTiO
3
 Blank

 STO 01

 STO 02

 STO 03

 STO 04

1E-5 1E-4 1E-3 0.01 0.1 1 10
0

5

10

15

20

25
STO Blank

 

 

A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 500 nm

 550 nm

 600 nm

 650 nm

 700 nm

 750 nm

 800 nm

 850 nm

 900 nm

 950 nm

1E-5 1E-4 1E-3 0.01 0.1 1 10
0

5

10

15

20

25
STO1

A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 500 nm

 550 nm

 600 nm

 650 nm

 700 nm

 750 nm

 800 nm

 850 nm

 900 nm

 950 nm

1E-5 1E-4 1E-3 0.01 0.1 1 10
0

5

10

15

20

25
STO2

A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 500 nm

 550 nm

 600 nm

 650 nm

 700 nm

 750 nm

 800 nm

 850 nm

 900 nm

 950 nm

1E-5 1E-4 1E-3 0.01 0.1 1 10
0

5

10

15

20

25
STO3

 

 

 500 nm

 550 nm

 600 nm

 650 nm

 700 nm

 750 nm

 800 nm

 850 nm

 900 nm

 950 nmA
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

1E-5 1E-4 1E-3 0.01 0.1 1 10
0

5

10

15

20

25
STO4

A
b

so
rb

an
ce

 (
A

b
s)

Log
10

 Time (s)

 500 nm

 550 nm

 600 nm

 650 nm

 700 nm

 750 nm

 800 nm

 850 nm

 900 nm

 950 nm

/ s / s

/ s / s

/ s / s

/ s / s



162 

 

 

5.2.5.2 DR-TAS Recombination 

Recombination DR-TAS kinetics for all samples and pristine SrTiO3 are shown in Figure 88, 

alongside normalised recombination kinetics for all samples at 550 nm, 700 nm and 850 nm. 

As can be easily observed across all of these data, there is minimal difference between the 

samples and SrTiO3. At 550 nm and 700 nm, samples STO1 and STO2, exhibit slightly faster 

recombination than STO3, STO4 and SrTiO3, indicating that the suppression of Rh4+ is 

advantageous for elongation of charge carrier lifetime. However, the difference in kinetics in 

these samples is not nearly as variable as the sample discussed in Chapter 4. This could be 

explained by the low concentrations of dopants resulting in far fewer recombination centres, 

or could also be explained by better diffusion of charges in SrTiO3 resulting in greater charge 

separation and therefore slower recombination. Comparison of the average kinetics of SrTiO3 

and TiO2 kinetics in Figure 89 shows that recombination in SrTiO3 is indeed slower than 

undoped TiO2 rutile. 

 

Figure 89: Kinetics for SrTiO3 and TiO2 at probe wavelengths of 750 nm and nm respectively, which is where their 

kinetics were observed to be slowest 
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5.3 Conclusions 

This chapter presented work based on the development of doped-SrTiO3 catalyst materials for 

photocatalytic water splitting. The materials produced were synthesised by direct solid state 

reaction of SrTiO3 with the dopant oxides, Rh2O3 and Sb2O5. This method contrasted with 

previously investigated Rh doped and Sb codoped SrTiO3 studies, which utilised an indirect 

step synthesis starting from SrCO3, TiO2 and the required dopant oxide. 

PXRD of the resultant samples using 5% Rh and 1-9 % Sb at 2% intervals, revealed that 

reaction between SrTiO3 and the dopant oxides does not yield phase pure materials after 30 

hours (3 x 10) of calcination. Instead a distorted Sb2O5 phase and a Sr-rich SrTiO3 phase were 

produced, which, while not correlating to any specific SrxTiyOz phase that has been previously 

recorded, was confirmed by XPS elemental quantification.  

A second set of samples were produced with the aim of successfully doping Rh and Sb in 

lower concentrations using the same direct synthesis method described above. These materials 

produced PXRD patterns indicating phase pure materials, with cell volumes larger than that 

of standard SrTiO3 but similar to the pristine powder measured on the same diffractometer, 

indicating possible instrumental error. Similar cell volumes across the doped series indicated 

that the amount and identity of the dopants had minimal effect on the cell size. XPS 

quantification indicated again that the surface of these samples was Sr-rich, although no 

additional phase was observed in PXRD patterns.  

X-ray absorption spectra of the Sb K-edge in samples STO 02, 03 and 04, which were all 

codoped with Sb in varying amounts (0.1, 0.5 and 0.9 %, respectively), indicated Sb ions in 

the doped samples were in a different environment to either Sb2O3 or Sb2O5. Although other 

B-site doped SrTiO3 dopant K-edge spectra have indicated that a broad K-edge, like those 

observed for Sb in the doped samples presented, is associated with a lower oxidation state, 

EXAFS r-fit analysis indicated a Sb (V)-O like bond length. XPS VB data support this theory, 

since the addition Sb appears to reduce the p-type character of all codoped samples, an effect 

of Sb5+ encouraging formation of Rh3+, rather than the p-type dopant Rh4+. Furthermore, Sb3+ 

itself on the Ti4+ site acts as a p-type dopant and therefore would further add to the p-type 

character of the materials. Since this is not the case, it is likely that Sb exists as Sb5+. 

UV-Vis spectra of doped samples appear at first glance to be very similar to pristine SrTiO3, 

likely due to the low concentration of dopants. A low intensity absorption at around 2.76 eV 

is associated with narrowing of the band gap as a result of transitions from Rh 4d t2g to the 

conduction band. In STO1, where Rh is monodoped, a spin allowed d-d transition can be 
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observed at around 2-2.5 eV. This is diminished with the addition of Sb in all samples and 

thus supports the conclusion that Rh4+ exists in STO1 and that the presence of Sb5+ in STO2, 

STO3, and STO4 supresses its formation and encourages reduction to Rh3+.  

TAS was used to probe the charge carrier dynamics in the doped samples by comparison with 

pristine SrTiO3. It was determined from the TAS spectra, where a slight increase in absorption 

was observed between 600 and 750 nm for STO1, that photoholes in doped SrTiO3 possibly 

absorb in this region since this sample has been shown by other analyses to be p-type. 

Recombination spectra and normalised kinetics illustrated minimal difference between doped 

samples and SrTiO3, possibly due to the low concentration of dopants in these samples. At 

550 nm and 700 nm probe pulse the kinetics of STO3 and STO4 appeared slower than STO1 

and STO2, indicating further that the presence of Rh4+ is detrimental to the charge carrier 

dynamics in these samples. 

To conclude, the doped SrTiO3 samples in this chapter provided some interesting results in 

that the addition of Sb over equimolar concentration to Rh did not appear to allow the materials 

to retain their n-type character as was the case with TiO2 in similar doping regimes. The 

formation of p-type SrTiO3 was unexpected due to the nature of the dopants, which have been 

estimated to be Rh4+ in monodoped SrTiO3 and a combination of Rh3+ and Sb5+ in co-doped 

SrTiO3. Identification of the dopant oxidation states was troublesome due to the low 

concentrations used for this study. However, TAS results indicate that these materials have 

charge carrier dynamics consistent with superior photocatalytic performance to TiO2 rutile. 
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Chapter 6: Conclusions and further 

work 

This thesis focussed on the study of TiO2 and SrTiO3 doped with Rh and Sb for the purposes 

of improving their photocatalytic activity by narrowing their band gaps. Both TiO2 and SrTiO3 

had been shown in the literature to exhibit visible light activity when doped with Rh and that 

Sb could be used to charge compensate, reducing the amount of Rh4+, which is detrimental to 

photocatalysis as it can act as a trap state. 

Chapter 3 presented findings from a preliminary study of Sb oxide materials by XPS. There 

is much disagreement in the literature surrounding the treatment of Sb, particularly regarding 

chemical shift in XPS due to oxidation state. Some researchers have determined that there is 

a chemical shift between the (III) and (V) ions in XPS, some researchers have found that any 

chemical shift is unresolvable, and some purport to show that the chemical shift is 

unresolvable but can be observed through a broadening of the Sb core-line FWHM. 

A study of Sb2O3 oxidation to Sb2O5 by H2O2 was undertaken to determine if Sb oxidation 

state can be accurately determined from chemical shift in XPS and therefore define how Sb 

XPS would be treated for the remainder of the thesis. This study involved creating mixed 

Sb2O3/Sb2O5 powders through oxidation and determining how much Sb2O3 and Sb2O5 

character each mixture had, in order to then model the core line spectra. A novel valence band 

analysis was utilised where by Sb2O3 and Sb2O5 valence bands were fitted in the valence band 

of the mixtures and allowed to change total area and position only, in order to reveal the 

proportion of each oxide present. This allowed for the proportion of Sb (III) and Sb (V) to be 

estimated and models for the core line to be generated. 

Two models to investigate the possibility of the presence of chemical shift between the Sb(III) 

and Sb(V) core lines were tested, one with equal FWHM and one with Sb(V) FWHM > Sb(III) 

FWHM. It was expected that if either model was correct, a consistent chemical shift between 

the (III) and (V) ions would be observed, however both models produced peak shifts that 

differed by >0.15 eV. From this analysis it was decided that all Sb core lines in the subsequent 

investigations would be treated as unresolvable and thus Sb oxidation state was inferred from 

other analyses in Chapters 4 and 5. 

Rh/Sb codoped TiO2 was investigated as it has shown promise as a H2 evolution catalyst. 

Previous literature has illustrated that the Fermi level position is lowered if Rh4+ is present as 

a dopant but that this can be eliminated by the addition of Sb5+ as a codopant. This study 
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expanded this understanding by investigating a wider range of dopant ratios and by utilising 

the O 1s core line as an indicator of Fermi level position. It was confirmed that as the Sb/Rh 

ratio increases the Fermi level energy increases, allowing n-type character to be retained. 

Dopants were found to localise at the surface and a single crystal depth profile study allowed 

for the positions of the CBM and VBM to be estimated from the surface to the bulk, indicating 

that band bending at the surface of the material may contribute to the photocatalytic activities 

observed. 

TAS of selected samples indicated lower charge carrier concentrations for the doped samples 

in comparison to undoped rutile which was surprising, since other literature had presented 

good photoactivity for similar samples. It was concluded that the dopant concentrations in 

samples from this study were too high to facilitate good charge migration and that perhaps the 

high concentration of dopant ions were acting as recombination centres.  

Following this investigation further work into various areas of the field could be carried out. 

Firstly, further single crystal studies could be completed, to corroborate the findings here and 

to investigate different dopant ratios. Clearly the CBM and VBM can be tuned by dopant ratio. 

This is something that should be investigated for possible exploitation in the construction of 

z-schemes due to the possibility of an intrinsic electric field in these materials, a feature that 

would significantly enhance charge carrier separation.  

Powder samples of lower absolute dopant concentrations should be produced in order to 

determine the extent of this variable on charge carrier generation and migration. Further 

studies using TAS could provide information to answer this question.  

This work focused on rutile due to the high temperature nature of the synthesis method. A 

future route to take could be the production of anatase analogues of these samples in order to 

compare the two polymorphs, which are both known to be active photocatalysts. In addition, 

rutile/anatase mixtures could be created; this particular heterojunction is of high interest in the 

research community due to the as-yet unexplained high activity of P-25 an 80:20 mixture of 

anatase and rutile TiO2.  

As well as simple TiO2 based heterojunctions, the combination of an optimized Sb/Rh 

codoped TiO2 material with other materials of well-defined band edges, such as other doped 

TiO2 materials or different materials of significance in the photocatalysis community (BiVO4, 

WO3, CuO), could produce highly effective Z-schemes. The high degree of electronic 

characterization undertaken in this investigation assists greatly in the design of these systems. 

Understanding the changes in Fermi level position, which influences the p- or n-type 
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characteristics and the possible band bending within a material, can be exploited to produce 

highly effective photocatalytic systems. 

Study into SrTiO3 doped with Sb and Rh by direct solid state reaction of the titanate and dopant 

powders revealed that reaction does not complete at high concentrations (total dopant 

concentration > 1.5 mol.%). Samples with lower concentrations of dopant ions (0.5% Rh and 

0.1, 0.5, 0.9% Sb) were revealed to be phase pure from XRD, though impurities masked by 

noise in the baseline cannot be ruled out. The cell volume was not found to change with respect 

to undoped SrTiO3, making it difficult to conclude if doping had occurred.  

XPS indicated the presence of dopant ions but information pertaining to the coordination of 

dopant ions and thus their position in the lattice cannot be determined by these means. XAS 

Sb k-edge data was of poor quality due to the low concentration of Sb in the samples, and the 

spectra did not resemble Sb2O3 or Sb2O5, making it difficult to determine oxidation state. 

EXAFS analysis determined Sb-O bond length of 1.95 Å, which is shorter than Sb(III)-O 

(1.977 Å) and indicates Sb(V), however these values are just within error of each other and so 

this cannot be used as absolute evidence of the presence of Sb(V). 

As with TiO2, the addition of Rh caused a lowering of the Fermi level energy. However, 

analysis of the valence band spectra and O 1s binding energies indicated that unlike TiO2 the 

addition of Sb did not return the Fermi level to a n-type position, instead the  Fermi level was 

positioned between that of Rh doped SrTiO3 and pristine SrTiO3. TAS showed that doping 

SrTiO3 in the low concentrations used for this study did not alter the charge carrier dynamics 

vastly with respect to pristine SrTiO3. Therefore the increased activity of these materials from 

other literature can be attributed to visible light activation allowing for a greater number of 

charge carriers being generated under the solar spectrum. 

The characterisation of these materials, while a comprehensive start has been made, is 

incomplete. Though XAS and XPS results indicate that a Sr-rich phase exists at the surface, 

this has not been confirmed by full structural and crystallographic characterisation. Further 

investigation, for example XAS of the other elements in the samples (Rh, Sr, Ti and O) could 

provide valuable insight into the structure of these materials and the nature of the dopants. In 

particular, information regarding the Rh environment and surface XAS of Sr, Ti and O to 

eliminate the averaging effects of the bulk, could illicit important information. Comparison of 

the phases formed in higher doped samples discussed in section 5.2.1 could potentially offer 

an additional point of investigation. 
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Beyond further structural characterisation, photocatalytic measurements should be taken to 

compare the response of these samples under visible light with that of SrTiO3 and also other 

Rh doped SrTiO3 materials that have shown promise in the literature. 
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