
International Journal of Approximate Reasoning 78 (2016) 223–240
Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

Probabilistic abductive logic programming using Dirichlet
priors ✩

Calin Rares Turliuc a,∗, Luke Dickens b, Alessandra Russo a, Krysia Broda a

a Department of Computing, Imperial College London, United Kingdom
b Department of Information Studies, University College London, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 January 2016
Received in revised form 4 June 2016
Accepted 1 July 2016
Available online 15 July 2016

Keywords:
Probabilistic programming
Abductive logic programming
Markov Chain Monte Carlo
Latent Dirichlet allocation
Repeated insertion model

Probabilistic programming is an area of research that aims to develop general inference
algorithms for probabilistic models expressed as probabilistic programs whose execution
corresponds to inferring the parameters of those models. In this paper, we introduce
a probabilistic programming language (PPL) based on abductive logic programming for
performing inference in probabilistic models involving categorical distributions with
Dirichlet priors. We encode these models as abductive logic programs enriched with
probabilistic definitions and queries, and show how to execute and compile them to
boolean formulas. Using the latter, we perform generalized inference using one of two
proposed Markov Chain Monte Carlo (MCMC) sampling algorithms: an adaptation of
uncollapsed Gibbs sampling from related work and a novel collapsed Gibbs sampling (CGS).
We show that CGS converges faster than the uncollapsed version on a latent Dirichlet
allocation (LDA) task using synthetic data. On similar data, we compare our PPL with LDA-
specific algorithms and other PPLs. We find that all methods, except one, perform similarly
and that the more expressive the PPL, the slower it is. We illustrate applications of our PPL
on real data in two variants of LDA models (Seed and Cluster LDA), and in the repeated
insertion model (RIM). In the latter, our PPL yields similar conclusions to inference with
EM for Mallows models.

© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Probabilistic programming is an area of research that aims to develop general inference algorithms for probabilistic mod-
els expressed as probabilistic programs whose execution corresponds to inferring the parameters of the probabilistic model.
A wide range of probabilistic programming languages (PPLs) have been developed to express a variety of classes of prob-
abilistic models. Examples of PPLs include Church [1], Anglican [2], BUGS [3], Stan [4] and Figaro [5].1 Some PPLs, such as
Church, enrich a functional programming language with exchangeable random primitives, and can typically express a wide
range of probabilistic models. However, inference is not always tractable in these expressive languages. Other PPLs are logic-
based. They typically add probabilistic annotations or primitives to a logical encoding of the model. This encoding usually
relates either to first-order logic, e.g. Alchemy [6], BLOG [7] or to logic programming, e.g. PRiSM [8], ProbLog [9]. Most

✩ This paper is part of the virtual special issue on Probabilistic logic programming 2015, edited by J. Vennekens and F. Riguzzi.

* Corresponding author.
E-mail address: ct1810@imperial.ac.uk (C.R. Turliuc).

1 For a more comprehensive list cf. http :/ /probabilistic-programming .org/.
http://dx.doi.org/10.1016/j.ijar.2016.07.001
0888-613X/© 2016 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ijar.2016.07.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
http://creativecommons.org/licenses/by/4.0/
mailto:ct1810@imperial.ac.uk
http://probabilistic-programming.org/
http://dx.doi.org/10.1016/j.ijar.2016.07.001
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2016.07.001&domain=pdf

224 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
logic-based PPLs focus only on discrete models, and consequently are equipped with more specialized inference algorithms,
with the advantage of making the inference more tractable.

However, logic-based PPLs generally do not consider Bayesian inference with prior distributions. For instance, Alchemy
implements Markov logic, encoding a first-order knowledge base into Markov random fields. Uncertainty is expressed by
weights on the logical formulas, but it is not possible to specify prior distributions on these weights. ProbLog is a PPL
that primarily targets the inference of conditional probabilities and the most probable explanation (maximum likelihood
solution); it does not feature the specification of prior distributions on categorical distributions. PRiSM is a PPL which in-
troduces Dirichlet priors over categorical distributions and is deigned for efficient inference in models with non-overlapping
explanations.

This paper contributes to the field of logic-based PPL by proposing an alternative approach to probabilistic programming.
Specifically, we introduce a PPL based on logic programming for performing inference in probabilistic models involving
categorical distributions with Dirichlet priors. We encode these models as abductive logic programs [10] enriched with
probabilistic definitions and inference queries, such that the result of abduction allows overlapping explanations. We propose
two Markov Chain Monte Carlo (MCMC) sampling algorithms for the PPL: an adaptation of the uncollapsed Gibbs sampling
algorithm, described in [11], and a newly developed collapsed Gibbs sampler. Our PPL is similar to PRiSM and different from
ProbLog in that it can specify Dirichlet priors. Unlike PRiSM, but similarly to ProbLog, we allow overlapping explanations.
However, in this paper, all the models we study have non-overlapping explanations.

We show how our PPL can be used to perform inference in two classes of probabilistic models: Latent Dirichlet Allocation
(LDA, [12]), a well studied approach for topic modeling, including two variations thereof (Seed LDA and Cluster LDA);
and the repeated insertion model (RIM, [13]), a model used for preference modeling and whose generative story can be
expressed using recursion. Our experiments demonstrate that our PPL can express a broad class of models in a compact
way and scale up to medium size real-data sets, such as LDA with approximately 5000 documents and 100 words per
document. On synthetic LDA data, we compare our PPL with two LDA-specific algorithms: collapsed Gibbs sampling (CGS)
and variational expectation maximization (VEM), and two state-of-the-art PPLs: Stan and PRiSM. We find that all methods,
with the exception of the chosen VEM implementation, perform similarly, and that the more expressive the method, the
slower it is, in the following order, with the exception of VEM: CGS (fastest), PRiSM, VEM, our PPL, Stan (slowest).

The paper is organized as follows. Section 2 presents the class of probabilistic models supported by our PPL. In Section 3
we outline the syntax and the semantics of the PPL, whereas our two Gibbs sampling algorithms are discussed in Section 4.
Section 5 shows our experimental results and Section 6 relates our PPL to other PPLs and methods. Finally, Section 7
concludes the paper.

2. The probabilistic model

This section begins with the description of a particular approach to probabilistic programming. Then we introduce
peircebayes2 (PB), our probabilistic abductive logic programming language designed to perform inference in discrete
models with Dirichlet priors. Throughout the paper we will use normal font for scalars (α), arrow notation for vectors (�α),
and bold font for collections with multiple indexes (ααα), e.g. sets of vectors.

Probabilistic programs, as defined in [14], are “ ‘usual’ programs with two added constructs: (1) the ability to draw values
at random from distributions, and (2) the ability to condition values of variables in a program via observe statements”. We
can instantiate this general definition by considering the notions of hyperparameters ααα , parameters θθθ , and observed variables
�f and assuming the goal to be the characterization of the conditional distribution P (θθθ |�f ; ααα).

Most PPLs assume such a conditional with a continuous sample space, i.e. they allow, in principle, probabilistic pro-
grams with an uncountably infinite number of unique outputs, should one not take into account issues of real number
representations. In our approach, the conditional sample space is assumed to be finite, i.e. one can enumerate all possible
executions. Specifically, in our PPL we restrict the class of distributions from which we can draw to categorical distributions
with Dirichlet priors. The Dirichlet priors are chosen for their conjugacy, which supports efficient marginalization.

The generality of our PPL is not given by the range of probability distributions that we can draw from, but rather by
the way the draws from categorical distributions interact in the “generative story” of the model. We choose our “usual pro-
grams” to be abductive logic programs enriched with probabilistic primitives. Similarly to Church, Anglican and other PPLs
this is declarative programming language, but one in which the generative story is expressed as an abductive reasoning task
responsible for identifying relevant draws from the categorical distributions given the observations. Our choice is motivated
by the significant amount of related work in probabilistic logic programming, although both functional and logic program-
ming are Turing complete, so they are equally general. In what follows we present the class of probabilistic models that are
supported by our PPL. We define them first as uncollapsed models, then show how they can be collapsed. As demonstrated
in Section 4, this dual formalization leads naturally to the possibility of using in our PPL uncollapsed as well as collapsed
MCMC sampling methods.

2 Named, in Church style, after Charles Sanders Peirce, the father of logical abduction, and Thomas Bayes, the father of Bayesian reasoning. Pronounced
[’p3rs’beız].

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 225
Fig. 1. The PB plate model.

2.1. The uncollapsed PB model

The class of probabilistic models that can be expressed in PB, inspired by “propositional logic-based probabilistic (PLP)
models” [11], is depicted in Fig. 1, using the general plate notation [15]. In the figure, unbounded nodes are constants, circle
nodes are latent variables, shaded nodes are observed variables, diamond nodes are nodes that can be (but are not always)
deterministic given their parent x (we discuss the details below), and A, Ia , N , and ka are positive integers, with ka ≥ 2.
The above plate model encodes the following (joint) probability distribution:

P (�f , vvv,xxx,θθθ;ααα) =
(

A∏
a=1

Ia∏
i=1

P (�θai; �αa)

(
N∏

n=1

P (xnai |�θai)P (�vnai∗|xnai)

))
N∏

n=1

P (fn|vvvn∗) (1)

We use ∗ to denote the set of variables obtained by iterating over the missing indexes, e.g. �vnai∗ is the set of all the variables
vnai j , for j = 1, . . . , ka − 1, and vvvn∗ is the set of all the variables vnai j , for a = 1, . . . , A, i = 1, . . . , Ia , j = 1, . . . , ka − 1.
Un-indexed variables are implicitly such sets, e.g. xxx = x∗ .

In the model, each �αa , for a = 1, . . . , A, is a vector of finite length ka ≥ 2 of positive real numbers. Each �αa may have a
different size, and represents the parameters of a Dirichlet distribution. From each such distribution Ia samples are drawn,
i.e.:

�θai | �αa ∼ Dirichlet(�αa) a = 1, . . . , A , i = 1, . . . , Ia

The samples �θai are parameters of categorical distributions. For each i and a, there are N samples xnai from the associated
categorical distribution of the form:

xnai |�θai ∼ Categorical(�θai) a = 1, . . . , A , i = 1, . . . , Ia , n = 1, . . . , N

Each xnai ∈ {1, . . . , ka} is encoded, similarly to [16], as a set of propositional variables vnai j ∈ {0, 1}, for j = 1, . . . , ka − 1, in
the following manner:

P (�vnai∗|xnai = l) =
{

2l−(ka−1)vnai1 . . . vnail−1 vnail , if l < ka

vnai1 . . . vnail−1 , if l = ka
(2)

where v denotes boolean negation, and 2l−(ka−1) is a normalization constant.
Note that not all variables in vvv are deterministic, more specifically for all j such that l < j < ka , �vnai j are not determined

by the realization xnai = l. Our presentation deviates from [11] in that we present both xxx and vvv in the same model, rather
than considering two types of equivalent models (“base models” and “PLP models”). But the probabilistic semantics of vvv is
the same as the one derived from the annotated disjunction (AD) compilation (cf. Section 3.3.1 of [17]). In our PB model:

P (vnai1 = 0, . . . , vnail−1 = 0, vnail = 1|�θai) = P (vnail = 1|�θai)
1−[l=ka]

l−1∏
j=1

(
1 − P (vnai j = 1|�θai)

)
= θail

a = 1, . . . , A i = 1, . . . , Ia n = 1, . . . , N l = 1, . . . ,ka (3)

where [i = j] is the Kronecker delta function δi j . Therefore, it follows that:

P (vnail = 1|�θai) = θail∏l−1
j=1

(
1 − P (vnai j = 1|�θai)

)

Example 2.1. For the reader unfamiliar with ADs, we offer a brief example. Let there be a four-sided die with proba-
bilities 0.3, 0.2, 0.4, 0.1. The AD compilation involves three boolean variables, with probabilities computed as defined

226 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
Fig. 2. The PB model for an LDA example with 3 documents, 2 topics and 4 tokens.

in Equation (3): 0.3, 0.2
1−0.3 ≈ 0.285, 0.4

(1−0.3)(1−0.285)
≈ 0.8. To recover the original probabilities, we use Equation (2), e.g.

0.1 ≈ (1 − 0.3)(1 − 0.285)(1 − 0.8). �
The observed variables of the model, fn ∈ {0, 1}, represent the output of boolean functions of v , such that:

P (fn|vvvn∗) = [fn = Booln(vvvn∗)] n = 1, . . . , N

where Booln(vvv) denotes an arbitrary boolean function of variables vvv . In our approach it is assumed the observed value for
each fn to be 1 (or true).

Inference in PB can be described in terms of a general schema of probabilistic inference presented at the beginning
of this section, i.e. the characterization of P (θθθ |�f ; ααα). The parameters and the hyper-parameters correspond to θθθ and ααα,
respectively. The observed data �f is a vector of N data points (observations) where, by convention, fn = 1 ensures that the
n-th observation is included in the model (assume this to be always the case). Furthermore, observation fn is independent
of any other observations fn′ , n 	= n′ , if conditioned on xxx (since xxx determines vvv); this is implied by the joint distribution
given in Equation (1). The various ways in which an n-th data point can be generated, as well as the distributions involved
in this process, are encoded through the boolean function Booln(vvvn∗).

Example 2.2. LDA as a PB model. We illustrate the encoding of a popular probabilistic model for topic modeling, the latent
Dirichlet allocation (LDA) [12], as a PB model. This will also serve as a running example throughout Section 3. LDA can be
summarized as follows: given a corpus of D documents, each document is a list of tokens, the set of all tokens in the corpus
is the vocabulary, with size V , and there exist T topics. There are two sets of categorical distributions: D distributions
over T categories (one topic distribution per document), each distribution parametrized by �μd; and T distributions over
V categories (one token distribution per topic), each distribution parametrized by �φt . The tokens of a document d are
produced independently by sampling a topic t from �μd , then sampling a token from �φt . Furthermore, each distribution in
μμμ is sampled using the same Dirichlet prior with parameters �γ , and, similarly, each distribution in φφφ is sampled using �β .
Note that {μμμ, φφφ} correspond to the parameters θθθ in the general model, and { �γ , �β} correspond to ααα. To instantiate a minimal
LDA model, let us consider a corpus with 3 documents, 2 topics and a vocabulary of 4 tokens. The plate notation of the PB
model for this minimal LDA, depicted in full, is given in Fig. 2. Relating to the PB model, we have A = 2, i.e. one plate for
each of �γ and �β , I1 = 3, one topic mixture for each of the 3 documents, I2 = 2 and k1 = 2 for the two topics, and k2 = 4
for the 4 tokens in the vocabulary.

Let the first data point to be the observation of token 2 in document 3. Then the associated boolean function is:

Bool1(vvv1∗) = v13v141v142 + v13 v151v152 (4)

The literals v13 and v13 denote the choice, in document 3, of topic 1 and 2, respectively, and the conjunctions v141 v142
and v151 v152 denote the choice of the second token from topic 1 and 2, respectively. Note that, in Fig. 2, even though all
possible edges between deterministic nodes and fn are drawn, not all the variables will necessarily and/or simultaneously
affect the probability of fn . For instance, the value of Bool1(vvv1∗) doesn’t depend on the value of v12, which is related to
document 2 and observations about document 3 and document 2 are independent. Also, Bool1(vvv1∗) cannot depend at the
same time on both v141 and v151, since the truth value of v13 effectively filters out the effect of one or the other. �
2.2. The collapsed PB model

The above model, described as uncollapsed, can be inefficient to sample from, due to the large number of variables.
The same PB model can be reformulated as collapsed model where the parameters of the categorical distributions are
marginalized out. This is straightforward since we assume conjugate priors. We present the collapsed model here in order
to introduce the distributions used in the derivation of the collapsed Gibbs sampler (CGS) given in Section 4.

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 227
Consider a and i fixed. Since we make multiple draws from a categorical distribution parametrized by �θai it is convenient
to work with count summaries. Therefore we overload the notation �x∗ai to denote a ka sized vector of counts, i.e. for all
categories l = 1, . . . , ka , x∗ail = ∑N

n=1[xnai = l]. Similarly, xxx is overloaded to denote a set of such vectors for each a = 1, . . . , A,
i = 1, . . . , Ia . Integrating out �θ for a single Dirichlet-categorical pair yields:

P (�x∗ai; �αa) = �((�αa))

�((�αa) + 	(�x∗ai))

ka∏
l=1

�(x∗ail + αal)

�(αal)

where 	(�v) denotes the sum of the elements of some vector �v and � denotes the gamma function. Also, from the condi-
tional independence of our x∗ai :

P (xxx;ααα) =
A∏

a=1

Ia∏
i=1

P (�x∗ai; �α)

The joint distribution of the collapsed PB model becomes:

P (�f , vvv,xxx;ααα) = P (xxx;ααα)P (vvv|xxx)P (�f |vvv) (5)

where

P (vvv|xxx) =
A∏

a=1

Ia∏
i=1

N∏
n=1

P (�vnai∗|xnai)

P (�f |vvv) =
N∏

n=1

P (fn|vvvn∗)

The joint distribution in Equation (5) is simply Equation (1) with θθθ integrated out. Note that vvv must take values from
the models of the formulas Booln in order to have P (�f |vvv) = 1 (recall that �f is observed). Furthermore, given a realization of
vvv , it is uniquely decoded to a realization of xxx. In practice, we always make sure that these conditions are met, cf. Section 3.

In summary, inference in PB models means to characterize P (θθθ |�f , ααα). Since Dirichlet priors are conjugate to categorical
distributions, the posterior distributions are also Dirichlet distributions with parameters ααα′:

�θai |�f ,ααα ∼ Dirichlet(�α′
ai) a = 1, . . . , A , i = 1, . . . , Ia

Therefore, the inference task is to estimate ααα′ .
Informally, the PB inference task is computed in two steps. The first step, described in Section 3, consists of representing

a given probabilistic model as an abductive logic program enriched with probabilistic primitives and executing this program.
The latter yields the formulas Booln , and thus the PB model is completely specified. The second step consists of sampling
the PB model and is described in Section 4.

3. Syntax and semantics

In this section we formally define the syntax and semantics (up to MCMC sampling) of probabilistic programs in PB.
PB programs will be defined as abductive logic programs where the set of abducibles correspond to the sample space of
P (xxx|θθθ). Each observation in the model corresponds to an abductive query. The execution of the abductive query given the
program means explaining that observation, and the result of this execution will be a formula in terms of abducibles. This
formula is then translated into a boolean formula Bool expressed in terms of the boolean variables vvv from the PB model.
We argue that all observations need not be explained individually, i.e. by executing the previous steps for each observation,
and instead propose a more efficient approach. Finally, we describe a compact encoding of each boolean formula Bool into
a (reduced ordered) binary decision diagram, which will be used for MCMC sampling.

3.1. Abductive logic programming and PB

A PB program is an abductive logic program [10] enhanced with probabilistic predicates. Adapting the definitions from
[18], an abductive logic program is a tuple (
, AB), where
 is a normal logic program, AB is a finite set of ground atoms
called abducibles. In PB, an abductive logic program encodes the generative story of the model, as well as the observed data.

A query Q is a conjunction of existentially quantified literals. In PB, there exists one query for each observation, de-
scribing how that observation should be explained. An abductive solution for a query Q is a set of ground abducibles
� ⊆ AB:

• comp3(
 ∪ �) |= Q
• comp3(
 ∪ �) |= CET

228 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
where CET denotes the Clark Equality Theory axioms [19], and comp3(
) the Fitting three-valued completion of a pro-
gram
 [20]. CET is needed to define the semantics of universally quantified negation in programs containing variables.
The result of a query is the disjunction of all the abductive solutions computed by the abductive logic program, where each
abductive solution is considered a conjunction of its elements. This computation is described in Supplementary Appendix A.

The syntax of the non-probabilistic predicates is similar to Prolog, and is documented in [21]. The domain of
the abducibles is specified through a probabilistic predicate pb_dirichlet. This predicate defines a set of cat-
egorical distributions with the same Dirichlet prior, i.e. it allows draws from P (xnai |�θai), for a fixed a and all n
and i. A conjunction of such predicates defines the plate indexed by a. In PB, the syntax of the predicate is
pb_dirichlet(Alpha_a, Name, K_a, I_a). The first argument, Alpha_a, corresponds to �αa in the model, and
can be either a list of ka positive scalars specifying the parameters of the Dirichlet, or a positive scalar that specifies a
symmetric prior. The second argument, Name is an atom that will be used as a functor when calling a predicate that repre-
sents a realization of a categorical random variable on the a-th plate. The third argument K_a corresponds to ka , and I_a
represents Ia , i.e. the number of categorical distributions having the same prior.

Example 3.1. Consider the LDA example from Example 2.2. To specify the probability distributions, assuming flat symmetric
priors over μμμ and φφφ, we need the following predicates:

pb_dirichlet(1.0, mu, 2, 3).
pb_dirichlet(1.0, phi, 4, 2). �

Declaring pb_dirichlet predicates simply states that the distributions on the a-indexed plate exist. The draws from
these distributions, i.e. samples from P (xxx|θθθ), are realized using a predicate Name(K_a, I_a). The first argument denotes
a category from 1, . . . , ka , and the second argument a distribution from 1, . . . , Ia . Informally, the meaning of the predi-
cate is that it draws a value K_a from the I_a-th distribution with Dirichlet prior parametrized by �αa . All predicates
Name(K_a, I_a) are assumed to be ground atoms when called. Therefore the set of abducibles can be defined as:

AB = {Name(K_a, I_a)|∀a,K_a,I_a}
Example 3.2. Continuing Example 3.1, we show the rest of the abductive logic program. Note that this is not the complete
PB program, since we have not defined all probabilistic predicates.

observe(d(1),[(w(1),4),(w(4),2)]).
observe(d(2),[(w(3),1),(w(4),5)]).
observe(d(3),[(w(2),2)]).

generate(Doc, Token) :-
Topic in 1..2,
mu(Topic, Doc),
phi(Token, Topic).

Each observe fact encodes a document, indexed using the first argument, and consisting of a bag-of-words in the
second argument. The bag-of-words is a list of pairs: a token with an index and its (positive) count per document.

The generate rule describes how each observation, characterized by a particular Token in a Document, is generated
(or explained). The variable Topic is grounded as either 1 or 2, in general 1 up to T . Note that observe and generate
are not keywords, but descriptive conventional names. In this example, the abducibles are the predicates with functors mu
and phi. �

In PB, each abducible corresponds to a draw from P (xnai |�θai), represented as a tuple (a, i, l) via a bijection ρ : AB →
{(a, i, l)|a ∈ {1, . . . , A}, i ∈ {1, . . . , Ia}, l ∈ {1, . . . , ka}}. The tuple consists of an index of the distribution (a, i) and the drawn
category l. For an abducible Name(K_a, I_a), K_a corresponds to l, I_a corresponds to i, and a is determined by the or-
der of the pb_dirichlet definition involving Name. For instance, in the context of Example 3.1, ρ(phi(3,2)) = (2, 2, 3).

Abusing notation, the mapping ρ is also used to map abductive solutions, i.e. ρ(�) is a list of tuples (a, i, l).
The semantics of the abductive logic program ensures that abductive solutions are minimal, which means no abducibles

are included in an abductive solution unless they are necessary to satisfy the query. Probabilistically, this means that no
draws are made except the ones needed to explain an observation. This implicit marginalization and compactness (e.g.
queries that produce v1 and v1 v2 + v1 v2 are equivalent) is effectively enforced by BDD compilation, described in Section 3.2.

The PB model constrains the draws from the categorical distributions such that, for each observation, we can draw once
per distribution, and since each observation is explained by an abductive query, we must enforce this constraint on our
abductive solutions, i.e. there can be no (a, i, l1), (a, i, l2) ∈ ρ(�) such that l1 	= l2.

Example 3.3. Continuing Example 3.2, consider observing token 2 in document 3. The corresponding query is generate(3,
2). The execution of the abductive logic program with this query produces two solutions corresponding to the explana-
tions of the token, i.e. it can be produced either from topic 1 or topic 2. The solutions are {mu(1,3), phi(2,1)} and
{mu(2,3), phi(2,2)}.

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 229
We obtain the result of the query by applying ρ to the abductive solutions and taking their disjunction:

((1,3,1) ∧ (2,1,2)) ∨ ((1,3,2) ∧ (2,2,2)) �
3.2. Knowledge compilation and multiple observations

The purpose of abduction is to produce, for each observation n = 1, . . . , N , a formula Booln(vvvn∗). Having computed the
result of a query, all that is left is to translate each draw (a, i, l) into boolean variables. We define this translation, denoted
conditional AD compilation, as ordering all draws by their distribution index (a, i), i.e. first by a then i, and compiling each
distribution as an AD to the categories present in the result of the query.

Example 3.4. Continuing Example 3.3, in the result of the query, we have the sorted distributions (a, i):

1. (1, 3), with two outcomes present in the solution, i.e. (1, 3, 1) and (1, 3, 2), and one variable v1.
2. (2, 1), with one outcome present in the solution, i.e. (2, 1, 2), and one variable v2.
3. (2, 2), with one outcome present in the solution, i.e. (2, 2, 2), and one variable v3.

Therefore the result of the query is parsed using conditional AD compilation into the formula:

v1 v2 + v1v3

Note that for a fixed number of topics, this representation is invariant to V , the number of tokens in the vocabulary, due
to the fact, when explaining an observation, we draw a single token from some topic. �

The proposed representation of conditional AD compilation is different from conventional AD compilation (cf. Section
3.3.1 of [17]) in that instead of considering the sample space of the distributions, it considers the conditional sample space
of the distributions given a particular observation. In models such as LDA this difference is crucial, since in typical inference
tasks, the size of the vocabulary V is of the order of tens of thousands of tokens, and AD compilation would thus create
conjunctions of up to V − 1 variables.

So far we have discussed the explanation of a single observation, i.e. the computation of a single abductive query and
the translation of the result of the query into a boolean formula. It would be inefficient to treat multiple observations by
computing a query for every single observation. For instance, in the LDA example, the same token Token can be pro-
duced multiple times from the same document Document. The queries corresponding to these observations are identical:
generate(Document, Token), therefore it is redundant to execute the query more than once for all such observations.
We make a further remark, namely that all observations generated from the same set of topics in an LDA task produce
the same formula after conditional AD compilation, although the particular distributions used are different for different
document-token pairs.

We exploit these properties when expressing queries in a PB program. To do so, we introduce the probabilistic predicate
pb_plate(OuterQ, Count, InnerQ), where the queries OuterQ and InnerQ are conjunctions represented as lists,
and Count is a positive integer. For each successful solution of OuterQ, the Count argument and the arguments of
InnerQ are instantiated, then the predicate executes the query InnerQ. We assume that all observations defined by a
pb_plate predicate yield the same formula from the abductive solutions of InnerQ. If one didn’t know whether the
formulas are identical, one could simply write a pb_plate definition for each observation, with an empty outer query, and
a count argument of 1.

Example 3.5. Continuing the previous examples of this section, we specify the last part of the PB program for an LDA task.
The pb_plate predicate iterates through the corpus and generates each token according to the model. In this model,
iterating through observations means selecting different pairs of document and token indexes.

pb_plate(
[observe(d(Doc), TokenList),

member((w(Token), Count), TokenList)],
Count,
[generate(Doc, Token)]

).

An example of a PB program with multiple pb_plate definitions is given for the Seed LDA model, discussed in Sec-
tion 5, in Table 1. �

The formula for each pb_plate definition is compiled into a reduced ordered binary decision diagram (ROBDD, in the
rest of the paper the RO attributes are implicit) [22,23], with the variables in ascending order according to their index. The
BDD of a boolean formula Bool allows one to express in a compact manner all the models of Bool. This enables us to sample

230 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
(a subset of) the variables vvv such that P (�f |vvv) equals 1. Furthermore, the conditional AD compilation allows us to correctly
decode vvv into xxx, such that all the deterministic constraints of the model are satisfied.

Compiling the abductive solutions into a BDD allow PB to perform inference in models with overlapping explanations,
similarly to ProbLog.

The final step of inference in PB is sampling via Markov Chain Monte Carlo (MCMC), which we discuss in Section 4.

4. MCMC sampling

Inference in high-dimensional latent variable models is typically done using approximate inference algorithms, e.g. varia-
tional inference or MCMC sampling. We use the latter, in particular two algorithms: an adaptation to PB models of Ishihata
and Sato’s uncollapsed Gibbs sampling for PLP models [11], and our novel collapsed Gibbs sampling (CGS) for PB models.

4.1. Uncollapsed Gibbs sampling

Following [11], we can perform uncollapsed Gibbs sampling along two dimensions (θθθ and xxx) by alternatively sampling
from P (xxx|θ̂θθ, �f) and P (θθθ |x̂xx, ααα). We use hat to denote the samples in some iteration, and if the variable is a vector, we omit
vector notation. A sample from P (θθθ |x̂xx, ααα) yields an estimate θ̂θθ that is averaged over the sampling iterations to produce our
posterior belief of θθθ .

Sampling from P (θθθ |x̂xx, ααα) means sampling:

θ̂ai ∼ Dirichlet(�αa + x̂∗ai) a = 1, . . . , A , i = 1, . . . , Ia

Assume this is implemented by a function:

θθθ ← sample_theta(ααα,xxx)

Sampling from P (xxx|θ̂θθ, �f) can be done by sampling a path from root to the “true” leaf3 in each of the BDDs for Booln ,
n = 1, . . . , N , which yield a sample from vvv that is then decoded to xxx. To sample a BDD, we sample the truth value of each
node, and therefore we need to use P (vvv; θθθ), as defined in Section 2.1.

According to the conditional AD compilation defined in Section 3.2, each compilation is performed for each individual
observation, and the observations are grouped if they correspond to the same query, and grouped again when they corre-
spond to the same compiled boolean formula Bool. This means that for each formula Bool, the probabilities of the boolean
variables P (vvv; θθθ) must be computed from θθθ for each distinct query. Let Nbdd be the number of boolean variables in BDD
bdd, and N Q ,bdd be the number of distinct queries whose result yields the same formula Bool encoded in bdd. Then θθθbdd is
an N Q ,bdd by Nbdd matrix, computed from θθθ using a function:

θθθbdd ← reparametrize(θθθ,bdd)

The sampling algorithm is given in Algorithm 1, and the algorithm for sampling a single BDD (sample_x() from Algo-
rithm 1) is explained in Supplementary Appendix B.

Algorithm 1 Uncollapsed Gibbs sampling for PB.
function uncollapsed_Gibbs(ααα, bdds, maxit)

samples ← []
for it = 1, . . . , maxit do

θθθ ← sample_theta(ααα, xxx) � updates θθθ
for bdd ∈ bdds do

θθθbdd ← reparametrize(θθθ)

end for
for a = 1, . . . , A do � resets xxx

for i = 1, . . . , Ia do
�x∗ai ← zeros(ka)

end for
end for
for bdd ∈ bdds do � updates xxx

for (obs, count) ∈ bdd do
θθθobs ← θθθbdd[obs, :]
sample_x(bdd, count, θθθobs)

end for
end for
samples ← append(samples, θθθ)

end for
return avg(samples)

end function

3 The “true” leaf of a BDD is a node such that the paths from the root to it encode all models of the formula represented by the BDD.

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 231
In Algorithm 1, the input to the sampler are the priors ααα, a set of BDDs bdds, and a number of iterations maxit. We
define some additional notation: we use [] to denote an empty list, append(list, el) to append element el to a list list,
zeros() to create empty vectors or matrices of shapes specified by the arguments and avg() to take the average of a vector
or list. To update xxx, we must sample all BDDs (one for each pb_plate definition), and all observations within each BDD.
We assume that an observation obs takes values in 1, . . . , N Q ,bdd , and count represents the number of times the observation
is repeated, as specified by the Count argument of a pb_plate predicate. For each observation obs we will use only the
obs-th row from θθθbdd , denoted as θθθbdd[obs, :].

4.2. Collapsed Gibbs sampling

As explained in [11], it is not feasible to perform CGS in PLP models, as a generalization of CGS for LDA in [24]. It is,
however, possible to define a general CGS procedure for PB. This uses the independence property of our observations �f
given xxx. The advantage of collapsed versus uncollapsed Gibbs sampling is the faster convergence of the collapsed sampler.
We show that this is the case for an experiment using synthetic data in an LDA task in Section 5.1.

CGS for PB models entails sampling P (xxxn∗|ααα, ̂xxx−n∗), for n = 1, . . . , N , where the subscript −n means the range of values
1, . . . , n − 1, n + 1, . . . , N . Note that in contrast to uncollapsed Gibbs sampling, we sample one observation at a time, and
θθθ is integrated out. Since sampling a BDD requires probabilities on boolean variables, P (vvv|θθθ), we “uncollapse” θθθ for this
purpose as the average of its current Dirichlet posterior parametrized by ααα′:

�θai = �α′
ai

	(�α′
ai)

a = 1, . . . , A , i = 1, . . . , I A

We assume this is implemented by avg(ααα′).
The CGS is shown in Algorithm 2:

Algorithm 2 Collapsed Gibbs sampling for PB.
function collapsed_Gibbs(ααα, O , maxit)

samples ← []
xxx ← initialize(ααα)

for it = 1, . . . , maxit do
for (obs, bdd) ∈ shuffle(O) do

for (a, i, l) ∈ draws(obs) do
�x∗ai [l] ← �x∗ai [l] − 1
�α′

ai [l] ← �α′
ai [l] − 1

end for
θθθ ← avg(ααα′)
θθθbdd ← reparametrize(θθθ)

θθθobs ← θθθbdd[obs, :]
sample_x(bdd, 1, θθθobs)

for a = 1, . . . , A do
for i = 1, . . . , Ia do

�α′
ai ← �αa + �x∗ai

end for
end for

end for
samples ← append(samples, ααα′)

end for
return avg(samples)

end function

Before sampling, we initialize xxx by setting θθθ to the average of the Dirichlet prior, then x is sampled like in an iteration of
the uncollapsed Gibbs sampler. We assume this setup is implemented in a function initialize(ααα). We switch representation
from a set of BDDs to a set of O of observations, each observation having its own BDD. Each iteration loops over the obser-
vations and removes the draws of the current observation from xxx, then updates θθθ , then re-samples the current observation
to update xxx. To remove the draws of the current observation, we use a function draws(obs), that, for some observation
obs, returns the list of draws required to explain that observation, i.e. a list of (a, i, l) tuples. The draws represent the path
sampled from the BDD in the previous iteration. Unlike the uncollapsed Gibbs sampling algorithm, where all observations
were sampled given the same θθθ , in CGS, we update θθθ after each observation. Furthermore, the samples we record are not
θθθ , but the posterior Dirichlet parameters ααα′ .

232 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
Fig. 3. Comparison between PB samplers and LDA-specific CGS on 10 sampled synthetic corpora (10 runs per corpus).

5. Evaluation

In this section we present experiments with PB.4 The first two experiments are quantitative, while the rest are qualitative.
In the latter, we show that inference in PB yields reasonable results given our intuition about the models, and in the case
of the repeated insertion model, we reach similar conclusions compared to a different model (the Mallows model).

5.1. PB and collapsed Gibbs sampling (CGS) for LDA on synthetic data

We run a variation of the experiment performed in [24,11]. A synthetic corpus is generated from an LDA model with
parameters: 25 words in the vocabulary, 10 topics, 100 documents, 100 words per document, and a symmetric prior on
the mixture of topics μ, γ = 1. The topics used as ground truth specify uniform probabilities over 5 words, cf. [24,11]. We
evaluate the convergence of the PB samplers and an LDA-specific CGS implementation in the topicmodels R package. The
parameters are: β = γ = 1 as (symmetric) hyper-parameters, and we run 100 iterations of the samplers. The experiments
are run 10 times over each corpus from a set of 10 identically sampled corpora, yielding 100 values of the log likelihoods
per iteration. The average and 95% confidence interval (under a normal distribution) per iteration are shown in Fig. 3. The
experiment yields two conclusions: 1) similarly to [11], we find that uncollapsed Gibbs sampling converges slower than CGS
and 2) the PB-CGS performs similarly to the LDA-specific CGS, which supports our claim that CGS in PB generalizes CGS in
LDA.

5.2. PB, CGS-LDA, VEM-LDA, PRiSM and Stan for LDA on synthetic data

We compare PB with two LDA-specific methods from the topicmodels R package: collapsed Gibbs sampling (tm-gibbs)
and variational expectation maximization (tm-vem), and two state-of-the-art PPLs: PRiSM [8] and Stan [4]. The metrics we
are interested in are: 1) the intrinsic metric of each method, used to subjectively decide when a sampler has converged, 2)
log likelihood, used to asses the quality of fit to the observed data and 3) fold-average perplexity in 5-fold cross-validation,
used to asses the generalization power of each method. In a previous paper, we showed that Church [1] doesn’t seem to
converge in a reasonable amount of time on simple LDA tasks, cf. Appendix C of [18].

We use a similar setup to the previous experiment (T = 10, γ = 1), except that we generate only one corpus of 1000
documents and average over 10 runs with different RNG seeds.

The first problem in evaluating the methods is deciding when has the model converged. We use the default settings of
all implementations unless specified and their intrinsic measures: the likelihood attributes of LDA objects for tm-gibbs and
tm-vem (@logLiks), the LDA-likelihood for PB, cf. Appendix B of [18], the get_logposterior function for Stan and the
variational free energy (VFE) for PRiSM. Time is measured in seconds and averaged across runs, the metrics are averaged
across runs and the error bars show one standard error, though very often the methods show little variation.

We plot the results in Figs. 4 and 5. Note that the methods should not be compared with each other based on these
figures. The last value of the number of iterations is the one where we deem there is convergence. For sampling methods,
we ran up to 200 iterations for tm-gibbs, 400 iterations for PB and 25 iterations for Stan to make this decision. For PB we

4 See supplementary materials for details on implementation and software availability (Appendix C). In all but the first experiment we use only uncol-
lapsed Gibbs sampling for PB, since, although it converges slower than CGS, it is better optimized in the current implementation.

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 233
Fig. 4. Intrinsic metrics by log average execution time. The methods should not be compared based on these values.

Fig. 5. Intrinsic measures by number of topics in the evaluated model.

use 50, 100, 150 and 200 iterations, for Stan 5, 10, 15, 20 iterations, for Prism 50, 100, 150 and 200 iterations (based on the
intrinsic convergence of VEM), for tm-gibbs 25, 50, 75, 100 iterations, for tm-vem 20, 30, 40, 50 iterations (based on the
intrinsic convergence of VEM). When varying the number of topics, we used the maximum value of iterations for sampling
methods, and the rest ran until convergence.

When we vary the number of topics in the probabilistic program, e.g. in Fig. 5, we typically expect the metric to increase
up to 10 topics, and then decrease or remain the same. This behavior is illustrated by the intrinsic measures of PB and
tm-gibbs, while that of Stan behaves oddly with respect to this expectation. In what follows we shall see that when we
track likelihood and perplexity, these behaviors change.

To be able to compare the methods, we used the following definition of “likelihood”:

L(C) =
∏

(w,d)∈C

T∑
t=1

μd(t)φt(w)

where C is a corpus of tokens (w, d), w is the token index, d is the document index, and T , μ and φ are the same as in
Example 2.2.

We plot the results in Figs. 6 and 7. We use the same settings for iteration numbers. As in the intrinsic metric ex-
periment, the more expressive the method, the slower it is, with the exception of PRiSM being faster than tm-vem. The
difference of more than an order of magnitude between PRiSM and PB can be explained by the fact that the assumption

234 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
Fig. 6. Likelihood against log average execution time. Higher is better. The results are consistent with Fig. 4.

Fig. 7. Likelihood against number of topics in the evaluated model. Notice the difference w.r.t. Fig. 5.

of non-overlapping explanations allows for significant optimizations in PRiSM, as well as the fact that the implementation
of the latter is much more mature. Concretely, PRiSM is written in C, Stan compiles its programs to C++ code, while our
current PB prototype sampling implementation is written in Python and Cython. With respect to the number of topics, all
methods perform similarly, with the exception of tm-vem.

Finally, we show the average per fold perplexity in a 5-fold cross-validation split on every document of the corpus in
Figs. 8 and 9.

We define perplexity similarly to [25]:

P(C) = exp

(
− L(C)∑

(w,d)∈C 1

)

We run the methods only four times, and due to faster overall convergence, we tune the number of iterations as follows:
10, 20, 30, 40, 200 for PB, 2, 4, 6, 8, 20 for Stan, 10, 20, 30, 40, 200 for PRiSM, 10, 20, 30, 40, 200 for tm-gibbs, and 5, 10, 15,
20, 50 for tm-vem. All methods perform well, with the exception of tm-vem. Stan yields very similar values for perplexity
for 2, 4, 6 and 8 iterations.

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 235
Fig. 8. Average fold perplexity in 5CV against average execution time. Lower is better. The first four markers for Stan almost overlap.

Fig. 9. Average fold perplexity in 5CV against number of topics in the evaluated model. Note the consistency w.r.t. Fig. 7.

5.3. PB for seed LDA on 20 newsgroups dataset

Inspired by an experiment from [26], we use the computing related (comp.*) newsgroups in the 20 newsgroups dataset
[27]. We tokenize, lemmatize and remove stop words from all documents to obtain a corpus with V = 27206 unique tokens
in D = 4777 documents with average length of approx. 72 tokens. We set T = 20 topics and priors γ = 50/T , β = 0.01. We
seed two topics with hardware (hardware, machine, memory, cpu), and software (software, program, version, shareware)
related terms. Seeding a token in a topic means that whenever we observe that token we will assign it only that topic.

We show the PB program, with the observe facts omitted, in Table 1. The omitted observe facts encode the corpus in the
same manner as in Example 3.2. The seed predicate specifies a token as its first argument and a list of allowed topics as the
second argument. The observations are split into seed tokens and non-seed tokens, and are placed on separate pb_plate
predicates. To distinguish between the two types of tokens we use the predicate seed_naf because negation is universally
quantified.

We run PB for 400 iterations and summarize the seeded topics, as word clouds, in Fig. 10. We observe that both topics
give high weights to the seed words, and other hardware (mhz, rom, disk, bios, board) or software (source, library, utility,
server, user) related terms.

236 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
Table 1
PB program for seed LDA.

% ’observe’ facts are ommited
pb_dirichlet(2.5, theta, 20, 4777).
pb_dirichlet(0.01, phi, 27206, 20).
seed(9398, [1]). seed(21247, [2]).
seed(13167, [1]). seed(17982, [2]).
seed(13813, [1]). seed(24490, [2]).
seed(4483, [1]). seed(20682, [2]).
seed_naf(Token) :- seed(Token, _).
pb_plate(

[observe(d(Doc), TokenList),
member((w(Token), Count), TokenList),
\+ seed_naf(Token)],

Count,
[Topic in 1..20, theta(Topic,Doc), phi(Token,Topic)]).

pb_plate(
[observe(d(Doc), TokenList),

member((w(Token), Count), TokenList),
seed_naf(Token)],

Count,
[seed(Token, TopicList), member(Topic, TopicList),

theta(Topic,Doc), phi(Token,Topic)]).

Fig. 10. Seeded topics in the seed LDA task.

5.4. PB for cluster LDA on arXiv abstracts

We consider a different variant of the LDA model, one in which we define a partition C over the topics. In the experiment,
we consider 25 topics clustered into 5 clusters of 5 topics. Each token is then generated by choosing a topic cluster according
to a document-specific mixture of clusters, then a topic from the cluster, again according to a document-specific mixture,
and finally the token is chosen from the topic. Note that this model is different from the parametric version of hierarchical
Dirichlet processes [28], equation 29, namely that model considers a global set of topics, and each document (or group)
selects a subset from the global set. In cluster LDA, all documents can use any of the topics, however the topic clusters are
disjoint, as opposed to the possibly overlapping subsets in the parametric hierarchical Dirichlet process.

We collect all abstracts on arXiv submitted in 2007, from five categories: quantitative finance (q-fin), statistics (stats),
quantitative biology (q-bio), computer science (cs), and physics (physics). We tokenize and remove stop words to obtain a
corpus with V = 26834 unique tokens in D = 5769 documents with average length of approx. 80 tokens. We use priors of
γ = 50/T = 10 for each cluster mixture and topic mixture per cluster, and β = 0.1 for the topics.

The PB program for the cluster LDA task is shown in Table 2. We use psi to denote the draw of a topic cluster, and a
predicate create_term to create terms that, when called with pb_call, choose between the topics within a cluster, as
well as the tokens from the topics.

In Fig. 11 we plot, as heat maps, the cluster mixtures for each document in each category. We observe that quantitative
biology is well represented by cluster 2 and physics is well represented by cluster 3. Computer science is characterized by
cluster 5, but also 1 and 4, while quantitative finance and statistics are very similar, consisting mainly of clusters 1, 2 and
4. The latter effect may be due to the small number of documents in both quantitative finance and statistics, as well as the
fact that most quantitative finance papers focus on statistical methods.

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 237
Table 2
PB program for cluster LDA.

% ’observe’ facts are ommited
pb_dirichlet(10.0, psi, 5, 5769).
pb_dirichlet(10.0, theta1, 5, 5769).
pb_dirichlet(10.0, theta2, 5, 5769).
pb_dirichlet(10.0, theta3, 5, 5769).
pb_dirichlet(10.0, theta4, 5, 5769).
pb_dirichlet(10.0, theta5, 5, 5769).
pb_dirichlet(0.1, phi1, 26834, 5).
pb_dirichlet(0.1, phi2, 26834, 5).
pb_dirichlet(0.1, phi3, 26834, 5).
pb_dirichlet(0.1, phi4, 26834, 5).
pb_dirichlet(0.1, phi5, 26834, 5).
pb_plate(

[observe(d(Doc), TokenList),
member((w(Token), Count), TokenList)],

Count,
[generate(Doc, Token)]).

create_term(Functor, Idx, Cat, Distrib, Term) :-
number_chars(Idx, LIdx),
atom_chars(Functor, LFunctor),
append(LFunctor, LIdx, LF),
atom_chars(F, LF),
Term =.. [F, Cat, Distrib].

generate(Doc, Token) :-
Cluster in 1..5,
Topic in 1..5,
psi(Cluster, Doc),
create_term(theta, Cluster, Topic, Doc, Term1),
pb_call(Term1),
create_term(phi, Cluster, Token, Topic, Term2),
pb_call(Term2).

Fig. 11. Cluster mixture for each category (x – topic clusters, y – documents, darker color – higher probability).

Furthermore, if we inspect, for example, cluster 2, corresponding to quantitative biology, shown in Table 3, we find
that most topics give high probability to terms used in biology, e.g. “proteins” in topic 2, “genetic” and “brain” in topic 3,
“response” and “diffusion” in topic 4. The results agree with our intuition about the model: topics within the same cluster
are similar.

5.5. PB for RIM on Sushi dataset

A repeated insertion model (RIM, [13]) provides a recursive and compact representation of K probability distributions,
called preference profiles, over the set of all permutations of M items. This intuitively captures K different types of people

238 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
Table 3
Topic Cluster 2 (top 10 tokens and probabilities).

important 0.0092 physical 0.0099 scaling 0.0115
expression 0.0092 proteins 0.0092 free 0.0105
model 0.0092 interaction 0.0092 similar 0.0089
fluctuations 0.0085 individual 0.008 genetic 0.0079
large 0.0082 scales 0.0072 transfer 0.0067
mechanism 0.0077 transition 0.0072 agent 0.0062
specific 0.0077 mathematical 0.0069 brain 0.006
factors 0.0075 investigate 0.0066 chemical 0.0058
recent 0.0074 process 0.0066 exhibit 0.0056
highly 0.0073 dynamical 0.0062 normal 0.0056

simulations 0.0098 structural 0.0096
response 0.0093 short 0.0095
activity 0.0087 stability 0.0094
mean 0.0084 global 0.009
diffusion 0.0084 equilibrium 0.0087
rate 0.0081 studies 0.0081
present 0.008 role 0.008
temporal 0.0075 experimental 0.0078
mechanics 0.0075 statistics 0.0074
correlations 0.0073 influence 0.0071

Table 4
Mixture parameters and modes of preference profiles on the Sushi dataset.

π1 = 0.155 π2 = 0.194 π3 = 0.134 π4 = 0.194 π5 = 0.197 π6 = 0.126

fatty tuna fatty tuna fatty tuna fatty tuna fatty tuna fatty tuna
shrimp tuna sea eel sea urchin tuna shrimp
salmon roe shrimp tuna salmon roe shrimp tuna
sea eel squid shrimp shrimp squid sea eel
squid egg squid sea eel sea eel squid
tuna tuna roll tuna roll tuna tuna roll salmon roe
tuna roll sea eel salmon roe tuna roll salmon roe tuna roll
sea urchin cucumb. roll sea urchin squid sea urchin sea urchin
egg salmon roe egg egg cucumb. roll egg
cucumb. roll sea urchin cucumb. roll cucumb. roll egg cucumb. roll

with similar preferences. We evaluate a variant of the repeated insertion model in an experiment inspired by [29], on
a dataset published in [30]. The data consists of 5000 permutations over M = 10 Sushi ingredients, each permutation
expressing the preferences of a surveyed person. Following [29], we use K = 6 preference profiles, however we use the RIM
rather than a Mallows model, and we train on the whole dataset. The parameters of the model are 50/K symmetric prior
for the mixture of profiles, and 0.1 symmetric prior for all categorical distributions in all profiles.

We show the PB program used in Table 5, assuming that the create_term predicate is defined as in Table 2. We are
not aware of any other implementation of RIM in a PPL, therefore we briefly describe the program. The mixture of profiles
is characterized by π , a set of K distributions, and for each profile there are M − 1 categorical distributions that specify
the probabilities over the set of permutations of M elements. An observed permutation is produced by selecting a latent
profile, then generating that permutation by consecutively inserting elements from a permutation called insertion order,
e.g. [0, 1, . . . , 9], at the right position, according to the distributions in that profile. The right position is chosen using the
insert_rim predicate, as naïvely generating all the possible permutations is intractable (and unnecessary).

We run PB 10 times for 100 iterations and average the parameters. For each preference profile, we show its mixture
parameter and its mode in Table 4. The inference yields similar conclusions to [29]: there is a strong preference for fatty
tuna, a strong dislike of cucumber roll and a strong positive correlation between salmon roe and sea urchin.

6. Related work

In this section, we will briefly describe the relation between the approach proposed in this paper and other relevant
methods. We begin with each of the two fundamental steps of PB: 1) enumeration of the conditional sample space and
2) sampling thereof, and conclude with a high-level comparison with other probabilistic programming languages.

The first step of PB, the enumeration of the conditional sample space through abductive logic programming, could be
compared to “logical inference” in ProbLog [9]. While both languages aim to generate a propositional formula and com-
pile it into a decision diagram, “logical inference” in PB is based on abductive logic programming, while ProbLog grounds
the relevant parts of the probabilistic program. Moreover, in PB compilation of the boolean formulas is performed using
(RO)BDDs, while ProbLog can use a wider range of decision diagrams, e.g. sentential decision diagrams (SDD), deterministic,
decomposable negation normal form (d-DNNF). These differences reflect the different aims of the two PPLs: ProbLog focuses

C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240 239
Table 5
PB program for a RIM with K = 6 preference profiles.

observe([5,0,3,4,6,9,8,1,7,2]).
observe([0,9,6,3,7,2,8,1,5,4]).
% ... 4998 ’observe’ facts ommited
pb_dirichlet(8.33333333333, pi, 6, 1).
pb_dirichlet(0.1, p2, 2, 6). pb_dirichlet(0.1, p7, 7, 6).
pb_dirichlet(0.1, p3, 3, 6). pb_dirichlet(0.1, p8, 8, 6).
pb_dirichlet(0.1, p4, 3, 6). pb_dirichlet(0.1, p9, 9, 6).
pb_dirichlet(0.1, p5, 5, 6). pb_dirichlet(0.1, p10, 10, 6).
pb_dirichlet(0.1, p6, 6, 6).
pb_plate([observe(Sample)], 1,

[generate([0,1,2,3,4,5,6,7,8,9], Sample)]).
generate([H|T], Sample):-

K in 1..6,
pi(K, 1),
generate(T, Sample, [H], 2, K).

generate([], Sample, Sample, _Idx, _K).
generate([ToIns|T], Sample, Ins, Idx, K) :-

% insert next element at Pos yielding a new list Ins1
append(_, [ToIns|Rest], Sample),
insert_rim(Rest, ToIns, Ins, Pos, Ins1),
% make probabilistic choice
create_term(p, Idx, Pos, K, Pred),
pb_call(Pred),
% increment position and recurse
Idx1 is Idx+1,
generate(T, Sample, Ins1, Idx1, K).

insert_rim([], ToIns, Ins, Pos, Ins1) :-
append(Ins, [ToIns], Ins1),
length(Ins1, Pos).

insert_rim([H|_T], ToIns, Ins, Pos, Ins1) :-
nth1(Pos, Ins, H),
nth1(Pos, Ins1, ToIns, Ins).

insert_rim([H|T] , ToIns, Ins, Pos, Ins1) :-
\+member(H, Ins),
insert_rim(T, ToIns, Ins, Pos, Ins1).

on models where “logical inference” needs to be efficient, and the resulting representation, the decision diagrams, need to
be compact, while PB focuses on models where “logical inference” is typically easy, however it must be applied repeatedly,
according to the nature and the number of the observations. However, in future work, PB could benefit from the use of
more compact decision diagrams.

The second step of PB is inspired by the uncollapsed Gibbs sampling algorithm from [11], which we have adapted to PB.
However, sampling in the PB model, unlike PLP models, can be performed using collapsed Gibbs sampling, an algorithm
with faster convergence that the uncollapsed version, as shown in Section 5.1.

In relation to Church [1] and many other related PPLs, PB is similar in that it uses a Turing-complete declarative language,
but the set of probabilistic primitives available in PB is very restricted compared to Church. On the other hand, inference in
discrete models such as LDA is difficult in highly expressive PPLs, whereas in PB inference is tractable on various discrete
models.

Both PB and the logic-based PPL Alchemy [6] focus on discrete models, however they differ at a fundamental level
due to the fact that the probabilistic model of PB is directed, whereas that of Alchemy is undirected (Markov networks).
Consequently, the specification of probabilistic programs is also different: in Alchemy, programs are expressed as weighted
formulas, whereas in PB specifies models using abductive logic programs where the abducibles represent draws from a
categorical distribution with Dirichlet priors. Furthermore, by using abductive logic programming instead of a first-order
knowledge base, PB can easily encode recursive generative models, such as RIM. It is much less obvious how to do so using
Alchemy.

7. Conclusions and future work

In this paper, we introduced PB, a probabilistic logic programming language for discrete models with Dirichlet priors.
This paper bridges the gap between logical and probabilistic inference in the considered class of models, and addresses
issues on representation of abductive solutions and inference on “syntactically” identical BDDs. The main contribution to
representation is the conditional AD compilation, while the main contribution to inference is the collapsed Gibbs sampling
algorithm that generalizes the one proposed for LDA in [24].

240 C.R. Turliuc et al. / International Journal of Approximate Reasoning 78 (2016) 223–240
We have shown, through the experiments in Section 5, that PB yields reasonable inference results both on synthetic and
real datasets.

In future work, we hope to explore more probabilistic models that fit the PB paradigm, and to design, implement, and
compare efficient algorithms for generalized probabilistic inference in PB models.

On the other hand, we wish to relax the important restriction to discrete models using Dirichlet processes, that allow
discretization of any continuous distribution specified as the base distribution of the process.

Appendix. Supplementary material

Supplementary Appendices A, B and C related to this article can be found online at http://dx.doi.org/10.1016/j.ijar.2016.
07.001.

References

[1] N.D. Goodman, V.K. Mansinghka, D.M. Roy, K. Bonawitz, J.B. Tenenbaum, Church: a language for generative models, in: Uncertainty in Artificial Intelli-
gence, 2008, pp. 220–229, http://danroy.org/papers/church_GooManRoyBonTen-UAI-2008.pdf.

[2] B. Paige, F. Wood, A compilation target for probabilistic programming languages, in: ICML, 2014.
[3] D. Lunn, D. Spiegelhalter, A. Thomas, N. Best, The BUGS project: evolution, critique and future directions, Stat. Med. 28 (25) (2009) 3049–3067,

http://dx.doi.org/10.1002/sim.3680.
[4] Stan Development Team, Stan Modeling Language Users Guide and Reference Manual, Version 2.5.0, 2014, http://mc-stan.org/.
[5] A. Pfeffer, Figaro: an object-oriented probabilistic programming language, in: Charles River Analytics Technical Report, 2009.
[6] P. Domingos, S. Kok, H. Poon, M. Richardson, P. Singla, Unifying logical and statistical AI, in: Proceedings of the 21st National Conference on Artificial

Intelligence, vol. 1, AAAI’06, AAAI Press, 2006, pp. 2–7, http://dl.acm.org/citation.cfm?id=1597538.1597540.
[7] B. Milch, B. Marthi, S. Russell, BLOG: relational modeling with unknown objects, in: ICML 2004 Workshop on Statistical Relational Learning and Its

Connections, 2004, pp. 67–73.
[8] T. Sato, Y. Kameya, New advances in logic-based probabilistic modeling by prism, in: L. De Raedt, P. Frasconi, K. Kersting, S. Muggleton (Eds.), Proba-

bilistic Inductive Logic Programming, in: Lecture Notes in Computer Science, vol. 4911, Springer, Berlin Heidelberg, 2008, pp. 118–155.
[9] D. Fierens, G.V. den Broeck, J. Renkens, D.S. Shterionov, B. Gutmann, I. Thon, G. Janssens, L.D. Raedt, Inference and learning in probabilistic logic

programs using weighted boolean formulas, CoRR, arXiv:1304.6810, http://arxiv.org/abs/1304.6810.
[10] A.C. Kakas, R.A. Kovalski, F. Toni, Abductive logic programming, J. Log. Comput. 2 (1992) 719–770, http://dx.doi.org/10.1093/logcom/2.6.719.
[11] M. Ishihata, T. Sato, Bayesian inference for statistical abduction using Markov chain Monte Carlo, in: Proceedings of the 3rd Asian Confer-

ence on Machine Learning, ACML 2011, Taoyuan, Taiwan, November 13–15, 2011, 2011, pp. 81–96, http://www.jmlr.org/proceedings/papers/v20/
ishihata11/ishihata11.pdf.

[12] D.M. Blei, A.Y. Ng, M.I. Jordan, J. Lafferty, Latent Dirichlet allocation, J. Mach. Learn. Res. 3 (2003) 2003.
[13] J.-P. Doignon, A. Pekeč, M. Regenwetter, The repeated insertion model for rankings: missing link between two subset choice models, Psychometrika

69 (1) (2004) 33–54, http://dx.doi.org/10.1007/BF02295838.
[14] A.D. Gordon, T.A. Henzinger, A.V. Nori, S.K. Rajamani, Probabilistic programming, in: International Conference on Software Engineering (ICSE Future of

Software Engineering), IEEE, 2014, http://research.microsoft.com/apps/pubs/default.aspx?id=208585.
[15] W.L. Buntine, Operations for learning with graphical models, J. Artif. Intell. Res. (JAIR) 2 (1994) 159–225, http://dx.doi.org/10.1613/jair.62.
[16] L.D. Raedt, A. Kimmig, H. Toivonen, ProbLog: a probabilistic Prolog and its application in link discovery, in: M.M. Veloso (Ed.), IJCAI, 2007,

pp. 2462–2467, http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html#RaedtKT07.
[17] A. Kimmig, A Probabilistic Prolog and its Applications (Een probabilistische prolog en zijn toepassingen), Ph.D. thesis, Luc de Raedt (supervisor),

Informatics Section, Department of Computer Science, Faculty of Engineering Science, Nov. 2010, https://lirias.kuleuven.be/handle/123456789/280932.
[18] C. Turliuc, N. Maimari, A. Russo, K. Broda, On minimality and integrity constraints in probabilistic abduction, in: Logic for Programming, Artificial In-

telligence, and Reasoning—19th International Conference, Proceedings, LPAR-19, Stellenbosch, South Africa, December 14–19, 2013, 2013, pp. 759–775,
http://dx.doi.org/10.1007/978-3-642-45221-5_51.

[19] K.L. Clark, Negation as failure, in: Logic and Data Bases, 1977, pp. 293–322.
[20] M. Fitting, A Kripke–Kleene semantics for logic programs, J. Log. Program. 2 (4) (1985) 295–312.
[21] J. Ma, Abductive reasoning module for SICStus prolog, http://www-dse.doc.ic.ac.uk/cgi-bin/moin.cgi/abduction, 2012.
[22] S.B. Akers, Binary decision diagrams, IEEE Trans. Comput. 27 (6) (1978) 509–516, http://dx.doi.org/10.1109/TC.1978.1675141.
[23] R. Bryant, Graph-based algorithms for boolean function manipulation, IEEE Trans. Comput. C-35 (8) (1986) 677–691, http://dx.doi.org/10.1109/

TC.1986.1676819.
[24] T.L. Griffiths, M. Steyvers, Finding scientific topics, Proc. Natl. Acad. Sci. USA 101 (suppl 1) (2004) 5228–5235, http://dx.doi.org/10.1073/pnas.

0307752101, http://www.pnas.org/content/101/suppl_1/5228.full.pdf, http://www.pnas.org/content/101/suppl_1/5228.abstract.
[25] E. Hörster, R. Lienhart, M. Slaney, Image retrieval on large-scale image databases, in: Proceedings of the 6th ACM International Conference on Image

and Video Retrieval, CIVR ’07, ACM, New York, NY, USA, 2007, pp. 17–24.
[26] D. Andrzejewski, X. Zhu, M. Craven, B. Recht, A framework for incorporating general domain knowledge into latent dirichlet allocation using first-order

logic, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011, Barcelona, Catalonia, Spain, July 16–22, 2011,
2011, pp. 1171–1177, http://ijcai.org/papers11/Papers/IJCAI11-200.pdf.

[27] K. Lang, Newsweeder: learning to filter netnews, in: Proceedings of the 12th International Machine Learning Conference, ML95, 1995.
[28] Y.W. Teh, M.I. Jordan, M.J. Beal, D.M. Blei, Hierarchical Dirichlet processes, J. Am. Stat. Assoc. 101 (476) (2006) 1566–1581.
[29] T. Lu, C. Boutilier, Effective sampling and learning for mallows models with pairwise-preference data, J. Mach. Learn. Res. 15 (2014) 3783–3829,

http://jmlr.org/papers/v15/lu14a.html.
[30] T. Kamishima, H. Kazawa, S. Akaho, Supervised ordering—an empirical survey, in: Fifth IEEE International Conference on Data Mining, 2005, p. 4.

http://dx.doi.org/10.1016/j.ijar.2016.07.001
http://dx.doi.org/10.1016/j.ijar.2016.07.001
http://danroy.org/papers/church_GooManRoyBonTen-UAI-2008.pdf
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib50616967653134s1
http://dx.doi.org/10.1002/sim.3680
http://mc-stan.org/
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib506665666665723039s1
http://dl.acm.org/citation.cfm?id=1597538.1597540
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib4D696C63683034s1
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib4D696C63683034s1
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib5361746F3038s1
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib5361746F3038s1
http://arxiv.org/abs/1304.6810
http://dx.doi.org/10.1093/logcom/2.6.719
http://www.jmlr.org/proceedings/papers/v20/ishihata11/ishihata11.pdf
http://www.jmlr.org/proceedings/papers/v20/ishihata11/ishihata11.pdf
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib426C65693033s1
http://dx.doi.org/10.1007/BF02295838
http://research.microsoft.com/apps/pubs/default.aspx?id=208585
http://dx.doi.org/10.1613/jair.62
http://dblp.uni-trier.de/db/conf/ijcai/ijcai2007.html
https://lirias.kuleuven.be/handle/123456789/280932
http://dx.doi.org/10.1007/978-3-642-45221-5_51
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib436C61726B3737s1
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib46697474696E673835s1
http://www-dse.doc.ic.ac.uk/cgi-bin/moin.cgi/abduction
http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1073/pnas.0307752101
http://www.pnas.org/content/101/suppl_1/5228.full.pdf
http://www.pnas.org/content/101/suppl_1/5228.abstract
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib486F72737465723037s1
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib486F72737465723037s1
http://ijcai.org/papers11/Papers/IJCAI11-200.pdf
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib4C616E673935s1
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib5465683034s1
http://jmlr.org/papers/v15/lu14a.html
http://refhub.elsevier.com/S0888-613X(16)30106-2/bib4B616D697368696D613035s1
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1073/pnas.0307752101

	Probabilistic abductive logic programming using Dirichlet priors
	1 Introduction
	2 The probabilistic model
	2.1 The uncollapsed PB model
	2.2 The collapsed PB model

	3 Syntax and semantics
	3.1 Abductive logic programming and PB
	3.2 Knowledge compilation and multiple observations

	4 MCMC sampling
	4.1 Uncollapsed Gibbs sampling
	4.2 Collapsed Gibbs sampling

	5 Evaluation
	5.1 PB and collapsed Gibbs sampling (CGS) for LDA on synthetic data
	5.2 PB, CGS-LDA, VEM-LDA, PRiSM and Stan for LDA on synthetic data
	5.3 PB for seed LDA on 20 newsgroups dataset
	5.4 PB for cluster LDA on arXiv abstracts
	5.5 PB for RIM on Sushi dataset

	6 Related work
	7 Conclusions and future work
	Appendix Supplementary material
	References

