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Abstract 26 
Important real-world decisions are often arduous as they frequently involve sequences of 27 
choices, with initial selections affecting future options. Evaluating every possible 28 
combination of choices is computationally intractable, particularly for longer multi-step 29 
decisions. Therefore, humans frequently employ heuristics to reduce the complexity of 30 
decisions. We recently used a goal-directed planning task to demonstrate the profound 31 
behavioral influence and ubiquity of one such shortcut, namely aversive pruning, a reflexive 32 
Pavlovian process that involves neglecting parts of the decision space residing beyond 33 
salient negative outcomes. However, how the brain implements this important decision 34 
heuristic, and what underlies individual differences have hitherto remained unanswered. 35 
Therefore, we administered an adapted version of the same planning task to healthy male 36 
and female volunteers undergoing functional magnetic resonance imaging (fMRI) to 37 
determine the neural basis of aversive pruning. Through both computational and standard 38 
categorical fMRI analyses, we show that when planning was influenced by aversive pruning, 39 
the subgenual cingulate cortex was robustly recruited. This neural signature was distinct 40 
from those associated with general planning and valuation, two fundamental cognitive 41 
components elicited by our task but which are complementary to aversive pruning. 42 
Furthermore, we found that individual variation in levels of aversive pruning were 43 
associated with the responses of insula and dorsolateral prefrontal cortex to the receipt of 44 
large monetary losses, and also with sub-clinical levels of anxiety. In summary, our data 45 
reveal the neural signatures of an important reflexive Pavlovian processes that shapes goal-46 
directed evaluations, and thereby determines the outcome of high-level sequential cognitive 47 
processes. 48 

Significance Statement 49 
Multi-step decisions are complex because initial choices constrain future options. Evaluating 50 
every path for long decision sequences is often impractical; thus, cognitive shortcuts are 51 
often essential. One pervasive and powerful heuristic is aversive pruning, in which potential 52 
decision-making avenues are curtailed at immediate negative outcomes. We used 53 
neuroimaging to examine how humans implement such pruning. We found it to be 54 
associated with activity in the subgenual cingulate cortex, with neural signatures that were 55 
distinguishable from those covarying with planning and valuation. Individual variations in 56 
aversive pruning levels related to sub-clinical anxiety levels and insular cortex activity. These 57 
findings reveal the neural mechanisms by which basic negative Pavlovian influences guide 58 
decision-making during planning, with implications for disrupted decision-making in 59 
psychiatric disorders.  60 
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Introduction 61 

Most important decisions are difficult as they involve sequences of consequential 62 
choices. For example, to go to university, where, and what to study? Such planning is 63 
complex as the outcomes of earlier decisions (e.g. degree) can affect the availability 64 
of later options (e.g. income), and the resulting tree of future possibilities to be 65 
evaluated grows quickly with decision sequence length. To manage this intricacy, we 66 
often have to abandon rational calculation in favour of hard-wired approximations. 67 
We recently identified one such powerful Pavlovian heuristic that humans 68 
ubiquitously use during complex planning, which we term “aversive pruning” (Huys 69 
et al., 2012). Aversive pruning entails excising from consideration decision tree 70 
branches that contain important negative events (here, large monetary losses; 71 
Figures 1A-B). Individual variation in aversive pruning levels predicted the severity of 72 
subclinical depressive symptoms (Huys et al., 2012), suggesting a possible role in 73 
depression (Dayan and Huys, 2008, Eshel and Roiser, 2010). These behavioural and 74 
computational studies raise the question as to how aversive pruning is implemented 75 
in the brain. Therefore, we sought to identify the neural basis of aversive pruning 76 
using fMRI.  77 

Aversive pruning is reflexive, akin to Pavlovian responses, as it persists above 78 
and beyond loss aversion, even when it is highly suboptimal (Huys et al., 2012). Our 79 
central expectation therefore was that aversive pruning would be mediated via 80 
regions known to be involved in orchestrating emotional reactions to aversive 81 
events. Thus, our predictions focused first on the subgenual anterior cingulate cortex 82 
(SGC; part of the ventromedial prefrontal cortex). The SGC is anatomically well 83 
placed to subserve the impact of affective aversive values on planning. It is 84 
connected to areas involved in mediating Pavlovian behavioural inhibition such as 85 
the periaqueductal grey (PAG) and amygdala, as well as regions involved in the 86 
evaluation required for planning (Schultz, 2015), such as orbitofrontal cortex (OFC) 87 
and dorsolateral prefrontal cortex (DLPFC; (Johansen-Berg et al., 2008, Ongur et al., 88 
2003). The SGC is known to both represent aversive stimuli and mediate their 89 
impact: neurons in the homologous region of the macaque brain (ventral bank of the 90 
pregenual anterior cingulate) specifically represent negatively-valenced motivational 91 
value (Amemori and Graybiel, 2012). These neurons increased in activity during 92 
decisions to avoid a punishment (facial air puff), which also entailed forsaking a 93 
reward (food). Importantly, stimulation of these neurons triggered maladaptive 94 
decision-making, increasing levels of avoidance even when potential concomitant 95 
rewards were high.  96 

There is also evidence that the SGC participates in aversive processing in 97 
humans (Talmi et al., 2009). Additionally, and consistent with some theoretical 98 
accounts of the role that Pavlovian inhibition plays in the development of affective 99 
disorders (Dayan and Huys, 2008, Eshel and Roiser, 2010, Huys et al., 2015a), the 100 
SGC has consistently been shown to be overactive in patients with mood disorders 101 
(Drevets et al., 1997, Drevets et al., 2008), with its degree of activation to negative 102 
stimuli predicting treatment response in depression (Roiser et al., 2012). Since 103 
aversive pruning is a form of reflexive behavioural inhibition, we additionally 104 
expected the involvement of regions directly implicated in this process, notably the 105 
PAG and amygdala. The PAG participates in fear (Mobbs et al., 2007) and increases 106 
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in activation with anxiety in humans (Mobbs et al., 2010). The amygdala has been 107 
reported to be recruited during human conditioned inhibition (Geurts et al., 2013). 108 
Both structures have also been implicated in affective disorders (Krishnan and 109 
Nestler, 2008).  110 

Finally, as planning depends on multiple cognitive systems, we anticipated 111 
that the neural architecture subserving aversive pruning would operate in addition 112 
to, yet distinct from, established networks governing other cognitive processes. 113 
Specifically, we expected to distinguish the neural correlates of aversive pruning 114 
from those associated with executive functioning (Newman et al., 2003) and 115 
mnemonic processes (Tolman, 1948) (DLPFC, parietal cortex, dorsal striatum), 116 
sequence planning (Fermin et al., 2016, Matsuzaka et al., 2012) (pre-supplementary 117 
motor area (SMA), SMA, motor cortex, cerebellum), as well as goal-directed 118 
evaluation (Schultz, 2015) (ventral striatum, OFC, insula).  119 
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Materials and methods 120 

Participants 121 

Forty-one healthy volunteers (21 female; M = 23.30 years, SD = 3.70) were recruited 122 
via the University College London Psychology participant pool. Participants were 123 
screened for past and present psychiatric disorders, including substance/alcohol 124 
dependence/abuse, using the Mini International Neuropsychiatric Inventory 125 
(Sheehan et al., 1998). Past or present psychopathology was an exclusion criterion 126 
and one participant was excluded on this basis (previous substance dependence), 127 
leaving 40 participants in the analysis. Participants completed the State-Trait Anxiety 128 
Inventory (STAI; (Spielberger et al., 1970); state: M = 9.50, SD = 7.20, trait: M = 129 
14.00, SD = 7.53), Beck Depression Inventory (BDI; (Beck et al., 1961); M = 3.13, SD = 130 
4.21), the revised Neuroticism-Extraversion-Openness Personality Inventory (NEO PI-131 
R; (Costa and McCrae, 1992); openness: M = 33.28, SD = 5.84, conscientiousness: M 132 
= 29.90, SD = 7.88, extraversion: M = 31.45, SD = 6.54, agreeableness: M = 34.18, SD 133 
= 4.84, neuroticism: M = 17.98, SD = 8.13) and the Wechsler Test of Adult Reading 134 
(WTAR; (Wechsler, 2001)), which was used to evaluate intelligence quotient (IQ; M = 135 
111, SD = 4.2). The study was approved by the UCL Graduate School Ethics 136 
Committee and all participants provided written, informed consent. Participants 137 
were compensated based on task performance, up to a maximum of £40, with a 138 
minimum payment of £15. 139 

Figure 1 about here 140 

Task 141 

The reinforced sequential planning task was adapted for fMRI from one described in 142 
detail previously (Huys et al., 2012) and programmed in Cogent 2000 143 
(www.vislab.ucl.ac.uk/Cogent), a stimulus presentation toolbox for Matlab (version 144 
7.1). Participants moved throughout a hexagonal maze via button presses (U/I during 145 
training, left/right in the scanner; Figure 1C) in an attempt to maximize earnings. 146 
Possible outcomes (Figure 1D) comprised one large reward (+140 pence, top blue 147 
arrow), three large losses (-70 pence, red arrows), and several small gains and losses 148 
(20 pence each, green (+) and black (-) transitions, respectively). During free plan 149 
trials (of which there were 90; Figure 1E), participants had nine seconds to devise a 150 
sequence of moves so as to maximize their earnings (planning phase); a countdown 151 
timer from 9 to 1 indicated the amount of time left in seconds. Following this 152 
planning phase, participants had 2.5 seconds to input their responses, via a series of 153 
button presses on an MRI-compatible button box. We biased the free plan trials by 154 
starting position and difficulty, such that for 60 trials it was optimal to transition 155 
through the large loss, while for the remaining 30, the optimal sequence avoided the 156 
large loss.  157 

During restricted plan trials (40; Figure 1F and 1G), participants were 158 
presented with two possible multi-step routes (equal length; 3-5 moves) through the 159 
maze, one coloured blue and the other green (Figure 1F), and had to choose 160 
between just these. As in the free plan trials, participants had nine seconds to 161 
evaluate the best route (one path always yielded more money than the other). 162 
Subsequently, two coloured boxes appeared, one blue, the other green, and the 163 
participant then selected their chosen route with a single button press (either left or 164 
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right option, Figure 1G; again, as per free plan trials, participants had 2.5 seconds to 165 
input their response). Twenty of the restricted plan trials involved deciding between 166 
two routes that both transitioned through a large loss (restricted plan large loss). In 167 
the other 20 restricted plan trials, both paths avoided the large loss (restricted plan 168 
no large loss). 169 

For both free plan and restricted plan trials, participants were then shown 170 
the selected sequence of moves and their corresponding monetary outcome (0.8 s 171 
for each move; Figure 1H). Every trial finished with a fixation cross, which varied in 172 
duration depending on the number of moves (0.5-2.1 s), such that the trial duration 173 
was always 16 seconds. Twenty fixation trials, also 16 seconds in duration, were 174 
included to constitute an implicit baseline in the fMRI analysis. Trials were 175 
randomized into three runs of 50 trials, each lasting 13.5 minutes and with the 176 
constraint that no trial (i.e. number of moves, starting position and trial type) was 177 
repeated consecutively. Participants were paid according to their earnings, but the 178 
running net income was not displayed until the end of each run. Not entering 179 
enough moves on free plan trials, or failing to respond on restricted plan trials, 180 
incurred a £2 loss on each occasion. 181 

Participants received extensive training on the task before entering the 182 
scanner: 30 trials without reinforcement, followed by a test, to learn the transitions 183 
(Figure 1C); and 34 trials to learn the transition values (Figure 1D), including 18 free 184 
plan and two restricted plan trials with no time restriction, and 14 with the same 185 
time restriction as in the scanner, two of which were restricted plan trials. 186 

 187 

Behavioural analyses 188 

Basic behavioural outcome measures 189 

Free plan trials were classified according to the following categories: correct 190 
decisions (participants executed the best possible sequence), suboptimal decisions 191 
(participants did not execute the best possible sequence), and misses (participants 192 
failed to enter enough moves). Correct decisions were further sub-categorised as 193 
“optimal large loss” (OLL) correct trials, on which the participant transitioned 194 
through at least one large loss to gain the maximum amount of money, and "optimal 195 
no large loss" (ONLL) correct trials, where the maximum was attained by avoiding 196 
large losses. Suboptimal decisions were further classified into “aversive pruning” 197 
trials and “error” trials. Aversive pruning trials were defined when it was optimal to 198 
transition through the large loss, but participants selected the best available option 199 
that avoided the large loss (e.g. Figure 1A-B). Errors were defined as all other 200 
instances of suboptimal choices and were subdivided into trials where the optimal 201 
decision would avoid (ONLL error, though these occurred very rarely) or entail (OLL 202 
error, excluding aversive pruning trials) transitioning through a large loss. Restricted 203 
plan trials were classified as either correct or errors. Please see Table 1 for a list of 204 
trial outcome classifications. 205 

The main behavioural outcome measures were proportion correct (OLL and 206 
ONLL) scores (after removing the small number of missed trials: mean = 4.65%, SD = 207 
2.55%) and reaction times (calculated at the time of the first move entered). We 208 
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determined a proxy (trial-based) measure of each individual’s sensitivity to large 209 
losses by calculating the difference between ONLL and OLL correct scores (averaged 210 
across depth). We excluded three participants who scored below 50% correct across 211 
all ONLL trials, indicating an inability to perform the task. 212 

 Table 1. Basic behavioural outcome measures 213 

 214 

Basic behavioural data analyses 215 

Behavioural data from the scan (i.e. excluding training trials) were analysed using 216 
SPSS (Software Package for Statistics and Simulation; Version 21. NY, USA: IBM 217 
Corp). Only free and restricted plan trials on which participants entered the correct 218 
number of moves were included in this analysis. Accuracy, reaction time (RT) and 219 
earnings data across conditions were analysed using paired-sample t-tests and 220 
analysis of variance (ANOVA). Due to low trial numbers, RT and earnings data were 221 
not analysed for ONLL error trials. Where appropriate, RT data were log transformed 222 
to meet parametric assumptions (assessed using the one-sample Kolmogorov-223 
Smirnov test). Where transformations were not sufficient to correct normality 224 
violations, non-parametric tests were applied, including the Friedman test and 225 
Wilcoxon Signed-rank test. To test the relationship between psychometric variables 226 
and task performance, we used multiple linear regression, with the following 227 
variables included in the model: age, sex, IQ, STAI trait, STAI state and BDI. For all 228 
analyses, P < 0.05 was considered significant and 0.05 < P < 0.1 a trend towards 229 
significance. Where appropriate, Greenhouse-Geisser correction of degrees of 230 
freedom was used to accommodate violations of sphericity. 231 

 232 

Model-based behavioural data analyses 233 
Overview of model-based behavioural data analyses 234 

Here, we focussed our analyses specifically on aversive pruning and fMRI; detailed 235 
analyses of alternate planning strategies are described elsewhere (Huys et al., 236 
2015b). Computational modelling was based on our previous approach (Huys et al., 237 
2012). Only free plan trials on which participants entered sufficient moves were 238 
included; restricted plan trials were not modelled. Following model fitting, models 239 
were compared using the integrated Bayesian information criteria (iBIC; (Huys et al., 240 

Type Abbreviation Explanation 
Optimal no large loss correct ONLL correct Optimal sequence chosen where this does not 

include a large loss 
Optimal large loss correct OLL correct Optimal sequence chosen where this includes a large 

loss 
Aversive pruning - The best sequence that avoids large losses chosen 

when the optimal sequence includes at least one 
Optimal no large loss error ONLL error Suboptimal sequence chosen for this trial type, not 

including aversive pruning 
Optimal large loss error OLL error All suboptimal sequences chosen for this trial type 



Neural Basis of Aversive Pruning 
 

 8 

2012), in which models of greater complexity are penalized more strongly, and thus 241 
are required to have higher log likelihoods for the choices than simpler models. 242 

We initially provide a brief overview of our modelling approach, and explain 243 
this in more detail in the section below. Our analyses focussed on the creation of 244 
four distinct computational models and their evaluation in relation to our 245 
behavioural data based on our previous results with this task reported in Huys et al., 246 
(2012). First, we constructed an optimally performing model, called “Lookahead”, 247 
which fully evaluated each sequence within the maze and chose the path with the 248 
highest net total value. As optimal sequence planning is unrealistic, especially at 249 
higher decision depths, we next calculated a “Discount” model, in which sequence 250 
planning is probabilistically terminated at each depth, with the likelihood of 251 
termination determined by the “general discount” parameter. Most relevant to the 252 
hypothesis examined here, we then created a “Pruning” model, in which participants 253 
stopped planning sequences specifically if they contained a large monetary loss, in 254 
addition to general discounting. This tendency is governed by the “pruning” (specific 255 
discount) parameter. Finally, we constructed a “Loss sensitive” model to control for 256 
any overweighting of negative relative to positive outcomes, a phenomenon 257 
commonly known as loss aversion. 258 

For the fMRI analyses, we exploited the best-fitting, Pruning model, to 259 
quantify the “inclination to prune” on a trial-by-trial basis. This involved computing 260 
the distribution of probabilities over all possible paths for a particular problem 261 
(starting state and depth), given that individual’s pruning parameter. This 262 
distribution was calculated from the “Pruning” model. We also computed this 263 
distribution assuming that the pruning parameter was identical to the general 264 
discount parameter – in other words, assuming no specific discounting when 265 
encountering large monetary losses, equivalent to the “Discount” model. The 266 
difference between these two distributions, calculated for every trial, was our metric 267 
of the inclination to prune in our model-based fMRI analyses, and is called the 268 
Kullbach-Leibler (KL) divergence. 269 
Details of model-based behavioural data analyses 270 
Compared with our previous approach (Huys et al., 2012), the models were adapted 271 
to take into account the fact that participants had to emit an entire action sequence 272 
at once; the models therefore had to specify distributions over entire action 273 
sequences. That is, rather than choosing from one of the two actions d times (as 274 
previously (Huys et al., 2012), D corresponds to decision depth), participants chose 275 
one sequence from the entire set of 2D available sequences. We write the probability 276 
of emitting sequence ai as: 277 

                                                                                           [1] 278 

where ߚ is the inverse temperature which determines the steepness of the softmax 279 
function.  280 

The ࣫ value was defined as follows. For model “Lookahead”, a standard tree-281 
search algorithm was used. This completely evaluates each possible sequence 282 
according to the sum of all D outcomes rd(ai) that would be encountered: 283 
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                                                     [2] 284 

However, it is computationally unrealistic for human participants to perform 285 
such a search, given the large number of possible sequences (8, 16 or 32 sequences, 286 
for 3-, 4- and 5-move trials respectively). Thus, we fitted a “Discount” model, which 287 
captures the tendency not to plan fully, forcing the tree search to terminate at each 288 
depth with probability 1-γ (hence γ here represents the continuing probability; note 289 
that in Huys et al. 2012 it was formulated as the complementary stopping 290 
probability). The ’Discount’ model captured such uniform search curtailment with a 291 
single γ parameter: 292 

       [3] 293 

The next model, “Pruning” is central to the hypothesis we aimed to test here: 294 
it splits the ߛ  parameter into ߛG  (“general pruning”) representing the general 295 
tendency not to plan (as in model discount), and ߛS (termed “specific pruning” in our 296 
previous report (Huys et al., 2012); here “aversive pruning”) the probability of tree-297 
search continuation specifically on encountering a large loss. The “Pruning” model 298 
incorporated these two separate ߛ parameters: 299 

                                    [4] 300 

with ݈(݀) indexing the number of times a large loss outcome had been encountered 301 
up to the point ݀ in the sequence. That is, a probabilistic reduction in planning 302 
beyond a large loss is captured by a lower continuing probability (ߛS) after a large 303 
loss. 304 

Next, a “Loss sensitive” model with values ܳ୮୰୳୬ୣା୐୅(܉) additionally allowed 305 
the sensitivities to each of the outcomes ݎ in equation 4 to be fitted separately for 306 
every participant. For this model, ߚ in equation 1 was fixed at unity. This ensured 307 
that any aversive pruning was not simply due to a relatively stronger weighting of 308 
losses compared to rewards (i.e. loss aversion (Tversky and Kahneman, 1991), the 309 
well-known tendency for humans to overweight losses relative to gains of equivalent 310 
magnitude).  311 

Finally, we considered an additional Pavlovian attraction parameter that had 312 
proved important in the behavioural study (Huys et al., 2012). This captured the 313 
attraction of states based on their average future consequences, irrespective of 314 
whether sufficient choices remained on a trial to exploit those consequences. Most 315 
critically, this captured participants’ tendency to move from state 6 to state 1 (-20p) 316 
rather than to state 3 (+20p) when there was only one choice left in this state. We 317 
found this effect in our current data too, with participants choosing the transition 318 
from state 6 to state 1 on 53% of trials when only one choice remained, despite the 319 
relative 40p cost entailed. However, there were fewer such trials in the current 320 
version of the task, thus weakening its evidentiary basis. 321 
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The reader is referred to Huys et al. (2012) for a detailed discussion of these 322
models. The fitting procedures and the rationale for the group-level iBIC are also 323
discussed there.  324

Additional behavioural modelling was performed to generate parameter 325
estimates to approximate the aversive pruning on each particular trial, to include in 326
model-based fMRI analyses (O'Doherty et al., 2007). As a marker for the engagement 327
of the neural circuits that are involved, we examined the inclination the subject had 328
to aversively prune on each trial, whether or not this behaviour actually occurred. 329
This inclination should depend on the trial type (being greater when there are more 330
opportunities for aversive pruning - e.g., on deeper trials) and should be higher the 331
stronger the individual’s overall tendency to engage in aversive pruning. Short of a 332
validated process model for aversive pruning, we considered a surrogate measure of 333
trial- and subject-specific propensity that at least exhibits these two critical 334
properties. Specifically, we computed (using a set of parameters tailored to each 335
subject) two probability distributions over all possible sequences for every trial: first, 336
the distribution assuming that aversive pruning had no influence (i.e. fixing γS at 337
zero); and second, the distribution calculated using their fitted γS. The difference 338
between these two distributions, the Kullback-Leibler (KL) divergence, is our index of 339
the likely predilection to engage in aversive pruning on any given trial. Note that we 340
do not assume that subjects actually compute the distributions with and without ߛS 341
– they are simply used here as a tractable proxy of the trial-by-trial variation in 342
inclination to engage in aversive pruning. The KL divergence was calculated between 343
the action distribution probability for models with and without aversive pruning. If 344

 is the probability of all possible action sequences of length d starting 345
from state ݏ଴ given by equation 3 (the Discount model, with only one ߛ), and 346

 is the same for equation 4 (the Pruning model, where ߛ is split), 347
the KL divergence DKL is then: 348

                   [5] 349

This KL divergence value was calculated for each successfully completed free 350
plan trial, including the training trials, and then Z-transformed such that the mean 351
was equal to zero and the standard deviation equal to 1 for each individual. 352
Importantly, the summed KL divergence value across trials for each participant was 353
highly correlated with the difference between their ߛG and ߛS values (r(37) = 0.74, P < 354
0.001). Note that the KL divergence measure should be high on trials where the 355
possibility of aversive pruning is likely to have influenced subjects’ behaviour to a 356
greater degree (e.g. with increased complexity), given their estimated overall 357
tendency to engage in aversive pruning. 358

359

MRI data acquisition 360

Brain images were acquired using a Siemens 1.5 Tesla Avanto MRI scanner with a 32-361
channel sense head coil at the Birkbeck-UCL Neuroimaging Centre.  362

The task was presented via a head coil mirror and a front-of-bore projection 363
system. Two hundred and twenty-five T2* weighted echo-planar imaging (EPI) 364
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volumes (42 slices per volume, slice repetition time (TR) = 87 ms, volume TR = 3.654 365 
s, echo time (TE) = 50 ms, slice tilt = -30o, flip angle = 90o, field of view = 192 mm) 366 
were collected per run. The EPI sequence used was optimized to reduce signal 367 
dropout in both orbitofrontal cortex and amygdala regions (Weiskopf et al., 2006). 368 
Phase oversampling (12%) was applied. Slices were positioned to maximally 369 
encompass ventral prefrontal and subcortical regions as these included our a priori 370 
hypothesized regions of interest (ROIs). Following task completion, field maps (short 371 
TE = 10 ms, long TE = 14.76 ms) were acquired in order to assess the inhomogeneity 372 
of the magnetic field. Finally, a 3D T1-weighted anatomical scan (magnetization 373 
prepared rapid gradient echo; 176 slices; slice thickness = 1 mm; gap between slices 374 
= 0.5 mm; TR = 2,730 ms; TE = 3.57 ms; field of view = 256 × 256 mm2; matrix size = 375 
256 × 256; voxel size = 1 × 1 × 1 mm resolution) was acquired at the end of each 376 
scanning session.  377 

 378 

fMRI preprocessing 379 

EPIs were pre-processed prior to analysis using Statistical Parametric Mapping (SPM) 380 
8 (release 4010; www.fil.ion.ucl.ac.uk/spm) in MATLAB (7.1; Natick, MA). The first 381 
three volumes from each run were discarded to allow for T1 equilibrium effects, 382 
leaving 222 volumes per run. Images were spatially realigned to the fourth volume of 383 
the session and unwarped (using field maps), in order to correct for motion and 384 
geometric distortions caused by inhomogeneities in the magnetic field, respectively. 385 
Volumes corrupted due to movement (0.01% of all volumes) were excluded and 386 
replaced by linear interpolation of the surrounding images. Images were then 387 
normalized to Montreal Neurological Institute (MNI) co-ordinate space and 388 
smoothed with a Gaussian kernel of 4 mm full-width at half-maximum (FWHM).  389 

 390 

fMRI statistical analyses 391 

All fMRI analyses were conducted using SPM.  392 
First-level modelling  393 
Model-based fMRI – aversive pruning 394 
We first constructed an fMRI model to explore the impact of aversive pruning on 395 
planning on a trial-by-trial basis using the computationally derived KL divergence 396 
estimates, Z-transformed within each subject (i.e. model-based fMRI). In this model, 397 
all valid free plan trials were included in a single regressor, which was modulated 398 
first by difficulty (i.e. the number of sequences to evaluate; 2d = 8, 16 or 32 for 3-, 4- 399 
and 5-move problems, respectively, where d = depth), to account for the linear 400 
effects of the expanding tree upon the KL divergence value. The difficulty-modulated 401 
regressor was then parametrically modulated by the KL divergence value. This, and 402 
all other models (except the model examining value itself), contained a separate 403 
parametric regressor representing the net monetary outcome of the chosen 404 
sequence across all trials (also time-locked to the planning period with the same 405 
duration). Specifically, the linear effect of anticipated reward on planning-related 406 
responses was modelled via a parametric regressor, with magnitude proportional to 407 
the net outcome provided by the chosen sequence. The inclusion of such a regressor 408 
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removes value-related response variance from the analysis; this is important 409 
because aversive pruning is, by definition, monetarily disadvantageous. We also 410 
examined the effect of depth on KL divergence-related responses by computing the 411 
interaction of the KL divergence value and difficulty (again, 2d) and entering it as a 412 
third parametric modulator. 413 
Distinguishing aversive pruning from planning and value-related networks 414 
In order to confirm established findings and the distinctiveness of our aversive 415 
pruning fMRI results from other networks and processes elicited by the task, we also 416 
constructed further models testing for the neural effects of planning and valuation. 417 
To examine responses related to difficulty during complex planning, we examined 418 
the first parametric modulator (difficulty: 2d), which modulated the regressor 419 
containing all successfully completed free plan trials (time-locked to the planning 420 
period with the same duration (9 s)). The aim here was to locate the regions of the 421 
brain that scaled with the increasing cognitive demands of planning in our task. We 422 
constructed an additional model to explore outcome value-related networks. This 423 
value model contained a further parametric modulator time-locked to the outcome 424 
phase (2.4-4 s following the end of response input), which allowed us to examine 425 
value-related responses during both the planning and outcome phases (each in a 426 
separate regressor); we parametrically modulated the relevant portions of the trial 427 
by the net monetary outcome of each trial.  428 
Trial-based fMRI – aversive pruning 429 

For the trial-based fMRI analyses, the subject-level design matrix included separate 430 
regressors for the different trial types (defined according to participants’ in-scanner 431 
choices - see “Basic behavioural analyses” above and Table 1) corresponding to the 432 
planning phase of the task. The following regressors of interest were included: OLL 433 
correct; ONLL correct; aversive pruning; OLL error; correct restricted plan large loss; 434 
and correct restricted plan no large loss. ONLL error trials were not included due to 435 
low trial numbers for this category and were included in a separate regressor of no 436 
interest. To model increasing cognitive demands with increasing depth, we entered 437 
trial difficulty as a parametric modulator. This parametric regressor on OLL correct, 438 
ONLL correct, aversive pruning, and OLL error entailed a modulation by the number 439 
of sequences that needed to be evaluated (i.e. difficulty, 2d). Contrasting conditions 440 
parametrically modulated by depth should yield a more sensitive analysis of neural 441 
responses as the likelihood of aversive pruning grows with the branching or 442 
complexity of the decision tree.  443 
Model- and trial-based fMRI 444 
For both model-based and trial-based fMRI analyses, we also included regressors to 445 
model the response input phase (duration 2.5 s, in a single regressor for all trials) 446 
and outcome phase (duration 2.4-4 s). The outcome phase was categorised into the 447 
same six regressors as the planning phase for the trial-based fMRI analysis (free plan: 448 
OLL correct, ONLL correct, aversive pruning and OLL error; restricted plan: correct 449 
restricted plan large loss and correct restricted plan no large loss), again separately 450 
modelling the linear effect of net outcome across trial types. Additionally, to assess 451 
the impact of receiving a large loss, we contrasted OLL and ONLL correct trials during 452 
the outcome phase of the task. For both the model- and trial-based fMRI analyses, 453 
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regressors of no interest included missed/no-response trials, ONLL error trials and 454 
incorrect restricted plan trials combined into a single regressor (whole-trial duration: 455 
16 s), as well as regressors modelling null scans for the two scans immediately 456 
before and after the second run, and interpolated images following removal of 457 
corrupted scans (if any). Fixation trials were not modelled explicitly and constituted 458 
an implicit baseline. The six realignment parameters were also included in the 459 
model. All regressors were modelled as boxcars time-locked to the trial phase 460 
(planning, input, and outcome) with the corresponding duration (9 s, 2.5, and 2.4-4 461 
s, respectively), and convolved with SPM’s canonical hemodynamic response 462 
function. 463 

Estimation incorporated a high-pass filter at 1/128 Hz and serial correlations 464 
intrinsic to the fMRI time series were accounted for using an AR(1) model. The three 465 
runs were modelled as a single concatenated run to avoid non-estimation of entire 466 
runs for participants with low numbers of event types. 467 

 468 
Second-level modelling 469 
Following estimation, subject-level contrast images were smoothed with a 7 mm 470 
FWHM kernel, and entered into group-level one-sample t-tests. Activations were 471 
localized with reference to the group-averaged anatomical scan and the atlas of Mai 472 
and colleagues (2003). Given our a priori hypotheses regarding the neural basis of 473 
aversive pruning (Dayan and Huys, 2008), we applied an initial threshold of P = 0.005 474 
and applied family-wise error (FWE) correction for multiple comparisons at the 475 
voxel-level, adjusted for small volume (SVC) across our ROIs. For the planning phase 476 
analysis, the SGC ROI was defined as an 8 mm box centred on of the peak coordinate 477 
from a study reporting altered glucose metabolism in patients with depression (MNI 478 
coordinates, [x = -2, y = 32, z = -2]; (Drevets et al., 1997)). The PAG ROI was defined 479 
as an 8 mm box centred on the peak coordinate previously identified as activating to 480 
increasing threat using fMRI in healthy human participants (MNI coordinates, [x = -481 
3,y = -25, z = -11] (Mobbs et al., 2007). A bilateral amygdala ROI was created from 482 
the Wake Forest University (WFU) Pickatlas toolbox for SPM 483 
(http://www.fmri.wfubmc.edu/download.htm) with the Automated Anatomical 484 
Labelling atlas. We anticipated very robust responses for the more general planning 485 
and value-related networks; thus, for the purposes of inference, outside our ROIs, 486 
we increased our threshold such that only voxels surviving whole-brain voxel-level 487 
FWE correction < 0.05 survived. All second-level analyses incorporated an explicit 488 
binary grey matter mask.  489 

For the trial-based analyses, the main contrasts we report are derived from 490 
linear combinations of the ONLL correct, OLL correct and aversive pruning 491 
regressors, which are comparable in terms of visual input during the planning and 492 
outcome phases, and the correct restricted plan trials. Since trials were categorised 493 
according to participants’ decisions, some participants had fewer than four trials in a 494 
given condition; these participants were excluded from the relevant contrasts, 495 
resulting in slightly different numbers of subjects across analyses. For the outcome 496 
phase analysis, we anticipated that activation in the insula would be elicited during 497 
the receipt of large losses (Garrison et al., 2013). Therefore, for this analysis we 498 
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created a bilateral insula ROI from the WFU Pickatlas and applied SVC as described 499 
above.  500 

For the trial-based planning analyses our primary contrast of interest was the 501 
comparison of aversive pruning trials (on which participants avoided the optimal 502 
sequence that contained a large loss and instead chose the best available large-loss-503 
free sequence), relative to OLL correct trials (on which participants chose an optimal 504 
sequence transitioning through a large loss). To control for the effects of 505 
transitioning through a large loss per se on OLL correct trials we included the 506 
restricted plan trials to create the following contrast: aversive pruning + restricted 507 
plan large loss > OLL correct + restricted plan no large loss. We ensured that 508 
difficulty was matched across this contrast by selecting trials that provided an equal 509 
ratio of 3:4:5 move problems for each participant across the aversive pruning and 510 
OLL correct conditions. For restricted plan trials, the inclusion threshold was set at 511 
chance level (50%); two participants failed to meet this criterion due to a failure to 512 
understand trial instructions and were excluded from analyses including this trial 513 
type. To control for possible difficulty differences between restricted plan trials, 514 
(because there were more divergent arrows in the restricted plan large loss 515 
condition), trials were chosen to match the number of divergent arrows between the 516 
two restricted plan trial types. 517 

Finally, we constructed additional contrasts to test how the above planning 518 
contrasts were modulated by difficulty (2d). These contrasts are derived from linear 519 
combinations of the OLL correct, ONLL correct and aversive pruning parametric 520 
modulator regressors, but exclude the restricted plan trials; the latter are 521 
unnecessary here as the parametric modulator already entails a contrast (between 522 
more difficult and easier trials) within each condition, controlling for the transition 523 
through the large loss per se on OLL correct trials. As above, three main contrasts 524 
were examined: 1) aversive pruning parametric modulator > OLL correct parametric 525 
modulator; 2) OLL correct parametric modulator > ONLL correct parametric 526 
modulator; and 3) ONLL correct parametric modulator > aversive pruning parametric 527 
modulator.   528 
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Results 529 

We describe two broad collections of behavioural analysis, and through this, 530 
associated fMRI responses. Following a brief description of the broad patterns of 531 
behaviour observed on the task, which paralleled our previous findings (Huys et al., 532 
2012) we initially consider a computational model-based treatment that aimed to 533 
characterize the whole structure of behaviour using a parsimonious model whose 534 
parameters are intended to capture the general tendencies of each subject. Imaging 535 
analyses associated with this model duly indicated the general architecture of 536 
control. We then explore the specificity of our imaging analyses in the context of 537 
other known neural architecture underlying the cognitive components implicated in 538 
our task. Finally, for completeness, we provide complementary behavioural and fMRI 539 
analyses based on categorisations of trials (see Table 1). 540 

Behavioural and modelling evidence for pruning 541 

Participants chose the correct sequence on average 78% (SD = 18%) of the time on 542 
free plan trials on which the optimal sequence did not include a large loss (ONLL); on 543 
these trials aversive pruning would not be disadvantageous. By contrast, on free plan 544 
trials on which the optimal sequence did include a large loss (OLL), for which 545 
aversive pruning would be disadvantageous, performance was impaired for every 546 
participant (mean OLL correct = 37% (SD = 18%)). The difference between 547 
performance on these trial types was substantial and highly significant (mean 548 
difference = 41% (SD = 20%), t(36) = 12.51, P < 0.001, d = 2.06; Figure 2A), confirming 549 
our previous findings (Huys et al., 2012). As expected, performance also became 550 
worse with increasing difficulty (F(2,72) = 132.75, P < 0.001, ηp2 = 0.787; Figure 2B), but 551 
remained high even for depth 5 choices, where there are 32 different paths. 552 
Critically, there was a significant interaction between trial type and difficulty (F(2,72) = 553 
5.58, P = 0.009, ηp2 = 0.134). Planned contrasts revealed that the requirement to 554 
transit through a large loss to attain the optimal amount had an increasingly 555 
detrimental effect on decision-making at higher difficulty (depth 3: mean difference 556 
= 34% (SD = 25%), t(36) = 8.26, P < 0.001, d = 1.36; depth 4: mean difference = 40% 557 
(SD = 22%), t(36) = 11.29, P < 0.001, d = 1.86; depth 5: mean difference = 49% (SD = 558 
29%), t(36) = 10.33, P < 0.001, d = 1.70). Note, though, that this analysis does not 559 
examine where the loss appeared in the tree.  560 

Figure 2 about here 561 

Model-based aversive pruning behaviour and associations with psychometric variables 562 

Consistent with our previous report (Huys et al., 2012), there was substantial 563 
evidence for aversive pruning based on our computational model (see Figure 2C-D; 564 
Pruning and Pruning+Loss models). That is, the most parsimonious model (smallest 565 
negative model evidence iBIC; red star in Figure 2E; see Table 2 for model 566 
performance overview) incorporated aversive pruning, with steeper discounting 567 
after large losses than after other outcomes (γG is significantly larger than γS, t(36) = 568 
5.12, P < 0.001, d = 0.84; Figure 2F; improvement in log10 model evidence between 569 
model Discount and model Pruning ( iBIC) = 77.5, indicative of decisive evidence in 570 
favour of the Pruning model). Loss aversion was also evident (Figure 2G), such that 571 
the best model incorporated fitted reward and loss sensitivities ( iBIC between 572 
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model Pruning and Pruning+Loss) = 5.8). It is important to distinguish between these 573 
two loss-related processes that are included in our model. Aversive pruning, as 574 
instantiated in the model, is not simply a discounting of the value associated with 575 
transitions (or subsequent paths). Instead, the aversive pruning parameter controls 576 
whether paths following large losses are actually explored at all, regardless of the 577 
possible gains that lie behind them. We consider such a reflexive avoidance of even 578 
considering options to be Pavlovian in nature, as it is elicited automatically and not 579 
related to the overall value of the path. Excessive discounting of the value of 580 
negative transitions (equivalent to loss aversion) does occur in our data, but this is 581 
controlled by a different set of parameters and is conceptually separate from 582 
pruning. 583 

Importantly, our computationally-derived general planning parameter (γG) 584 
was positively correlated with its trial-based equivalent (ONLL percent correct: r(37) = 585 
0.73, P < 0.001; Figure 2H). The difference between OLL and ONLL percent correct 586 
was strongly correlated with the equivalent metric derived from the computational 587 
analyses (γG-γS: r(37) = 0.63, P < 0.001; Figure 2I), providing convergent validity for the 588 
two approaches. However, due to the uncertainty attached to both choice frequency 589 
and model parameter estimates this correlation is not perfect and some subjects 590 
with small or even negative difference between γS and γG still show a positive 591 
difference between ONLL and OLL frequencies. It would be interesting to examine 592 
subjects who do and do not show aversive pruning separately, or indeed look for 593 
changes over time in the strength of pruning. Unfortunately, the present sample size 594 
does not allow for this; therefore, we concentrate here on correlational analyses. 595 
Finally, further validation of the model comes from sampling surrogate data (Figure 596 
2J-L). 597 

 Overall, these results are consistent with our previous report in an 598 
independent sample (Huys et al., 2012), and provide complementary evidence for 599 
the presence of aversive pruning. The slow degradation of performance with depth 600 
on the ONLL trials is compatible with the fact that the number of trials without a 601 
large loss increases slowly with depth, and that aversive pruning allows the 602 
concentration of resources on these paths.  603 

 604 

Table 2. Model performance values 605 
Model Number of 

parameters 
Choice log 
likelihood 

% variance 
explained 

iBIC 

Pruning + Loss  6 1151 55.3 2466 
Pruning  3 1173 54.4 2472 
Discount 2 1221 52.5 2549 
Lookahead 1 1502 41.7 3052 

606 
iBIC: integrated Bayesian information criteria 607 

A multiple regression analysis revealed that state anxiety, but no other 608 
included variable (IQ, gender, age, depression and trait anxiety), correlated with the 609 
difference between ONLL and OLL percent correct (t(37) = 2.12, P = 0.042); variance 610 
inflation factor (VIF) values were less than 3.0 for all independent variables, 611 
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suggesting an adequate lack of collinearity. Contrary to our expectations, however, 612 
no psychometric variables correlated with the computationally derived aversive 613 
pruning estimate (γG–γS). In particular, we did not replicate our previous finding that 614 
this statistic was correlated with subclinical depression scores, though we note that 615 
the range of scores in the present study was relatively low. 616 

Aversive pruning recruits the subgenual cingulate cortex 617 

We used the computational model to construct, separately for each participant’s 618 
maximum a posteriori parameters, a measure of the inclination to engage in aversive 619 
pruning on each trial. This is the Kullback-Liebler (KL) divergence between the 620 
distributions of trajectories assuming discounting based on depth alone (discount  621 
model) vs discounting based on losses encountered (pruning model). Figure 3A 622 
confirms that the KL divergence increases with depth (F(2, 72) = 223.82, P < .001, ηp2 = 623 
0.86), with all three groups significantly different from each other, P < 0.001), as 624 
expected from the likely extra opportunities for aversive pruning with longer 625 
sequences. Figure 3B shows that the measure was indeed higher on aversive pruning 626 
trials (based on participant choices – see Table 1); however, there were no 627 
significant differences between trial types (F(3,108) = 0.74, P = 0.48, ηp2 = 0.02). 628 
Negative KL divergence values shown here arise due to the mean correction applied 629 
to the metric used for fMRI analyses. 630 

We entered the KL divergence value on each trial as a parametric regressor 631 
across all successfully completed free plan trials, controlling for difficulty (which was 632 
entered as the first parametric regressor) and trial net value. Consistent with our 633 
primary hypothesis, this analysis revealed that SGC activation increased with our 634 
metric of inclination to engage in aversive pruning, the KL divergence ([x = -6, y = 29, 635 
z = -2]; t(36) = 3.87, PSVC = 0.004; Figure 3C). The interaction between KL divergence 636 
and difficulty also revealed a greater modulation of SGC activation by inclination to 637 
engage in aversive pruning at higher depth ([x = -6, y = 35, z = -5]; t(36) = 3.47, PSVC = 638 
0.009; Figure 3D.  639 

In summary, our computational fMRI analyses revealed that SGC activation 640 
was higher on trials on which our model indicated that there was a greater 641 
inclination to indulge in aversive pruning, and this was particularly the case on more 642 
difficult trials. In the following analyses we show that this activation in the SGC is 643 
separate to responses related to planning and valuation. 644 

Figure 3 about here 645 

Planning and valuation responses 646 

We next explored the specificity of our aversive pruning results relative to other 647 
neural networks known to be associated with cognitive processes required during 648 
successful undertaking of our task, namely planning and valuation. We first explored 649 
the effect of planning by examining the first parametric modulator, which indexed 650 
difficulty (2d). As expected, increasing difficulty robustly activated a network of 651 
regions identified in previous studies of planning. This included the bilateral dorsal 652 
cerebellum, primary visual, supplementary motor, and DLPFC, thalamus, dorsal 653 
caudate and putamen, all of which survived whole-brain (WB) voxel-level correction 654 
for multiple comparisons (all t(36) > 5.45, PWB < 0.05; Figure 4A).  655 
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To examine responses related to receipt of outcomes, we constructed a 656 
separate model in which the net monetary value of the chosen sequence was 657 
entered as a parametric regressor, time-locked to the outcome period. Increasing 658 
monetary outcome robustly activated the VS (left [x = -12, y = 8, z = -8]; t(36) = 7.74, 659 
PWB < 0.001; right [x = 12, y = 8, z = -8]; t(36) = 5.52, PWB = 0.027; Figure 4B, left panel), 660 
the medial orbitofrontal cortex (mOFC; [x = 0, y = 44, z = -14]; t(36) = 5.88, PWB = 661 
0.013; Figure 4B, middle panel), and the head of the caudate ([x = -6, y = 20, z = 7]; 662 
t(36) = 7.17, PWB < 0.001; Figure 4B). Given the wealth of research establishing the 663 
existence of value signals in the VS and OFC (Schultz, 2015), we correlated the large 664 
reward (+140p) sensitivity parameter from our winning computational model with 665 
the net outcome-related activation at the peak voxel within these regions. This was 666 
significant in the mOFC (r(37) = 0.46, P = 0.004; Figure 4B, right panel), but not the VS 667 
(r(37) = 0.13, P = 0.45).  668 

Figure 4 about here 669 

Neural response to large losses is associated with aversive pruning tendency 670 

During the outcome phase, participants would no longer have any reason to plan, 671 
but instead had just to observe their executed plan being replayed with feedback on 672 
the monetary consequence of each box-to-box move. We next asked whether the 673 
tendency to engage in aversive pruning might impact on activation during this phase. 674 
To do this, we examined trials on which volunteers could have aversively pruned but 675 
(correctly) chose not to. Thus, again controlling for net objective outcome, we 676 
compared trials on which subjects correctly avoided aversively pruning, therefore 677 
receiving at least one large loss during the entire sequence (OLL correct), with 678 
correct trials that avoided all large losses (i.e. aversive pruning was helpful, ONLL 679 
correct) (note that all of the trials in this contrast involved optimal decisions). 680 

This contrast revealed activation in our insula ROI ([x = 33, y = 23, z = -5]; t(36) 681 
= 4.70, PSVC = 0.011; Figure 4C, left panel), as well as robust responses that survived 682 
whole-brain correction in the inferior parietal lobule (IPL; [x = 39, y = -52, z = 46]; t(36) 683 
= 4.78, PWB = 0.01) and DLPFC [x = 45, y = 44, z = 4]; t(36) = 4.32, PWB < 0.001). We next 684 
asked whether the tendency to engage in aversive pruning might be related to 685 
activation to the receipt of large losses (Figure 4C, middle panel). Activation in the 686 
insula (r(37) = 0.47, P = 0.003; Figure 4C, right panel) and DLPFC (r(37) = 0.35, P = 687 
0.034), but not in IPL (r(37) = 0.22, P = 0.20), correlated significantly with our 688 
computationally derived measure of aversive pruning, γG-γS (although the 689 
correlations between activation in the insula (Z = 1.58, P = 0.113) and DLPFC (Z = 690 
0.85 P = 0.39) and aversive pruning behaviour were not significantly greater than 691 
that in the IPL). 692 
 693 

Confirmatory trial-based behavioural and fMRI analyses 694 

Trial-based behaviour provides further evidence of pruning 695 

Further evidence consistent with aversive pruning comes from a finer classification 696 
of suboptimal choices. Of course, it is not possible to be definitive as to the 697 
processes that underlie any particular suboptimal (or indeed optimal) choice. 698 
However, trials for which it would have been optimal to transition through a large 699 
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loss, but participants selected the best available option that avoided large losses 700 
(e.g. Figure 1B) are at least suggestive of aversive pruning-influenced planning. We 701 
call these aversive pruning trials. All other instances of suboptimal selection we term 702 
as errors (separated into trials for which the optimal decision entailed (OLL error; 703 
excluding aversive pruning trials, i.e. this category did not include trials where the 704 
next best available option that did not entail transitioning through a large loss was 705 
chosen) or avoided (ONLL error) transitioning through a large loss: see Table 1). Due 706 
to low trial numbers ONLL errors were not considered further.  707 

A clear example of aversive pruning occurs in the scenario depicted in Figure 708 
5A. Placed in state 2 with 3 moves to plan, the optimal solution is to go from state 2 709 
to state 5 (-70p), from state 5 to state 1 (-70p) and from state 1 back to state 2 710 
(reaping the only large reward in the maze: +140p). This sequence results in breaking 711 
even, and participants chose it 41% (SD = 33%) of the time (Figure 5A, blue 712 
outcome). However, in spite of the relative ease of the problem (only 8 sequences 713 
needed evaluating), participants had a strong tendency to engage in aversive 714 
pruning, presumably because the optimal sequence contains two large losses. The 715 
best available option that avoided the large loss involved moving from state 2 to 716 
state 3 (-20p), from state 3 to state 4 (-20p), and from state 4 back to state 2 (+20p) 717 
(resulting in a net loss of 20 pence). Such aversive pruning arose on 37% (SD = 31%; 718 
aversive pruning percentage) of trials (Figure 5A, red outcome), i.e., nearly as often 719 
as the optimal choice. By way of comparison, subjects selected the optimal and the 720 
next best available sequence 80% (SD = 23%) and 14% (SD = 20%) of the time, 721 
respectively, on the ONLL trial requiring 3 moves to plan from state 5. 722 

Participants displayed a strong tendency towards aversive pruning, choosing 723 
the best sequence that avoided a large loss on around 52% (SD =23%) of OLL trials in 724 
which they chose suboptimally (chance = ~11% across depths). All subjects engaged 725 
in aversive pruning, however the extent of the predilection was highly variable 726 
across the sample (4-93%); nevertheless, the aversive pruning percentage was very 727 
consistent within subjects between the 1st and 2nd half of the trials (r(37) = 0.69, P < 728 
0.001). Interestingly this fraction, which we call the aversive pruning percentage, did 729 
not depend on depth (F(2,72) = 1.15, P = 0.32, ηp2 = 0.03; Figure 5B), thus supporting 730 
the hypothesis that aversive pruning acts as an adaptive heuristic to reduce the 731 
number of options to be considered, allowing participants to maintain reasonable, if 732 
not perfect, planning performance across depths (Huys et al., 2012). We also 733 
examined the average earnings, which revealed a significant main effect of trial type 734 
(Figure 5C; F(3,108) = 320.538, P < .001, ηp2 = 0.90). Perhaps surprisingly, aversive 735 
pruning choices earned participants significantly more money than OLL correct 736 
choices (t(36) = 6.74, P < 0.001, d = 1.11). Although by definition optimal choices 737 
would have earned more on aversive pruning trials (Figure 5C, light red bar; mean 738 
difference = 33p, SD = 9p), this pattern arises because aversive pruning occurred 739 
more frequently with increasing depth (while OLL correct trials were rarer to be 740 
performed at higher depth), and the average net value largely increases with depth 741 
(OLL correct: depth 3 = 33p, depth 4 = 67p, depth 5 = 93p; aversive pruning: depth 3 742 
= -20p, depth 4 = 13p, depth 5 = 50p; OLL error: depth 3 = -84p, depth 4 = -59p, 743 
depth 5 = -47p) (although this is not the case for ONLL correct trials (depth 3 = 100p, 744 
depth 4 = 80p, depth 5 = 60p)). 745 
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If aversive pruning is indeed a heuristic that reduces the number of evaluated 746 
sequences, then we might see an effect on reaction times (RT: Figure 5D; note 747 
though, that subjects could not enter choices until the 9s of planning had elapsed, 748 
which could reduce the magnitude of this effect). There was a main effect of trial 749 
type (Friedman χ2(3) = 33.876, P < 0.001). Post-hoc tests revealed that ONLL correct 750 
RTs were significantly shorter than OLL correct RTs (Z = 2.105, P = 0.035) and 751 
aversive pruning RTs (Z = 4.413, P < 0.001). However, contrary to our expectations, 752 
the difference in RT between OLL correct and aversive pruning choices was non-753 
significant (Z = -1.335, P = 0.182). Nevertheless, aversive pruning choices were made 754 
significantly faster than OLL error trials (Z = 2.844, P = 0.004).  755 

Finally, we note that the difficulty in planning transitions through large losses 756 
was even evident on the much easier restricted plan trials (on which only two 757 
sequences required evaluation). Participants made the optimal choice significantly 758 
more often on restricted plan trials that did not feature large losses (mean = 90%, SD 759 
= 9%) than on those that did (mean = 84%, SD = 8%; t(34) = 3.74, P < 0.001, d = 0.63). 760 
However, there was no effect on RT (correct trials only: t(34) = 1.12, P = 0.27, d = 761 
0.19). 762 

Figure 5 about here 763 

Trial-based fMRI confirms a role for the SGC in aversive pruning 764 

A contrast between aversive pruning and OLL correct trials during the planning 765 
period (incorporating restricted plan control trials, controlling for net outcome; 766 
N=31) revealed no significant activation in our ROIs, and no cluster survived whole-767 
brain correction for multiple comparisons. However, an analysis of the parametric 768 
modulation of aversive pruning trials by difficulty (contrasted against the parametric 769 
modulation of OLL correct trials by difficulty, again controlling for net income: N=33) 770 
revealed a cluster in the SGC extending into pregenual ACC ([x = -3, y = 35, z = -2]; 771 
t(32) = 3.08, PSVC = 0.023; left panel of Figure 5E). We also note the presence of a 772 
cluster in the right amygdala, though this did not survive correction for multiple 773 
comparisons and therefore we do not consider it further ([x = 21, y = 2, z = -20]; t(32) = 774 
2.85, PSVC = 0.144). The result in the SGC was driven by a progressive reduction in 775 
response with increasing difficulty on OLL correct trials (i.e. a negative modulation by 776 
difficulty; one-sample t-test against zero: t(32) = 3.72, P = 0.001), while difficulty did 777 
not affect activation on aversive pruning trials (t(32) = 1.09, P = 0.285; right panel of 778 
Figure 5E). This finding that aversive pruning elicits a (relative) increase in SGC 779 
activation as depth increases, complements the one arising in our computationally-780 
motivated analysis based on the KL divergence, where a robust modulation by 781 
difficulty was also identified. Taken together, these results suggest that inhibiting 782 
aversive pruning may require deactivation of the SGC, particularly when decisions 783 
are more complex. 784 

None of our other comparisons yielded significant activation in our ROIs, or 785 
activation in other regions that survived whole-brain correction for multiple 786 
comparisons. Contrasting the parametric effect of difficulty between aversive 787 
pruning and ONLL correct trials (N=35) did not reveal any effect surviving correction 788 
for multiple comparisons. The equivalent parametric contrast between ONLL and 789 
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OLL correct trials (N=35) revealed an effect in the right amygdala that narrowly 790 
missed significance ([x = 33, y = -1, z = -20]; t(34) = 3.25, PSVC = 0.062).   791 



Neural Basis of Aversive Pruning 
 

 22 

Discussion 792 

Multi-step decision-making is fundamental to human behaviours. However, fully 793 
solving complex planning problems is often too arduous, thus necessitating 794 
heuristics. We used a combination of neuroimaging and computational modelling of 795 
behaviour to characterise the neural basis of one such simple approximation, 796 
aversive pruning. This is the inflexible, reactive curtailment of search when a large 797 
loss is encountered during planning. Aversive pruning represents a computationally 798 
well-defined influence of a Pavlovian inhibitory response on high-level cognitive 799 
manipulations during planning. We replicated previous findings that aversive pruning 800 
was ubiquitous across subjects (Huys et al., 2012). As expected, it served to preserve 801 
computational resources, being more prevalent on harder problems, and was 802 
associated with faster responses than other suboptimal decisions. Both 803 
computational model- and trial-based neuroimaging analyses showed that aversive 804 
pruning was associated with haemodynamic responses in the SGC during planning. 805 
By contrast, distinct circuits were activated by planning and valuation. Further, the 806 
responses to the receipt of large losses in the insula and DLPFC correlated with one 807 
of our computationally-derived behavioural measures of overall aversive pruning. 808 
Our results reveal the neural and computational architecture underlying a 809 
profoundly influential heuristic that enables humans to make complex planned 810 
decisions with reasonable speed and accuracy.  811 

The aversive pruning-related activation that we identified in the SGC through 812 
both computational and categorical analyses exists over and above planning- and 813 
value-related responses. Closer examination of the parametric modulation by 814 
difficulty sheds further light on the nature of this finding. In comparison to correct 815 
decisions that transitioned through a large loss, aversive pruning was associated with 816 
higher SGC activation especially on more difficult problems. Intriguingly, our trial-817 
based analyses suggest that this effect was largely driven by a relative decrease in 818 
SGC response on correct decisions that transitioned through a large loss as planning 819 
complexity increased (Figure 5E). This is consistent with studies examining the trade-820 
off between appetitive and aversive outcomes. In humans, Talmi et al. (2009) also 821 
found SGC inhibition when participants chose to endure a punishment in order to 822 
obtain a gain. In non-human primates, Amemori and Graybiel (2012) reported that 823 
neurons in the homologous area of the ACC in the macaque (BA24b) responded to 824 
aversive stimuli in an approach-avoidance decision task; localized microstimulation 825 
of these neurons increased the negative impact of aversive consequences on choice. 826 
Thus, it appears that planning through a negative outcome in order to achieve an 827 
overall positive outcome is facilitated when the SGC is deactivated. 828 

Importantly, the SGC is a key node where cognition and emotion are thought 829 
to interact pathologically, for example in mood disorders (Drevets et al., 2008, Roiser 830 
et al., 2012). The anatomical correspondence between resting-state findings in 831 
depressed patients, punishment-driven anticipatory responses in healthy humans, 832 
and aversive signals in non-human primates is striking. The SGC may be an important 833 
mediator of the inhibitory effect of aversive expectations not just on behaviour, but 834 
also on higher-level cognitive function in mood disorders. In the context of 835 
depression, it has been suggested that inhibitory control is impaired and that this 836 
underlies some of depressed subjects’ inability to disengage from aversive 837 
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information (Dayan and Huys, 2008, Joormann and Gotlib, 2010). However, the SGC 838 
appears to be hyperactive during rumination, and in depression more generally 839 
(Cooney et al., 2010), possibly suggesting a reduced efficiency of these mechanisms 840 
rather than a lack of engagement. 841 

Complex decision-making processes recruit a diverse set of hierarchical 842 
cognitive components (Solway and Botvinick, 2012) and neural structures (Newman 843 
et al., 2003). We note here at least two neural network processes on top of which 844 
aversive pruning occurs. First, planning a complex sequence of actions requires 845 
considerable cognitive control. Unsurprisingly, as planning difficulty increased in our 846 
task, structures such as the cerebellum, DLPFC, dorsal striatum, motor cortex, and 847 
thalamus were increasingly activated (Figure 4A). These brain regions are frequently 848 
implicated in planning tasks which require cognitive control (Newman et al., 2003) 849 
and in goal-directed approaches to problem solving (Solway and Botvinick, 2012). A 850 
second important component process of decision-making is the evaluation of 851 
outcomes associated with action sequences. Increasing net monetary outcome was 852 
associated with activation in a network of structures commonly activated in 853 
reinforcement learning tasks and thought to underlie valuation, including the VS and 854 
the mOFC (Schultz, 2015). Interestingly, activation in mOFC, but not VS, at the time 855 
of outcome was associated with our computationally-derived behavioural measure 856 
of sensitivity to large reinforcements. This finding is consistent with the hypothesis 857 
that mOFC is critical for processing outcomes per se, while VS is more closely aligned 858 
with prediction error signalling (Schultz, 2015). 859 

 When we focused our analysis on the outcome phase (contrasting optimal 860 
decisions with and without large losses) we found that a number of regions (insula, 861 
IPL and DLPFC) were significantly more activated during the receipt of large losses, 862 
even after accounting for trial-by-trial monetary earnings. Even though the actual 863 
planning would have terminated before this point, activations in the structures that 864 
responded positively to large losses (insula and DLPFC) also correlated positively 865 
with our computationally derived estimate of overall aversive pruning (γG-γS). Of 866 
particular relevance is the insula, which is thought to play a role in interoceptive 867 
perception and the production of subjective negative feeling states (Medford and 868 
Critchley, 2010), and has been reported to influence decision-making (Yu et al., 869 
2010). For example, individuals with insula damage have been reported to exhibit a 870 
selective impairment in avoiding stimuli associated with monetary losses (Palminteri 871 
et al., 2012). We had not predicted activation of DLPFC and IPL in the outcome 872 
phase, but this pattern would be consistent with the engagement of inhibitory 873 
processes during cognitive control (Guitart-Masip et al., 2012). We speculate that 874 
these results may indicate a similar involvement in aversive pruning, though this 875 
needs to be tested in future studies. The activation of the DLPFC is particularly 876 
noteworthy with respect to depression. Fales and colleagues (2008) showed a failure 877 
to activate the DLPFC during suppression of irrelevant aversive information in 878 
depression. As aversive pruning might relate to the ability to inhibit the processing of 879 
aversive information, and hence correlate negatively with rumination (Gotlib and 880 
Joormann, 2010), a clear prediction is that a similar pattern would be observed when 881 
depressed patients aversively prune. 882 
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Taking the above results together, a possible model accounting for our fMRI 883 
results is that the DLPFC and insula might co-ordinate to mark parts of the decision 884 
tree that contain large losses. Once the tree is demarcated, these signals may then 885 
be used during the planning phase where SGC responses drive the decision to prune. 886 
Meanwhile, deactivation of the SGC appears critical to choosing to engage with the 887 
large loss in order to make an optimal decision. The consistency of the SGC response 888 
between our computational and categorical fMRI analyses during planning supports 889 
the notion that this region participates in curtailing the decision tree search on 890 
encountering a large loss. Although we cannot directly exclude an additional causal 891 
influence, whereby it is the overloading of cognitive control that leads to the release 892 
of the pruning reflexes, the structure of the findings still argue for a shaping 893 
influence of the pruning reflexes on the process of evaluation.  894 

A limitation of the current work is that the aversive pruning time-point(s) 895 
during planning are not clearly temporally delineated; we therefore cannot make 896 
temporal causality claims about the neural effect. Aversive pruning is a meta-897 
reasoning process involving multiple repeated decisions about what to evaluate next 898 
(Russell and Wefald, 1991). The ambiguity surrounding the precise point at which 899 
aversive pruning occurs could be resolved more directly, possibly using a 900 
combination of eye-tracking and neuroimaging methods with higher temporal 901 
resolution such as EEG or MEG. A further limitation is that our study was performed 902 
in healthy participants and was not designed to detect correlations with symptoms 903 
of mood or anxiety disorders. In a previous study (Huys et al., 2012) aversive pruning 904 
correlated with subclinical measures of depression, while in the current study, it 905 
correlated with state anxiety. We originally hypothesised (Dayan and Huys, 2008) 906 
that aversive pruning might relate to both symptoms of depression and anxiety 907 
because features of impaired inhibition of aversive processing are prominent in both 908 
disorders. The failure to confirm our previous finding of a correlation with depressive 909 
symptoms might be due to a restricted range of scores in the present sample.  910 

In summary, it is tremendously difficult to plan optimally in complex 911 
problems; heuristics are frequently mandatory. We confirmed the pervasive 912 
influence of one such shortcut, aversive pruning, over goal-directed behaviour, 913 
distinguishing its impact from those of other decision-making biases. Our 914 
neuroimaging results revealed that aversive pruning recruits neural structures 915 
implicated in decision-making and mood disorders, specifically the SGC. DLPFC and 916 
insula responses to large losses and anxiety levels, an established risk factor for 917 
mood disorders, were related to the degree of aversive pruning across participants. 918 
Taken together, our results suggest a novel circuit in which emotionally salient 919 
information is used to facilitate decision-making, albeit only approximating 920 
optimality. Activation of this circuit could prevent optimal decision-making during 921 
planning and may contribute to psychopathological conditions characterized by 922 
aberrant decision-making.  923 
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Figure 1. Aversive pruning example and fMRI task design. (A) Decision tree and 1056 
monetary outcomes up to a depth of three, from starting state 2. Purple and 1057 
orange coloured lines indicate pressing the left and right buttons, respectively. 1058 
The totals earned for the two best paths (thicker lines; breaking even and losing 1059 
20 pence) are shown in blue and red. (B) An example of disadvantageous 1060 
aversive pruning. The red line shows the curtailment of search within the 1061 
decision tree upon encountering a large monetary loss (-70p), such that the 1062 
more advantageous break-even sequence is not considered. (C) Button presses 1063 
and transitions within the maze. (D) Monetary outcomes within the maze. (E) 1064 
Free plan trial. Beginning in a selected white box, participants had 9 seconds to 1065 
plan a sequence of moves (3-5; indicated centrally) to maximise income. Plusses 1066 
and minuses below each box indicate the potential outcomes possible from 1067 
moving from there, but are not indicative of directionality. Coloured sidebar 1068 
arrows were included to match visual input with restricted plan trials. (F) 1069 
Restricted plan trial. Participants had 9 seconds to decide between two maze 1070 
routes (green and blue), one of which provided higher net income. (G) For 1071 
restricted plan trials, the selection of either the blue or green route involved 1072 
choosing either the left or right button. (H) After entering their moves or path 1073 
selection, participants were shown their selected path with the corresponding 1074 
monetary outcome for each box-to-box transition for both free and restricted 1075 
plan trials. Summed path totals were not shown.   1076 



Neural Basis of Aversive Pruning 
 

 30 

Figure 2. Initial model-free and model-based computational model comparison and 1077 
parameter estimates for behaviour analysis. (A) Percentage of trials on which the 1078 
correct sequence was chosen, split by whether it did not include a large loss (green: 1079 
optimal no large loss; ONLL) or did (blue: optimal large loss; OLL). Black dots 1080 
represent individual performance and grey lines connect the two trial types. (B) 1081 
ONLL and OLL performance split by decision depth. (C) Average likelihood of 1082 
participants’ choices. Chance model performance level is shown by the black dashed 1083 
line; “Lookahead” represents optimal planning; “Discount” incorporates random 1084 
stopping of the tree search; “Pruning” additionally incorporates a specific chance of 1085 
stopping when a large loss (-70p) is encountered; and “Pruning+Loss” additionally 1086 
incorporates individual reinforcement value sensitivities to account for loss aversion. 1087 
(D) Proportion of variance explained by the different models. (E) Model evidence 1088 
measured by group-level iBIC; red star indicates the best performing (i.e. lower iBIC) 1089 
model. (F) Pruning parameters (values indicate the probability of continuing to 1090 
evaluate the decision tree). Black dots in F show individual data (parameters taken 1091 
from the Pruning+Loss model), connected by black dashed lines. (G) Reinforcement 1092 
sensitivity parameter estimates. (H) Relationship between the trial-based measure 1093 
of general planning ability, optimal no large loss (ONLL), and its computational 1094 
equivalent, γG. (I) Relationship between the trial-based measure of aversive pruning 1095 
(ONLL minus optimal large loss (OLL)) and its computational equivalent, the 1096 
difference between γG and γS. (J) Comparison of ONLL and OLL correct between the 1097 
observed data and data generated from our winning model. (K) Observed and 1098 
generated data for each individual subject plotted for ONLL and OLL correct trials. 1099 
(L) The fraction of times the winning model gave the highest probability to the 1100 
action chosen by the subject; red line shows chance level. Red and green error bars 1101 
indicate one standard error and 95% confidence intervals of the mean, respectively. 1102 
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Figure 3. Neural responses during aversive pruning: model-based fMRI results. 1103 
(A) Kullback-Leibler (KL) divergence value increased linearly with depth, and, (B) 1104 
based on participant behaviour, was highest on trials classified as aversive 1105 
pruning trials. (C) Activation in pregenual and subgenual cingulate (SGC) cortex 1106 
increased linearly with KL divergence value. (D) There was an interaction 1107 
between KL divergence value and difficulty in the SGC, with greater impact of 1108 
the former on more difficult trials. Overlays are presented at a threshold of P < 1109 
0.005 (uncorrected). Error bars represent one standard error of the mean and 1110 
colour bars indicate t-values.  1111 



Neural Basis of Aversive Pruning 
 

 32 

Figure 4. Neural responses to increasing difficulty and value and relationship between 1112 
aversive pruning and loss receipt at outcome. (A) Bilaterally, cerebellum (left panel), motor 1113 
cortex (left panel), dorsal striatum (middle panel), and dorsolateral prefrontal cortex (right 1114 
panel) activation increased linearly with task difficulty during the planning phase. Overlays 1115 
are presented at a threshold of PWB < 0.05. (B) Ventral striatum (VS; left panel) and medial 1116 
orbitofrontal cortex (mOFC, middle panel) activation increased linearly with the net 1117 
monetary value during the outcome phase. Overlays are presented at a threshold of P < 1118 
0.005 (uncorrected) but VS and mOFC results survive voxel-level PWB < 0.05. Peak voxel 1119 
mOFC activation to increasing reward (B, right panel) correlated with the sensitivity to large 1120 
rewards (+140p) parameter derived from our computational model. (C) Contrasting 1121 
feedback on the correct trial types (OLL vs ONLL correct) revealed responses in the right 1122 
insula (C, left panel), and right dorsolateral prefrontal cortex (DLPFC; C, left panel). Response 1123 
in the insula was driven by increased activation during OLL correct outcomes (C, middle 1124 
panel). The difference in insula activation between OLL and ONLL correct trials at outcome 1125 
correlated with γG-γS, our computationally-derived measure of overall aversive pruning (C, 1126 
right panel). Overlays are presented at a threshold of P < 0.005 (uncorrected). Error bars 1127 
represent one standard error of the mean and colour bars indicate t-values.  1128 
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Figure 5. Confirmatory trial-based behavioural and fMRI results. (A) Decision 1129 
tree showing path selection starting from state 2 with 3 moves to go; line width 1130 
is proportional to selection frequency. The optimal route (break-even, blue) and 1131 
the sub-optimal aversive pruning route (net income -20p, red) were selected 1132 
with similar frequency. (B) Aversive pruning percentage [aversive 1133 
pruning/(aversive pruning+OLL error)*100], split by depth. (C) Mean trial 1134 
earnings across the four conditions. The light red bar behind aversive pruning 1135 
depicts the possible earnings if participants had performed optimally on the 1136 
trials classified as aversive pruning. OLL error represents incorrect choices on 1137 
OLL trials that could not be classified as aversive pruning. (D) Reaction times for 1138 
the first button press across trial types. (E) Difficulty-related response in the 1139 
subgenual cingulate (SGC: left panel) contrasting aversive pruning trials against 1140 
optimal large loss (OLL) correct trials. Overlay is presented at a threshold of P < 1141 
0.005 (uncorrected). The finding in the SGC was driven by a negative 1142 
modulation by difficulty for OLL correct trials (P = 0.001), with no significant 1143 
effect of difficulty on aversive pruning trials (P = 0.285, right panel). Error bars 1144 
represent one standard error of the mean and the colour bar indicates t-values. 1145 












