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Abstract

Socio-economic groups may be exposed to varying levels of mortality; this is cer-
tainly the case in the UK, where the gaps in life expectancy, differentiated by socio-
economic circumstances, are widening. The reasons for such diverging trends are yet
unclear, but a study of cause-specific mortality may provide rich insight into this
phenomenon. Therefore, we investigate the relationship between socio-economic cir-
cumstances and cause-specific mortality using a unique dataset obtained from the UK
Office for National Statistics. We apply a multinomial logistic framework; the reason
is twofold. First, covariates such as socio-economic circumstances are readily incorpo-
rated. And second, the framework is able to handle the intrinsic dependence amongst
the competing causes. As a consequence of the dataset and modelling framework, we
are able to investigate the impact of improvements in cause-specific mortality by
socio-economic circumstances. We assess the impact using (residual) life expectancy,
a measure of aggregate mortality. Of main interest are the gaps in life expectancy
amongst socio-economic groups, the trends in these gaps over time, and the ability to
identify the causes most influential in reducing these gaps. This analysis is performed
through the investigation of different scenarios. First, by eliminating one cause-of-
death at a time; second, by meeting a target set by the World Health Organization
(WHO), called WHO 25×25; third, by developing an optimal strategy to increase life
expectancy and reduce inequalities.
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1 Introduction

Over the past 30 years, life expectancy in high income countries has increased dramatically,
averaging a gain of about two years per decade. Despite this gain, life expectancy for the
least affluent is still much lower than for the most affluent groups, the gap between the two
even widening over time. Indeed, in England, people living in the poorest residential areas
can, on average, expect to die eight years earlier than people living in the most affluent
(Office for National Statistics (2015a)). Recent evidence indicates that inequalities in life
expectancy in England have not only widened (Office for National Statistics (2015b)), but
are forecasted to widen even further (Bennett et al. (2015), Villegas and Haberman (2014)).
This situation is not unique to England; elsewhere in Europe, notwithstanding differences
in the size and trend of the absolute gap in (standardised) mortality rates between the most
and least advantaged social groups across countries, the underlying message is the same –
health inequalities are ubiquitous and have persisted over time (Mackenbach et al. (2016);
Brønnum-Hansen and Baadsgaard (2012)).

In the UK, and elsewhere in Europe, the goals of public health policy were redefined at
the turn of the last century to give greater emphasis to tackling inequalities in health (Gra-
ham (2004)). The World Health Organization (WHO) enshrined these goals in a Health
for All strategy, which was aimed at reducing health inequalities within and between coun-
tries, where within-country targets focused on reducing inequalities between socio-economic
groups (World Health Organization (1999)). In England, a national target was set for nar-
rowing health inequalities in infant mortality and life expectancy in 2001 (Department of
Health (2003)). The life expectancy target stipulated a reduction of at least ten percent in
the gap between the bottom quintile, based on health and deprivation indicators, and the
population as a whole.

In 2008, an influential report by the Commission on Social Determinants of Health
(World Health Organization (2008)) argued that social inequalities in power, money, and
resources operating throughout the life course, rather than individual unhealthy behaviours
or access to healthcare, were instrumental in causing the observed social gradient∗ in health.
The social gradient arises not only because of sharp differences in the health of the best and
worst-off in society, but also because those who are relatively disadvantaged, in terms of
social position, have progressively worse health outcomes than those who occupy a higher
rank in the social hierarchy. The subsequent Marmot review was tasked with supporting the
development of a health inequalities strategy for England, including a monitoring framework
for indicators and targets (The Marmot Review Team (2010)). Whilst not defining a specific
health gain target, the report called for the development of an aspirational national health
outcomes goal that included life and health expectancies, achievable within the specified
timescale and focused on the reduction of differences across the social gradient (pp166-7).

In this paper, we provide a tool to assist public policies in defining their health inequality
strategy. The proposed framework is able to analyse the impact on life expectancy, by
socio-economic circumstances, of a hypothetical cause-of-death mortality reduction. Since
social groups are affected differently by the causes-of-death, specific causes may need to
be targeted in order to reduce inequalities. To gain such insight, we choose to use the
multinomial logistic model developed by Alai et al. (2015a). This model readily quantifies
the impact of cause-elimination, or shocks, on mortality metrics such as life expectancy.

∗The social gradient refers to observed differences between socio-economic groups for some indicators of
interest, e.g. death rates, health status, etc. A higher socio-economic gradient results in higher differences
across socio-economic groups for the chosen indicator.

2



The model provides an intuitive framework for any combination of shocks on the various
considered causes and is readily extended to study the impact of these shocks across socio-
economic circumstances.

An important assumption of the cause-elimination mechanism in the model of Alai et al.
(2015a) is that of extrinsic independence among the causes-of-death. Although it represents
a classic assumption in causal mortality models, it is also the main limitation of applying
the multinomial logistic model. Indeed, as extrinsic dependence amongst mortality rates
by cause of death is not objectively observable, notwithstanding the intrinsic dependence
inherent in the nature of competing outcomes, an assumption needs to be set. The most
widely used is the independence assumption, although theories and methods attempting
to model the extrinsic dependence among causes have been proposed, including models
incorporating individual risk factors (covariates, e.g. body mass index, blood pressure,
smoking level, etc) see e.g. Girosi and King (2006); Manton (1986); Manton et al. (1991);
Rosén (2006); models incorporating individual unobserved risk factors, referred as frailties
(Hougaard (1984); Manton et al. (1986); Vaupel and Yashin (1983)); models employing
multiple cause-of-death data and thus providing a tool to investigate links between various
causes (Mackenbach et al. (1999); Manton and Myers (1987); Manton and Poss (1979);
Manton et al. (1976, 1980)); copulas (Carriere (1994); Dimitrova et al. (2013); Kaishev et al.
(2007); Lo and Wilke (2010)); models using cointegrating techniques in order to capture
the long-run equilibrium relationships that exist between different cause-specific mortality
rates (Arnold and Sherris (2013, 2015, 2016)). Traditionally, the independence assumption
developed by Chiang (1968) is applied; see e.g. the United States decennial life tables by
Anderson (1999); Bayo (1968); Curtin and Armstrong (1988); Greville et al. (1975). This
approach is specified for causal forces of mortality. However, Alai et al. (2015a) recently
proposed a different procedure, based on annual probabilities that assumes the same form of
independence. In their approach, survival and death are competing outcomes and, therefore,
treated similarly, as opposed to Chiang’s model. We choose this approach because of the
convenience and accessibility of working with annual probabilities within the multinomial
framework.

Assessing the impact on life expectancy with a cause-elimination mechanism that incor-
porates socio-economic variables is prudent since: the scale of the social gradient varies by
cause; as different causes-of-death are linked to different risk factors, the mix of causes of
death may differ across socio-economic groups; and most importantly, it allows for scenario-
analysis to assess the causes-of-death most influential to gains in overall life expectancy as
well as reductions in life expectancy gaps.

The remainder of the paper is organised as follows. In Section 2, we introduce the dataset
and its characteristics regarding the causes-of-death and the socio-economic categories.
Section 3 outlines all relevant aspects of the methodology, including a description of the
multinomial logistic model and the mechanism employed to shock mortality. After providing
a subset of the model fit results in Section 4, we look at how to meet various policy targets
using cause-elimination scenarios in Section 5. Section 6 concludes the paper.

2 Dataset

The cause-of-death mortality database was provided by the Office for National Statistics
(ONS) in the United Kingdom. This database contains information on the gender, age, year,
socio-economic circumstances and the cause-of-death of each registered death in England.
The analysed period is from 1981 to 2007, while the observed ages are grouped in 5-year

3



age-classes, from age 25 to the open-group 85+. The causes-of-death are grouped in six
categories: diseases of the circulatory system, neoplasms, diseases of the respiratory system,
diseases of the digestive system, external causes and a final “other” category (see Appendix
A for details). The corresponding central exposure figures were provided by ONS for the
period 2001-07, while mid-year population were estimated by Norman et al. (2008) for
1981-2000. Below, we first detail the cause-of-death classification and the determination of
the socio-economic circumstances, before introducing some notations.

2.1 Cause-of-death classification

ONS provided counts of deaths aggregated up to 3-digit codes of the International Classi-
fication of Diseases (ICD) developed by the World Health Organization (WHO). The ICD
is used worldwide and is regularly updated to take into account progresses in science and
technology and to achieve more refined cause descriptions. Over the analysed period, two
different ICD were used in England: ICD-9 until 2001 and ICD-10 from then until 2007.
Besides, the classification of deaths has undergone two additional changes in England: Rule
3 in 1984 and ACCS in 1993 (see Figure 1 for a summary). ONS used over the period 1984-
1993 a guideline called Rule 3 in order to select the main cause-of-death (ONS (2015)).
These guideline selection rules for the underlying cause-of-death were different from the
rules established by ICD-9 (Rooney and Smith (2000)). Finally, in 1993, an Automated
Cause Coding System (ACCS) was introduced, which is a computerised system for coding
the causes-of-death from death registrations (for additional details, see Rooney and Devis
(1995) and ONS (2015)).

Naturally, as mentioned by Rooney and Smith (2000) and Villegas (2015), classification
revisions affect cause-of-death mortality trends and thus, these revisions need to be carefully
considered. Therefore, ONS developed comparability ratios in order to take into account
the changes of classification from ICD-9 to ICD-10 (see details in Rooney et al. (2002)). We
are directly using death rates adjusted by these comparability ratios (Bajekal et al. (2011),
Villegas (2015)).

2.2 Socio-economic circumstances

The socio-economic classification is established according to the Index of Multiple Depri-
vation of 2007 (IMD 2007). The IMD 2007 is the official measure of relative deprivation
at the small living area level (Lower Layer Super Output Area, LSOA) in England. It is a
weighted indicator based on the following factors: income, employment, health, education,
barriers to housing and services, living environment and crime; for more details see Noble
et al. (2007). The IMD 2007 score allows to classify every LSOA, considered as homo-
geneous, into five equal-size deprivation categories or socio-economic categories: a “one”
indicating the least deprived quintile and a “five” the most deprived quintile. It is impor-
tant to note that the usual place of residence is used for the classification and not the place
of death (ONS (2000))† Besides, the deprivation quintile allocation of an area is considered

†For the majority of those who died aged 25 and over, the usual place of residence recorded on the death
certificate is the postcode of their private address. For those who lived in a care home just prior to death,
the coding rule changed in 1993: before then, if the deceased had lived in a care home for 6 months or
more they were recoded as resident in the care home; since 1993 the person registering the death (most
often a relative) could record either the deceaseds private address or the communal establishment (e.g. care
home or long-stay hospital) as the usual address. Williams et al. (2004) has shown that small areas with
care homes have lower life expectancies than socioeconomically similar areas without care homes; but he
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as fixed over the complete period of observation, see Bajekal et al. (2013a) for details on
this assumed stability and potential biases arising from it. It is worth highlighting that
the allocation of death and population counts to fixed small areas over a 25 year period
overcomes the problem of frequent redrawing of small area boundaries and discontinuities
in data series. For additional details on the used socio-economic classification, we refer the
interested reader to Lu et al. (2014) and Villegas and Haberman (2014).

2.3 Notation

In order to convert deaths and central exposure to annual mortality rates and initial ex-
posure, the following steps are applied. First, for each set of covariates, total deaths are
calculated, these are used in order to establish initial exposure via the relationship

E0(g, x, s, t) = Ec(g, x, s, t) +
1

2
D(g, x, s, t),

where E0(g, x, s, t), Ec(g, x, s, t) and D(g, x, s, t) denote initial exposure, central exposure
and total deaths, respectively, for gender g, age x, socio-economic circumstances s, and
time t. Using initial exposure and cause-specific deaths, the cause-specific annual mortality
rates are calculated via the relationship

qi(g, x, s, t) =
Di(g, x, s, t)

E0(g, x, s, t)
,

where qi(g, x, s, t) and Di(g, x, s, t) denote the annual mortality rate and deaths, respec-
tively, for cause i. Lastly, survival is calculated via the relationship

p(g, x, s, t) = 1−
∑
i

qi(g, x, s, t) = 1− D(g, x, s, t)

E0(g, x, s, t)
,

where p(g, x, s, t) denotes the survival probability for a specific set of covariates.

3 Methodology

In this section we provide the necessary modelling details. We outline the multinomial
logistic model and the regression formula we chose in order to link the mortality rates to
some selected covariates. We also detail the way shocks are applied to cause-specific death
rates.

3.1 Multinomial logistic model

Multinomial logistic (or logit) regression techniques are useful in modelling probabilistic
response variables for a competing categorical observations; see e.g. Menard (2002) and
Borooah (2002). These models were used to investigate cause-specific mortality over the
entire age range in Alai et al. (2015a). Since this paper is extending the model introduced
in Alai et al. (2015a) to a more comprehensive database, we briefly summarise their model
below and develop it to address socio-economic circumstances.

also notes that care homes are fairly evenly distributed across quintile groups. Thus, our analysis of life
expectancy by quintiles should not be biased towards any quintile disproportionately.
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A multinomial logistic model is based, as indicated by its name, on a multinomial
distribution: E realisations can be classified in n + 1 different outputs, each with its own
probability. In our study, E represents the initial exposure, while the n+1 different outputs
represent n causes-of-death and survival. Indeed, among E exposed individuals, d1 may die
of cause 1, . . . , dn may die of cause n and l may survive, with probability

Pr[D1 = d1, . . . Dn = dn, L = l] =
E!

d1! · · · dn!l!
qd11 · · · qdnn pl,

where Di denotes the random number of deaths from cause i, L denotes the subsequent
survivors that complement the deaths, qi describes the probability of death as a result of
cause i, p the probability of survival and

E = l +
n∑
k=1

dk;

n∑
k=1

qk + p = 1.

For ease of notation, we omit the arguments defining the gender, age-group, year and
socio-economic category. However, each variable should be understood with the additional
arguments (g, x, s, t), e.g. Di(g, x, s, t) represents the random deaths from cause i, for gender
g, age x, socio-economic circumstances s, and time t.

The multinomial logit model uses the logit transform of qi in order to link the mortality
and survival rates to a selection of covariates. Adopting survival as baseline category, we
have

log
qi
p

= Xβi, i = 1, . . . , n,

where X, named the design matrix, contains values of explanatory variables and βi is the
vector of regression parameters especially suited to cause i. The design matrix, X, may con-
tain indicator or numerical variables for categorical or continuous covariates, respectively.
The regression formula is the result of the product between the design matrix and the vector
of regression parameters, which we outline in Section 3.2 below. Knowing the regression
parameters and the design matrix, the probabilities of interest are found by applying the
logistic function as follows

qi =
exp{Xβi}

1 +
∑

k exp{Xβk}
, i = 1, . . . , n, (1)

p =
1

1 +
∑

k exp{Xβk}
. (2)

Notice that the form of the survival probability, p, differs from the probabilities of death,
qi, since survival is designated as the baseline category.
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3.2 Regression formula

The explanatory variables used in the regression formula are a combination of time, age,
gender and socio-economic factors. The relationship is as follows

ln
qi(g, x, s, t)

p(g, x, s, t)
= β0,i + β1,g,i + β2,x,i + β3,s,i + β4,it+ β5,it

2

+β6,g,x,i + β7,g,s,i + β8,g,it+ β9,g,it
2

+β10,x,s,i + β11,x,it+ β12,x,it
2 + β13,s,it+ β14,s,it

2

+β15,g,x,s,i + β16,g,x,it+ β17,g,x,it
2 + β18,g,s,it+ β19,g,s,it

2.

Time t is normalised to start with value 1, representative of year 1981. The regression
parameters β1,g,i, β2,x,i and β3,s,i are main gender, age-group, and socio-economic circum-
stances specific, respectively. The regression parameters β4,i and β5,i describe the main
linear and quadratic trends over time. Gender interaction parameters with age-group,
socio-economic circumstances, linear and quadratic time are given by β6,g,x,i, β7,g,s,i, β8,g,i
and β9,g,i, respectively. Furthermore, β10,x,s,i, β11,x,i and β12,x,i are the interaction parameters
for age-group with socio-economic circumstances, linear and quadratic time, respectively.
β13,s,i and β14,s,i capture the interaction between socio-economic circumstances and linear
and quadratic time; β15,g,x,s,i, β16,g,x,i, β17,g,x,i, β18,g,s,i and β19,g,s,i are the corresponding
gender interaction terms. These last five parameters ensure that men and women have
completely distinct parameter sets in the model; in other words, we effectively model the
genders separately. Finally, β0,i denotes the intercept parameter designating the reference
case, which is a man, aged 25–29, in the least deprived socio-economic circumstances.

Generalized linear models have previously been applied to the study of mortality in, for
example, Renshaw et al. (1996) and Sithole et al. (2000), and cause-of-death mortality in
Alai et al. (2015a). Notice that the model of Alai et al. (2015a), upon which we build, only
required a linear trend to capture the main effects, while the present model, in addition to
incorporating additional covariates, includes a quadratic time effect.

3.3 Residual life expectancy

Since our dataset is categorised by age-groups, as opposed to single ages, we apply the
abridged life table method in order to calculate life expectancy; see e.g. Chiang (1984).
A required input in this method is parameter ax, where x designates the age-group, that
controls the relationship between central and crude mortality rates. This relationship has
already been established above in Section 2.3 and is consistent with uniformly setting
ax ≡ 0.5. It results in the following relationship between q, the crude, and m, the central
mortality rate,

q =
2m

2 +m
.

This relationship is widely used; the only exception being with infant mortality rates. As
our database provides mortality rates from age 25, no additional assumption is required.

3.4 Cause-specific mortality shocks

The intrinsic nature of the dependence amongst the causes-of-death is addressed by the
multinomial model. If the relationship between the causes is stable and the causes them-
selves do not experience shocks, then this is sufficient for inferential as well as forecasting
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purposes. However, should one (or more) of the causes experience a positive shock, the
other causes may adjust to this in an unpredictable way. The uncertainty surrounding
the impact of causal shocks is due to extrinsic dependence. To address this, we use the
independence assumption between the causes-of-death defined by Alai et al. (2015a).

Suppose we allow individual causes to receive shocks. Let ρi denote the marginal shock
to cause i and assume 0 ≤ ρi. The case ρi = 0 indicates the elimination of cause i‡,
0 < ρi < 1 indicates a marginal reduction in cause i mortality, ρi = 1 indicates the absence
of any marginal shock to cause i, and ρi > 1 indicates a marginal increase in cause i
mortality. As an example, let ρcirculatory = 1, ρneoplasms = 0, ρrespiratory = 0.8, ρdigestive = 1,
ρexternal = 1.3 and ρother = 1; each ρ is giving information about the cause-specific shock.
Here, deaths from diseases of the circulatory system, digestive diseases and the “other”
category are not marginally shocked; deaths from neoplasms are eliminated; and, deaths
from diseases of the respiratory system and external causes are marginally decreased by
20% and marginally increased by 30%, respectively. In the absence of any information of
extrinsic dependence, mortality redistribution can be given by

qi =
ρie

Xβi

1 +
∑

k ρke
Xβk

, i = 1, . . . , n, (3)

p =
1

1 +
∑

k ρke
Xβk

. (4)

In the absence of shocks, Equations (3) and (4) reduce to Equations (1) and (2), respec-
tively. Equations (3) and (4) represent a proportional reweighting of mortality, which is
akin to assuming extrinsic independence. Besides, when cause j is eliminated within that
framework, deaths from causes i 6= j increase comparatively more and survival increases
comparatively less than previous findings using the independence assumption developed by
Chiang (1968). Please see Alai et al. (2015a) for a more detailed comparison between the
two approaches.

We note that in Equations (3) and (4) we have implicitly assumed that shocks are
the same across ages and socio-economic groups. However, population-level interventions
to reduce health risk-factors can inadvertently increase social inequalities in outcomes by
disproportionately benefitting advantaged groups (Lorenc et al. (2013)). Thus, we could
allow for socio-economic-dependent shocks ρji , where i denotes the cause and j the socio-
economic category. However, since the focus of this paper is not to help inform public health
policy to reduce inequalities in the social determinants of mortality, we assume as a starting
point that any scenario affects the groups in the same way, and thus ρ1i = . . . = ρ5i = ρi.
We are indeed interested in modelling the consequences of achieving the stated mortality
targets and/or the impact of complete cause-elimination on life expectancy level and gap.
The practical policy steps needed to get to this level of mortality reduction is not the
question we are addressing in this paper. Besides, the Marmot Review suggests policy
makers to adopt the approach of “proportional universalism” (The Marmot Review Team
(2010)). Using this approach, interventions are delivered to the whole population, with the
“intensity” adjusted according to the needs of specific groups (for example, some groups
may need more frequent help and advice). Such ‘upstream’ actions are unlikely to eliminate
the social gradient in health completely, but may help to reduce the gap.

‡The description of cause-elimination in this paper is more faithfully represented by the idea of ignoring
causes, rather than eliminating them, based on the definition of these terms introduced in Elandt-Johnson
(1976). Henceforth, we continue to use the term cause-elimination, but this should not be confused with
the definition outlined in Elandt-Johnson (1976). See Alai et al. (2015a) for details and Dimitrova et al.
(2013) for a comparison between the two concepts.
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4 Model Fit

A selection of fitted values is presented in Figures 2 to 5. Figures 2 and 3 show observed
log-mortality rates for the age-group 65-69, with the fitted model, for males and females,
respectively. The model appears to capture the observed trends of the data very well. It
considerably smoothes out the noise and achieves a well-defined distinction between each
socio-economic category, the top and bottom lines representing death rates for the most
deprived and least deprived, respectively. At the same time, the fitted model does not lose
any of the essential patterns characterising each cause-of-death. Similar observations are
made regarding the fitted survival rates (Figure 4) and life expectancies (Figure 5): the
model manages to smooth out the noise, while capturing the underpinning trends for each
cause-of-death and socio-economic category.

Table 1 provides an analysis of the effects in the model. It tests whether the inclusion of
each effect represents an improvement in the model. A chi-square hypothesis test determines
the significance of the effect. The table indicates that each effect significantly improves the
model fit.

5 Achieving Policy Aims – Scenarios

We now turn to quantifying the impact of some cause-elimination or cause-reduction sce-
narios on life expectancy, but most importantly on gaps in life expectancy existing between
different socio-economic categories. Cause-specific mortality shocks as described in Sec-
tion 3.4 are applied, first by eliminating one cause-of-death at a time (Section 5.1), then
by combining several cause-specific mortality shocks in order to reflect a policy target de-
fined by the World Health Organization (Section 5.2). Finally, an optimisation approach is
developed in Section 5.3 to increase life expectancy and reduce inequalities simultaneously.

5.1 Scenario 1: Eliminating one cause-of-death at a time

We successively apply six different mortality shocks: we eliminate each of the six causes-of-
death in turn in 1981, e.g we set the ρ parameter of diseases of the circulatory system to 0,
while keeping all the other ρ parameters equal to 1, in Equations 3 and 4. Table 2 shows
the gain in life expectancy for men aged 65 in 2007 by socio-economic circumstances when
deaths from each of the causes are eliminated. We see, for example, that the elimination of
circulatory diseases and neoplasms would produce the highest gains, respectively, for men
aged 65. It is also interesting to note that, in this case, the relative gains always favour
the most deprived socio-economic groups; deaths by digestive and respiratory causes even
favour more deprived socio-economic groups in absolute terms. Table 3 shows the same
results for women aged 65 in 2007.

Naturally, the elimination of the deaths from a specific cause increases life expectancy
in each socio-economic category. However, this will not necessarily reduce the social gaps.
Figure 6 presents the time evolution of the gap in life expectancy at ages 25, 45 and 65
between the most deprived and least deprived socio-economic groups for men and women.
The dotted black line labelled “observed” reproduces the gap that was prevailing from 1981
to 2007. It is interesting to note that the gap for women decreased until approximately the
mid 1990’s and started to increase thereafter, while for men the gap at ages 25, 45 and 65
increased from the mid 1980s, end of the 1980s and over the whole period, respectively. Each
plot also contains the gap in life expectancy that would result if a specific cause-of-death was
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eliminated: e.g. the line labelled “- circulatory” (continuous red line) would reflect the gap
in life expectancy between the most deprived and least deprived socio-economic categories
if deaths due to the circulatory system were eliminated in 1981. Several observations can
be made about the impact of eliminating a cause in 1981 on the gap in life expectancy until
2007:

• Eliminating diseases of the circulatory system increases the inequality gap (compared
to the observed all-cause mortality)§ for both men and women at most ages at the
start and at the end of the investigation period. By contrasts, in the middle of
the investigation period (and with the exception of men aged 65) the elimination of
diseases of the circulatory system decreases the inequality gap. This is in line with
observations made in Nordic countries (Brønnum-Hansen and Baadsgaard, 2012).

• Eliminating neoplasms results in an increase in the gap for men in recent years, while
it decreases the gap for women. Nevertheless, the reduction in the gap following the
elimination of neoplasms for women is less important nowadays than 25 years ago.

• Eliminating the “other causes” category increases the gap at ages 25, 45 and 65 for
women, while the gap only increases at ages 45 and 65 for men.

• Eliminating digestive diseases decreases the gap in life expectancy at ages 25, 45 and
65 for both genders and the reduction in the gap increases over time.

• Eliminating respiratory diseases decreases the gap at ages 25, 45 and 65 for both
genders, the reduction being relatively constant over time.

• Eliminating the external causes-of-death decreases the gap at age 25 (both genders)
and age 45 (men only), the impact being much smaller for women than for men.

The increase in the gap following the elimination of neoplasms or the diseases of the
circulatory system may seem counterintuitive, since death rates for any cause are higher for
the most deprived socio-economic category and thus, eliminating a cause will save more lives
in the most deprived quintile. However, these saved lives have a higher probability to die of
the remaining causes-of-death. Therefore, if the causes not deleted have a relatively greater
socio-economic gradient (e.g. respiratory diseases) than the cause deleted (e.g. circulatory
diseases), inequality will increase. But if it were the other way round - the differences in
death rates between socio-economic groups for the remaining causes were not as important
as for the deleted cause - then inequality would decrease. Finally, eliminating a cause (e.g.
external causes at age 65) would make no difference to the gap, if the gradient for this cause
was similar to that of all-causes. Therefore, the relative difference in the inequality gradient
between the deleted and remaining competing causes will determine the magnitude and the
direction of the inequality change from the baseline (here no cause-elimination).

Another important comment is related to the impact of a cause-elimination on the gap
across age-groups. Figure 6 shows that the elimination of the diseases of the digestive
system would reduce the gap importantly at ages 25 and 45 (especially nowadays), while
it would not affect much the gap at age 65. The reason is simple: deaths due to digestive
diseases are mainly around age 45 and thus, by age 65, relatively insignificant.

§This is indicated in Figure 6 by the continuous red line (elimination of “circulatory” diseases) being
above the dotted black line (“Observed” differences before the elimination of any cause).
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Finally, an important remark should be made regarding the parabolic shape of the
results presented in Figure 6. This shape is due to the quadratic time term used in our
model specification. Indeed, including a quadratic time trend will result in a parabolic shape
in mortality rates, life expectancies and life-expectancy differences. Nevertheless, as shown
in Figures 2-5 this specification fits generally very well the historical rates and historical
life-expectancies. We would then expect that the qualitative results of our modelling would
be consistent with those of a more flexible specification of the impact of time on mortality.

5.2 Scenario 2: Meeting the WHO 25×25 target

The WHO Global Burden of Disease initiative identified reduction in the health burden
of non-communicable diseases (NCDs) as a major issue for sustainable development. In
response, the UN General Assembly signed a declaration committing member states to the
prevention and control of NCDs (United Nations (2011)). Countries agreed to adopt an
overarching target of reducing premature mortality (ages between 30 and 70) from the four
main NCDs (cardiovascular diseases, chronic respiratory diseases, cancers, and diabetes)
by 25% relative to their 2010 levels by 2025 (referred to as the 25×25 target).

Since a key feature of the cause-elimination approach introduced in this paper is that
it allows the consideration of simultaneous shocks to different causes, the WHO 25×25
target can be applied and its impact on life expectancy and social inequalities analysed.
However, the ICD classification used in our database does not exactly coincide with the
required classification to analyse the WHO target. Indeed, we cannot analyse diabetes
as a separate category (which represent around 1% of deaths in England) and we are
additionally including acute respiratory conditions such as pneumonia in the respiratory
category. Nevertheless, as the implied differences are minimal, applying the 25×25 target
by reducing mortality from circulatory diseases, respiratory diseases and neoplasms by 25%
still provides a very good estimation of the potential impacts of the WHO target on life
expectancy. Besides, this 25% decrease is applied across all ages, even if the 25×25 target
focuses only on premature mortality. Indeed, we assume that actions to prevent premature
deaths from NCDs will act at successively older ages. However, this assumption can easily
be changed, the model allowing to have different mortality reductions across age-groups.

Within our model framework, the 25×25 target is equivalent to setting in Equations 3
and 4, ρi = 0.75 for circulatory diseases, respiratory diseases and neoplasms while main-
taining ρi = 1 for the other three groups of causes. A second more aggressive target is
also analysed: since the 25×25 target is planned over 15 years (2010-2025), this would
correspond to a 40% decline in 25 years (1981-2007). Thus, we also present results for a
40% mortality decrease for circulatory diseases, respiratory diseases and neoplasms (“40
target”). This is equivalent to setting ρi = 0.6 for these three groups of causes-of-death.
Tables 4 and 5 present for men and women, respectively, the remaining life expectancies
at ages 25, 45 and 65 for each deprivation quintile under each of the two WHO target sce-
narios. We see that for both men and women and at at all ages and deprivation quintiles,
achieving this reduction in cause-specific mortality results in a significant increase in life
expectancy. For instance, for men aged 25, life expectancy would increase from an average
across quintiles of 53.67 year in 2007 to 55.99 years under the the 25×25 target. However,
it is worth noticing that the achievement of the WHO targets might result in an increase
in life expectancy inequalities at some ages. For example for men aged 65 the 40 target
would result in a 0.12 year increase in the difference in life expectancy between the least
and most deprived quintiles of England.
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5.3 Scenario 3: Optimal national targets to increase life expectancy
and reduce inequalities

This raises the question of which scenario of cause-elimination would help to close the life
expectancy gap while achieving the highest overall increase in life expectancy across the
society? We can answer such policy question using a multi-objective optimisation approach
whereby we seek to find (under some constraints) the scenario of cause-specific reduction
shocks which simultaneously maximises the overall gain in life expectancy and minimises
the gap in life expectancy between the least and most deprived quintiles.

Formally, let ex,g,s,t(ρ) denote the remaining life expectancy at age x for gender g, socio-
economic circumstance s and time t given a cause-reduction scenario ρ = (ρ1, . . . , ρn).
Then, for fixed age x, gender g and time t, the optimisation problem can be formulated as
follows

min {f1(ρ) = −1
5

∑
s ex,g,s,t(ρ), f2(ρ) = ex,g,Q1,t(ρ)− ex,g,Q5,t(ρ)}, (5)

s.t.
n∑
i=1

(1− ρi) ≤ K; (6)

ρ ≤ ρi ≤ 1 i = 1, . . . , n, (7)

where, the first objective f1 is equivalent to maximising the average life expectancy across
deprivation quintiles and the second objective f2 minimises the absolute difference in life
expectancy between the least deprived quintile (Q1) and the most deprived quintile (Q5).
In the above optimisation problem Equation (6) is a total shock constraint indicating that
a total shock of K is allowed across all causes while constraint (7) indicates that marginal
increases are not allowed and that a cause can be only reduced up to a level ρ.

We now use the optimisation problem to evaluate if the WHO 25×25 and WHO 40
targets are “optimal”. In order to do so, we have solved the optimisation problem with:

• ρ = 1− 0.25 = 0.75 and K = 3× 0.25 = 0.75 for the WHO 25×25 target and

• ρ = 1− 0.4 = 0.6 and K = 3× 0.4 = 1.2 for the WHO 40 target.

By setting ρ = 0.75 for the WHO 25×25 target, we impose a maximum mortality decrease
of 25% for each of the six causes. Besides, by imposing K = 0.75, we require that the
cumulated mortality decrease across the causes is of maximum 75%. This is in line with
the total shock that is aimed at by the WHO 25×25 target, namely a 25% mortality
reduction from circulatory diseases, respiratory diseases and neoplasms, for a total shock
of 75%. This maximum cumulated mortality decrease can be achieved through different
combinations: 1) Reducing only one cause-specific mortality rate by 75% and keeping all
the other mortality rates constant; 2) Reducing one cause-specific mortality rate by 50%
and another one by 25%; 3) Reducing each of the six analysed cause-of-death mortality by
10% (since the total needs to be equivalent or smaller than 75%); etc. Thus, as in the WHO
25×25 target, we allow a mortality decrease of maximum 25% per cause and a total shock
of maximum 75%. However, we do not pre-specify the causes-of-death that need to be
reduced. The optimisation procedure will determine among all the possible combinations,
which one corresponds to the highest gain in life expectancy and highest reduction in social
inequalities. The same approach is applied for the WHO 40 target.

Figure 7 presents for each sex and ages 25, 45, 65 the Pareto Front for both WHO
target scenarios. These plots depict in each axis each of the two objectives, indicating
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what is the maximum average life expectancy, f1, that can be achieved for a given gap in
life expectancy, f2. Figures 8 and 9 plot for the WHO 25×25 and the WHO 40 targets,
respectively, the cause-specific shocks, ρi, that would need to be applied to achieve a given
gap in life expectancy. For example, for men aged 25 and the 25×25 target scenario, Figure
8 shows that to achieve a gap in life expectancy of 7.1 years, diseases of the respiratory
system need to be reduced by 20% (ρrespiratory = 0.8), neoplasms need to be reduced by
5% (ρneoplasms = 0.95), and digestive and circulatory diseases need to be reduced by 25%
(ρdigestive = ρcirculatory = 0.75). In parallel, an inequality gap of 7.1 years for men aged 25
corresponds to an average life expectancy across social groups of about 55.3, as described
by Figure 7. From these three figures we note the following:

• The conflicting nature of the objectives becomes clear with higher average gains in
life expectancy coming at the cost of a wider life expectancy gap. For instance, under
the WHO 40 policy scenario, the minimum life expectancy gap for men aged 25 is
6.82 years which corresponds to the lowest average life expectancy (54.6 years) and
the maximum average life expectancy is 57.81 which corresponds to the highest life
expectancy gap (7.3 years, Figure 7).

• While for women the optimal shocks are independent of age, for men the optimal
policy is age dependent (Figures 8 and 9 differ by age for men, as opposed to women).

• In particular, for women of all ages, if the aim is to increase life expectancy indepen-
dently of life expectancy gap (top-right end of plots in Figure 7), then the optimal
policy target should be to reduce mortality from circulatory diseases, neoplasms and
other causes-of-death (right end of plots in Figures 8 and 9). By contrast for men of
all ages the maximum increase in life expectancy is achieved by targeting mortality
from circulatory, neoplasms and respiratory diseases.

• For women of all ages, if the aim is to decrease life expectancy gap independently of
increase in life expectancy (bottom-left end of plots in Figure 7), then the optimal
policy target should be to reduce mortality from neoplasms, respiratory and digestive
diseases (left end of plots in Figures 8 and 9). By contrast, for men of all ages the
minimum gap in life expectancy is achieved by targeting digestive, respiratory and
external causes. Circulatory diseases also need to be targeted for men aged 45.

Of main interests in multi-objective optimisation problems are the so-called “knees”
of the Pareto Front (Branke et al., 2004), i.e., those solutions around which a marginal
increase in life expectancy would result in significant increase in life expectancy inequalities
or where a marginal decrease in inequalities will result in significant reduction in the average
life expectancy. In the absence of any additional information, such solutions are likely to
be the ones preferred by the policy maker.

For women of all ages the “knee” solutions correspond to the policy scenario target-
ing mortality from circulatory diseases, neoplasms and respiratory diseases (with a 25%
mortality reduction for each cause for the WHO 25×25 target and a 40% mortality reduc-
tion for the WHO 40 target). Interestingly, this coincides with the original WHO targets,
suggesting that the WHO policy is optimal for women. By contrast, for men of all ages
the “knee” solutions correspond to the policy scenario targeting mortality from circulatory,
digestive and respiratory diseases (with a 25% or 40% mortality decrease for each cause,
depending on the WHO target analysed), which does not coincide with the original WHO
targets. Hence, for men in England, a possibly more appropriate policy would be targeting
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digestive diseases – which is one of the main contributors to socio-economic inequalities –
as opposed to neoplasms.

6 Conclusion

This paper provides the basis to assist government bodies in implementing well-informed
strategies aimed at reducing social inequalities. This is especially relevant today in Eng-
land and around the world, where addressing such inequalities has become a key focus of
public policy. The proposed approach uses cause-specific mortality data in order to gain
insight into differences in life expectancies by deprivation categories. We investigate the
relationship between socio-economic circumstances and cause-specific mortality on a unique
dataset obtained from the UK Office for National Statistics and apply a model that has the
ability to incorporate any combination of cause-specific mortality shocks. This investigation
is performed in two steps. First, the model developed by Alai et al. (2015a) is extended
to allow for socio-economic covariates. Its simplicity and ability to incorporate additional
covariates results in a robust modelling framework whose main limitation – in common with
existing competing risks models – is its inability to address any extrinsic dependence among
the different causes. In addition, the intuitive interpretation and flexibility of our model
can help countries to tailor the policy response to meet the spirit of the WHO targets (e.g.
reduction by 25% of a locally-defined set of non-communicable diseases, across all ages
or premature mortality). Second, an optimisation procedure is developed that identifies
the cause-specific reduction scenario that simultaneously maximises the overall gain in life
expectancy whilst minimising social inequalities.

The results presented in this paper may have important consequences in forming public
policy. First, it is well-known that the decline in heart disease mortality was a major
contributor to increases in life expectancy over the past 25 years for men and women across
all socio-economic groups (Bajekal et al. (2013b)). This decline contributed to a decrease
in the inequalities in the 1990’s. However, more recently, the elimination, or reduction, of
such causes-of-death contributes, according to our results, to an increase in inequalities by
socio-economic circumstances. Public policy exclusively targeting cardiovascular diseases
may, therefore, be contradictory to the aim of reducing the social gradient in life expectancy.

Second, insight into the latest time trends is a crucial factor to determining policy aimed
at a reduction in inequalities. Indeed, by 2007, the picture has significantly changed in terms
of identifying the optimal cause-of-death to target in order to reduce life expectancy gaps.
For example, eliminating neoplasms would have reduced the gap in the 1980’s, whilst doing
so more recently would have actually increased it.

Third, if the aim is to reduce the inequalities for all age-groups and both genders, then,
based on the situation in 2007, respiratory diseases need to be targeted for elimination.
Since these deaths are largely related to smoking habits, prevention campaigns and other
forms of dissuasion should be implemented. Public policy could also focus on targeting
digestive diseases (e.g. liver cirrhosis) and external causes-of-death (accidents) in order to
reduce the inequality gaps at younger ages, particularly for men.

Fourth, the targets set by WHO result in an increase in life expectancy for all groups,
but also result in increasing inequalities for men. The developed optimisation procedure
indicates that it would be better for the male population to target digestive diseases instead
of neoplasms; this would achieve an optimal balance between increasing life expectancy and
reducing the inequality gap.

Finally, it is worth highlighting that the way in which dependence is treated plays a
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very important role in our model framework. Including different dependence assumptions
in our model would provide important and complementary information. For example,
interesting properties of various multivariate distributions have recently been formulated
that may be applicable to the study of cause-of-death dependence. In the work of Alai et al.
(2013) a multivariate gamma distribution, based on a common shock model, was applied
to lifetime data and later generalized to include Tweedie distributions in Alai et al. (2015b,
2016b). If the link between different causes is established via shared risk factors, a common
shock model may be appropriate. Furthermore, a multivariate Pareto distribution with a
parametric form of dependence was shown to be well-estimated via the distribution of the
minimum value of its marginals, see Alai et al. (2016a); this may render it suitable for
cause-of-death lifetime data, where only the minimum observation is available.

Besides, the model can easily be extended to include shocks that differ across ages (as
mentioned by Alai et al. (2015a)) or that are changing over time. The underlying theory is
not made more complex by allowing age-dependent and time-dependent shocks. The model
is thus very flexible and can be adapted to the need of the decision-makers.

Naturally, any study on mortality reduction necessarily leads to the very interesting
and controversial discussion on the biological processes of ageing, considered by many as
the greatest underlying risk factor impacting mortality; see e.g. Hayflick (2004). While
some experts, such as De Grey (2006), expect huge mortality improvements for the coming
century, others are more pessimistic. They argue that the human body was not designed for
long-term use, and thus humans cannot biologically live much longer except if we manage,
in the future, to alter our basic biology; see e.g. Olshansky et al. (2002). The latter case
implies that if we managed to reduce current health inequalities by attacking one disease at
a time, a new set of health inequalities will emerge, as the body is biologically ageing and
thus malfunctioning. Inequalities will then never disappear. Such questions are naturally
important to study, but well beyond the scope of this paper.

We acknowledge some potential limitations arising from the definition of socio-economic
categories we have used in our study. Our deprivation classification is defined using the
IMD 2007, effectively assuming that this classification – and hence the identification of
deprivation quintiles – does not change over time. This, coupled with the possible selective
migration of healthy people to better-off areas, may compromise the validity of our results.
Fortunately, as discussed in Bajekal et al. (2013a), most small areas in England have re-
mained in their quintile group over the 1981-2007 period of our data and selective migration
does not have a significant impact on the analysis of trends in mortality inequalities.

To conclude, the optimisation procedure and corresponding results introduced in Section
5.3 are presented for illustrative purposes. It aims to show the wide variety of analyses
that can be performed within our model framework. We are currently working on an
extension that incorporates a budget constraint, as defined in Equation 6, rather than a total
shock constraint. Such a constraint would allow for the inclusion of relevant costs incurred
from strategic policy aimed at reducing certain cause-specific mortality rates. This would
also allow us to consider socio-economic-dependent shocks. Indeed, as some treatment or
prevention plan may affect the groups differently, we may assume that public policy may
wish to adjust their spending across specific groups in the population in order to achieve
uniform shocks (or equity in outcomes) or, to the contrary, target resources on high-risk
groups. In light of these costs, the optimal strategy might be adjusted in favour of others
that maximise life expectancy “returns”. In other words, the targeted cause-of-death would
be identified not only via its impact on life expectancy and social inequality gaps, but also
on the impact implementation would have on the national budget. Such a model would be
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of great added value for ensuring well-informed public policy.
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Figure 1: Death Classification over the Period 1981 to 2007 in England
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Figure 2: Observed and Fitted Values of Mortality Rates over Time, Age-Group 65–69,
Males
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Figure 3: Observed and Fitted Values of Mortality Rates over Time, Age-Group 65–69,
Females
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Figure 4: Observed and Fitted Values of Survival Rates over Time
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Figure 5: Observed and Fitted Life Expectancies over Time
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Figure 6: Impacts of Cause-Elimination on the Gap in Life Expectancy Between the Least
deprived and Most deprived Socio-Economic Categories
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Figure 7: Pareto Front of the Two Optimal WHO Targets
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Figure 8: Optimal Policies for WHO 25×25 Target
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Figure 9: Optimal Policies for WHO 40 Target

Men, Age 65 Women, Age 65

Men, Age 45 Women, Age 45

Men, Age 25 Women, Age 25

3.9 4.0 4.1 4.2 3.0 3.2 3.4 3.6

6.1 6.2 6.3 4.4 4.6 4.8

6.8 6.9 7.0 7.1 7.2 7.3 4.8 5.0 5.2

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

Absolute Life Expectancy Gap, f2(ρ)

S
ho

ck
 (

ρ i
)

Cause

circulatory

digestive

external

neoplasms

other

respiratory

29



Table 1: Analysis of Effects

Analysis of Effects
Effect DF Wald Pr > ChiSq

Chi-Square
gender (g) 6 345 <.0001
age (x) 72 579825 <.0001
imd07q (s) 24 1092 <.0001
period (t) 6 204 <.0001
period2 (t2) 6 167 <.0001
gender*age 72 19678 <.0001
gender*imd07q 24 35 0.0724
gender*period 6 37 <.0001
gender*period2 6 31 <.0001
age*imd07q 288 70199 <.0001
age*period 72 5456 <.0001
age*period2 72 3546 <.0001
imd07q*period 24 183 <.0001
imd07q*period2 24 120 <.0001
gender*age*imd07q 288 2822 <.0001
gender*age*period 72 1622 <.0001
gender*age*period2 72 1103 <.0001
gender*imd07q*period 24 197 <.0001
gender*imd07q*period2 24 128 <.0001

Table 2: Residual Life Expectancy for Men, Age 65, 2007

Residual Life Expectancy Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 19.38 18.51 17.84 16.78 15.42 17.59 3.96
Fitted {–circulatory} 23.93 22.92 22.24 20.99 19.37 21.89 4.56
absolute gain 4.55 4.41 4.4 4.21 3.95 4.30 0.60
relative gain 123% 124% 125% 125% 126% 125% -2%
Fitted {–digestive} 19.7 18.84 18.17 17.13 15.79 17.93 3.91
absolute gain 0.32 0.33 0.33 0.35 0.37 0.34 -0.05
relative gain 102% 102% 102% 102% 102% 102% -1%
Fitted {–external} 19.53 18.66 17.99 16.93 15.56 17.73 3.97
absolute gain 0.15 0.15 0.15 0.15 0.14 0.15 0.01
relative gain 101% 101% 101% 101% 101% 101% 0%
Fitted {–neoplasms} 22.5 21.52 20.78 19.63 18.2 20.53 4.30
absolute gain 3.12 3.01 2.94 2.85 2.78 2.94 0.34
relative gain 116% 116% 116% 117% 118% 117% -2%
Fitted {–other} 20.54 19.61 18.87 17.75 16.29 18.61 4.25
absolute gain 1.16 1.1 1.03 0.97 0.87 1.03 0.29
relative gain 106% 106% 106% 106% 106% 106% 0%
Fitted {–respiratory} 20.8 19.95 19.33 18.36 17.09 19.11 3.71
absolute gain 1.42 1.44 1.49 1.58 1.67 1.52 -0.25
relative gain 107% 108% 108% 109% 111% 109% -4%
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Table 3: Residual Life Expectancy for Women, Age 65, 2007

Residual Life Expectancy Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 21.54 20.79 20.28 19.5 18.35 20.09 3.19
Fitted {–circulatory} 26.21 25.27 24.76 23.87 22.42 24.51 3.79
absolute gain 4.67 4.48 4.48 4.37 4.07 4.41 0.60
relative gain 122% 122% 122% 122% 122% 122% 0%
Fitted {–digestive} 21.94 21.21 20.71 19.95 18.82 20.53 3.12
absolute gain 0.4 0.42 0.43 0.45 0.47 0.43 -0.07
relative gain 102% 102% 102% 102% 103% 102% -1%
Fitted {–external} 21.71 20.96 20.45 19.66 18.51 20.26 3.20
absolute gain 0.17 0.17 0.17 0.16 0.16 0.17 0.01
relative gain 101% 101% 101% 101% 101% 101% 0%
Fitted {–neoplasms} 23.89 23.1 22.61 21.82 20.7 22.42 3.19
absolute gain 2.35 2.31 2.33 2.32 2.35 2.33 0.00
relative gain 111% 111% 111% 112% 113% 112% -2%
Fitted {–other} 23.46 22.63 22.05 21.14 19.85 21.83 3.61
absolute gain 1.92 1.84 1.77 1.64 1.5 1.73 0.42
relative gain 109% 109% 109% 108% 108% 109% 1%
Fitted {–respiratory} 23.02 22.3 21.85 21.22 20.21 21.72 2.81
absolute gain 1.48 1.51 1.57 1.72 1.86 1.63 -0.38
relative gain 107% 107% 108% 109% 110% 108% -3%

Table 4: Residual Life Expectancy for Men in 2007 under WHO Scenarios

Age 25
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 2007 56.77 55.47 54.31 52.38 49.44 53.67 7.33
25×25 Target 59.08 57.76 56.62 54.71 51.79 55.99 7.29
40 Target 60.91 59.57 56.62 56.52 53.60 57.44 7.30

Age 45
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 2007 37.39 36.21 35.18 33.47 30.99 34.65 6.40
25×25 Target 39.67 38.57 37.46 35.77 33.31 36.94 6.36
40 Target 41.48 40.26 39.26 37.57 35.11 38.74 6.37

Age 65
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 2007 19.38 18.51 17.84 16.78 15.42 17.59 1.79
25×25 Target 21.41 20.49 19.82 18.73 17.33 19.56 1.85
40 Target 23.06 22.10 21.42 20.31 18.87 21.15 1.91
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Table 5: Residual Life Expectancy for Women in 2007 under WHO Scenarios

Age 25
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 2007 59.58 58.60 57.77 56.50 54.49 57.39 5.09
25×25 Target 61.70 60.71 59.93 58.73 56.77 59.57 4.93
40 Target 63.34 62.32 59.93 60.43 58.50 60.90 4.84

Age 45
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 2007 40.00 39.07 38.32 37.14 35.33 37.97 4.66
25×25 Target 42.08 41.13 40.43 39.31 37.56 40.10 4.51
40 Target 43.68 42.72 42.05 40.98 39.25 41.74 4.43

Age 65
Scenario Q1 Q2 Q3 Q4 Q5 Average Q1-Q5
Fitted 2007 21.54 20.79 20.28 19.50 18.35 20.09 3.18
25×25 Target 23.40 22.62 22.13 21.37 20.22 21.95 3.18
40 Target 24.87 24.05 23.58 22.84 21.68 23.40 3.19
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A Common and Prevalent Causes of Death

Table A.1: ICD Classification

ICD Chapter Common Conditions
Neoplasms (cancer) Lung (trachea, bronchus), Colon (rectum, anus),

Breast, Prostate
Circulatory Ischemic heart disease (heart attack),

Cerebrovascular disease (stroke)
Respiratory Influenza and pneumonia,

Chronic obstructive respiratory disease
(bronchitis, emphysema, asthma)

Digestive Peptic ulcer, Cirrhosis and
chronic liver disease, Hernia

External Non-transport accidents, Intentional self-harm,
Motor vehicle accidents

Other Diabetes mellitus, Dementia, Renal failure,
Parkinsons, Alzheimers disease
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