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Abstract

We show how to write the solution to the generalized drift Skorokhod

problem in one-dimension in terms of the supremum of the solution of a

tractable unrestricted integral equation (that is, an integral equation with

no boundaries). As an application of our result, we equate the transient

distribution of a reflected Ornstein-Uhlenbeck (O-U) process to the first hitting

time distribution of an O-U process (that is not reflected). Then, we use this

relationship to approximate the transient distribution of the GI/GI/1 + GI

queue in conventional heavy traffic and the M/M/N/N queue in a many-server

heavy traffic regime.
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1. Introduction

The Skorokhod problem was originally introduced by Skorokhod [15] in order to

study continuous solutions to stochastic differential equations with a reflecting bound-

ary at zero.
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Definition (Skorokhod Problem). Given a process X ∈ D([0,∞),R), we say

that the pair of processes (Z,L) ∈ D2([0,∞),R) satisfy the Skorokhod problem for X

if the following four conditions are satisfied,

1. Z(t) = X(t) + L(t) for t ≥ 0,

2. Z(t) ≥ 0 for t ≥ 0,

3. L is non-decreasing with L(0−) = 0,

4.
∫∞
0

1{Z(t) > 0}dL(t) = 0.

It is well known that for eachX ∈ D([0,∞),R), the unique solution (Z,L) = (Φ(X),Ψ(X))

to the Skorokhod problem is

Z(t) = X(t) + sup
0≤s≤t

−X(s) ∨ 0 and L(t) = sup
0≤s≤t

−X(s) ∨ 0. (1.1)

In subsequent papers, the Skorokhod problem has been extended to multiple dimen-

sions and also to include both smooth and non-smooth domains (see, for example,

Chaleyat-Maurel et al [4], Dupuis and Ishii [6], Harrison and Reiman [8], Ramanan [13],

Tanaka [17]), although we do not treat such cases in the present paper. There is

a useful integral representation of the one-dimensional Skorokhod problem solution

(see Anantharam and Konstantopoulos [2]). There is also an explicit solution to the

(one-dimensional) Skorokhod problem when there is an upper boundary (see Kruk

et al [9] [10])) and to the (one-dimensional) Skorokhod problem in a time-dependent

interval (see Burdzy et al [3]).

In this paper, we study a generalization of the one-dimensional Skorokhod problem

that incorporates a state-dependent drift.

Definition (Generalized Drift Skorokhod Problem in One Dimension).

Given a process X ∈ D([0,∞),R) with X(0) = 0 and a Lipschitz continuous function

f : R+ → R, we say that the pair of processes (Z,L) ∈ D2([0,∞),R) satisfy the

Skorokhod problem for X with state dependent drift function f if the following four

conditions are satisfied,
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1. Z(t) = X(t)−
∫ t
0
f(Z(s))ds+ L(t) for t ≥ 0,

2. Z(t) ≥ 0 for t ≥ 0,

3. L is non-decreasing with L(0−) = 0,

4.
∫∞
0

1{Z(t) > 0}dL(t) = 0.

The unique solution to the generalized drift Skorokhod problem in one dimension

can be written in terms of the solution to the Skorokhod problem following a standard

construction; see, for example Zhang [22]. Specifically, set

(Z,L) = (Φ (M(X)) ,Ψ (M(X))) , (1.2)

for M : D ([0,∞),R) → D ([0,∞),R) the mapping that sets M(X) = V for V that

solves the integral equation

V (t) = X(t)−
∫ t

0

f (Φ (V ) (s)) ds, for all t ≥ 0. (1.3)

Note that since f : R+ → R is a Lipschitz continuous function, a standard Pi-

card iteration shows that there exists a unique solution to (1.3). The fact that

(Φ (M(X)) ,Ψ (M(X))) solves the Skorokhod problem for M(X) (and so satisfies

conditions 1-4 in the definition of the Skorokhod problem) shows that conditions 1-4 in

the definition of the generalized drift Skorokhod problem are satisfied. The uniqueness

of the representation (1.2) follows from the uniqueness of the mappingsM and (Φ,Ψ).

Next, we observe that the solution Z can be represented in terms of an unrestricted

integral equation (that is, an integral equation with no boundaries). Specifically, note

from (1.3) that

V (t)− V (s) = X(t)−X(s)−
∫ t

s

f (Φ (V ) (u)) du.

Since when X(0) = 0,

Φ(V )(u) = sup
0≤r≤u

V (u)− V (r),

if we define

R(s, t) = V (t)− V (s),
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then

R(s, t) = X(t)−X(s)−
∫ t

s

f

(
sup

0≤r≤u
R(r, u)

)
du. (1.4)

Finally, it follows from (1.2) and the above displays that

Z(t) = sup
0≤s≤t

R(s, t). (1.5)

However, the integral equation (1.4) is not tractable.

In this paper, we establish how to represent Z in terms of the solution to a tractable

unrestricted integral equation. Specifically, we establish that

Z(t) = sup
0≤s≤t

Zs(t− s), t ≥ 0, (1.6)

for Zs = {Zs(t), t ≥ 0} that solves

Zs(t) = X(s+ t)−X(s)−
∫ t

0

fe(Zs(u))du, (1.7)

and fe : R → R any extension of f : R+ → R that preserves the Lipschitz continuity

of f . For one example, let fe(x) = f(0) if x < 0 and fe(x) = f(x) if x ≥ 0. It is

interesting to observe that it follows from (1.5) and (1.6) that

sup
0≤s≤t

R(s, t) = sup
0≤s≤t

Zs(t− s)

As an application of the representation (1.6), we show how to use (1.6) to write

the transient distribution of a reflected Ornstein-Uhlenbeck (O-U) process in terms of

the first hitting time distribution of an unreflected O-U process, which additionally

yields a uniform integrability result for reflected O-U processes. Such a result can

also be derived using duality theory (see, for example, Cox and Rosler [5] and Sigman

and Ryan [14]); however, the proof methodology is much different, because there is

no sample path representation that is equivalent to (1.6) in either [5] or [14]. Because

the reflected O-U process has been shown to approximate the GI/GI/1 + GI and

M/M/N/N queues (see Ward and Glynn [20] and Srikant and Whitt [16]), we see that

the transient distribution of the number-in-system process for the GI/GI/1 +GI and
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M/M/N/N queues can be approximated by the first hitting time distribution of an

O-U process (that is not reflected).

The remainder of this paper is organized as follows. Section 2 proves (1.6). Section 3

applies (1.6) in the context of a reflected O-U process. Section 4 performs simulation

studies that support approximating the transient distribution of the number-in-system

process for the GI/GI/1 + GI and M/M/N/N queues with the first hitting time

distribution of an O-U process (that is not reflected).

2. The Generalized Drift Skorokhod Problem Solution (in One Dimension)

In this section, we establish (1.6).

Theorem 2.1. Let (Z,L) be the unique solution to the generalized Skorokhod problem

for X with X(0) = 0, and with state dependent drift function f that is Lipschitz

continuous. For each s ≥ 0, let Zs be defined as in (1.7). Then, for each t ≥ 0,

Z(t) = sup
0≤s≤t

Zs(t− s).

Proof. We first claim that for each 0 ≤ s ≤ t,

Zs(t− s) ≤ Z(t).

To see this, first recall from (1.7) that Zs(t− s) is the solution to the equation

Zs(u) = X(s+ u)−X(s)−
∫ u

0

fe(Zs(v))dv, (2.1)

evaluated at the point u = t− s, where fe : R 7→ R is an arbitrary Lipschitz extension

of f : R+ 7→ R. Next, it is straightforward to see from part (1) of the definition of the

generalized Skorokhod problem that Z(t) is the unique solution to the equation

Z(s+ u) = Z(s) + (X(s+ u)−X(s) + L(s+ u)− L(s))−
∫ u

0

fe(Z(s+ v))dv, (2.2)

for u ≥ 0, also evaluated at the point u = t− s (note that in (2.2) we have replaced f
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by fe). Subtracting (2.1) from (2.2) we therefore obtain that

(Z(s+ u)− Zs(u)) = Z(s) + L(s+ u)− L(s)−
∫ u

0

(fe(Z(s+ v))− fe(Zs(v)))dv,

for u ≥ 0. Note also that by the Lipschitz continuity of fe, we have that for some

constant K > 0,

(Z(s+ u)− Zs(u)) ≥ Z(s) + L(s+ u)− L(s)−K
∫ u

0

|Z(s+ v))− Zs(v)|dv, (2.3)

for u ≥ 0. Now consider the solution Ws = {Ws(u), u ≥ 0} to the ordinary differential

equation

Ws(u) = Z(s) + L(s+ u)− L(s)−K
∫ u

0

|Ws(v)|dv, u ≥ 0. (2.4)

We claim that

Ws(u) = Z(s)e−Ku +

∫ u

0

eK(v−u)dL(s+ v), u ≥ 0.

This may be verified by noting that Ws(u) ≥ 0 for u ≥ 0, since Z(s) ≥ 0 and L is a

non-decreasing function. Subtracting (2.4) from (2.3) and using Gronwall’s inequality,

it follows that Z(s+u)−Zs(u) ≥Ws(u) ≥ 0 and so Z(s+u) ≥ Zs(u), which, evaluating

at u = t− s, yields Zs(t− s) ≤ Z(t), our desired result. We have therefore shown that

Z(t) ≥ sup
0≤s≤t

{Zs(t− s)}. (2.5)

It now remains to reverse the direction of the inequality in (2.5). In order to do so,

it suffices to show that there exists at least one point s? such that Zs?(t− s?) = Z(t).

Let s? = sup{s ≤ t : Z(s) = 0} be the last time at which the process Z hit zero. Note

that s? is well defined since Z(0) = 0. Also note that L(s) = L(s?) for s ≥ s?. Thus,

by (2.2), we have that

Z(s? + u) = X(s? + u)−X(s?)−
∫ u

0

fe (Z(s? + v)) dv, u ≥ 0, (2.6)

and so, Z(s? + u) = Zs?(u) for 0 ≤ u ≤ t − s?, and, in particular Z(t) = Zs?(t − s?),
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which completes the proof.

3. Reflected Ornstein-Uhlenbeck (O-U) Processes

In this section we let the process X in the definition of the generalized Skorokhod

problem be a Brownian motion with constant drift θ and infinitesimal variance σ2

defined on a suitable probability space (Ω,F ,P). We also set f(x) = γx for x ≥ 0,

for some γ ∈ R. The resulting process Z, defined sample pathwise as the solution to

the generalized Skorokhod problem for X and f , is referred to as a (σ, θ, γ) reflected

O-U process, that has initial condition Z(0) = 0. It is immediate that the following

definition of a reflected O-U process is equivalent to the prescription given above.

Definition (Reflected O-U Process). Let B = {B(t), t ≥ 0} be a standard

Brownian motion defined on a probability space (Ω,F ,P) and let σ > 0, and θ, γ ∈ R.

We say that the process Z is a (σ, θ, γ) reflected O-U process if the following four

conditions are satisfied P-a.s.

1. Z(t) = σB(t) + θt− γ
∫ t
0
Z(s)ds+ L(t) for t ≥ 0,

2. Z(t) ≥ 0 for t ≥ 0,

3. L is non-decreasing with L(0−) = 0,

4.
∫∞
0

1{Z(t) > 0}dL(t) = 0.

Now for each s ≥ 0, recall from (1.7) the definition of the associated unreflected

processes

Zs(u) = (σB(s+ u) + θ(s+ u))− (σB(s) + θs))− γ
∫ u

0

Zs(v)dv,

u ≥ 0, where here we have set X(t) = σB(t) + θt, and we take the natural extension

fe(x) = γx for x ∈ R. For clarity of exposition in the sequel, we now hold t ≥ 0 fixed

and define the new process

Yt(u) = Zt−u(u), 0 ≤ u ≤ t.
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Since {Yt(u), 0 ≤ u ≤ t} is just the process {Zs(t− s), 0 ≤ s ≤ t} run backwards in

time, it follows that

sup
0≤u≤t

{Yt(u)} = sup
0≤s≤t

{Zs(t− s)},

and so from Theorem 2.1 we have that if Z is a (σ, θ, γ) reflected O-U process, then

Z(t) = sup
0≤u≤t

{Yt(u)}. (3.1)

In preparation for our next result, we now say that a process X is a (σ, θ, γ) O-U

process starting from X(0) (note the absence of reflection here) if it is the unique strong

solution to the stochastic differential equation

X(t) = X(0) + σB(t) + θt−
∫ t

0

γX(s)ds,

for t ≥ 0, where B is a standard Brownian motion. We then make the following claim

regarding the process {Yt(u), 0 ≤ u ≤ t}.

Proposition 3.1. {eγuYt(u), 0 ≤ u ≤ t} is equal in distribution to a (σ, θ,−γ) O-U

process on [0, t] which starts from zero.

Proof. First note that since X(t) = σB(t) + θt is a Brownian motion with infinites-

imal variance σ2 and constant drift θ, it follows that for each s ≥ 0, the process

Xs = {X(s+ t)−X(s), t ≥ 0} is also Brownian motion with the same parameters and

so we have that for each s ≥ 0, the process Zs = {Zs(u), u ≥ 0} is an O-U process

whose explicit solution is given by

Zs(u) = (θ/γ)(1− e−γu) +

∫ u

0

σeγ(v−u)dBs(v), u ≥ 0,

where Bs = {B(s+ t)−B(s), t ≥ 0}.

Setting Yt(u) = Zt−u(u), it therefore follows that

Yt(u) = (θ/γ)(1− e−γu) +

∫ u

0

σeγ(v−u)dBt−u(v).
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However, since dBt−u(v) = dB(t− u+ v), the change with respect to v, it follows that

making the change of variables ζ = u− v, we have that the above becomes

Yt(u) = (θ/γ)(1− e−γu) +

∫ u

0

σeγ(v−u)dB(t− u+ v)

= (θ/γ)(1− e−γu) +

∫ 0

u

σe−γζdB(t− ζ)

= (θ/γ)(1− e−γu)−
∫ u

0

σe−γζdB(t− ζ).

However, it clear that the above, as a process, is also equal in distribution to

(θ/γ)(1− e−γu) +

∫ u

0

σe−γtdB(t), u ≥ 0.

Multiplying both sides of the above by eγu, we then obtain that

eγuYt(u) = (−θ/γ)(1− eγu) +

∫ u

0

σe−γ(t−u)dB(t),

which is just an Ornstein-Uhleneck process on [0, t] with infinitesimal variance σ2,

constant drift θ and linear drift −γ.

The following is now our main result of this section which relates the distribution

of the supremum appearing in (3.1) to the first hitting distribution of an O-U process.

Let

σx = inf{t ≥ 0 : U(t) = x},

where U = {U(t), t ≥ 0} is an O-U process with parameters (σ,−γx + θ,−γ) and

started from 0. In other words, σx is the first hitting time of x by U . We then have

the following proposition.

Proposition 3.2. For each t ≥ 0,

P (Z(t) ≥ x) = P (σx ≤ t).
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Proof. Note that for each x ≥ 0

{
sup

0≤u≤t
Yt(u) ≥ x

}
= {inf{u : Yt(u) ≥ x} ≤ t}

= {inf{u : eγuYt(u) ≥ eγux} ≤ t}

= {inf{u : x(1− eγu) + eγuYt(u) ≥ x} ≤ t} .

Now, by Proposition 3.1, {x(1− eγu) + eγuYt(u), u ≥ 0} is simply an O-U process with

infinitesimal variance σ2, constant drift −γx+ θ and linear drift −γ. The result then

follows immediately.

Sigman and Ryan [14] establish an equivalent result to Proposition 3.2; however,

their proof methodology is much different. In particular, [14] relates the transient

distribution of any continuous-time, real-valued stochastic process that can be defined

recursively (either explicitly in discrete time or implicitly in continuous time, through

the use of an integral equation) to the ruin time of a dual risk process. There is no

result in [14] that is equivalent to Theorem 2.1, which is the basis for our proof of

Proposition 3.2.

3.1. Computing the First Hitting Time

In order to use Proposition 3.2 to compute P (Z(t) ≥ x), it is necessary that the

distribution of σx is known. Fortunately, there are various results in the literature

available for computing the first hitting time distributions of O-U processes. Linet-

sky [11] provides a spectral expansion for the first hitting time of O-U processes and the

results of Alili et al [1] provide three different means to compute various probabilities

associated with this hitting time. In what follows, we use the results in [1].

Let p
(σ,θ,γ)
x0→x denote the density of the distribution of σx for a (σ, θ, γ) O-U process,

so that we may write

P (σx ≤ t) =

∫ t

0

p(σ,θ,γ)x0→x (s)ds, t ≥ 0. (3.2)

[1] shows how to calculate p
(1,0,γ)
x0→x when γ > 0. Since we are interested in the more

general case, we first express p
(σ,θ,γ)
x0→x in terms of p

(1,0,γ)
x0→x . In order to do this, note that

since a (σ, θ, γ) O-U process starting from x0 has the same distribution as a (1, θ/σ, γ)
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O-U process starting from x0/σ, it follows that

p(σ,θ,γ)x0→x (t) = p
(1,θ/σ,γ)
x0/σ→x/σ(t), t ≥ 0. (3.3)

Next, Remark 2.5 in [1] shows that

p
(1,θ/σ,γ)
x0/σ→x/σ(t) = p

(1,0,γ)
x0/σ−θ/(σγ)→x/σ−θ/(σγ)(t), t ≥ 0. (3.4)

When x− θ/γ = 0, the above expression may be immediately evaluated because

p
(1,0,γ)
ζ→0 (t) =

|ζ|√
2π

(
λ

sinh(λt)

)3/2

exp

(
− λζ2e−λt

2sinh(λt)
+
λt

2

)
, (3.5)

as is found in Pitman and Yor [12] and reproduced in (2.8) in [1]. Otherwise, when

x−θ/γ 6= 0, one must appeal to one of the three representations in [1] (one that hinges

on an eigenvalue expansion, one that is an integral representation, and one that is

given in terms of a functional of a 3-dimensional Bessesl bridge) in order to compute

P (σx ≤ t).

To compute the transient distribution of the (σ, θ, γ) reflected O-U process Z, we

first apply Proposition 3.2, and then use the distributional equalities (3.3) and (3.4)

as follows

P (Z(t) ≥ x) = P (σx ≤ t) (3.6)

=

∫ t

0

p
(σ,−γx+θ,−γ)
0→x (s)ds

=

∫ t

0

P
(1,−γx+θσ ,−γ)
0→ x

σ
(s)ds

=

∫ t

0

p
(1,0,−γ)
θ
σγ−

x
σ→

θ
σγ

(s)ds.

We double-check the calculation (3.6) by recalling that it also follows [14]. Specifi-

cally, Proposition 4.3 in their paper establishes that

P (Z(t) ≥ x) = P
(
σR ≤ t

)
, (3.7)

where σR is the first time a (σ,−θ,−γ) O-U process with initial point x > 0 becomes
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negative. To see that (3.6) and (3.7) are equivalent, first observe that

P (σR ≤ t) =

∫ t

0

p
(σ,−θ,−γ)
x→0 (s)ds

=

∫ t

0

p
(1,−θσ ,−γ)
x
σ→0 (s)ds

=

∫ t

0

p
(1,0,−γ)
x
σ−

θ
σγ→−

θ
σγ

(s)ds,

where the second and third equalities follow from (3.3) and (3.4). Then, since symmetry

implies that

p
(1,0,−γ)
θ
σγ−

x
σ→

θ
σγ

(s) = p
(1,0,−γ)
x
σ−

θ
σγ→−

θ
σγ

(s),

we conclude that P (σx ≤ t) = P (σR ≤ t).

3.2. Uniform Integrability

It is well known (see, for example, Proposition 1 in Ward and Glynn [19]) that if

γ > 0, then for a (σ, θ, γ) reflected O-U process, Z(t) ⇒ Z(∞) as t → ∞, where

Z(∞) is a normal random variable with mean θ/γ and variance σ2/(2γ) conditioned

to be positive. We now show that the sequence of random variables {Z(t), t ≥ 0} is

uniformly integrable as well.

Proposition 3.3. If γ > 0, then for a (σ, θ, γ) reflected O-U process started at the

origin, the sequence of random variables {Z(t), t ≥ 0} is uniformly integrable.

Proof. First note that without loss of generality we may assume that σ = 1 since

otherwise we may rescale. Now recall that by Proposition 3.2, it follows that P (Z(t) ≥

x) = P (σx ≤ t), where σx = inf{t ≥ 0 : Ut = x}, where Ut is an O-U process with

parameters (1,−γx + θ,−γ) which is started from 0. Hence, is suffices to show that

there exists a function g integrable on R+ such that P (σx ≤ t) ≤ g(x) for all x, t ≥ 0.

Next, it follows from (3.6) that

P (σx ≤ t) =

∫ t

0

p
(1,0,−γ)
θ/γ−x→θ/γ(s)ds.
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Remark 2.4 in [1] shows that

p
(1,0,−γ)
θ/γ−x→θ/γ(s) = exp

(
γ

(
θ2

γ2
−
(
θ

γ
− x
)2

− s

))
p
(1,0,γ)
θ/γ−x→θ/γ(s)

Hence

P (σx ≤ t) = exp

(
−γ
(
x2 − 2

θ

γ
x

))∫ t

0

exp(−γs)p(1,0,γ)θ/γ−x→θ/γ(s)ds

≤ exp

(
−γ
(
x2 − 2

θ

γ
x

))
,

where the last inequality follows since

∫ ∞
0

p
(1,0,γ)
θ/γ−x→θ/γ(s)ds = 1.

Finally, since for γ > 0,

∫ ∞
0

exp

(
−γ
(
x2 − 2

θ

γ
x

))
< ∞,

the proof is complete.

4. Approximating the Transient Distribution of the GI/GI/1 + GI and

M/M/N/N Queues

In this section, we perform simulation studies that support using the first hit-

ting time distribution of an Ornstein-Uhlenbeck (O-U) process (that is not reflected)

to approximate the transient distribution of the number-in-system process for the

GI/GI/1 +GI queue (Section 4.1) and the M/M/N/N queue (Section 4.2).

We note that there is a missing negative sign in the display appearing in Remark 2.4 in [1];
specifically, the correct equation is

p
(λ)
x→a(t) = exp

(
−λ(a2 − x2 − t)

)
p
(−λ)
x→a(t).
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4.1. The GI/GI/1 + GI Queue

The M/M/1 + M queueing model assumes that customers arrive according to a

Poisson process with rate λ to an infinite waiting room service facility, that their

service times form an i.i.d. sequence of exponential random variables having mean

1/µ > 0, and that each customer independently reneges if his service has not begun

within an exponentially distributed amount of time that has mean 1/γ > 0. Theorem

2 in Ward and Glynn [18] supports approximating the number-in-system process Q =

{Q(t), t ≥ 0} by a (
√

2λ, λ− µ, γ) reflected O-U process Z.

The more general GI/GI/1+GI queueing model assumes that the customer arrival

process is a renewal process with rate λ, the service time distribution is general with

mean 1/µ, and that each customer independently reneges if his service has not begun

within an amount of time that is distributed according to some probability distribution

function F . In the case that F has a density and F ′(0) > 0 is finite, Theorem 3 in

Ward and Glynn [20] combined with the arguments in the proof of Theorem 2 in [18]

shows that Q may be approximated by a (
√

2λ, λ − µ, F ′(0)) reflected O-U process.

Note that this is consistent with the approximation for Q in the previous paragraph

since the value of the density of an exponential random variable at 0 is equal to its

rate.

Our results in Section 3 (specifically, Proposition 3.2 and equation (3.6)) then imply

for the M/M/1 +M case that

P (Q(t) ≥ x) ≈ P (Z(t) ≥ x) (4.1)

=

∫ t

0

p
(1,0,−γ)
λ−µ−γx
γ
√

2λ
→ λ−µ
γ
√

2λ

(s)ds,

when Q(0) = 0. For the GI/GI/1 + GI case, one may replace γ with F
′
(0) in the

above. Hence we have an approximation for the transient distribution for the number-

in-system process in a GI/GI/1+GI queue. Note that the theory in [18] and [20]

suggests that the approximation in (4.1) will be good when λ and µ are close, and

when γ is small compared to λ and µ (that is, the percentage of customers reneging

is not too large). For related work, we refer the interested reader to Fralix [7], who

derives the time-dependent moments of an M/M/1 +M queue, and then uses those to
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(c) P-P plot for P (Q(10) < x), γ = 0.001
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(d) P-P plot for P (Q(10) < x), γ = 0.01

Figure 1: Simulated and approximated results for the M/M/1 + M queueing model when
λ = µ = 0.5, and γ = 0.001, so that PR = 3.41%, and γ = 0.01, so that PR = 9.79%. PR is
the steady-state percentage of arriving customers that renege.

obtain the time-dependent moment expressions for reflected O-U.

We now proceed to verify the approximation (4.1) in an M/M/1 + M model via

simulation. Note that even in the case of a M/M/1 + M model, the problem of

finding an exact expression for its transient distribution appears to be very difficult

(as is suggested by the computations in Whitt [21], which provide some performance

measure expressions in terms of transforms for a many server model with reneging).

Figure 1 shows that the approximation (4.1) is very accurate, both for calculating the

probability that the system is non-empty for a range of t values, and for finding the

entire distribution of Q(t) for a fixed t. The simulation results shown are averaged over

10,000 runs, stopped at the relevant time value. Note that we chose λ = µ so that we

could use the very simple expression (3.5) when computing P (Z(t) ≥ x). When λ 6= µ,

there is another source of error that comes into the approximation (4.1) that is due

to the methodology in [1] for computing the hitting time density function of an O-U
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(b) P-P plot for P (Q(100) < x)
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(c) P-P plot for P (Q(200) < x)
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(d) P-P plot for P (Q(500) < x)

Figure 2: Simulated and approximated results for the GI/GI/1 +GI queueing model when
the inter-arrival and service time distributions are Gamma(2,2) and the reneging distribution
F is uniform on [0, 1000]

process.

Figure 2 verifies the approximation (4.1) in a GI/GI/1 + GI queueing model.

Note that the relevant approximating reflected O-U process is exactly the same as

in the M/M/1 + M queueing model in Figure 1, (a) and (c). We observe that the

transient distribution approximation is good for “medium” t but not for “small” t. (The

simulation results in Ward and Glynn [20] imply that the approximation is good for

“large” t, when the system is close to its steady-state.) The GI/GI/1+GI queue that

we simulated had simulated steady-state mean number-in-system 18.12, and simulated

mean number-in-system at times t = 100, t = 200, and t = 500 of 7.73, 10.43, and

14.43 respectively. Then, the displayed P-P plots for P (Q(t) < x) in Figure 2 are such

that the transient distribution is relevant (and not the steady-state distribution).
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4.2. The M/M/N/N Queue

The M/M/N/N queueing model assumes that customers arrive at rate λ > 0 in

accordance with a Poisson process to a service facility with N servers and no additional

place for waiting, and that their service times form an i.i.d. sequence of exponential

random variables with mean 1/µ. Any arriving customer that finds N customers in

the system is blocked from receiving service, and so is lost. Suppose that we let the

number of servers in the system be a function of the arrival rate λ, and assume that

Nλ =
λ+ β

√
λ

µ
for β ∈ R. (4.2)

Then, Srikant and Whitt [16] shows that

Nλ −Qλ√
λ

⇒ Z, as λ→∞,

where Z is a (
√

2, β, µ) RO-U process. Hence our results in Section 3 (specifically,

Proposition 3.2 and equation (3.6)) imply that

P (Q(t) ≤ x) = P

(
N −Q(t)√

λ
≥ N − x√

λ

)
(4.3)

≈ P

(
Z(t) ≥ N − x√

λ

)
=

∫ t

0

p
(1,0,−µ)
N−2λ

µ
+x

2
√
λ
→µN−λ√

λ

(s)ds,

when Q(0) = N .

Figure 3 compares simulated results for the M/M/N/N queue to values obtained

using the approximation in (4.3). We see that the approximation becomes more

accurate as N becomes larger, which is as expected. Note that by (4.2) this also

implies that the utilization is close to 1. The simulation results shown are the average

over 10,000 runs, stopped at the relevant time value.
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(c) P-P plot for P (Q(10) ≤ x), λ = 0.5, µ =
0.05, and N = 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) P-P plot for P (Q(10) ≤ x), λ = 1, µ =
0.05, and N = 20

Figure 3: Simulated and approximated results for the M/M/N/N queueing model.
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