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Confidence is the ‘feeling of knowing’ that accompanies decision making. Bayesian 

theory proposes that confidence is a function solely of the perceived probability of 

being correct. Empirical research has suggested, however, that different individuals 

may perform different computations to estimate confidence from uncertain evidence. 

To test this hypothesis, we collected confidence reports in a task where subjects made 

categorical decisions about the mean of a sequence. We found that for most 

individuals, confidence did indeed reflect the perceived probability of being correct. 

However, in approximately half of them, confidence also reflected a different 

probabilistic quantity: the perceived uncertainty in the estimated variable. We found 

that the contribution of both quantities was stable over weeks. We also observed that 

the influence of the perceived probability of being correct was stable across two tasks, 

one perceptual and one cognitive. Overall, our findings provide a computational 

interpretation of individual differences in human confidence.  

 

 

 

 

 

 

 

 

 

 



3 
 

Introduction 

Understanding the computational basis of individual differences in human cognition has 

fundamental implications for medical and biological sciences, as well as for economics and 

the social sciences. A prime example is confidence, which plays a key role in a wide range of 

aspects in life, including learning to make better decisions1, monitoring our actions2, 

cooperating effectively with others3, 4, and displaying good political judgment5. One of the most 

intriguing features of confidence is that humans tend to communicate this feeling in a largely 

idiosyncratic way: although confidence reports are typically stable within each person, they 

tend to be variable across the population6, 7. For instance, different individuals performing the 

same task generate distributions of confidence ratings with different mean and shape7. In 

addition, the correlation between confidence and objective performance varies for different 

people, and is related to individual variations in brain structure8 and connectivity9, 10. While a 

vast literature has focused on the biological correlates of individual differences in human 

confidence8-10, the computational roots of this phenomenon remain unclear.  

Previous research in sensory psychophysics8, 11 and value-based decision making10, 

assumed that confidence is a function solely of the perceived probability of being correct. This 

assumption is reasonable: confidence should reflect only this subjective probability12-14. Driven 

by this normative framework, previous studies explained differences among people as 

measurement noise15, or as individual differences in the ability to report the probability of being 

correct8, 9. This may have been an oversimplification: there is extensive literature showing that 

confidence is influenced by factors other than the probability of being correct16, such as the 

reliability of sensory stimuli2, 13, the magnitude of sensory data11, post-decisional biases17, and 

even personality traits7. 

Here we set out to determine what probabilistic quantities, besides perceived 

probability of being correct, contribute to individual differences in human confidence. We 

focused on a categorical task, in which subjects had to decide whether the mean of a set of 
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items was above or below a decision boundary, and then report their confidence. For about 

half of the subjects, confidence did depend solely on the perceived probability that they were 

correct. However, for the other half, confidence also depended on a different statistical 

quantity: their uncertainty in the estimate of the mean18, 19. Moreover, the dependence of 

confidence on the perceived probability of being correct and uncertainty was stable across 

experiments performed weeks apart. Finally, the dependence of confidence on the perceived 

probability of being correct was stable across tasks involving uncertainty in the perceptual and 

cognitive domain, but the dependence on the perceived uncertainty was not. This is consistent 

with the predictions of a recent theoretical account arguing that uncertainty is encoded by 

domain-specific neural populations14. Overall, these findings provide a computational 

interpretation of individual differences in the human sense of confidence.  

 

Results 

In a perceptual task (Experiment 1), participants observed a sequence of 30 tilted Gabor 

patches presented at the fovea in rapid (4 Hz) serial visual presentation (Fig.1a). At the end 

of the sequence, participants decided whether the mean orientation of the patches was 

clockwise or counter-clockwise relative to vertical. Participants then reported how confident 

they were in their decision on a scale from 1 to 6. To manipulate uncertainty, we pseudo-

randomly drew the orientation samples from uniform distributions with exactly the same mean 

(+3 degrees or -3 degrees) but different variances on different trials (Fig. 1b). Participants 

performed better as variance decreased (Fig. 1c, one-way repeated measures ANOVA, 

F(3,29)=231.4, p<10-10).  
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      [1] 

To fit the choices of each participant, we assumed that they keep track of the mean 

orientation, which they update after each stimulus presentation. To update their estimate of 

the mean within each trial, we considered a model in which participants combine a noisy 

estimate of the current sample with their previous estimate of the mean,  

𝜇𝑖 = (1 − 𝜆) 𝜇𝑖−1 + 𝜆 𝜃𝑖 + 𝛾 𝜃𝑖𝜉𝑖  

where 𝜇𝑖 is the estimate of the mean after 𝑖 samples (𝜇0 = 0), 0 < 𝜆 < 1 determines the 

relative weighting of recent versus more distant samples, 𝜃𝑖 is the actual orientation of the 𝑖𝑡ℎ 

sample in the sequence,  𝜉𝑖 is sampled from the standard normal distribution, and 𝛾 is a free 

parameter indicating the strength of the noise. The multiplicative nature of the noise ensures 

that the uncertainty in the update of the estimate scales with the size of the observed sample, 

𝜃𝑖. At the end of the sequence, choice is determined by the sign of the final value of the mean 

(𝜇30): the agent chooses clockwise if 𝜇30 is positive, and counter-clockwise if 𝜇30 is negative.  

 This model explains two important quantitative patterns observed in our behavioural 

data. First, all items in the sequence had a significant influence on choice (regression weights 

against zero, t(29)>3.17, p<0.003 for all items), but later samples had more influence than 

earlier ones (slope of regression weights against zero, t(29)=4.70, p=10-6). This recency effect 

was modulated by the learning rate 𝜆 (Supplementary Fig. 1). Second, we observed that 

items in high variance sequences had smaller influence on choice (F(3,29)=57.8, p~0) 

indicating larger integration noise in these trials. The last term in Equation [1], modulated by 

𝛾, captures this pattern (Supplementary Fig. 2).  

We also tested an alternative model that tracks the mean of the sequence in a 

deterministic way, and then makes stochastic decisions. This model, however, failed to explain 

the trend in Fig. 1c, which shows that performance increases as variance decreases (see 

Supplementary Fig. 3 for details and model comparison).  
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      [2] 

Computation of confidence 

In this task, confidence should reflect the perceived probability of being correct, for which 

participants need to have an estimate of the variance of 𝜇30. We assumed that they are able 

to compute the true variance associated with Equation [1] (although our findings do not require 

this assumption, see Supplementary Notes). Thus, perceived variance, denoted 𝜎30
2 , is given 

by 

𝜎30
2 = 𝛾2 ∑(1 − 𝜆)2(30−𝑖)

30

𝑖=1

𝜃𝑖
2. 

The model described by Equations [1] and [2], which we call the stochastic updating model, is 

illustrated in Fig. 2a. Given 𝜇30 and 𝜎30
2 , subjects can compute, on each trial, the perceived 

probability of being correct, 𝑝̂(correct) (shaded area under the Gaussian distribution in Fig. 

2a).  

Using this model, we estimated the expected values of 𝑝̂(correct) for different variance 

conditions (see Methods, Equation [9], and Fig. 2b). When we separated by correct and 

incorrect trials, we observed a pattern that has been suggested based on normative 

arguments15, 20: confidence on correct trials should increase as the variance decreases, 

whereas confidence on error trials should show the opposite effect, and decrease as the 

variance decreases. We did not, however, observe this pattern in our data, at least not on 

average: as shown in Fig. 1d, confidence on correct trials did indeed increase as variance 

dropped, but on error trials confidence was relatively independent of variance (F(3,29) = 0.57, 

p = 0.63). 

This last observation indicates that, again on average, subjects were misestimating 

confidence: they should have been less confident on low-variance error trials than in high-

variance error trials, as their probability of being correct was lower (dashed curve in Fig. 2b). 

This suggests that subjects partially based their confidence on the uncertainty in the value of 

the mean orientation – a reasonable, if suboptimal, heuristic. Under this heuristic, low-variance 
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trials would raise their confidence relative to high-variance ones. An appropriate weighting of 

perceived probability of being correct, shown in Fig. 2b, and a function of uncertainty such as 

the observed Fisher information (the inverse of 𝜎30
2 ), shown in Fig. 2c, could, therefore, explain 

the confidence ratings observed in Fig. 1d.  

To formally test this proposal, we compared the normative model of confidence based 

on only 𝑝̂(correct) with 7 alternative models based on different linear combinations of 

𝑝̂(correct), mean, standard deviation, variance and Fisher information (Supplementary 

Figure 4). We evaluated which combination provided a better fit to confidence ratings using 

ordinal logistic regressions (see Methods). The normative model based on just 𝑝̂(correct) had 

one parameter per subject, whereas the alternative models had two parameters for each 

participant. Our data supported extending the normative model by adding a second parameter, 

uncertainty in the estimated mean, quantified by either standard deviation, variance or Fisher 

information (Wilcoxon sign-rank test for deviance:  z = 4.78, p = 10-6  for standard deviation; z 

= 4.73, p = 10-6; for variance; z = 4.73, p = 10-6 for Fisher information). These three models 

were statistically indistinguishable from each other (z < 1.7, p > 0.1 for all pairwise 

comparisons, see Supplementary Fig. 4 for more details). 

 This analysis indicates that uncertainty in orientation does indeed influence 

confidence. To analyse this finding in more detail – and in particular to quantitatively examine 

inter-subject differences – we need to choose a particular function of uncertainty. Because 

standard deviation, variance and Fisher information are related by invertible transformations, 

it is fundamentally impossible to determine which function is used by the brain (see 

Supplementary Notes). Instead, we ask which quantity is the best linear predictor of 

confidence in an ordinal regression model.  

To do that, we conducted a separate experiment in which the perceived probability of 

being correct played no role. We asked participants to estimate the average orientation in the 

sequence of Gabor patches and to rate their confidence (see Control Experiment in 

Methods). This experiment was very similar to Experiment 1: on each trial the angles of the 
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Gabor patches were drawn from uniform distributions with one of four different variances (the 

same used in Experiment 1). However, rather than just two possible means, the mean was 

randomly chosen from a uniform distribution over the whole range of orientations. 

Consequently, participants did not make a categorical decision, as in the previous experiment; 

instead, they estimated the value of the mean. Therefore, their reported confidence was not 

about the probability that they were correct, but about their uncertainty in the estimate of the 

mean. As the variance in the sequence decreased, responses were more accurate (F(3,9) = 

13.21, p = 10-5) and more confident (F(3,9) = 37.4, p = 10-9, see Supplementary Fig. 5). We 

regressed confidence against single-trial estimates of either Fisher information, variance or 

standard deviation. These fits were significantly better when using Fisher information rather 

than variance (Wilcoxon sign-rank test for difference in log-likelihood, z=2.8, p=0.005) or 

standard deviation (z=2.9, p=0.004). These results suggest that it is reasonable to use Fisher 

information to quantify uncertainty. (For additional details, see Methods and Supplementary 

Figure 5). 

Individual differences and their stability over time 

The analysis presented so far is based on population-averaged data (Fig. 1d), so it is 

uninformative about differences among individuals. To determine whether, and how, 

𝑝̂(correct) and Fisher information influence confidence within subjects, we looked at the data 

of each individual. As expected6, 7, we observed substantial inter-individual differences (Fig. 

3). Some subjects did indeed base confidence solely on 𝑝̂(correct). However, in approximately 

half of them, confidence appeared to be influenced – at least to some degree – by Fisher 

information. To quantify this, we regressed21 confidence reports against model-based 

estimates of 𝑝̂(correct) and information. Fig. 3 shows a scatter plot of the regression weights 

for 𝑝̂(correct) and Fisher information. In 13 out of the 30 participants, confidence significantly 

reflected 𝑝̂(correct) but not information. In 14 other participants, however, confidence 

significantly reflected both 𝑝̂(correct) and information. One participant’s confidence conveyed 
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only information but not 𝑝̂(correct), and finally, for two participants, confidence did not reflect 

either of the two quantities.  

The ordinal regression identified seven parameters for each individual (see Methods, 

Equation [10]): a weight for 𝑝̂(correct), denoted 𝛽𝑝; a weight for information, denoted 𝛽𝐼; and 

five parameters 𝛼𝑗 (𝑗 = 1, … ,5). The latter are the average log odds of observing a confidence 

rating greater than 𝑗; from these we selected the mid-value, 𝛼3, which is based on splitting the 

confidence scale in halves. The parameter 𝛼3 was correlated with the average confidence 

across the entire experiment (r=0.84, p<10-8), and so indicates how under- or overconfident a 

given participant is; we thus refer to 𝛼3 as the overall confidence. We confirmed that individual 

differences in these parameters (𝛽𝑝,𝛽𝐼, and 𝛼3) are not simply explained by how well our model 

fit decisions (see Supplementary Notes). The three selected variables were uncorrelated 

with each other across the population (r<0.35, p>0.1 for all pairwise comparisons between 𝛽𝑝, 

𝛽𝐼, and 𝛼3).  

Finally, we note that while subjects were required to report confidence, they did not 

explicitly use it to, for example, regulate learning1 or make collective decisions3. Thus, we 

know only that 𝛽𝑝 and 𝛽𝐼 link perceived probability of being correct and Fisher information to 

confidence reports, which could in principle differ from internal computations of confidence11. 

To explore this issue, we regressed reaction time against perceived probability of being correct 

and Fisher information, as previous studies have shown that reaction time correlates with the 

computation of confidence22, 23. The regression coefficients based on reaction time were highly 

correlated with 𝛽𝑝 and 𝛽𝐼 (Supplementary Fig. 6), suggesting that confidence ratings reflected 

the computation of confidence.  

This analysis would be no more than a model-fitting exercise if a different profile – that 

is, a different relationship between confidence, 𝑝̂(correct), and Fisher information – emerged 

when the same participants were retested. To test for stability, in Experiment 2 we retested 

14 of the participants from Experiment 1 approximately one month later. We observed that the 
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three variables (𝛽𝑝,𝛽𝐼,𝛼3) were correlated across experiments (Fig. 4), indicating that this 

decomposition is stable across time and informative of the identity of the participants. To 

further validate this observation, we found that the distance in the 3-dimensional space defined 

by (𝛽𝑝,𝛽𝐼,𝛼3) within participants (across the two experiments) was smaller than the distance 

between different participants within an experiment (Wilcoxon rank sum test, z=4.0, p<10-4). 

This shows that our computational model of confidence is stable across different experimental 

sessions (see Discussion for comparison with previous studies). 

Consistency across tasks  

To determine whether subjects compute confidence the same way across tasks – that is, 

whether they give the same weight to 𝑝̂(correct) and Fisher information, and have the same 

overall confidence – we repeated our experiments on a cognitive task: averaging a sequence 

of numbers. In Experiment 3, a new group of 20 participants performed, in counterbalanced 

order, the visual task described above and a numerical averaging task (Fig. 5). In the 

numerical task, we presented two-digit numbers, updated at the same rate as in Experiment 

1 (4 Hz). The task was to decide whether the mean of the sequence was greater or smaller 

than 50. Uncertainty was manipulated in the same way as in Experiment 1, using a set of 

variances that ensured comparable performance across tasks (see Methods).  

In both tasks, accuracy increased with decreasing variance (Fig. 5a,b). A two-way 

repeated measures ANOVA with factors “variance” and “task” showed a significant main effect 

of variance (F(3,19)=194.3, p<10-10) but a non-significant effect of task (F(1,19)=2.5, p=0.13) or 

interaction (F(3,19)=0.84, p=0.47). Importantly, replicating Experiment 1, variance did not 

modulate confidence in error decisions (F(3,19)=0.2, p=0.89 for the visual task; F(3,19)=1.1, p=0.4 

for the numerical task). Confidence in the visual task was not statistically different from 

confidence in the numerical task (F(1,19)=1.58, p=0.22, Fig. 5c,d).  

As in the visual task, later numbers had more influence on choice than earlier numbers 

(F(5,19)=18.0, p=10-12) (Supplementary Fig. 1), and numbers in the high variance condition 
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had a smaller influence on choice than number in the low variance condition (F(3,19)=19.4, 

p=10-9) (Supplementary Fig. 2). We therefore used the same stochastic updating model 

(Equations [1] and [2]) to fit the data in Experiment 3. Also consistent with the visual task, 

decisions were better fit by this model than the alternative model we considered in the visual 

task (log-likelihood of the difference against zero: t(19)=5.2, p<10-4 for the cognitive task; 

t(19)=6.4, p<10-5 for the perceptual task). We regressed confidence against 𝑝̂(correct) and 

Fisher information, and, as in Experiment 1, about half the subjects based confidence solely 

on 𝑝̂(correct), and about half also took into account Fisher information (see Supplementary 

Figs. 7 and 8). We also provided independent evidence that, in the numerical task, Fisher 

information was more linearly predictive of confidence reports than other functions of variance 

(Supplementary Fig. 5). 

We asked if our three regressors (𝛽𝑝, 𝛽𝐼 and 𝛼3) were consistent across the numerical 

and visual tasks. The within-participants distance in the 3-dimensional space was smaller than 

the between-participants distance (Wilcoxon rank sum test, z=3.3, p<0.001), suggesting that 

they were – at least in aggregate. And indeed, the weight of perceived probability of being 

correct, 𝛽𝑝, and the overall confidence, 𝛼3, were significantly correlated across tasks (r=0.74, 

p<0.001 and r=0.63, p<0.01, respectively). However, the weight of Fisher information, 𝛽𝐼, was 

uncorrelated across tasks (r=0.20, p=0.37), indicating that Fisher information has 

quantitatively different effects on confidence in visual and numerical tasks (Fig. 6). This result 

is in agreement with a recent theoretical account arguing that the inverse variance is 

represented by domain-specific neural populations14 (see Discussion).  

Discussion 

The computations underlying confidence have attracted considerable attention over the last 

several years, in part due to recent developments in model-based approaches12-14 combined 

with neurophysiological recordings in non-human animals24-26 and neuroimaging in humans8-

10, 27. The standard approach consists of fitting a model to the entire population and treating 
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inter-individual variability as noise11, 15. However, if such individual differences are robust over 

time, and consistent across tasks7, then treating them as noise limits our understanding of the 

computational processes underlying confidence. Here we found that inter-individual 

differences in confidence ratings are meaningful in terms of their underlying computations. In 

particular, we found that different individuals used different weightings for two probabilistic 

quantities: their perceived probability of being correct, and their uncertainty in their estimate 

of the task-relevant variable14, the latter quantified by the observed Fisher information18, 19. We 

isolated the contribution of each of these two quantities to confidence, and measured, for each 

individual: 1) the influence of the perceived probability of being correct on confidence (𝛽𝑝), 2) 

the influence of Fisher information on confidence (𝛽𝐼), and 3) the participants’ overall 

confidence (𝛼3). All three variables were stable across several weeks (Fig. 4), and two of them 

(𝛽𝑝 and 𝛼3) were stable across different tasks – one in the perceptual domain; the other in the 

cognitive domain (Fig. 6).  

Normative theories of decision-making postulate that confidence should depend solely 

on the probability of being correct12-14. We speculate that the perceived uncertainty about task-

relevant variables could serve as a mental shortcut – a convenient heuristic – that provides a 

proxy for the probability of being correct28. This shortcut is reasonable, as uncertainty 

correlates with decision performance in our experiments (Figs. 1c and 2c). Previous research 

in our group showed that confidence can reflect the magnitude of sensory data11, a choice-

independent quantity that also correlates with behavioural performance. Our finding that a 

heuristic computation modulates confidence judgements about categorical decisions is in line 

with this study.  

Our model of confidence assumes that subjects linearly combine the normative 

computation of 𝑝̂(correct) with a function of variance. However, we cannot rule out the 

possibility that subjects compute 𝑝̂(correct) suboptimally – for example, by partially basing it 

on the uncertainty in the task relevant variable – and then computing confidence based solely 

on their suboptimal estimate of 𝑝̂(correct). While further experiments are needed to 
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disentangle these alternatives, we consider the former explanation to be more likely than the 

latter. Indeed, many studies suggest that confidence is a multivariate function that depends 

on factors such as the structure of the task11, the social context29, and post-decisional biases17.  

Previous research has shown reliable individual differences in the mean and shape of 

the distribution of confidence ratings6, 7, and in the extent to which confidence predicts 

behavioural accuracy7, 8.  These properties are believed to be idiosyncratic and correlate with 

individual variations in personality trait7, brain structure8, and resting-state functional 

connectivity9. For example, individual differences in the correlation between confidence and 

accuracy were systematically linked to a frontal network including the anterior prefrontal 

cortex, ventro-medial prefrontal cortex, and rostro-lateral prefrontal cortex8, 10, 30, 31. These 

findings were based on decisions in a wide range of contexts, including visual8 and value-

based10 judgments. Although these studies provided interesting insights about the brain 

regions that correlate with individual differences in confidence, none of them explicitly asked 

what probabilistic quantities influence this variability.  

Here, we provide empirical evidence that the idiosyncratic nature of confidence is due 

to differences in the computation of confidence; more specifically, different individuals place 

different weighting on the perceived probability of being correct and the perceived uncertainty 

in the estimate of the task-relevant variable. In principle, we could have used any function of 

variance to quantify uncertainty, and indeed all tested functions provide equally good fits in 

our categorical task (see Supplementary Fig. 4). We chose to model the influence of 

uncertainty as linear changes in Fisher information (inverse variance) only because it provided 

the best linear fits to confidence in a separate experiment (see Supplementary Fig. 5).  

The idea that the inverse variance could modulate confidence has been previously 

proposed and tested in several studies1, 2, 17, 32, 33. In ref. 32, subjects judged the mean 

orientation of a set of lines, and found that confidence reports underweighted the stimulus 

variance32. However, whether the model parameters of that study were stable over time or 

consistent across domains remains unknown. In ref. 33, participants observed random-dot 
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motion in two conditions: one with low mean and low variance, and the other one with high 

mean and high variance33. Although performance was the same for both conditions, some 

participants gave higher confidence ratings in one condition or the other. A model in which 

different subjects gave different weights to signal-to-noise ratio and inverse variance fit these 

data but, critically, the fit was unstable over time (the weight of signal-to-noise ratio was 

uncorrelated across a test-retest). In principle, this is at odds with our finding that the weight 

of 𝑝̂(correct) was stable over time. However, we should emphasise that the signal-to-noise 

ratio is different than 𝑝̂(correct): while the signal-to-noise ratio is an objective quantity that 

depends only on stimulus properties, 𝑝̂(correct) is a subjective quantity that depends on the 

decision and how the subject learned about the stimulus (see Equations [5] to [9] in Methods). 

Here, instead of fitting confidence against physical properties of the stimuli, we focused 

on a normative theory based on the perceived (rather than the actual) probability of being 

correct, and explained individual differences in confidence as systematic deviations from this 

theory. This decomposition fit our data better than a linear combination of the stimulus mean 

and variance (Supplementary Fig. 4). Our work thus provides a robust model of individual 

differences in confidence, with all parameters stable over time (Fig. 4). Finally, we evaluated 

the reliability of this computational model of confidence across domains, which suggested a 

relationship between specific model components and their neural encoding.  

An implication of our behavioural findings is that neurons representing confidence 

should receive input both from populations encoding the perceived probability of being correct 

and from populations encoding uncertainty. Because of differences in connectivity (which are 

likely to arise during learning and development) different individuals should have different 

weightings for these two quantities; that is, different values of 𝛽𝑝 and 𝛽𝐼. That is exactly what 

we found (Fig. 3). Furthermore, if connectivity changes slowly – a reasonable assumption in 

the absence of learning – 𝛽𝑝 and 𝛽𝐼 would be stable over time. Again, that is exactly what we 

found (Fig. 4).  
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 This does not, however, explain the fact that 𝛽𝑝 is invariant across tasks whereas 𝛽𝐼 is 

not (Figs. 6a, b). For that, we need to consider how 𝑝̂(correct) and uncertainty are encoded. 

Because the probability of being correct is a dimensionless quantity, and is universal across 

different sources of uncertainty, it is reasonable to assume that it is encoded by a domain-

general circuitry – for instance, by neurons in the prefrontal cortex8, 10, 30, 31. In contrast, 

uncertainty – whether it is Fisher information, variance or standard deviation (see 

Supplementary Notes) – is a quantity with dimension, and so is likely to be encoded by 

domain-specific populations14. For example, in the case of the visual task, uncertainty could 

be represented by neurons in primary visual cortex that are tuned to orientation34; and indeed, 

sensory uncertainty can be decoded from activity in the visual cortex35. In the same manner, 

numerical uncertainty could be represented by neurons in the parietal cortex tuned to different 

numerical quantities36, although this has not yet been tested. 

Under the assumption that the perceived probability of being correct is encoded by 

domain-invariant populations, the influence of this quantity on confidence should be stable 

across domains. This would explain our results in Fig. 6a: 𝛽𝑝 was correlated across the visual 

and numerical tasks. Likewise, under the assumption that uncertainty is encoded by domain-

invariant populations, the influence of this quantity on confidence should vary across domains.  

This would explain our results in Fig. 6b: 𝛽𝐼 was not correlated across the visual and numerical 

tasks. 

 These are, of course, hypotheses. They do, though, make testable predictions. First, 

neural circuits encoding confidence should show different functional connectivity with those 

encoding visual versus numerical uncertainty. Second, different participants should have 

different relative strength of these two forms of connectivity, co-varying with their behavioural 

differences. Future experiments combining behavioural data, computational modelling, and 

neural recordings could test these predictions. 
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The value of investigating individual differences in human behaviour and cognition was 

first recognised in the psychological sciences, with a special interest in high-level aspects such 

as intelligence37 and personality38. More recently, technical advances in magnetic resonance 

imaging have made it possible to develop a cognitive neuroscience of individual differences39, 

40. Findings include neural correlates of individual differences in motor behaviour41, visual 

perception42, mood43, social network size44, and confidence8-10. While these studies provide 

valuable insights into the neural basis of inter-individual differences in human cognition, the 

mechanisms responsible for such differences remain unknown. To overcome this limitation, 

the next challenge is to build a computational neuroscience of individual differences. A first 

step in this direction is to understand the computations performed by healthy adults leading to 

inter-individual variability in behaviour. Our study provides a computational model of 

consistent individual differences in confidence, paving the way towards determining how these 

computations change under development45, aging46, and psychiatric disorders47. 

 

Methods 

 

Participants 

60 healthy adults (aged 18-45, 43 right-handed, 31 female) with normal or corrected-to-normal 

vision participated in this study. All participants were recruited through advertisement at 

University College London, and gave written informed consent. We collected data from 94 

experimental sessions lasting approximately 90 minutes each. Participants were paid £10 per 

hour. All experimental procedures were approved by the research ethics committee at 

University College London. 

Display  

Stimuli were generated using the Cogent Toolbox (http://www.vislab.ucl.ac.uk/cogent.php) for 

MATLAB (Mathworks Inc). Participants observed an LCD display (21-inches monitor; refresh 

rate: 60 Hz; resolution: 1024 × 768 pixels) at a viewing distance of approximately 60 cm.  
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Experiment 1: Visual task 

30 participants performed Experiment 1, which consisted of an orientation averaging task (Fig. 

1). Observers viewed a sequence of 30 tilted Gabor patches over a middle grey background 

(standard deviation of the Gaussian envelope: 0.63 deg; spatial frequency: 1.57 cycles deg-1; 

contrast: 25%) flashed in rapid succession at the centre of the screen. Each patch was 

presented for 200 ms with an inter-stimulus interval of 50 ms, resulting in an update rate of 4 

Hz. Once the sequence finished, participants were asked to judge whether the mean 

orientation of the patches was tilted clockwise or counter-clockwise relative to the vertical. The 

response alternatives consisted of two tilted lines presented in the left and right visual field 

(size: 2.2 deg, location: 11.3 deg left or right to the centre of the screen). The position of the 

response alternatives was randomly assigned and counter-balanced across trials. To select 

the option displayed in the left, participants pressed the ‘Q’ button of a QWERTY keyboard 

using the left hand; to select the option on the right, they pressed the ‘P’ button. Participants 

were then asked to report their confidence on a rating scale from 1 to 6. A horizontal line was 

presented at the centre of the screen (length: 18.9 deg) with 6 equally-spaced marks signalling 

different levels of confidence. Participants moved a cursor to the left or right of the scale by 

pressing the ‘Q’ or ‘P’ buttons respectively. The initial point in the scale was randomly chosen 

on a trial-by-trial basis. Once the participants selected a confidence rating, they pressed the 

space bar to continue. After an inter-trial interval (which was uniformly distributed between 0.7 

and 0.9 seconds), a new trial began.  

The orientations of the patches were drawn from uniform distributions with mean m 

and endpoints m±v. We used distributions with two different means (m = +3 or -3 degrees) 

and four different variances (given by their different endpoints: v = 10, 14, 24, or 45 degrees). 

Uniform distributions were pseudo-randomly sampled such that the mean was exactly ±3 

degrees on every trial. This generated weak correlations, but multi-collinearity analyses 

indicated that presentations could not be predicted from previous samples (R2<0.07). 

Orientations were randomly shuffled to define the presentation order. The experiment 
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consisted of 400 trials: 50 trials for each of the eight distributions. Blocked feedback was given 

every 20 trials by a message displaying the number of correct trials in that block. Each block 

comprised 5 trials of each variance condition presented in random order. Therefore, 

performance for different variance conditions could not be learned from feedback. 

Experiment 2: Stability across time 

All participants of Experiment 1 were invited to perform the visual task a second time, 

approximately one month later. 14 participants accepted the invitation and were re-tested. 

Experiment 2 was performed 35.2±2.4 days after Experiment 1 (range: 23-49 days). 

Experimenters were blind to the results of Experiment 1 when testing participants in 

Experiment 2.   

Experiment 3: Stability across the perceptual and cognitive domain 

20 healthy adults who did not participate in Experiment 1 or 2 performed Experiment 3. 

Participants performed two sessions: the visual task described in Experiment 1 and a 

numerical averaging task. Half of the participants performed the visual task first. The second 

session was performed 9.7±2.9 days (range: 1-27 days) after the first one. Experimenters 

were blind to the results of the first session when testing the participants in the second session. 

The numerical task was identical in structure to the visual task but, instead of Gabor 

patches, two-digit numbers (size: 3.8 deg; font: Arial) were presented. The colour of the 

numbers (black or white over a middle grey background) was randomly chosen at each 

presentation. Participants were instructed to decide whether the mean of the sequence was 

greater or smaller than 50. Numbers were sampled from uniform distributions with mean m = 

47 or m = 53, and endpoints m±v were defined by v = 7, 9, 11 or 33. These values were 

chosen, through pilot experiments with a different set of participants, to obtain performances 

similar to that observed in Experiment 1. Uniform distributions were pseudo-randomly sampled 

such that the mean of the sequence was exactly m on each trial. We performed the same 

multi-collinearity analysis of Experiment 1, and found that presentations could not be predicted 
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from previous samples (R2<0.06). Decisions were collected in the same way as in Experiment 

1: a response screen with two options (“smaller” and “greater”) was presented on both sides 

of the visual field. Participants gave their answer, and indicated confidence, using the same 

keys as in the visual task.  

Control Experiment 

Ten healthy adults (aged 20-45, 6 female, all right-handed) who had not participated in 

Experiment 1, 2 or 3 participated in the Control Experiment. The experiment consisted of one 

visual and one numerical task that subjects performed in a single session of approximately 90 

minutes. Half of the participants performed the visual task first. Participants observed a 

sequence of items serially flashed at the fovea at 4 Hz, and were asked to provide their analog 

estimate of the mean. To rate their confidence, participants moved a cursor over a continuous 

horizontal line. All other parameters (length of the sequence, colour, contrast, brightness, 

viewing distance, etc.) were identical to our main study.  

In the visual task, participants observed tilted Gabor patches. The mean of the 

distribution was uniformly sampled across the entire circle. After observing 30 items, we 

presented a line in the centre of the screen, initialized at a random orientation. Participants 

then moved the mouse horizontally to change its orientation until they matched the perceived 

mean in the sequence. In the numerical task, participants observed two-digit numbers. We 

uniformly sampled the mean between 44 and 66 (to ensure that all numbers were between 11 

and 99 in the condition with higher variance). Participants typed their answer using a keyboard. 

Model fitting 

To fit the stochastic updating model (Equations [1] and [2]) to the participants’ decisions, we 

find, for each individual, the parameters 𝜆 and 𝛾 that maximise the log likelihood, 

log 𝐿(𝜆, 𝛾) = ∑
1 + 𝑑𝑘

2
 log Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
) +

1 − 𝑑𝑘

2
 log [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)]

𝑁𝑡𝑟

𝑘=1

  [3] 
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where Φ is the standard cumulative normal function, 𝑑𝑘 is the decision on trial 𝑘 (+1 if 

clockwise, -1 if counter-clockwise), 𝜎30,𝑘(𝜆, 𝛾) is obtained from Equation [2], 𝑁𝑡𝑟 is the number 

of trials, and  

𝜇̅30,𝑘(𝜆) =  𝜆 ∑(1 − 𝜆)30−𝑖

30

𝑖=1

𝜃𝑖,𝑘 

is the mean value of 𝜇30 on trial 𝑘. (A minor technical point: Equation [4] describes the visual 

task; the cognitive task is the same except that the mean is offset by 50.) 

Estimating the Fisher information and the perceived probability of being correct 

Based on the best fitting parameters 𝜆 and 𝛾 derived from the stochastic updating model (the 

values of 𝜆 and 𝛾 that maximize 𝐿(𝜆, 𝛾) in Equation [2]), we estimated, on a trial-by-trial basis, 

the observed Fisher information and the expected perceived probability of being correct. The 

observed Fisher information is just the inverse variance of the participants’ estimate, the latter 

computed via Equation [2] (Fig. 2a). The expected perceived probability of having made a 

correct decision, 𝑑, is given by 

𝑝̂(correct|𝜇̅30, 𝜎30, 𝑑) = ∫ 𝑑𝜇30 𝑝̂(correct|𝜇30, 𝜎30) 𝑝(𝜇30|𝜇̅30, 𝜎30, 𝑑) .

+∞

−∞

 

The first term inside the integral, 𝑝̂(correct|𝜇30, 𝜎30), is the shaded area under the Gaussian in 

Fig. 2a; consequently, it is given by the cumulative normal distribution, 

𝑝̂(correct|𝜇30, 𝜎30) =  Φ (
|𝜇30|

𝜎30
) . 

The second term in the integral, 𝑝(𝜇30|𝜇̅30, 𝜎30, 𝑑), is the probability of observing 𝜇30 given 𝜇̅30, 

𝜎30, and, importantly, the decision, 𝑑. If the decision is clockwise (𝑑 = +1), 𝜇30 must be 

positive, whereas if the decision is counterclockwise (𝑑 = −1), 𝜇30 must be negative. We can 

take these constraints into account using the Heaviside step function, Θ(𝑥) (which is 1 if 𝑥 > 0 

and 0 otherwise), yielding 

 [4] 

 [5] 

 [6] 
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𝑝(𝜇30|𝜇̅30, 𝜎30) =  
1

𝑍

𝑒
− 

(𝜇30−𝜇̅30)2

2𝜎30
2

√2𝜋𝜎30
2

Θ(𝜇30𝑑) 

where 𝑍 is the normalisation constant,  

𝑍 = ∫  𝑑𝜇30Θ(𝜇30𝑑)
𝑒

− 
(𝜇30−𝜇̅30)2

2𝜎30
2

√2𝜋𝜎30
2

= Φ (
𝜇̅30 𝑑

𝜎30
).  

+∞

−∞

 

Combining these two expressions, we have 

𝑝̂(correct|𝜇̅30, 𝜎30, 𝑑) =  
1

𝑍
∫ 𝑑𝜇30

𝑒
− 

(𝜇30−𝜇̅30)2

2𝜎30
2

√2𝜋𝜎30
2

Θ(𝜇30𝑑) Φ (
|𝜇30|

𝜎30
)

+∞

−∞

. 

On each trial, 𝑝̂(correct|𝜇̅30, 𝜎30, 𝑑) was computed numerically using Matlab. Note that 

the expected perceived probability of being correct (Equation [9]) is dependent on the 

decision, 𝑑, whereas the Fisher information (Equation [2], Fig.2a) does not depend on 𝑑, and 

so is choice-independent. 

Ordinal regression of confidence reports 

We ran for each individual a multivariate ordinal regression21. For each of the five possible 

splits in the rating scale, this regression fits a logistic model with fixed effects and different 

offsets,  

log (
𝑝(𝑐 > 𝑗)

1 − 𝑝(𝑐 > 𝑗)
) = −𝛼𝑗 + 𝛽𝑝𝑍𝑝 + 𝛽𝐼𝑍𝐼 

where 1 ≤ 𝑗 ≤ 5, 𝑐 denotes confidence, and 𝑍𝑝 and 𝑍𝐼 are z-scored estimates of the perceived 

probability of being correct and Fisher information on each trial. The outputs of this regression 

are the offsets 𝛼1, … , 𝛼5, and the weights 𝛽𝑝 and 𝛽𝐼. To summarise the computations 

underlying confidence, we selected 𝛼3 (the offset when splitting the scale in halves, which we 

refer to as the overall confidence), 𝛽𝑝 (the weight of the probability of being correct on 

confidence) and 𝛽𝐼 (the weight of information on confidence).  

 [10] 

 [7] 

 [8] 

 [9] 
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Statistical analyses 

In Experiment 1, we computed the average performance for each variance condition and each 

participant. These values were submitted to a one-way repeated measures analysis of 

variance (rm-ANOVA) with factor “variance condition” (4 levels) and “participant” (30 levels) 

as repeated measure (Fig. 1). The normality assumption of this test was checked using the 

Lilliefors test (k=0.7, c=0.8, p=0.07). We also computed the average confidence rating for each 

variance condition and each participant, conditioned on correct or incorrect trials, and 

submitted those values to a two-way rm-ANOVA with factors “variance condition” (4 levels), 

“outcome” (2 levels: correct or incorrect), and “participant” (30 levels) as repeated measure 

(Fig. 2c). The normality assumption of this test was checked using the Lilliefors test (k=0.04, 

c=0.06, p>0.5). The goodness of the fit for each model and subject (Supplementary Fig. 1b), 

quantified by the negative log-likelihood (Equation [3]), was submitted to a two-sided paired t-

test (29 degrees of freedom). The normality assumption of this test was checked using the 

Lilliefors test (k=0.08, c=0.11, p>0.5). 

In Experiment 2, we compared the within-participants distances in the space defined 

by (𝛽𝑝,𝛽𝐼,𝛼3) with the between-subjects distances. Because we have 14 participants, this 

defines 14 within-subjects distances and 14×13/2=91 between-subjects distances. We z-

scored each dimension and used the Euclidean metric to compute distance. The Lilliefors test 

rejected the null hypothesis that these values were normal (k=0.1, c=0.08, p=0.01); therefore, 

we used a non-parametric test, the Wilcoxon ranked sum test. This test is unpaired and the 

reported p-value is two-sided. 

In Experiment 3, we computed the average performance for each variance condition, 

task, and participant (Fig. 5a,b). We submitted these values to a two-way rm-ANOVA with 

factors “variance condition” (4 levels), “task” (2 levels), and “participants” (20 levels) as 

repeated measure. The normality assumption of this test was checked using the Lilliefors test 

(k=0.07, c=0.09, p=0.36). We computed the average confidence rating across all conditions 

and participants and performed the same rm-ANOVA used in Experiment 1 (Fig. 5c,d). As in 
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Experiment 1, average confidence was normally distributed (Lilliefors test, k=0.06, c=0.07, 

p=0.17). To evaluate the stability of (𝛽𝑝,𝛽𝐼,𝛼3) across domains, we computed the within- and 

between-subjects distances following the same procedure of Experiment 2, and compared 

these values using the same non-parametric test. 

Data availability 

The data that supports the findings of this study are available from the corresponding author 

upon request. 

Code availability 

The codes that supports the findings of this study are available from the corresponding author 

upon request. 
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Figure 1. Tracking mean evidence in rapid serial visual presentations. (a) 30 tilted Gabor patches were serially 

flashed at the fovea, updated at 4 Hz. Participants made a binary decision about whether the mean in the sequence 

was tilted to the right or left, followed by a confidence rating. Full details of the task are available in Online Methods. 

(b) The samples were drawn from a uniform distribution with mean, m, set to either exactly +3 degrees or exactly 

-3 degrees. The dashed line shows m=+3. The endpoints of the uniform distributions were m±v, with v = 10, 14, 

24, or 45 degrees, yielding four conditions with four different variances. (c) Performance increased with decreasing 

variance. Dots show the average performance across subjects, and vertical lines depict the s.e.m. The solid black 

curve shows the best fit of the stochastic updating model (Equations [1] and [2]). (d) Confidence reports averaged 

over all subjects. Vertical lines show s.e.m. At the population level, confidence in incorrect trials remains 

approximately constant as a function of variance. 
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Figure 2. Estimating confidence. (a) Each trial consists of 30 presentations of tilted Gabor patches. At each 

presentation (𝜃𝑖) the mean (𝜇𝑖) is updated by combining the estimate on the previous sample with a noisy version 

of the current Gabor patch. The black line represents one realisation of the model. At the end of the sequence, the 

subject makes a decision based on the sign of 𝜇30. The subjective probability of being correct and the observed 

Fisher information are then computed according to the equations shown in the right panel; see Online Methods for 

full details. (b) The perceived probability of being correct, 𝑝̂(correct), averaged over variance condition for correct 

trials (solid grey line) and incorrect trials (dashed black line), and also averaged across participants. For correct 

trials, this quantity increases with decreasing variance (solid grey line); for incorrect trials it shows the opposite 

pattern (dashed black line, see ref. 15 for more details). (c) The uncertainty in the estimate of 𝜇30, quantified by the 

observed Fisher information, increases both for correct and incorrect trials (same markers as panel b).  
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Figure 3. Analysis of confidence across individuals. The main panel in the lower left shows regression weights on 

confidence for different individuals. x-axis: weight of the probability of being correct (𝛽𝑝); y-axis: weight of 

information (𝛽𝐼). Each dot is a different participant, and the colour codes for significance (at the 0.05 level) as 

follows: dark green, only 𝛽𝑝 was significant; light green, both 𝛽𝑝 and 𝛽𝐼 were significant; yellow, only 𝛽𝐼 was 

significant; grey, neither was significant. Insets along the top and right margins show average confidence and 

confidence distributions for four representative participants. Left plots: mean confidence across different variance 

conditions, split by correct (solid grey line) and incorrect (dashed black line) trials. Right plots: probability distribution 

over confidence. For participant #19 (yellow dot), confidence reflected only information: confidence increased with 

variance for incorrect trials. For participant #16 (dark green dot), confidence reflected only the perceived probability 

of being correct: confidence in error trials decreased with increasing variance. For participant #27 (light green dot), 

confidence reflected a mixture of both computations. For participant #24 (grey dot), confidence was not modulated 

by either of these quantities. Note that there are large differences in confidence distributions, with subjects #24 and 

#27 showing far more confidence than subjects #16 and #19. Because 𝛼3 is the fraction of trials with confidence 

larger than 3, that quantity is larger for subjects #24 and #27 than for subjects #16 and #19. 
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Figure 4. Stability across time. 14 participants of Experiment 1 were retested approximately one month later 

(35.2±2.4 days; range = 23-49 days). We probed stability by asking how much our three parameters (𝛽𝑝, 𝛽𝐼 and 

𝛼3) changed across experiments. (a-c) Correlation across experiments for 𝛽𝑝 (a), 𝛽𝐼 (b), and 𝛼3 (c). Each square 

is a different participant, the dotted line is the identity, and the value of r given in each box is the Pearson correlation 

coefficient. The three variables were significantly correlated across experiments, suggesting that this 

decomposition is stable across time. A non-parametric method to measure rank correlation across experiments 

yielded similar results (Spearman’s rank correlation, rs=0.82, p<0.001 for 𝛽𝑝, rs=0.54, p<0.05 for 𝛽𝐼, and rs=0.55, 

p<0.05 for 𝛼3). A robust regression that underweights potential outliers further supported these findings (𝛽𝑝: 

regression coefficient 0.59±0.14, p=0.001; 𝛽𝐼: regression coefficient 0.74±0.27, p=0.02; 𝛼3 regression coefficient 

0.60±0.18, p=0.005). 
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Figure 5. Decisions and confidence in Experiment 3 (N=20). (a,c): Visual task (replication of Experiment 1 with 

different participants; panel a corresponds to Fig. 1c and panel c to Fig. 1d). (b) Same as (a), but for the numerical 

task. (d) Same as (c), but for the numerical task. The similarity between panels a and b, and between panels c 

and d, indicate that, at least on average, the visual and numerical tasks lead to remarkably similar behaviour, 

despite the fact that one is perceptual and the other is cognitive. 
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Figure 6. Consistency across tasks involving uncertainty in the perceptual and cognitive domain. 20 participants 

that were not tested in Experiments 1 or 2 performed one visual and one numerical task (Experiment 3). As in Fig. 

3, we decomposed confidence in terms of the weight of 𝑝̂(correct) (𝛽𝑝), the weight of information (𝛽𝐼), and the 

overall confidence (𝛼3). (a-c) Correlation across tasks for 𝛽𝑝 (a), 𝛽𝐼 (b), and 𝛼3 (c). Each square is a different 

participant, the dotted line is the identity, and the value of r given in each box indicates the Pearson correlation 

coefficient. 𝛽𝑐 and 𝛼3 were positively correlated across tasks; however, the weights of Fisher information, 𝛽𝐼, were 

uncorrelated across tasks. A non-parametric method to measure the correlation across experiments yielded similar 

results (rs=0.68, p<0.01 for 𝛽𝑝, rs=0.22, p=0.35 for 𝛽𝐼, and rs=0.62, p<0.01 for 𝛼3). 
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Supplementary Notes 

Does goodness of fit explain our findings? 

We asked if individual differences in how well our model fit the decisions could explain the 

inter-individual variability in the parameters 𝛽𝑝, 𝛽𝐼 , and 𝛼3. To do this, we correlated these 

values with the deviance1, a standard metric of quality of the fit,  

𝐷 =  −2(ℒ − 〈ℒ〉), 

where ℒ is the log likelihood of the data, obtained through Equation [3] and 〈ℒ〉 is the log 

likelihood of data that perfectly fits the model (often referred to as a saturated model). In our 

case, 〈ℒ〉 is found by replacing the decision dependent terms in Equation [3] (those that 

depend on 𝑑𝑘) by their probability under the model, leading to 

〈ℒ〉 = ∑ Φ (
𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
) log [Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] + [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] log [1 − Φ (

𝜇̅30,𝑘(𝜆)

𝜎30,𝑘(𝜆, 𝛾)
)] .

𝑁𝑡𝑟

𝑘=1

 

Our three parameters, 𝛽𝑝, 𝛽𝐼 and 𝛼3, were uncorrelated with the deviance, 𝐷 (r=0.22, 

p=0.24 for 𝛽𝑝; r=-0.12, p=0.54 for 𝛽𝐼; r=0.24, p=0.19 for 𝛼3), and 𝐷 was uncorrelated with 

average performance (r=0.22, p=0.23). This indicates that individual differences in 𝛽𝑝, 𝛽𝐼 , and 

𝛼3 are not explained by inter-individual variability in the goodness of the fit. 

Do our findings depend on the assumptions of the stochastic updating model? 

We assumed that subjects were able to compute the mean and variance following Equations 

[1] and [2]. To evaluate whether or not the idiosyncrasies in confidence depended on these 

assumptions, we considered a different model, one without the subject-to-subject distortions 

(introduced by 𝜆 and 𝛾) in the computation of 𝑝̂(correct) and Fisher information.  We set the 

mean value of 𝜇30 on trial 𝑘 (Equation [4]) to the true average orientation, and the perceived 

variance (Equation [2]) to the true variance. We took the inverse of the true variance to obtain 

trial-to-trial estimates of Fisher information, and used Equations [5-9] to compute 𝑝̂(correct). 

 [S1] 

 [S2] 
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We regressed these estimates against confidence (Equation [10]) and obtained very similar 

results to our main study. Both 𝛽𝑝 (r=0.95, p=10-16) and 𝛽𝐼 (r=0.98, p=10-20) were highly 

correlated across models.  

We also tested an alternative model, in which we relaxed the assumption of an ideal 

observer, and instead assumed that subjects computed the variance the same way they 

computed the mean, 

𝜎𝑖
2 = (1 − 𝜆) 𝜎𝑖−1

2 +  𝜆 𝜃𝑖
2. 

We computed 𝑝̂(correct) and Fisher information using Equations [4-9] and [S3], and regressed 

these values against confidence. Again, our findings were very consistent across models 

(r=0.99, p=10-26 for 𝛽𝑝 and r=0.98, p=10-20 for 𝛽𝐼). This analysis confirms that our findings did 

not depend on the specific assumptions of the stochastic updating model.  

Neuronal encoding of all functions of variance are fundamentally indistinguishable 

In our analysis, we quantified participants’ certainty in the estimate of the mean using the 

observed Fisher information. We used Fisher information, rather than standard deviation or 

variance, only because it provided the best linear fits to confidence reports in our Control 

Experiment (see Methods). Is there a more principled way to choose a function of uncertainty? 

For instance, could we determine which one is used by the brain? The answer to the latter 

question turns out to be no: even with neuronal recordings, it would be impossible to 

distinguish which function is encoded by the brain. Indeed, if the brain encodes one function 

of variance, it automatically encodes all functions of variance. For example, if a neuronal 

population encodes Fisher information, it automatically encodes variance, 

𝑝(𝐼30|𝐫) = 𝑝(𝜎30
2 |𝐫) |

𝑑𝜎30
2

𝑑𝐼30
| = 𝑝(𝜎30

2 |𝐫) 𝜎30
4 , 

 [S3] 

 [S4] 
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where 𝐫 is the population response. Equation [S4] implies that even if we recorded the 

population activity, 𝐫, we would be unable to distinguish whether the brain encodes Fisher 

information or variance. The same analysis applies to all functions of variance. 

Correlation with objective performance 

We asked if our three model parameters (𝛽𝑝, 𝛽𝐼 and 𝛼3) were correlated with the average task 

performance. We did not find any correlation for 𝛽𝐼 (r=0.25, p=0.18) or 𝛼3 (r=0.21, p=0.27), 

but we found that 𝛽𝑝 was correlated with task performance (r=0.55, p=0.002). This is 

consistent with previous studies showing that participants with larger objective performance 

typically show larger correlation between confidence and their probability of being correct2. 

 This raises a potential concern: the stability of 𝛽𝑝 over time and across tasks might 

simply reflect the stability of performance. To evaluate this possibility we computed the partial 

correlation of 𝛽𝑝 across experiments after controlling for the mean performance on each task 

and observed that 𝛽𝑝 was still stable over time (r=0.63, p=0.025) and across domains (r=0.63, 

p=0.005). This finding suggests that even though 𝛽𝑝 correlates with performance, it still reflects 

an idiosyncratic property of confidence reports that is stable over time and across tasks 

involving uncertainty in different domains. 

Controlling for individual differences in eye movement 

We analysed electrooculography (EOG) data collected on 20 subjects while they performed 

Experiment 1. To measure individual differences in the amount of eye movement, we 

computed the EOG power (mean squared amplitude) on each trial and averaged this quantity 

across trials. We found that the EOG power did not correlate with 𝛽𝑝 (r=0.11, p=0.63), 𝛽𝐼 (r=-

0.07, p=0.75) or 𝛼3 (r=0.35, p=0.12), nor was it correlated with average performance in the 

task (r=0.09, p=0.70). 
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Supplementary Figures 

 

 

 

Supplementary Figure 1. Recency effect. To test the influence that each Gabor patch 

(Experiment 1) or number (Experiment 3) exerted on choice, we implemented a multivariate 

logistic regression where the independent variables were the orientations/numbers presented 

at each position in the sequence (with positive items favouring the clockwise/greater option 

and negative items favouring the counter-clockwise/lower option), and the dependent variable 

was the probability of giving a clockwise/greater answer (for consistency with our notation, we 

define a variable, 𝑑, that is equal to 1 in clockwise/greater decisions and -1 in counter-

clockwise/lower choices),  
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log (
𝑝(𝑑 = 1)

1 − 𝑝(𝑑 = 1)
) = 𝑤0  + ∑ 𝑤𝑖  𝜃𝑖 ,

30

𝑖=1

 

where 𝑤𝑖 measures the weight that an item presented at position 𝑖 had over choice. We ran 

this regression for all subjects separately. a) Average weights across subjects for the visual 

task (Experiment 1); the shaded area is the s.e.m. We observed that all items had a significant 

effect on choice (t(29)>3.17, p<0.003 for all item positions). We also observed a significant 

recency effect, which we quantified by fitting a line to the weights of each individual and 

comparing the distribution of slopes against zero (t(29)=4.70, p=10-6). b) This recency effect 

is captured by our model and modulated by the parameter λ in Equation [1]; larger values of 

λ (x-axis) lead to a larger influence of recent items (slope of the regression, y-axis). Each grey 

dot is a different participant of Experiment 1. We observed that subjects with a larger recency 

effect (quantified by the slope in the regression) had a larger best-fitting λ (r=0.81, p=10-7). 

Importantly, the extent to which people focus on recent items, quantified by λ, does not 

correlate with the overall performance in the task (r=-0.28, p=0.13), and it was also 

uncorrelated with the best-fitting parameters of our model of confidence (r=0.25, p=0.17 for 

𝛽𝑝, r =-0.03, p=0.85 for 𝛽𝐼, and r=0.15, p=0.42 for 𝛼3). c-d) Same as a-b) but for the numerical 

task performed in Experiment 3. c) All items had a significant effect on choice (t(19)>2.4, 

p<0.03 for all item positions). The recency effect was also significant, as quantified by the 

distribution of best-fitting slopes (t(19)=3.81, p=10-3). d) The parameters λ correlate with the 

recency effect quantified by the best-fitting slope of the regression weights (r=0.76, p=10-5). 

 

 

 

 

 

 [S5] 



7 
 

 

Supplementary Figure 2. Influence on choice for different variance conditions. To test if 

subjects integrated items differently depending on the variance of each trial, we implemented 

a multivariate logistic regression separately for each variance condition. To prevent overfitting, 

we considered a regression where the weights changed every 5 items, 

log (
𝑝(𝑑 = 1)

1 − 𝑝(𝑑 = 1)
) = 𝑤0  + ∑ 𝑤𝑖  ( ∑ 𝜃𝑗 

5𝑖

𝑗=5(𝑖−1)+1

) .

6

𝑖=1

 

This is very similar to Equation [S5]; the main difference (besides the grouping into 5 weights) 

is that we estimated the weights, 𝑤𝑖, for each variance condition separately. a) Visual Task 

(Experiment 1): Weights for each variance condition, averaged over subjects; error bars are 

 [S6] 
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s.e.m., and colours code for different variance conditions as in the main figures. Presentations 

in the low-variance condition had larger influence over choice, and, as in Supplementary 

Figure 1, later items had larger weights than early items (2-way repeated measures ANOVA; 

effect of item position, F(5,29)=16.19, p=10-12; effect of variance condition F(3,29)=57.8, p~0). 

We asked if these findings were consistent with our model. To test this, for each subject we 

found the best-fitting parameters λ and γ, as described in Methods, and used those to 

compute, on each trial, the probability of a clockwise option, 𝑝(𝑑 = 1) . We then used that in 

the left-hand side of Equation [S6], and ran standard linear regression to find the model 

weights. The grey dashed lines show the model weights averaged across subjects. b) 

Recency effect estimated by the best-fitting slopes of the weights obtained from data versus 

model for each variance condition. Colours code as in panel a. Each dot is a different subject. 

The model weights matched well the weights computed from data (r>0.71, p<10-5 for all four 

conditions). c-d) Same as a-b but for the numerical task (Experiment 3). c) We observed that 

later items had larger influence on choice (F(5,19)=18.4, p=10-12) and that items had less 

influence if they had higher variance (F(3,19)=19.4, p=10-8). d) The model captured individual 

differences in recency, quantified by the slope of the regression weights for each variance 

condition (r>0.63, p<0.003 for all conditions). This finding suggest that the last term in Equation 

[1], noise that scales with the size of the upcoming sample relative to the decision boundary 

(modulated by parameter γ), is not a property of the visual task but of the serial integration of 

items. To provide further support for this idea, we compared the best-fitting γ in both tasks 

(using the data collected in Experiment 3 and comparing the visual and numerical sessions) 

and observed a positive correlation (r=0.80, p=10-5). This suggests that the subjects who had 

larger integration noise in one task also had larger integration noise in the other. 
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      [S7] 

     [S8] 

] 

 

Supplementary Figure 3. Model fitting results in Experiment 1. We fit two probabilistic 

models that make different assumptions about how decisions are made. The stochastic 

updating (SU) model is described in the main text (Equations [1] and [2]). In the stochastic 

decision (SD) model, the agent makes deterministic updates, 

𝜇𝑖 = (1 − 𝜆) 𝜇𝑖−1 + 𝜆 𝜃𝑖 

 and then makes a softmax decision,  

𝑝(𝑑 = 1) =
exp(− 𝜇30/𝜏)

exp(−𝜇30/𝜏) + exp(𝜇30/𝜏)
  

where 𝑝(𝑑 = 1) is the probability of choosing clockwise and 𝜏 is the temperature of the softmax 

rule. In this model, the agent updates perfectly and uses a stochastic (and thus suboptimal) 

rule for action selection; errors are due to noise in the decisional stage. In the SU model, the 

updating process is stochastic (Equation [1] in the main text), and decisions are optimal based 

on the perceived estimate; errors are due to uncertainty in the updating process. Both models 

fit two parameters to the data of each individual. a) The SU model (solid line) but not the SD 

model (dashed line) fits the pattern of increasing performance with decreasing variance. b) 

Model comparison: negative log likelihood of the SU and SD models using the best fitting 

parameters. Each dot is a different participant. The SU model fits the data significantly better 

than the SD model (t(29)=9.0, p<10-9).  
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    [S9] 

] 

 

 

Supplementary Figure 4. Probing different models of confidence. Normative models 

propose that confidence should be a function of only 𝑝̂(correct). We compared such a model 

(M0) with 7 alternative models which linearly combine two different probabilistic quantities 

(ordinal regression, see Equation [10] in Methods). Models M1 to M3 are extensions of M0 

using a function of variance: they are based on 𝑝̂(correct) and a second quantity (M1: Fisher 

information, M2: variance, M3: standard deviation). Model M4 is a different extension of M0 

based on 𝑝̂(correct) and the perceived mean. Models M5 to M7 are alternative models to M0 

that linearly combine the perceived mean with Fisher information (M5), variance (M6), or s.d. 

(M7). The y-axis shows the difference in deviance between the extended/alternative models 

and M0. The difference in deviance is defined as two times the negative log-likelihood ratio,  

𝐷(M) − 𝐷(M0) =  −2 ∑ log (
𝑝(𝑑𝑖|M)

𝑝(𝑑𝑖|M0)
)

400

𝑖=1

, 

where 𝑝(𝑑𝑖|M) is the probability of observing decision 𝑑𝑖 given model M. More negative values 

provide stronger support for the extended/alternative model compared to M0. The boxplots 

show the distribution of difference in deviance for the 30 subjects in Experiment 1 (red line: 

median; box limits: 25 and 75-percentiles, whiskers at 1.5 times the interquartile range, red 
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crosses: outliers). We observed that models M1 to M3 were significantly more likely than M0 

(Wilcoxon sign rank test, z > 4.7, p < 10-5 for all pairwise comparisons to M0; log likelihood 

ratio test, ∆df = 30, p ~ 0), but not significantly different from each other (z < 1.7, p > 0.1 for all 

pairwise comparisons between M1, M2 and M3). The model based on 𝑝̂(correct) and the 

perceived mean (M4) was more likely than M0 (z = 4.7, p = 10-5, log likelihood ratio test, ∆df 

= 30, p = 10-14) but less likely than M1, M2, or M3 (z > 2.7, p < 0.006 for all pairwise 

comparisons to M4). All alternative models based on the perceived mean and a function of 

variance (M5 to M7) were significantly less likely than M0 (z > 3.2, p < 0.002 for all pairwise 

comparisons to M0). This finding indicates that confidence is not well fit by a linear combination 

of mean and variance (or mean and Fisher information or s.d.). Altogether, this analysis 

suggests that confidence is better explained by a linear combination of 𝑝̂(correct) and a 

function of variance. 
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Supplementary Figure 5. Control Experiment. We asked if Fisher information correlates 

with confidence or other functions of variance. (a-c): Visual task. (d-f) Numerical task. 

Participants observed a sequence of items (Gabor patches in the visual task and two-digit 

numbers in the numerical task) serially flashed at the fovea at 4 Hz, and we asked them to 

provide their analog estimate of the mean (see Methods). We observed that, as we increased 

the variance in the sequence, responses became more accurate (panel a for the visual task 

(F(3,9)=13.21, p=10-5), panel d for the numerical task F(3,9)=3.8, p=0.003) and more confident 

(panel b for the visual task, F(3,9)=37.4, p=10-9, panel e for the numerical task, F(3,9)=7.6, 

p=10-4). c and f) We regressed confidence against Fisher information (𝐼30), variance (𝜎30
2 ), or 

standard deviation (𝜎30) and measured the deviance of each model (see Equation [S9] in 

Supplementary Figure 4). The boxplots show the distribution of deviances for each model 

across subjects. In both tasks, the winning model was the one in which linear changes of 

Fisher information modulated confidence ratings (Wilcoxon sign-rank test, z > 2.8, p < 0.005 

for both pairwise comparisons in the visual task, z > 2.7, p < 0.006 for the numerical task). 



13 
 

 [S10] 

] 

 

Supplementary Figure 6. Influence of  𝒑̂(𝐜𝐨𝐫𝐫𝐞𝐜𝐭) and Fisher information on reaction 

times and confidence reports. a) Mean reaction times (mRT) averaged across participants 

for each variance condition, separated into correct and incorrect trials. Horizontal lines show 

the s.e.m. We observed a significant effect of outcome (correct vs. incorrect, F(1,29)=40.6, 

p=10-7), a non-significant main effect of variance (F(3,29)=0.49, p=0.69), and a significant 

interaction (F(3,29)=4.3, p=0.007). b) We regressed reaction times against 𝑝̂(correct) and 

Fisher information. To do this, we used Equation [10], except with reaction time rather than 

confidence on the left hand side,  

log (
𝑝(𝑅𝑇 > 𝑗)

1 − 𝑝(𝑅𝑇 > 𝑗)
) = −𝜐𝑗 + 𝜂𝑝𝑍𝑝 + 𝜂𝐼𝑍𝐼 

where 𝑝(𝑅𝑇 > 𝑗) stands for the probability of observing a reaction time larger than the 𝑗𝑡ℎ 

sextile in the distribution. The influence of 𝑝̂(correct) on confidence (𝛽𝑝, x-axis) was 

significantly correlated with the influence of 𝑝̂(correct) on reaction times (𝜂𝑝, y-axis) (r=-0.61, 

p=10-4). c) The influence of Fisher information on confidence (𝛽𝐼, x-axis) was significantly 

correlated with the influence of Fisher information on reaction times (𝜂𝐼, y-axis) (r=-0.49, 

p=0.005). We also observed a non-significant correlation between 𝛽𝑝 and 𝜂𝐼 (r=-0.06, p=0.75) 

and between 𝛽𝐼 and 𝜂𝑝 (r=-0.15, p=0.41). These findings suggest that the contribution of 

𝑝̂(correct)  and Fisher information to confidence is not simply reflected in confidence reports, 

but also in reaction times. The negative correlation between the regressors is consistent with 

the idea that confidence might be, at least partially, based on decision time3. 
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Supplementary Figure 7. Analysis of confidence across domains. Same as the main 

panel in Fig. 3 of the main text, except that both tasks of Experiment 3 are also included here. 

Regression weights on confidence for different individuals. x-axis: weight of the probability of 

being correct (𝛽𝑝); y-axis: weight of information (𝛽𝐼). Each marker (circle, diamond, or square) 

represents one experiment. The colour codes for significance (at the 0.05 level) are as follows: 

dark green, only 𝛽𝑝 was significant; light green, both 𝛽𝑝 and 𝛽𝐼 were significant; yellow, only 

𝛽𝐼 was significant; grey, neither was significant. Circles: 30 participants performing the visual 

task in Experiment 1. Diamonds: 20 other participants performing the visual task in Experiment 

3. Squares: the same 20 participants of Experiment 3 performing the numerical task.  
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Supplementary Figure 8. Stability in Experiment 3. Stability within each experiment for the 

visual (a-c) and numerical (d-f) task.  For each half of the experiment (200 trials each), we 

decomposed confidence in terms of the weight of 𝑝̂(correct) (𝛽𝑝), the weight of information 

(𝛽𝐼), and the overall confidence (𝛼3). Correlation across halves for 𝛽𝑝 (a/d), 𝛽𝐼 (b/e), and 𝛼3 

(c/f). Each square is a different participant, the dotted line is the identity, and the value of r 

given in each box is the Pearson correlation coefficient. All three variables are stable within 

each experiment for both the visual and numerical task.  
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