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I explicitly calculate the anomalous dimensions and splitting functions governin@irevolution of the
parton densities and structure functions which result from the running coupling Baktsttiin-Kuraev-Lipatov
(BFKL) equation at leading order; i.e., | perform resummation in powers ofXh(@hd in powers ofB,
simultaneously. This is extended as far as possible to next-to-leading (blid®). These are expressed in an
exact, perturbatively calculable analytic form, up to small power-suppressed contributions which may also be
modeled to very good accuracy by analytic expressions. Infrared renormalons, while in principle present in a
solution in terms of powers ing(Q?), are ultimately avoided. The few higher twist contributions which are
directly calculable are extremely small. The splitting functions are very different from those obtained from the
fixed coupling equation, with weaker powerlike growthx %25 which does not set in until extremely small
x indeed. The NLO BFKL corrections to the splitting functions are moderate, both for the form of the
asymptotic powerlike behavior and more importantly for the rangerefevant for collider physics. Hence, a
stable perturbative expansion and predictive power at sxelé obtained.
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. INTRODUCTION the extraction of leading In(4) terms for relevant quantities,
such as splitting functions.

Smallx physics has been a particularly active area of par- Hence, a major point of debate during the past decade has
ticle physics research in the past few years, driven largely byyeen whether the standard Dokshitzer-Gribov-Lipatov-
the first data forx<<0.005 being obtained by the DESY- Altarelli-Parisi  (DGLAP) approach based on
electron-positron collider HERA experimenf4,2]. How-  renormalization-group equations and conventionally ordered
ever, as well as the need to describe this HERA data cofsimply in powers ofa (Q?), or the BFKL equation, which
rectly, it will also be extremely important to understand thesums leading logarithms in (4), is the more effective way
correct way of calculating physics at smallin order to  of dealing with smallx physics(most particularly structure
interpret the results coming from the CERN Large Hadronfunctiong, and/or whether the two approaches need to be
Collider (LHC) in a truly quantitative manner. For example, combined in some way, and if so, how? While the conven-
for the production of a particle of mass100 GeV the typi- tional DGLAP approach has been relatively successful, it
cal value ofx probed(at central rapidityis 0.005, but values does have some significant problefmghich are often over-
up to two orders of magnitude in either direction will also |ooked: a valencelike, or even negative input gluon leading
have an almost equally large influerice. to a strange low@? F (x,Q?); undershooting of the data

The potential complication at smallis that the splitting  systematically fox~0.01 at the highegp? when a global fit
functions and coefficient functions governing the evolutionis performed; and apparent instability at smalbrder-by-
of parton distributions and their conversion to physical quanorder ina up to next-to-next-to-leading ordékNLO) [5].2
tities have terms in their perturbative expansions which be- Nevertheless, the BFKL equation did not seem to help
have likeag IN™(1/x), wherem can reach up to—1. There-  these problems. The original LO BFKL prediction of a be-
fore, as the power of the coupling increases, the powers diavior of the formx* for structure functions and splitting
&£=1In(1/x) also increase, and rapid perturbative convergencéunctions at smalk, with A ~0.5, was clearly ruled out long
is not really guaranteed = 1/aq, i.e.,~5. This problem is ago. A combination of the two approaches, using the BFKL
not really diminished at the LHC, where the coupling is equation to supplement the Altarelli-Parisi splitting functions
likely to be smaller than at HERA, since the parton distribu-with higher terms of the forma2** In™(1/x), was originally
tions to be used will be those measured at HERA at mucluccessfulso long as one avoided factorization scheme am-
lower scales and evolved up to LHC scales. This question dbiguities by working in physical quantiti§8], but this suc-
large In(1k) terms is in principle addressed by the Balitski cess is not possible to sustain with the most recent data
Fadin-Kuraev-LipatoBFKL) equation[4], which is an in-  [9,10]. Moreover, the subject was thrown into confusion by
tegral equation for the unintegrated 4-point gluon Green'she calculation of the NLO correction to the BFKL equation
function in the high energy limit. This sums the leading high-[11,12. The results of this calculation were not very encour-
energy, or in the deep inelastic scatter(igS) case, smalk  aging. Ignoring the running of the coupling at NLO, i.e.,
behavior, which is dominated by the gluon, and thus allows

20f course the full NNLO splitting functions are not known, but
For an illustration of thec andQ? of parton distributions sampled good estimates are availaljg] based on calculation of moments in
at the LHC, see Fig. 1 di3]. [7].
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proceeding with the same sort of calculations as at LO buplistic LO BFKL results, making overall normalization of
including the scale-independent NLO correction to the kerquantities incalculable, but moderating the effect of those
nel, one obtains the “intercept” for the splitting function governing the evolution ifQ?. This moderation of the LO
powerlike behavior,x *, shifted from A=41In2ag to \ quantities also translated into a moderation of the effects of
=41In2a1-6.5q5). This is clearly a huge correction, and NLO corrections, leading to a much improved stability of the
implies the breakdown of the perturbative expansion for thigperturbative expansion, even without recourse to the type of
quantity. More serious than this intercept is the power seriesesummation ii13—15. Indeed, for this case of deep inelas-
for the splitting function, which may be calculated even tak-tic scattering further resummation of this type is redundant.
ing into account the renormalization and scale dependencEhese modified BFKL contributions to the splitting func-
introduced at NLO. Expanding this out formally to NLO in tions, when combined with the conventional LO«#-con-
In(1/x) one finds that it is dominated by the NLO correctionstributions, also led to improved fits compared to the usual
at all values ofx below aboutx=0.01. For example, using DGLAP approach20] and a more sensible prediction for
the formulas in[11] the first few terms in the power series F (x,Q2). This concept was put on a firmer footing [i21]
for P(x) go like where an explicit calculation of the BFKL splitting functions
o o o in powers ofBya(Q?), i.e., a resummation of running cou-
XP(X,Q%) = agt+ 2.40s£%/6+ 2.1a3£°/120+ - —ag(0.43xs  pling contributions, was outlined, and it was seen that over a

— 3.5 4.3 wide range of the<—Q? range(including the HERA range
T 1.6agf+ 117 £7/2+ 13.505£7/6 the previous hypothesis was largely correct, and precise re-

+39. 72564124+ 169.4a8£5/120+ - -+, (1. sults were also obtained outside this range.
s S The purpose of this paper is to explain in detail and ex-

where é=In(1/x) and as=ay(Q?). Clearly, the size of the pand upon the results of this previous paper, i.e., to present in
coefficients more than compensates for the extra power dill the calculation of splitting functions and coefficient
a(Q?), particularly at lowQ? where the perturbative analy- functions fo_r deep inelastic scattering obtamed_ from the
sis of structure function evolution often takes place. BFKL equation(both LO and NLO and incorporating run-
Hence, this NLO correction left open the whole questionNing coupling contnbu'_uons to all orders. Explicitly, while
of how to address the evolution of structure functions athe usual BFKL equation presents an expression for these
smallx. There has been considerable progress on the stabiliguantities which sums the leading poweréait each power
of the solutions to the BFKL equation in the intervening iN @s, | will extend this by producing expressions which also
time. One major development was the observation that thiiclude the leading power o8, at each power ofr(Q?)
resummation of double logarithmic terms in the transverséndé, e.g.,
momentumk? is necessary in order to eliminate collinear o -t
divergences. This renders the intercept of the BFKL equation 2 N/ A2y gn—1—mpm
stable[13], even when ignoring the IOrenormalizationqscale XPgq(x.Q )_nzl mE:o Anmets(Q7)€ Bo. (1.2
dependence. This initial idea has been further developed in
[14-16 where the effect of running coupling is also consid-though the formal divergence of the series will complicate
ered in these later papers. This development is particularishis form a little. This presentation will begin, in Sec. Il, with
important for the case of so-called “single scale” processesa brief review of the standard solution to the BFKL equation
where both ends of the gluon Green’s function are at highat LO, and then a detailed presentation of the solution at LO
scalegnot necessarily the sameahere without this collinear with running coupling. This will result in a solution for the
resummation, all calculations are badly behaved over the fuljluon splitting function in an analytic form up to a small,
range of energy, not just in the asymptotic limit. unambiguous, correction of the forth?/Q? (which is not
However, for the type of situation embodied by DIS, higher twis} which may be modeled by an analytic function
where one end of the gluon Green’s function is at some lowio excellent accuracy. Despite the integration over the infra-
nonperturbative scale, the factorization theorem simplifiesed region when solving the running coupling BFKL equa-
the problem. Although the growth of the coupling at low tion, there is no ambiguity in this splitting function. Next, in
scales actually renders the solution of the BFKL equatiorSec. lll, will follow a discussion of some possible higher
formally divergent when the renormalization of the couplingtwist contributions at smak. It is argued that these may be
is encountered, as realized as long agpl&$ and studied in  much smaller than generally supposed, though the possibility
detail in[19], all the uncertainty and indeed all the effects of of some large power-suppressed correctiorat necessarily
the low Q? region are absorbed into the overall normaliza-higher twis} is left open. In Sec. IV | discuss the solution of
tion of the gluon, leaving the evolution and coefficient func-the BFKL equation at NLO, defining precisely what | mean
tions for hard scattering cross sections calculable. Howevehy the “NLO BFKL splitting function,” and showing that the
these perturbatively calculable quantities are affected by th&ILO corrections for the gluon splitting function are moder-
running of the coupling, and it was argued[i20] that the ate. In Sec. V | consider real physical quantities, i.e., the
effective result was as if the usual LO BFKL splitting func- structure functions. First, | calculate the quark-gluon splitting
tions should be evaluated at anrdependent scale, which function and coefficient functions, and then consider the
grows with decreasing, due to increasing diffusion into the rather more direct physical splitting functiof2]. | also
ultraviolet, leading to a decrease in the coupling. Hence, theonsider how far one can calculate to NLO, defining a
effect of running coupling totally transforms the more sim-“nearly NLO” physical splitting functionP,, (x,Q?). The

074005-2



RUNNING COUPLING BALITSKII-FADIN-KURAEV- . . . PHYSICAL REVIEW D 64 074005

stability of the perturbative expansion is examined in detailto the intrinsic transverse momentum of the gluon, and we
and seen to be very good. Finally, in Sec. VI phenomenologwvill discuss this in Sec. Ill. The “gluon structure function” is
is briefly touched upon, and | present a summary and myow given by

conclusions. 2 42
G(QN) = [T NI QR ao(N.GR). (24

Il. BFKL EQUATION AT LO 0

The BFKL equation for zero momentum transfer is anwhere gB(N,QS) is the bare gluon density in the proton
integral equation for the 4-point, transverse-momentumwhich implicitly absorbs the collinear divergencesfitk?).
dependent gluon Green’s function for forward scattering inThe BFKL equation is most easily solved by taking the Mel-
the high energy limitf(k,,k,,as,N), whereN is the Mellin  lin transformation toy space, i.e.,
conjugate variable to energy. In the case of DIS the second
momentumk, is put equal to some nonperturbative scale ~ 22y -1 v L2
Qo, we letk; =k, andN becomes conjugate to In order to flyN)= fo dk(k®) FEN), (2.9
obtain a structure function we attach the nonperturbative
bare gluon distributiog(N,Q3) to the nonperturbative end where it reduces to
of the gluon Green’s function and convolute a hard scattering _ _ o _
cross sectiom(Q?/k?, ag,N) to the perturbative end. f(y.N)=T1(7.Q5) + (as/N) xo(»T(v.N), (2.6

In this section | will illustrate the effect that introducing _
the running coupling into the BFKL equation has. In order towhereT(y,Q3) = exp(— ¥ In(Q3)) and x(v) is the character-
do this I will first begin with a brief presentation of the fairly istic function
simple traditional case of fixed coupling before moving to
the far more complicated case of running coupling. As will Xo(¥)=2¢(1) = p(y) — (11— ). (2.7
be seen, the introduction of renormalization, and hence run-

ning of the coupling, which is necessary except in the artifi-A little simple manipulation leads to the expression

cial model of no consideration beyond LO, completely 1 [U2+ie
changes not only the detail of the information one is able to G(Q%N)=— dy exp(y In(Q?%/Q3))
extract from the BFKL equation, but also what type of infor- 2l J 12—
mation one is able to extract. 2
gs(N,Qp)

X — . (2.9
A. Fixed coupling Y(1=(as/N)xo(7))

We simplify matters by working in moment space, i.e., This inverse transformation has a leading twist component

defining the moment of a structure function by given by the contribution of the leading pole at 1
—(as/N) xo(¥) =0, and the solution is
1
f(N,Qz):f XN—lF(X,Qz)dX, (21) 5 1 Q2 Y0 )
0 G(Q%N)= —— y = N,Q3).
R el Rt
and similarly for the parton distributiorfscaled byx). Doing 2.9

this the BFKL equation is The anomalous dimensiop,(ag/N) may be transformed to

X space as a power series @ In(1/x), and has a branch

—
f(k?,as/N)=f,(k?,Q3) + 5f d_gKO(qz,kz)f(qz)' point at N=x=4In2a (at which y—3) leading to
N Jo ¢ asymptotic smalk behavior for the splitting function
(2.2
o, —. 0.07ax™*
wheref (k?, a/N) is the unintegrated gluon four-point func- XPgg(X,ars)— ()2 (2.10
tion, fl(kZ,QS) is the zeroth order inpuiys=(3/7) a5, and
the LO kernel is defined by In a similar fashion, assuming that the leading smalle-
havior is dominated by the perturbative physics rather than
b s ) ) f(q%) —f(k?) f(k?) by gB(Q(z,,N), one can transform t& space the normaliza-
Ko(g%,k9)f(g9) =k =g gt tion 11 — (as/N) yox4( o)1 Which leads to a gluon normal-
2.3 izationxg(x) = ax M (asé)
It is convenient to define the input bf;(k? Q3)= (k2 B. Running coupling

—Qp). In fact in the leading twist factorization theorem this  Beyond strict leading order it is impossible to ignore the
is the unique definition, an@j is really just a regularization running of the coupling. At NLO ultraviolet regularization is
which we let-0 ultimately. Going beyond this approxima- required, resulting in a correction to the LO kernel of the
tion the dependence apj tells us about the higher twist due form — Boas( 18) IN(K uZ)Ko(0?. k), where ug is the renor-

074005-3



ROBERT S. THORNE PHYSICAL REVIEW D 64 074005

malization scale which must now be introduced. Hence, it isambiguous due to the available choice in avoiding the cuts.
unrealistic to simply use the LO kernel without considering This ambiguity can only really be removed by regulating the
the influence of such a correction. An obvious way in whichLandau pole in the definition of the coupling. However, this
to incorporate such a term is to simply use the running couintroduces model dependence, and also makes analytic
pling constant evaluated at the scéfein the previous LO  progress rather more difficult, so | simply accept this ambi-
BFKL equation. Since this, or something similar, is unavoid-guity for this function®

ably forced upon us at NLO, it seems sensible to consider the In order to simplify Eq(2.14), and introduce factorization
fixed coupling LO BFKL equation as just a model which we trivially rewrite it as

would apply in a conformally invariant world, and more re-

alistically to work with the BFKL equation with running cou- ~ B ~ * Y
pling [23,24,17,18from the beginning. Doing this we obtain f(%N)—eXp(—Xo(V)/(ﬂoN))[ fo - fo }
f(k?, Q5 a(kA)/N)=1,(k?,Q}) dT,(7,N,Q2)
o ) X ——="—exp(Xo()/(BoN))d¥.
as(k )fwdq K ( 2k2)f( 2) d’)/
o g7 oA (2.16
(2.1 : B : : BN
In the region ofy=0 the integrand in Eq2.16) is o y*#o",
where so the integral of this from @y is «y** N, Hence, the
a=1[BoIn(k/A?)], (2.12 leading singularity in they plane for ex— Xq(y)/(BoN)),

is canceled by the integral from-8y of this integrand 18],
Bo=(11—2N;/3)/(4m), andN; is the number of active fla- and the new leading singularity is at= — 1. SinceG(Q?N)
VOors. is obtained by an inverse Mellin transformation with respect

One can solve this equation in the same way as for théo Q%/A?, the part of Eq.(2.16 coming from the integral

fixed coupling case, i.e., take the Mellin transformation, butfrom 0 to y will behave like A%/Q? (actuaIIyQO/)\2 as we
now with respect to K/A2). It is most convenient first to  will see latey. Hence, discarding this power-suppressed cor-
multiply through by Ink?%A?), in which case one obtains rection, which will be considered in some detail in Sec. I,

we keep only the first term in Ed2.16), obtaining for the

df(y,N) df,(v,Q%) 1 N gluon distribution
0 SR L (N, 213
dy dy BoN 1 (12+ie]
G(Q*N)=5— —eXIO(V'n(QZ/AZ)
2@ J1-ie

where Eoz(a-rﬁolia). Hence, the inclusion of the running

coupling has completely changed the form of our double

Mellin space equation, turning it into a first-order differential —Xo(9)/(BoN ))dYJ exp(—¥In(QF/A?)

equation. This has a profound effect on the form of the so-

:ﬁgons. The equation may easily, if formally, be solved giv- +Xo(3/)/(ﬁoN))d"5/gB(Q§,N)
=Ge(Q%N)G;(Q5.N)gs(QG.N). (2.17)

f(y,N) =exp(—Xo(y)/(BoN))
Therefore, we have factorization up to well-defined cor-
XJ dfi(%.N,Q) exp(Xo(3)/(BoN))d%, rections of O(Q3/Q?), which genuinely do vanish a®3
Y dy —0 (see Sec. I). As mentioned, exXq(y)/(BoN)) con-
(2.14  tains singularities at all positive integers, aﬁp{Q%,N) is
not properly defined, since the integrand has singularities

where lying along the line of integration. However, since this factor
is independent ofQ?, it does not contribute at all to the

xo(y):fyXO(a,)da,E[zlp(l)( —E)—In( I'(y) H evolution of the structure function. It is also divergent as

2 I'(1-y) Q3—0, and as usual in the factorization theorem these diver-

(2.15 gences are implicitly canceled byB(QS,N), and we can

Xo(y)—In(y) at y=0 and hence exp- Xo(y)/(ﬁoﬂ)) has a

branch point aty=0 [exp(— Xo(¥)/(BoN))— v~ PoN] with 3The problem due to the Landau pole is illustrated using an alter-
similar branch points at all negative integers. It is easiest t(?latlve method of solution if19)]. In this paper the solution of the
choose each of the cuts along the negative real axi Séquation where the NLO coupling effect is left simply as
exp(Xo(7)/(BoN)) has similar branch points at every posi- — Boas(18)IN(Ku2)Ko(g?.K?) rather than resummed is also con-
tive integer, and it is easiest to choose these cuts along thsdered. This does not improve the situation, i.e., an ambiguity in

positive real axis. This means that the integral in ql4) is  the solution remains even in this case.
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imagine the ambiguity to be canceled in the same manner. Si Smy
the overall normalization is incalculable, but there is a cal-
culable functionGe(Q?,N) whose form is determined by the R
singularities of exp—Xqy(y)/(BoN)) in the y plane. This
also leads to a fundamental difference between the cases ¢ ™\ mumerical -
the fixed and running couplings. Whereas previously the N
leading singularity was a pole at{/N)x(y)=1, i.e., aty N
—3 asN—4 In 2ag, now the leading singularity is a cut at AN
y=0: there is no powerlike behavior i@2. Similarly, the N 7
branch point in theN plane at 4 In Z; has become an essen- AR
tial singularity atN=0: there is no powerlike behavior i S
in the evolution factor for the gluon. The introduction of the N
running of the coupling has changed the character of the N
solution completely. N
One can now proceed with the solution to the LO BFKL . AN
equation by acknowledging that the only real information —------—-- -~ - ——— — ] L~

saddle-point

P ey

—~ -

function, i.e., defining p

dInG(N,Q?) dIngg(N,Q?) ]
din(Q?) dIrI1E(Q2) =74¢(N,Q%). (2.18

Ge(N,Q?) gives us an entirely perturbative effective anoma- Pl
lous dimension governing the evolution of the gluon struc- . -
ture function. The usual technique for solving f@#(N,Q?) .
is to expand the integrand in E¢R.17), about the saddle L,
point. This results in a contour of integration parallel to the .
imaginary axis, with real part 3 for the smallx solutions, e 7
see Fig. 1. Using this results in an anomalous dimension o

Yao(N, Q%) = yo(as(Q%)/N)

g 2

+ 2 [_Boas(Qz)]Wn(Es(Qz)/N)i (2.19 FIG. 1. Ihe branch points anoll cuts associated with
n=1 exp(— Xq(y)/(BoN)) and the saddle-point contour, the gamma-
function contour and the numerical integration contour.

i.e., the effective anomalous dimension is the naive leading-
order result with coupling at scaf@” plus an infinite series so|ution no longer sees these points as anything special. In
of corrections in increasing powers Qfﬁo_as(Qz) [20].  fact, the known singularity structure of the integrand implies
However, each of the(as(Q?)/N) is singular atN  that,=0 is the point on which to concentrate.
=\(Q?), and the power of the singularity increases with  This suggests an alternative method of solution for the
increasingn. Hence, although the series for the resultinganomalous dimension. In order to concentrate on this leading
splitting function is in the small quantity(Q®) By, the ac-  singularity we may move the contour of integration to the
companying coefficients are progressively more singular afeft and simultaneously use the property that the integrand
Xx—0. The saddle-point approximation is therefore not a regjes away very quickly at infinityfor Rey=<3) to close the
liable result ax—0 and eXp|iCit inVeStigation reveals that it contour so that it S|mp|y encloses the real axis,fgro (F|g

is only really quantitatively useful whemy(Q?)In(1/x) is S0 1) |t is then useful to expresgy(y) in the form
small that the effective anomalous dimension is effectively

the LO in ag part, xPyy(X) = s(Q?) [20]. This translates oc
into x=0.01 in the HERA range. Therefore the calculatio_ns Yo(y)=1ly+ > 2£(2n+1) 9", (2.20
of the anomalous dimension which rely on an expansion n=1

about the saddle point, i.e., the conventional expansion in

decreasing powers of In¢dy at fixed power ofas, leads to  which is, however, only strictly valid only fory|<1. Doing
very inaccurate and misleading results for smalThis in-  this we may write

stability is not surprising. If one examines the integrand

along the saddle-point contour of integration one finds that it “ f(2n+1)

is very different from the Gaussian form the saddle-point Xo(y)=In(y)+ ye+ 2 2

method assumef20]. Also this is an expansion obtained n=
from approachingy= 3 and in terms of functions dfl which

are singular aN=\(Q?), whereas we know that the full and the integrand fogz(N,Q?) becomes

2n+1
onr1 7 0 (22D
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_ > plus an error ofO(A%/Q?). We note that we could have
y~ YBN =L exg yt— — ( ye+ > an Y |, reached this final expressid@.26) in a slightly more rigor-
(BoN) - ous manner. After performing the expansiongf v) in Eq.

(2.22 (2.21) we could have produced a well-defined integral in Eq.

Wheret:ln(QZ/AZ) aﬂdan:2§(2n+ 1)/(2”"!‘1) The con- (223 by taklng the lower limit of integration to be1+e€
tribution to the integral from 8> — s +i e is now the same as  S° that the expansion is valid over the region of integration.

that from —=—ie—0 up to a phase factor, and we may This would mean that there is a region of integratign
write =< —1 absent, which due to the factor of ex)(would mean

a missing contribution of O(A%/Q?). This new limit

_ ( - ) p( ve ) of integration would result in the lower limit of-t in
Ge(N,t)=—sin| — exp — — Egs. (2.249 and (2.295 and consequently we would obtain

(BoN) (BoN) incomplete gamma functionSy(—ll(EoN)Jrn,t) rather

0 _ 1 than I'(—1/(BoN)+n). However, y(—1/(BoN)+n,t)
Xf ,yfl/(ﬁON)fl ex ,yt_

p— =I'(— U(BoN) +n)+O(A%Q?), so discarding the contri-
(BoN) butions of O(A?/Q?) we regain Eq.(2.26, which is for-
% mally equivalent to Eq(2.23, but we have seen explicitly
% 2 a,y>"" 1| dy, (2.23 the origin of the intuitively obvioug)(A?/Q?) corrections to
n=1 Eqg. (2.26.

The result(2.26) was first noted iff25], and was simpli-
where the integral has to be understood as an analytic COfieq by using the relationship that &0, [I'(— 1/(8,N)
tinuation, since there are singularities along the real axis, and NIT (= V(BoN))]— [ — 1/(BoN)]". However, it is impor-

strictly speaking the integrand is well defined only fer ;
>—1. Since the factor of expf) is present this latter point tant to notice the more general result that forall

leads, in principle, to an error of order exgt), i.e.,

O(A?/Q?) into the value oGg(N,t). This will be discussed ['(— 1/ BoN) +n) —
in more detail below. (=1)" — =A,(=U(BoN)), (227
In order to evaluate the above integral it is convenient to I'(=1(BoN))
let y=vyt, resulting in
where
Ge(N,t)= —sin( — )exp( - E )tl/(EON) n—1
(BoN) (BoN) Ap(=UBN)= 2, (= 1) BN) "™, (229
0 — 1
xf y BN ~Lexpy)exg — — N o N
—o (BoN) anddp, are positive coefficients andp,= 1. Explicitly the
" first few A,(—1/(BoN)) are
X > an(y/t)zn*l)dy. (2.24
n=1

— 1
Ay(— 1/(,30N)):( — )
(BoN)

The latter exponential may be expanded as a power series in
y/t and each term in the integral then precisely evaluated

using the standard result that - 1 2 1
- 0 _ Az(—l/(ﬁoN))I( — ) —( — )
(—1)"T (= 1(BoN) +1n)= f y PN =L exp(y)y"dy. (BoN) /- 1 (BoN)
(2.29 B RE 1 \2 1
Hence, we may formally write Ag(=1(BoN))=| — -3 — +2| —
(BoN) (BoN) (BoN)
Q(Nt)——sin( T )exp(— e )F(—ll(EN))
E AV — — 0
(BoN) (BoN) (229
_ * o 1 4 1 3 1 2
XHEN| 143 AL BN (= 1)" A4(—1/(EON))=( - ) —6( - ) +11( - )
" (BoN) (BoN) (BoN)
XF(—l/(,Bi\IH—n) | 226 _6< _1 )
['(=1/(BoN)) (BoN)
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Comparison of A,(1/BgN) and 1/(B;N)* tYoN) is the well-known double-leading-log result coming

from just the LOa(Q?)/N part of the anomalous dimen-
sion. Multiplying this we have an expansion as a power se-
ries in 1t or equivalently inag(Q?). In fact

20 T

n-1

W 1/<EON>)=[ES<Q2>/N]”n§O drne — Boas(Q?) ™

_ — AJRBN
e "-. (R0 X[@s(Q?)IN] ™. (2.31)

This explicitly demonstrates that we obtain a set of running
coupling corrections to a LO result, i.e., in solving the BFKL
equation we are now obtaining not only the leading power in
0 b L VGASM | 1/N [corresponding to the leading power of In{llf at each
order ina(Q?), but we also obtain the leading power /g

at each power ofr(Q?) and 1N. Substituting this type of
expansion into Eq(2.30, putting the resulting expression
for Ge(N,1) in Eq. (2.18 and expanding in inverse powers of
t, one obtains an expression for the anomalous dimension as
a power series inrg(Q?), where at each order we have the
S leading divergence in ¥ plus a sum of running coupling
correction type terms. With a little work one may regain the
whole leadingy,(as(Q?)/N) (though it is necessary to keep
some subleading terms in the, to do thig, along with a
tower of terms which are subleading in powers3girs(Q?)

to this leading anomalous dimension; one obtains all the cor-

rections to this naive LO anomalous dimension due to the
\/ running of the coupling i.e., the whole of E.19 is re-
| | | | | gained, but ordered in powers af(Q?) rather than in
0 05 1 15 N 2 25 3 Boas(Q7).

The general features of this full, running coupling BFKL
FIG. 2. The expression ,(— 1/(B,N)) as a function oN com- g_luon Green’s funct|_on and .consequent anomalous dimen-
pared to 1/B,N)* sion may be appreciated quite easily. The important fact to
0 .

note is that although tha ,(— 1/(8oN))—[1/(BoN)]" asN
)4 35( 1 )3 —0, the function oscillates a great deal with 24(), and
+

— remains much smaller in magnitude than this asymptotic
(BoN) form until very smallN, roughly until LN>n. This coupled
) with the accompanying factor af " means that for reason-

_ 1 \°
Ag(— 1/(B0N))=( — ) —-10
(BoN)

(BoN)
2

50 1 424 ablet, i.e., t=4—5(Q?=1 Ge\?), only the first five or so

(E n) (E N) terms in EQ.(2.30 make a significant contribution fox

0 0 >0.25. Hence, to a very good approximation

These functions oscillatga great deal and only approach the
asymptotic values of 14,N)" at low values ofN which — 27(3) _
decreases with increasingn. The comparison of Ge(N,t)=tPoN| 1 — ———— 3A3(—1/(,6’0N))
A4((— 1(BoN)) with 1/(BN)* is shown in Fig. 2, and illus- 3(BoN)t
trates this feature clearly. - 2¢(5) o
_Ignoring the common factor of-sin(m/(Bo N))I'(— 1/ —_—5(—1/(/5’0’\'))), (2.32
(BoN))exp(— ve/(BoN)), which has not dependence, and S(BoN)t
is irrelevant for the calculation of the anomalous dimension,
and in fact the smallness of the coefficient makes even the
-~ - — — t~° term almost negligible in this cas&g(N,t) initially
—tUBN| 1 4 “nA (— — ’

Ge(N.H)=t ! ng3 An(L(BNIE " An(— LI BoN)) grows asN falls due to thet¥oN) term. However, forN

(2.30 ~0.6 the negative contribution from the® term starts to

) ) become significant and ultimately drives the gluon structure
where theA,, are simply calculable from the expansion of fynction to negative values. The result is shown in Fig. 3.

exp(— 1/(BoN)S%_1an(y/t)>"*Y). The common factor of dGg(N,t)/dt may simply be evaluated also using E2.30),
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Qz-dependent gluon and its InQ*derivative

20 T

10 —

-10 = -

0.2 04 0.6 0.8 1 12 14 1.6 18 2
N

FIG. 3. TheQ?-dependent part of the gluon structure function,

Ge(N,t), and of dGe(N,t)/dt as a function ofN for t=6 (Q?
~6 GeV?). The Q%independent factor of-sin(w/(BuN))I"(— 1/

(BoN))exp(— ye/(BoN)) is included in both in order to produce a

smoothemM-dependent normalization of the functions.

and shows the same general shape, but does not becorq_

negative until a slightly lower value éf as also seen in Fig.

PHYSICAL REVIEW D 64 074005

Comparison of Intercepts

LO - gluon

01 b —oool LO+NLO - gluon -

0|||||||||||||||||||||||||||||
4 5 6 7 8 9 10

t

FIG. 4. The positions of the leading poles in the anomalous
dimensions for the gluon structure function at LO and NLO, and for
F_ at LO and NLO.

pole, with opposite sign residue, appearsyigy(N,t). At
even lower N the analytic expression eventually breaks
awn, as discussed below, but numerical results show a se-
ries of poles coming closer together. Nevertheless, the posi-

3. Hence the anomalous dimension develops a leading poléon of the leading pole is essentially determined by the first

at a finite value olN, given by

po 28 [ 2 2| 233

3(BoN) | (BoN)® (BoN)2 (BoN)

This result is accurate to better than 10% evenQet
~1Ge\?, and is much better at high€?, the right-hand
side receiving corrections formally aP(1/(t?83N®)), but
which are numerically small. The value Nffor this leading
pole is shown as a function ofin Fig. 4, and for the sort of
values oft relevant at HERA is~0.25. Going toN<0.25
higher-order terms in Eq2.30 become important, and the

positive 1] (BoN)2t8]As(— 1/(BoN)) term absent in Eq.

handful of terms in the power series dn(Q?) for Gg(N,t),

and hence so is the asymptotic behavior of the smajilit-

ting function, i.e.,Pgq(x,t)~x"%%. So we see that the in-
troduction of the running coupling has a dramatic effect on
the singularity structure of the LO BFKL anomalous dimen-
sion, turning the cut into a series of poles, and changing the
position of the rightmost singularity by a factor €0.4. This
result of the pole in the anomalous dimension was previously
proved in detail in[15] using numerical techniques and in
the context of the collinearly resummed NLO kernel, and
also indicated here using an approximate analytical solution
first suggested if24]. However, in this paper | particularly
stress the quantitative result of the huge modification of the
naive LO BFKL anomalous dimension due to the running
coupling contributions alone. This is apparent over a wide
range ofN, and in Fig. %a) | show the anomalous dimension

(2.30 pulls Ge(N,t) back to positive values, and another as a function ofN for all values right of the leading singu-
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Comparison of Anomalous Dimensions fBO: 1+ 1.60}/3+ 1.24,}/5_ 0163)/6+ 1-15'}/7+ —_
(2.39

S L B B B B L LA L BN

Tee - Including this additional factor in Eq(2.23) modifies Eq.
(2.32 to

_______ Simple BFKL v,

~ [2/34(3)— 1.60 BoN)]

(BoN)t

[2/5£(5)—1.24 BoN) ]
(BoN)®

— +U(BoN)
05 b gE(NIt) t 0 (1

X Ag(—U(BoN))—

0||||||||||||||||||||||||||||||||||||||| .
0 0.2 04 0.6 0.8 1N 12 14 1.6 1.8 2 ><A5(—1/(,80N))

LA L L B I B B B

. (2.39

LO Yee -

For a given power ofrs(Q?) these new contributions pro-

duce terms a power @yN up on the other terms and hence,
not surprisingly, result in additional running coupling correc-
tions to the gluon and anomalous dimension. However, the
new terms in the series in powers pflo not start until third
order and have rather small coefficients. The resulting
change in the anomalous dimensions, both for general values
of N and for the position of the leading pole, is very minor.
Therefore, the correction for my original “incorrect” choice
of scale is very small. However, in principle it seems as
o L Lol o b b b b b L though the factor just considered should really be taken as
0 02 04 06 08 1y 12 14 16 18 2 nmart of the LO result since it just gives running coupling
corrections. | will adopt this convention and the LO anoma-
lous dimensions and splitting functions presented in this pa-
per will explicitly contain the corrections from this factor,
naive LO BFKL anomalous dimensioth) The anomalous dimen- and in fact the results already presented in Figs. 3—5 include

sions for the gluon at LO and at NLO plotted as functiondNdbr these(\_/ery smal) effects. In prlnc_lple one QOUId _sum the
t=6. corrections needed due to the simple choicekdfin the

coupling, rather thank— g)?, by including contributions in-
larity. As one sees, it is much closer to the simplg¢Q?)/N duced in the kernel at NNLO and beyond. In practice, be-
expression than to the naive BFKL result. yond NLO the change seems too tiny for one to be con-
Before going into more precise detail and more generaterned.

situations there are two important points | should address. | should also comment on the limit of applicability of the
These are the choice of the scale of the running coupling imnalytic expressioii2.30. As noted, it is obtained via a se-
Eq. (2.11) ask? and the fact that the expansion gf(y) in ries expansion which is not valid over the whole contour of
powers ofy is not convergent over the whole range of theintegration. This is reflected in the error 6i(A2/Q?) we
contour of integration. The former of these is the simpler, saliscovered for this expression but also in the fact that the

first | shall address the choice of scale. It was knowf28l  overall magnitude of the,(— (1/(B,N)) actually increases
that the correct scale seemed as if it were really the symmetike n! in general. This latter point means that the series in
ric choice —q)?, but thatk® could be used instead, leading gq. (2.30 is actually asymptotic. It turns out that it contains
to a contribution to the NLO kernel which is proportional to poth infrared and ultraviolet renormalon contributions, and
Bo- In practice it is much easier to obtain analytic resultshence it must be truncated to obtain sensible results. The
usingk?, and thisgB,-dependent NLO term leads to a contri- greatest accuracy may be obtained from E430 by trun-
bution to the Mellin_transformation of the NLO kernel, cating the series at ordep~t, the precise value depending
x1(y), of the form %Bo[xé(y)JrX{)(y)]. Including this in  on the size of the coefficients in the series expansion. For the
the integrand for the expression fGg(N,t) at NLO (to be  LO gluon these are small and one could uge-10, but
discussed in detail in Sec. )\feads to a multiplicative con- from experience with other variablésee later and the de-
tribution of the form expl/2(In (xo(7)) + Xo(y))=fP(y)).  sire to go down toQ>~1 Ge\?, i.e. t~4-5, in practice |
This can be expanded as a power series which at lowlways useng=>5. (For the LO gluon the contribution from
orders is n=6— 10 is practically negligible.Using the truncated ex-

025

FIG. 5. (a) The anomalous dimension for the gluon structure
function at LO plotted as a function ®f for t=6 (Q?~6 Ge\?).
Also shown is theD(a4(Q?)) contributionag(Q?)/N, and the full
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pression forGe(N,t) in the manner already discussed thencoupling BFKL equation. In order to investigate the real ef-
results in an infinite series ing(Q?) for y44(N,t) which is  fect of the BFKL anomalous dimension on structure function
convergent for any right of the leading pole, but different €volution itis necessary to calculate the BFKL splitting func-
from the real, divergent series beyond sixth ordewiQ?). tion as a function ok. This is where an analytic expression
It is vital to note that although the formal expression for for the anomalous Q|men5|on is particularly useful. A series
the gluon, and hence anomalous dimension, as a power serig Numerically obtained values ofg(N,t) allows an ap-

in a(Q?) (2.30 contains infrared renormaloAsand hence proximate determination d?(x,t), but it is extremely diffi-
has San ambiguity o©(AZ/Q2), the integral in Eq(2.17), cult to be accurate, especially for the wildly oscillating func-

which properly defines the leading twist gluon and anoma:[Ions of LN which dp n fac_t make U@E(N’t.)' However, |
now have an explicit series fotyg(N,t) in powers of

lous dimension, does exist and produces well-defined results.”, ~» . .
The ambiguity ofO(AZ/Q?) in Eq. (2.30 cancels with an as(Q?), obtained from the truncated expressionda(N,t).

e . . "' TheN-dependent functions at each powerq{Q?) become
ambiguity in theO(A*/Q®) correction to this power-series larger at smalN as the series progresses, of course, and to

expansion which we discovered in the derivation of EQ.caach small enoughmore and more terms are needed. How-
(2.30. The accuracy of thétruncated analytic expression eyer, at a fixed value dfl there is no such growth, and the
can be found by comparing with results obtained from evalusame is therefore true for fixed Hence, one only needs to
ating Eq.(2.17 using numerical integration along the con- work to a finite order. Limiting oneself ta>10"° and't
tour shown in Fig. 1. For the gluon structure function for  >45 je, Q?=1Ge\?, the suppression of the
to the right of the leading pole the analytic approximation tOAn(— 1/(EON)) is quite significant and seventh order in
the anomalous dimension is found to be a fraction of a peraS(Qz) is easily sufficient. This results in a power-series
cent fort=6, and falls like exp{t). Strictly speaking there contribution to the splitting function

is an exp{t) contribution from the correction to E¢2.30

(with the renormalon ambiguity removeplus a 1’ correc-

tion due to the truncation. However, t1/is similar to
exp(—t) in the range considered. Hence, we have a powerlik@(

3 2
ng(i.as(Qz)FEs(Qz)+E§(Q2)(2-45—12-0]@%

correction to the power series i(Q?) obtained from the s
truncated expression which is completely well defined. This +9-206E(2)§— 9-6@8 +56(Q2)(2.08_
illustrates that the presence of infrared renormalons in a s 5!
physical quantity is not necessarily due to an inherent ambi- _ g & £
guity in the quantity itselfdue, for example, to the Landau _26'958%*134'6535_ 320.7?87

pole in the couplingas is commonly thought, but rather due
to the impossibility of completely expressing the physical

quantity as a power series in(Q?) [28]. In truncating the +359.8§6‘§— 148.853 +E§(Q2)
power-series expansion in E@.30 | simply choose to split

the expression for the gluon as some general functioN of 1.92¢' I __ &
andQ? into a perturbatively calculable part as a power-series E_o 71 19235 + 7894805

in a4(Q?) and a remainder which is approximately of order

O(A?/Q?). The point of truncation is then chosen empiri- —, & & Sy
cally so as to make this remainder term as small as possible. - 169-230E +199.85 3 122-%0?
This seems to be the way to obtain the most accurate analytic

results. It is important to note that the remainder term, al- —

though power suppressed, is not in any way higher twist, 30 7%05) (239

since it is obtained from the leading twist part of the solution

to the BFKL equation.
Having gotten these two points out of the way we canThis contribution to the splitting function fdr=6 is shown

now begin to discuss the quantitative results of the runnindn Fig. 6@. Note that because of the truncationg(N,t),
beyond sixth order the expression ﬁégg(g,as(Qz)) is not
what one would really get from the true power series. In
particular there are higher powers §than strictly allowed.
Nevertheless, it represents a very accurate approximation to
the full result whereas the correct series would simply di-

;. verge.

“In unphysical regularization schemes, suchMs; the anoma-
lous dimensions are not expected to contain renormalees sec-

tion 3.4 of[27] for a discussiop these being confined to the coe Iso h ider th d ib
ficient functions relating the parton distributions to physical We also have to consider the power-suppressed contribu-

quantities. However, by regularizing via a fini@, and defining  tion- Although this is only calculated numerlcallgmhspace

the gluon density as the bare density convoluted with the gluorit iS Only a small correction of order 0.05% fafg(N,t) at
Green'’s function, we have implicitly chosen a more physically mo-t=6, and can also be calculated for a wide variety of values
tivated factorization scheme which allows the presence of renorma@f N andt without too much work. It can then be modeled by
lons. an analytic function which may easily be convertedxto
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LO Gluon Splitting Function

1 —

LOP,,

............ Power-Series

Power-S
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\
\

0 Vol
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FIG. 6. (a) The splitting functionx Py0(x) and its power-series
and power-suppressed contributions plotted as functionsfof t
=6. (b) The splitting functiorxPgo(x) plotted as a function of for
t=6 (Q2~6 Ge\?). Also shown is theO(a(Q?)) contribution
a5(Q?), and the naive LO BFKL splitting function with coupling
as(Qz)-

space. Hence, | choose to calculate it for4.5 (Q?

~1GeV?) andt=6 (Q%>~6 GeV?) and N values 0.4, 0.5,
0.6,0.7,0.8,0.9, 1.0, 1.5, 2, 3,%, The lowert value is the

lower limit at which we will trust this LO perturbative result,
and fort above 6 the power-suppressed effect is very small.

The N values go low enough to correspond safely xo

PHYSICAL REVIEW D 64 074005

4.92 exip—1.62) 5(1-x) + exp(_t){ 1.065( aC:(SiltiS))
st 25
+ 21.5< ;:i%) 2'9035;3— 11.6({ a‘:it;)) 2794&?
csof SA0 )T E ool S0 TE]
(2.39

This power-suppressed correction is shown along with the
power-series part and the full LO splitting function in Fig.
6(a). Although the power-suppressed contributiorxiapace
turns out to be a larger fraction of the total thanNrspace,
it still only makes a very small correction to the evolution.
However, one notices that the logarithmic terms in 2038
are such that it falls more quickly tharh¢/Q?), or alterna-
tively, grows more quickly than this a3 falls. This may be
due to the presence of a significartyQ*) term in practice.
The full LO splitting function is shown in Fig.(6) along
with the purely orderag(Q?) contribution and the naive
BFKL splitting function. One sees that it is hugely sup-
pressed compared with the naive LO BFKL splitting func-
tion, and is even lower than th@(a(Q?)) contribution for
X between about 0.1 and 0.001. Finally | note that the LO
running coupling BFKL equation has also been calculated in
[29], but numerically, with coupling scale equal tk (
—q)?2, and with the coupling frozen below a particular scale
and Qg taken to be a finite value. The results are displayed
for high t (where my power series is essentially examd
despite the above differences seem to be in very good agree-
ment with the results if21] and this paper. The freezing of
the coupling and the finit&€, introduce choice-dependent
nonperturbative effects which become important at ex-
tremely low values ok, which in general become lower as
Qo and the scale of freezing decrease. This seems to support
the results obtained by my method of formally factorizing
the nonperturbative effects in@(Qg,N) and extracting as
much information as possible in an analytic model-
independent manner.

lll. HIGHER TWIST AT SMALL X

In this section | will show that as far as the information

>0.00001 and are sufficient that very accurate modeling cafom the BFKL equation is concerned calculable higher twist

be done. The values are fit to a function of the form

ag(t)
" ay(t=4.5)

7 b, 1
ap exp( —bgt) +exp( —t) [Z ) W} (2.37

contributions are small. | will also suggest that some other
powerlike corrections at smatlmay perhaps be less signifi-
cant than often claimed. As a first point | note that it has been
claimed that there are likely to be large infrared renormalon
contributions to structure functions at sma[l30]. As shown

in the previous section for the case of the gluon both infrared
and ultraviolet renormalons do show up in the solution to the

Introducing further degrees of freedom beyond this does ndBFKL equation if one insists upon trying to express results
seem to change the results. This expression can then be triéntirely in terms as a power series a(Q?) and uses the
ally converted tox space. Performing this procedure in the whole of Eq.(2.30 rather than truncating. Presumably these
case of the power-suppressed contributions to the LO gluoare an extension of the smalldivergent contribution to the

anomalous dimension | obtain the explicit result

renormalons in[30]. However, these renormalons are cir-
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cumvented if one considers the full solution to theto x space by picking up the simple pole Bt=agxq(y)
Q2?-dependent part of the BFKL equation. Precisely the sameesulting in

ar.(iglutr)nen;] works fol_r '_[He .casse of \;e@ll_lh_structur(ta tfunctiortﬁ, tas 1 (uzeie

will be shown explicitly in Sec. V. This is not to say tha 2

there are not reIatFi)ver)I/arge power-suppressed corre)étions to XG(Q%x)x 271 J1p i dy exp(y In(Q%Qg))

the (truncated perturbative series. We have already seen a

non-negligible contribution tdPg3(x,Q?), and the power- xexp§asxo(y))- (0

suppr_e_ssed contributions turn out to be larger for phySICaJI'his can now accurately be evaluated in the asymptotic small
guantities. However, these contributions are calculable and

unambiguous. Hence, solution of the BFKL equation, which® limitusing the saddle-point _technlque, .., integrating
along the contour determined by the condition

provides results more general than a power series(@?), _ X , . .
avoids the renormalon ambiguity. This means that renorma[-fx"(?’)/dy] _0 which defmeszO. At Ieadmg twist, 0

. . . =Revy=1, y,=1/2, and xo(yo)=4In(2), leading to the
lons obtained from unresummeith In(1/x) ] calculations re- . .

. . . usual powerlike growth at small However, looking for the
quire not only a In({) resummation but also the consider- . — .

. . . .solutions to[dyq(y)/dy]=0 for —1=Rey=0, i.e., exam-
ation of results beyond the power-series expansion. Th']‘snin the higher twist operator and its anomalous dimension
implies they do not really tell us anything truly quantitative onegfinds 9 P '
about power corrections in practice.

Now let us consider genuine higher twist effects. Some of ygT: —0.425-0.474,  xof 7QT) = 2.64+2.393.
these are contained within the BFKL equation, sino@ﬁfis (3.2

allowed to be nonzero a series in powers Qﬁ(Qz) is ob- . .
tained which tells us about the higher twist contributions dué—lence, the feature; of the saddle point are completely differ-
ent at next-to-leading twist. Not only are there complex con-

to the intrinsic transverse momentum in the two-gluon op-. ¢ dal ints leading to an illatorv behavior. but
erator. This is the only information, however, and we learnft'931€ saddie po ST cading to an osciiatory benavior, bu
he real part ofyo(7yo ) is negative rather than positive. In-

nothing about the other three contributions to next-to-leadin X { .
twist (discussed, for example [81]), in particular those due >€rting Eq.(3.2) into Eq. (3.1 one obtains

to the four-gluon_ operator and hence_ possible saturation_ef- XGHT(QZ'X)OCXZ.MES cog2.39%.é), (3.3
fects. However, it is possible to obtain some useful and in-
teresting results. i.e., a valencelike gluon rather than one growing at small

Let us first consider the fixed coupling BFKL equation. The corresponding higher twist splitting function has the
When solving Eq(2.8) it is straightforward to also calculate same general behavior as the gluonxasO.
the higher twist contributions by picking up the nonleading One can also find the splitting function by solving 1
poles iny. The easiest way to proceed is to obt&(Q?,x) =(as/N)xo(y) as a power series inat/N) for the next-to-
by first taking the exact inverse Mellin transformation backleading twist solution. This results in the explicit series

— —\ 2 —\ 3 —\ 4 —\5 —\ 6 —\7 —\ 8 —\9
HT — @), X s Us| _ s ds| Os| _ s s
yo (agIN)+1= N) 2( N +2 N) +4.4( N) 29.2( N +80.2( N) 90.6( N) 298( N +208£< N)
—\ 10 —\ 11 —\ 12 —\ 13 —\ 14 —\ 15
g g g g g g
—644f<ﬁ) +9157<W) +20915<W) —18792L<W +666008§W) —1.2x10° N)
—\ 16 —\ 17 —\ 18 —\ 19 —\ 20
s 7| Ys| 7| Xs) s\ 7| Xs
+1.3x10° N +1.9x10 N) 7.7x10 N) 1.7x10° N) 2.1x< 10 N)
Es 21
—2.0x10° N T (3.9

which can be easily converted xaspace. The corresponding summation of the series is extremely different, and the next-

splitting function is plotted foras=0.2 in Fig. 7, and it to-leading twist contributions from the BFKL equation are

clearly fits the expectation thactng(x,ES)~X°'5COS(O.%) not only suppressed byQ3/Q?), but also become negligible

asx—0252 Hence, although the first term in the series is theat smallx. This can also be shown to be true for the even

same as at leading twist, and implies a growth at smdlie  higher twist contributions using the same techniques. This
highlights the danger of using low order terms in the series
for the splitting functions to estimate higher twist correc-

SUnfortunately, because of large cancellations, the first 21 terms iions, as in[31]. The summation of leading In(dy terms
the series fox P;'g(x,Es) are needed fox=0.00001. may be very important; in this case of the two-gluon operator
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Next-to-Leading Twist Gluon Splitting Function equation were altered so dramatically at leading twist by the

inclusion of the running coupling, we should see what hap-

L] B L AL B ALAN B pens at higher twist. As already mentioned, the higher twist
contribution to the running coupling BFKL equation is given

by

—€e+iw

1 1
G"(Q%N)= Py ;exp(yln(QzlAz)

—€—iw

_ 0
—Xo(M(BoN))dy f exp(—7In(Q3/A?)
o Y
+Xo(7)/(BoN))d¥9s(Q3,N), (3.5

where the contour in the first integral has been moved to the
left since the leading singularity at=0 is eliminated by the
second integral.

Let us consider first the case whete:In(Q¥/A%)>t,
=In(Q3/A?), which would be the case for deep inelastic scat-
tering. Let us also, without justification for the moment, let
the lower limit on the second integral be a constdat,

—1, so that we have factorization imposed. In this case we
can evaluate the two integrals separately. Both the integrals
can be calculated accurately using the saddle-point method.
Thus, using the type of steps outlined in EGs1)—(4.5) of

[20] one obtains

exd [y @iamane?|

- — , (3.6
Yo (@s(QA/N) — xo( 75 (@s(Q%)/N)) M2
1 11 IIIII| 1 1| IIIIII 1 11 lIIIIl 1 11 IIIII| 1 111l for the fIrSt integral and
107 10* 107 107 10" 1
) _ eXp( - [ @amdn q2>
FIG. 7. The next-to-leading twist splitting function fag 0 s 3.7
=0.2. :

[— xo( 78T (as(Q3)/N)) 12

leading to a complete change of conclusion on the import ofor the second. It can be verified numerically that these ex-

higher twist. Unfortunately, there is no knowledge at all of pressions are indeed good approximations to the precise re-

the corresponding series for the four-gluon operators. sults. Combining these we get the full next-to-leading twist
Given that the results from the fixed coupling BFKL gluon Green’s function.

exp( f @)Y Ing?
Qo
Y5 (@s( QAN — x4 vh (@s( QA/N)) YA — x4 (v5 (as(Q3)/N)) V2

(3.9

Hence, the anomalous dimension for the higher twist It order to justify this conclusion it is only necessary to
operator is simply that obtained for the fixed coupling, explain why we could assume the factorization. To do this
but with the coupling constant allowed to run with the scale we note that the saddle point for the first integrand is at
while the normalization igroughly) the root of the fixed = (1/8o,N)xo(¥5 (1)) and similarly for the second inte-
coupling normalization evaluated fowg(Q?) multiplied  grand witht—t,. However, since>t,, yS'T(tO) is signifi-

by the same forrg(Q3). Hence, the result is much the same cantly to the right of yoT(t). The value of exp—7t,

as for the fixed coupling case, with both the splitting +Xo(%)/(BoN)) along the real axis along withy
function and the normalization decreasing and oscillating as- yg”(to), 75”(0 is shown in Fig. 8. It is simple to rewrite
x—0. Eq. (3.9 in the equivalent form
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exp(-1ty+X/(BoN)) along negative real axis this t>t, limit we find that we obtain factorization of the
next-to-leading twist solution and that as for the fixed cou-

S R L I L B I I I LI I pling case this is negligible as— 0.
- ol

Even if t, approaches, the results can be shown to be
similar by numerical calculation. For example, in the ex-
treme limit oft=t, the first integral in the second line of Eq.
(3.9 gives only half the saddle-point contribution, but one
. can check that the previously negligible second integral now
gives a roughly equal contribution for d\. However, fac-
torization is now clearly broken. Detailed numerical investi-
gation shows that faipy not much smaller thabhwe can write
the  higher twist contribution in the form
(Q3/Q?)f(Q%Q3,N) where the total is a function oN
which grows slowly withN, approaching a constant &b
—0. This is consistent with the forx cogb In(1/x)) which
we get for the factorized next-to-leading twist solutitihe
Mellin transformation of which is +a)/[ (N+a)2+b?]),
and certainly confirms that the gluon Green'’s function is fall-
ing asx—0.

Therefore, the higher twist operators and their anomalous
dimensions derived from either the fixed coupling or running
coupling BFKL equation are negligible at small and for
these higher twist contributions the use of the running cou-
. pling equation does not qualitatively change anything. How-
ever, we are currently not able to say anything about the
contributions from the four-gluon operators, and hence about
shadowing corrections, etc., beyond relatively simple results,
e.g., anomalous dimensions in the smdimit at LO in «s.

N A T P B T L There have been various suggestions that such shadowing

-1 09 08 07 -06 05 -04 03 02 01 0 corrections are large, but | feel that these estimates may well

Y be severely exaggerated by the use of the approximation of
_ this LO in ag anomalous dimension, and also by the fact that

FIG. 8. The value of exp-¥to+Xo(7)/(BoN)), along the real  the even more restrictive double-leading logarithmic ap-
axis for N=0.4 andto=2, along with7=15"(to), 5 (1) for t  proximation is often used. This often seriously overestimates
>1o. the size of the anomalous dimensions, coefficient functions,
and also the gluon distribution. | hope | have demonstrated

15

05

1 (iTy+ie 1 that for the evolution of the higher twist two-gluon operator
gM(Q%N) = 2 LST(OW ;exp(yln(Qz/Az) the LO-inwg double-leading-log approximation is indeed to-
0 tally misleading. It is also interesting to note that a more
_ 3 _= complete calculation of the higher twist coefficient functions
Xo()(BoN))dy ngex“ y for the evolution ofF,(x,Q?) due to the four-gluon opera-
_ tors[32] implies that the double leading log approximation is
XIN(QE/A?)+Xo()/(BoN))dY a vast overestimate. Even using very small values of the
- screening lengtiR=2 GeV 2 rather than the more usual
n f’o © exp(—7 In(Q2/A2) R~10 GeV? and the very large LO GRV gluon distribu-
Y tion [33], it seems that the shadowing correction is almost
negligible in the perturbative HERA range. Saturation effects
+Xo()/(BoN)) dy9s(Q2,N). (3.9  Will no doubt eventually set in for low enoughandQ?, but
presently | feel the technology is not such as to predict where

with any real accuracy. Certainly, resummations in Ixy1/
Using Fig. 8, and remembering that the saddle-point integralend to decrease the size of the gluon extracted from data,
for the first integral is parallel to the imaginary axis, and thatand this combined with the above considerations suggests a
the integrand very quickly decreases away frqwﬁﬂ (t), we  much smaller saturation effect, and total higher twist effect,
conclude that the value of the second integral in the seconthan often supposed. Certainly the model-independent “rule
line of Eg. (3.9 is negligible compared with the first. Also of thumb” for strong saturation contributions that
noting from Fig. 8 that there is little change if we alter the dF,(x,Q?)/d In Q>~Q%s(x) and hence dIn (F,(x,Q?))/
lower limit of the first integral in the second line tb  dInQ?~1 is not even closely approached for any HERA data
~ —1, we obtain the factorization assumed above. Hence, iwith Q°=1 Ge\~.
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However, | note that in my examination of higher twist | and using just the one-loop expression for the coufling
have not examined the mixing between leading twist andeads to a second-order differential equationyiepace
higher twist operators or included any nonperturbative con-
tributions due to, for example, the behavior of the coupling sz 7z 2 ~
constant at low scales. These two effects are related to each  4°f(7:N) _ dfi(». Qo) 1 dGo(Mf(%N)
other. Such questions have been considered for toy models in dy? dy? BoN dy
[15] and[29], and numerically for the full LO running cou-
pling BFKL equation29]. These papers have considered the _
full anomalous dimension defined byin(G(Q?,N))/dt, and 3E§N
the way in which this is affected by the higher twist correc-
tions, rather than just In(G""(Q®,N))/dt considered above. s can pe solved in a very similar way to LO, i.e., it fac-

They demonstrate that there are potentially serious modificggi;es into the same form as Eq2.17) with the
tions to the leading twist anomalous dimension due to th‘bz-dependent part given by

higher twist corrections introducing sensitivity to the form of
the normalization factog,(Q3,N) which depends on the

™

x1(7)T(y,N). (4.2

. . 1 (12+ie] _
regularization of the goupllng at low scalgs and on Qﬁa gé(N,t)= il = expyt—Xa(7.N)/(BoN))d .
dependence. Depending on the assumptions about the non- 2 Jaje-ie ¥

perturbative physics, these contributions can be important at 4.3

extremely smalk, generally changing the precise form of the

powerlike behavior, and for more severe imposition of non-However,X,(y,N) is rather more complicated than the pre-
perturbative effects, i.e., letting them set in at higher scalessious X,(y). It can still be expressed in the form
introducing a completely different asymptotic behavior. Un-

fortunately, within the framework of my paper the formal

divergence o_fg(Qé,N) makes a similar_ study impossit_)le X, (7,N)= fyXNLO( 5.N)d?, (4.4)
and, as mentioned at the end of the previous section, | simply 12

have to appeal to these alternative results, in particular the

smallness ok at which the power-suppressed modificationsy) ;¢ now ynio(7,N) can be written as a power seriesNh
set in, in order to support the reliability of my more formal peginning at zeroth order withyo(y). As seen in[14],

calculations. HOWeVer, | also note that the smallness of th%ough here ignoring resummationsmthe expncit form is
higher twist operators and their anomalous dimensions cal-

culated in this section suggest that while these contributions

from nonperturbative sources only set in at @ or ver xi(y) N2 x1(¥)\?
P Y @t or very o7 N) = xo(7) ~NEEo g = | -

smallx indeed it seems perfectly possible that they will give xo(Y)  xo Xo(y)
a comparable, or even larger contribution at lgwand low (9’
Q? than the genuine higher twist contributions. —Bo(u) }_,_ ' (4.5)
Xo(y)
IV. NLO CORRECTIONS where the currently unknown NNLO contribution to the ker-
nel, x»(), would also appear at ord&f in principle.
In Sec. Il | demonstrated that using(k?) in the BFKL As already discussed in Sec. Il there is a contribution to

equation, as in Eq2.11), has a profound effect on the form x1(7) from the B,-dependent terms ind_ucegl by an “incor-
of the solution both for the normalization and for the anomaJect” choice of the scale for the couplinge= rather than
lous dimension. However, given the first conclusions regard(K—d)°. Taking this contribution to the term in Eg4.5

ing NLO corrections in the essentially fixed coupling case, itW/hich is linear inN, and combining with the LO expression
is particularly necessary to check that the results presentatfe find the previously discussed result of only a minor
are not severely modified by the inclusion of the NLO ker-change in the anomalous _d'mens"g” and splitting function
nel, i.e., that the perturbative calculations are stable. Thgxtr_acted. Hence, the ch0|ce t.ﬁS(k) IS Fe"ab'e' and is
NLO kernel was presented fi11] and the way in which to easily corrected for. In this section | consider the rest of the

solve at NLO with a running coupling was presentedi] NLO correction to the kernel, which is much larger, and
Writing the NLO equation as henceforth | denotey;(y) as the NLO kernel with the

) ) gs(kZ) w dq2 ) s SUsing the full NLO expression for the running coupling would
f(k 1QO)=f|(k 1QO)+ ?[Ko(q !k )

N lead to a huge degree of complication, and this has never been

attempted. Since, so long asis chosen appropriately, the one- and

_ 2 2 1,2 2 two-loop couplings are very similar, | do not imagine any major
as(kK)K(a%KIIT(a), (4.1 errors in the results below.
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Bo-dependent part%ﬁo[xé(y)wé(y)] already extracted, X [ m(1—¢|N) _
and include the multiplicative factdio(y) in the integrand Ge(N,t) = —sinl ———— |T'(=(1—¢/N)/(BoN))
in Eq. (4.9. This still leaves a decision as to precisely what (BoN)

| take “the NLO calculation” to mean. There are various — N B
possibilities. | could work at the level of the NLO correction xXexp — e~ CoN t(1=CciN)/(BoN)

to the kernel, and hence the BFKL equation, and solve Eg. (EON)

(4.1), producing the infinite series in E(.5). Alternatively,

| could truncatexy o(v,N) in Eq. (4.5 after the second - _

term. However, doing this still leaves the question of whether X 1+r§1 mZ:l [(1+An(1/(BoN)))
to use the whole of ex@/Bof 7/ x1(¥)/ xo(¥)1d%) or just

expand it out to first order i, *. X (1+Cp(1/80)) —1]

There are particular problems associated with all choices.

If one solves using the full NLO corrected kernel then there o —(1—¢N)

is an infinite series in powers ™ to consider in Eq(4.5), XA | ———— | ¢ (4.9
which turns out to be important in practicgee below: Also, (BoN)

the gluon Green’s function and anomalous dimensions ob-

tained from this solution contain many subleading terms be\_/vhere

yond just LO and NLO in In(2¢) (and running coupling type o 1

correcuons. to the.s)eas is essentially obvious from Iookl_ng 1+ 2 Cr(1/By)y"=expl — 2 Y|, (4.10
at Eq. (4.2); iteration of f leads to the last term producing m=1 Bo"=1

NNLO then NNNLO and so on. Hence, this choice is dis-

carded. If one instead truncates f£4.5 at orderN, one still  ang theA[1/(8,N)] include the contributions fronfi¥o(y),
generates a subset of higher order terms beyond those opg., are of the form in Eq(2.35. The factoring of the terms

wishes, though it is possible to proceed in this case at leaspidependent of then results in the expression
One can see the explicit form of the solution by substituting

the truncated Eq(4.5) into Eq. (4.3) and proceeding as in
Sec. Il. The contribution tX;(y,N) coming from the sec- | 1- e N)/(BoN) ~ —
ond term,— N[ x1(¥)/xo()], leads to an expression of the Ge(N, ) =t amiBoly 1+ 2 21 [(1+Aq(L+/(BoN)))

. : n=1 m=
same form as in E¢2.2)), i.e.,

o [

X (1+Cy(1/Bg))— 1]t~

—Hl—qNWJ
(BN) )

[’

Xl(%N):XO('}’)_CINIn()’)_NCO_NnZ:l Cn?’nv (4.6 ><An+m( (4.1

There are two sources of corrections beyond NLO in bj(1/
other than running coupling corrections, in £4.11). First,

C,(1/8,) can be expanded as a power series iBdy( Only
the first term in this series is genuinely a NLO correction to
* the LO result. Terms of higher order lead to contributions to
> ¢,y"=0.424y+0.805y2+0.521y%+ 2.290y*+ 1.287°  the anomalous dimensions which are beyond NLO in k)(1/
n=1 without compensating factors g8, which would enable
+2.980y0+--. (4.7) them to be interpreted as running coupling corrections. Sec-
ond, when one expands terms of the fofrtii—c,N)/

(BoN)]™ which appear in the\ , in Eq. (4.11), one obtains a

where thec, may be calculated easily by performing a
power-series expansion of the known functionsypf.e.,

Hence, the integrand fcﬁé(N,Qz) becomes power series of the form,
_ 1 (1—¢N)\" 1 “1 N
—(1—c|N)/(BON)—lfﬁO( )EX t— ( —caN — =| — —Nng
7 TERT By (BoN) (BoN)
3 n(n_ 1) 2
+ 2 (an,erH—l_NCn,yn))). (48) + 5 (C|N) +-ee . (412
n=1

The second term in this series gives the NLO in Irf1/
Performing precisely the same type of manipulations as ircorrection while the remainder give higher corrections with-
Sec. Il results in the expression out compensating powers oB,. Therefore, both these
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power-series expansionS, i.e., of tﬁﬁ in powers of 1/60)’ lous dimension we notice that the pOSition of the first zero is
and theA , in powers ofN should be stopped at first order in changed from that at LO, leading to a shift, in fact a de-
Egl or N, and the cross terms coming from first order in both¢r€ase, In the leading pole .for the anpmalous d'm.ePS'O”' and
expansions, which are of overall second order, should b ence in the power of leading behavior of the splitting func-
eliminated t,o obtain truly NLO resulfs ' ion asx— 0. So thex— 0 behavior of the splitting function
Ultimately | define NLO by appealing to the perturbative becﬁnggjgg(X) =t'exp(>\0t§—m\t§_). tH?\IVI\ig/er’ smcex')\ 'S.du? i
form of the gluon Green’s function and anomalous dimen-° ~ correc 'SnAS); e ste This d ?.XP‘?‘”S'gn 'S Jus
sion produced and hence by choosing the NLO definitiorng(.X)._eXpO.‘Og) _ge_xp()\og). s definition does not
such that the Green’s function does receive only correction?xpIICItIy retain the shift in the power-like behavior, and also
which are no more than one power@f(Q?) (without com- eads to the NLO correction ultimately becoming larger than
pensating factors g8,) down on the leading order one. This the LO result. Hence, | choose to retain the whole of

l 71 . . g .
means using an expression for the gluon Green’s function d;ng(N't)] In the, definition of the NLO anomalous dimen-
the form sion, thus obtaining the fulPy4(x) =expho{—ANE) as x

—0, even though in practice the choice makes little differ-
ence at the values ofrelevant to HERA.
_ w o So now | can use Ed4.13 to determine analytic expres-
GE(N,t) =t(E=eN/(BoN) 1+ > [(L+A,(1BoN))) sions for the NLO gluon Green’s function and anomalous
n=1m=1 dimension. However, the formal definition again results in a
divergent power series, and as at LO | really truncate the

X (1+¢n/Bo) =1t ™A, (— 1A BoN)) series in Eq.(4.13 at np=5. This leaves the problem of
calculating the power-suppressed corrections. In order to do
C co _ _dA(— 1/(EO|\|)) this it is necessary to have an exact definitiongé(N,t) in
— = > A U(BNI ————— |, the form of an inverse Mellin transformation, as in £4.3).
Bo"t d(=1/(BoN)) This requires finding the integral expression which would

(4.13 lead to Eq.(4.13 if a power-series expansion of the inte-
grand is performed. Unfortunately this is not that simple. The
_ ) ) _ problem comes with the manner of treating the N In(y)
where thecn/,Bo are obtained by expanding the exponentlalterm in Eq.(4.6). In order to have the leadingt~N/(5oN)
expression  exd/Bo(J {id x1(¥)/ xo(¥) + ¢+ Col)d¥), out  factor in Eq.(4.13, and hence obtain the correct expression
to just first order in 18,. Implicitly there is also a factor of ~for the O(as(Q?)) part of the anomalous dimension, it is
necessary to keep-c¢NIn(y) in the exponential in the

integrand, giving a factor y ©/fo. Expanding out

[ m(1l—cN) —1(1-¢|N) — ahd
—sin B Nl) ) ( B N)l )exp(— vel(BoN) exp(— ¢, In(y)/By) to first order would lead to It contribu-
0 0 tions to the anomalous dimension. However, keeping the full
+¢o/Bo) y~%'Po factor results in the argument of the, being — (1

—c¢N)/(BoN) as in Eg.(4.11). Hence, there is no simple
which contributes to the normalization in E@h13. way to genergte only NLO _correcti(_)ns from this term. In
Now that we have this NLO expression for the gluon©'der to obtain an expression equivalent to E4.13 |

Green’s function it is necessary to make one more decisioghoose to effectively put the known factor tf N (FoN) jn
regarding the definition of the anomalous dimension. This i®y hand and to generate the derivatives of Ahewithin the
obtained from y-O*NLO(N,t)=[d In (GZ(N,t))/dt]. How- integral with respect to.

ever, strictly speaking, in order to obtain only NLO contri-  In order to see how to do this | consider the LO expres-
butions to the anomalous dimensipgt(N,t)]~ 1 in this ex- sions(2.17) and(2.26. It is quite simple to generate the first
pression should be expanded only to NLO. This leads to #art of Eq.(4.13. All one needs to do is insert the series
formal problem already pointed out in Sec. VI[@0]. Using  expansion #1/(By)=,_.Cc,y" expanded to first order in
the whole off G£(N,t)]™* in the expression for the anoma- 1/, into the integral representation, i.e.,

. . . . ) 1 _ — (BN - 158 _ 1

“Ignoring this requirement and using the whole of E411), it Ge'(N,t)= | y P fPo(y)exp yt——
turns out that the resultant expression is very badly behaved, blow- ¢ (BoN)
ing up at largeN. This is almost entirely due to the higher-order w
terms in the expansion of the, . Using the fullC,,(1/8,) does not < E an,},2n+1
change things much in practice. This laiyenstability translates n=1
into huge corrections in the splitting function at lasgéPresumably
this instability at largeN and x is cured if one resums the whole (4.149
series in Eq.(4.5). Including just theO(N?) term does seem to
improve matters. where the integral is over the full, unspecified contour, and

1+mE:0 (1/Eo>cmvm) dy,
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generates theindependent factor sif+- WL(EON))F(— 1/(ByN)), as well as thé-dependent parts explicitly in E¢4.13). On

top of this one must also insert the®N/(foN) factor by hand. If one is also concerned with titelependent normalization it
is probably most consistent to also multiply by the factor

sin(m(1—c;N)/(BoN)T(—(1—¢;N)/(BoN))exp(— (yg— CoN)/(BoN))
sin(m/ (BoN))T' (— 1/ BoN))

(4.1

in order to obtain the overall factor of

(4.19

—sin(m(1— ¢;N)/(BoN)T (— (1~ C|N)/(ﬁoN))eXr(7E—CON)-

BoN

Generating the second part of E4.13) is rather more complicated. One has to somehow modify the integral representation

so that the derivatives of tha,(— 1/(EON)) are obtained. To see how to do this we Ietﬁdl@):z, in which case the
equivalence of Eq92.23 and(2.30 (ignoring the divergence of the serias

o

f 721ex;{ -z, anyz"“)dyz—sin(q-rz)r(—z)tz
C n=1

©

1+ }_}3 AL(2)t "A(—z+n)], (4.17)

where | have removed the trivial factor of e(xpyE/(EoN)) from each side. Differentiating both sides with respect tee
obtain

©

—f |n(7)7‘z‘1eXP< -2, anyzn“)dv—f y Tty amyzm”exp( w—z> an’y2n+1)d'y
¢ n=1 c n=1

©

=V (—2)sin(7z)[(—2)t 1+2 AL(2)t "A(—z+n) | — 7 cot( wz)sin( wz) [ (— 2)t? 1+23An(z)t*“A(—z+n)

_ - - _ - ~dA(—z+n)
—In(t)si7Z)[(—2)t3 1+ D, Ayt "A(—z+n) | —sinmz)[(—2)t3 1+ >, A (2)t —
n=3 n=3
“ dAL(z
—sin(wz)r(—z)tZ( > Aol )t*”A(—z+ n|. (4.189
n=3 dz
|
The last terms on each side are equivalent, and rearranging > dA(—z+n)
the rest we obtain an expression for a series containing the sin(7z)I"(—2)t? E An(2)t™ “d—
derivatives of theA ,(2): z

- | ) -1w(-2)- 7 cotmn -ty + 2
_ ” dA(—z+n) c
sin(7z)['(—2)t? 2 (Dt

Xexp( yt—z>, a,y?"*1|dy. (4.20
n=1

o0

=f |n(w)721eXP< yt—2z2, a,y>"tl
C n=1

— 7 cot{ wz) — Int]sin( 72) T (— 2)t? Theref_ore, the right-hand-side of E(#.20, multiplied by
—c/(Bo)tl~aN(BoN)  gives the second term in E¢4.13

(4.19 with some t-independent normalization which should be
multiplied by Eq.(4.16) to be consistent with the first term in
the preceding paragraph. Thus, we have a prescription for the

full calculation at NLO which is equivalent to the series ex-
which using Eq(4.17 becomes pansion in Eq(4.13), i.e.,

dy+[¥(-2)

X| 14+ Ayt "A(—z+n)],
n=3
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_ _ 1 the power-series img(Q?) is much less convergent than at
GE(N,t)oct =G ’ﬁof y~ YBoN) =1t Bo( yyexp yt— — LO. In order to obtain an expression which is reliable down
c (BoN) to x=0.00001 atQ?=1 Ge\? it is necessary to go to 20th

order inag(Q?). Hence we can write the NLO correction to

% 2 anyan) 1+ E (l/ﬁo)cmym) the splitting function as
n=1 m=0
19 mpax
o In(yt)—\If( - _i) xPhE(6.ay @)=y Q@) . 3 @)
Bo BoN _
gm S*m*l
+7Tcot( _L) 5~ [U(BON) =1 Bo( ) X\ Km0
BoN
- +Kn5[385(1—x)), (4.22

dvy. (4.21)

1

BON n=1

where because we have truncated the series for the gluon

structure functiorm,,,, can be greater than the naive expec-
and once again one should multiply by E4.16) to get the  tation of m,,=n—1. The coefficients for the series are
most suitable normalization. We can now insert the abovghown in Table I. If one is only concerned with>0.0001 or
expression into y-°*NYO(N,t)=[d In (GE(N,1))/dt] and  Q2>4 Ge\? then the series can be truncated at about 12th
evaluate numerically in order to get the NLO anomalousorder.
dimension without recourse to the truncated series expan- As at LO we also have to model tiNdependence of the
sion. power-suppressed correction by an analytic function. Fortu-

We are now in a position to solve for the anomalous di-nately, exactly the same type of function is sufficient and we

mension and splitting function at NLO. Unlike the case of obtain the power-suppressed NLO correction to the splitting
fixed coupling, or the simplistic results of the saddle-pointfunction of the form
evaluation, the NLO corrections to the LO anomalous di-
mension are under control. This is simply illustrated by the (t) |08
positions of the leading pole in the anomalous dimensions s ’
which are shown in Fig. 4, and one can see that they change_z'86 exp— 1.02)5(1—x)+exp(—t){13.55{ as(4.5))
from about 0.25 foryyq(N,t) at LO to 0.17 at NLO, and that 101 13152
the Q? dependence reduces a little. However, as already 9 6J< ag(t) ) £+39 7% ag(t) ) i
noted at LO, the value of the intercepts has little to do with T ag(4.5 " ag(4.5 2!
physics at HERA, the powerlike behavior only really settling

down for lowerx, and this is even more true at NLO. Bein E{ as(t) )1'4853 5{ as(t) )1'7754

' : 9 —33.76 —+16.8 -
more particular one notices that the anomalous dimension ag(4.5 3! ag(4.5 4!
Yg9(N,t) over a wide range oN shows only a relatively ag(t) | 21665 ag(t) | 26346
small change going from LO to NLO. This is shown in Fig. —4.4 5{ s ) —+O.483§< s ) _}
5(b) where the part of the NLO anomalous dimension at first agy(4.5) 5! ay(4.5/) 6!

order inag(Q?), i.e., —0.935¢,(Q?), is not included, since 4.23
this should properly be included at LO in a combined leading
order in ag(Q?) and as(Q?)In(1/x) expansion scheme. Al-
ternative definitions of NLO lead to very similar results ex-  The full NLO correctionxPy;(x) and its power series
cept at very high values dfl, where less sophisticated defi- and power-suppressed contributions are shown in Re, 9
nitions lead to blowing up at largd, as already mentioned. where the relatively unimportant terrrss(1—x) are absent.
For this case of the gluon structure function the NLO correc-As at LO the power-suppressed correction is proportionally
tion is negative except for very large. | should also note much larger inx space than in moment space and certainly
that the powerlike correction to the purely analytic result is aneeds to be considered &t 6 and below. Also as at LO it
larger proportion of the NLO correction than of the LO con-tends to oppose the form of the power-series expression,
tribution, but would still be almost impossible to spot if hence reducing the total NLO correction. The powersygf
shown in Fig. %b). The correction to the analytic value for in Eq. (4.23 are slightly smaller than for LO, and hence the
the intercept is about 7% &t 6, however. power-suppressed correction does not fall quite so quickly
One can also make the transformatiorxtspace and cal- with Q2.
culate the NLO-corrected splitting function. Unfortunately, The total NLO splitting function, i.e., LO plus the NLO
due to the increase in size of thg coefficients compared to correction, is shown fot=6 in Fig. 9b), where the contri-
the a, (particularly the absence of zejoand also to the butions «§(1—x) both from the O(ag(Q?)) part and the
factors ofn invoked by differentiating the&\,, in Eq. (4.11), running coupling corrections to this are absent. The latter of
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TABLE I. The coefficientsK , in ng”g'o(g,aS(Qz))=ES(Q2)Ei9:1 mmax G(Q) (Knm EMBY /Ml +K,5808(1—X)). The series for the

part proportional to §(1—x) is more convergent inay(Q? and for all Q?=1Ge\? is given accurately bya4(Q?) (1

—x){9.0[ Boa(Q?) 1°+139.9 Boa(Q?) 15+ 38.8 Boars(Q?) 1+ 96 4.9 Boars(Q?2) 13+ 16 7.0 Boas(Q?) 1°+ 5609 Boas(Q2)11%}.

n m=5 m=4 m=3 m=2 m=1 m=0
m=11 m=10 m=9 m=28 m=7 m=6
m=17 m=16 m=15 m=14 m=13 m=12
m=23 m=22 m=21 m=20 m=19 m=18

1 —0.4236

2 -1.354 1.611

3 —7.000 30.22 —34.63

4 —5.686 46.92 —103.2 63.85

5 —-16.14 193.5 —797.2 1373 —-918.0

6 186.0 —-971.0 2518 —3323 2045 —458.9

—14.35

7 —1386 5051 —9865 10113 —-4281 709.2

—10.60 192.0
8 21431 —59800 99225 —95325 49058 —-11483
—24.48 511.5 —4497
9 70532 —46099 —25896 59631 —29684 2798
-17.21 349.4 —3100 15284 —44034
10 —126387 —261087 735693 —761882 373984 —77690
-12.01 326.1 —3758 23801 —88010 179647
11 8688676 —9665206 6981022 —3087487 771318 —102010
1117.6 —15044 119789 —620744 2179220 —5256680
—37.57
12 —1.621x 10’ 1.864x 10’ —1.288x 10’ 5044618 —962638 64963
46536 —211318 563130 —547416 —1766356 8225690
—-18.36 506.4 —6353
13 1.13% 16 —1.236x10° 8.576x 10 —3.677x 10 9106782 —1186015
—400076 1467162 —2855626 —645255 2.13& 10 —6.623x 10’

—12.58 453.6 —7298 68149

14 4.425¢10° —2.089x 10 6.225x< 10 —1.129x< 10’ 2061380 —386008
1.425< 10 —5.541x 10’ +1.589x 10° —3.345< 1¢° 5.135x 10° —5.625¢< 108

—46.85 180.1 —32842 359398 —2678626

15 —7.723x 10 1.340x< 1¢° 1.391x 10° —1.075< 10 3.170< 10 —4331143
—1.146x 10’ 1.108x 108 —4.028< 10° 9.069x 10° —1.361x 10° 1.339x 10°

639.2 —-103283 101509 —640342 2523533 —4527424

—-18.33
16 1.403< 10 —8.066x 10° 3.172x10° —8.188x< 10° 1.324x 10° —1.227x 10/
2.987x 10° —1.490x 10° 4.598x 10° —9.865x 10° 1.529x< 10 —1.724x10%

—11408 137101 —1076349 5431540 —1.481x 10 —9014694

—12.37 552.7

17 —1.108< 10% 7.809x 10° —3.096x 10° 6.807x 10° —7.184x 10 1672556
9.306% 10° —1.676x10%° 2.172x10° —1.824x10% 6.057x 10° 6.571x 10°
803905 —7783462 5.54% 10 —2.982x 10° 1.227xX10° —3.869< 10°

—57.64 2645 —58085
18 7.129<10%° —4.890x 10t° 2.107x 10° —5.733x 10° 9.531x 10° —8.884x 10/
—3.690x 10 6.574x 101° —8.024x 10* 5.604x 10t° 3.195x< 10° —5.773<10%
7633219 —2.006x 10 —4.467< 10 7.555x 10 —4.185x< 10° 1.480x 10%°

—17.59 741.8 —14788 180754 —1460081
19 4.467 101 —1.573x 10" 3.986x 10 —7.340x< 10° 9.737x10° —8.398x 10/
4.962x 10! —9.477x 10" 1.402x 10%? —1.602x 102 1.399x 10*? —9.198x 10
—4.778<10 —6.248< 10 1.948x< 10° —1.372x10% 6.153<10° —2.005x< 10*
-11.75 620.5 —15217 225792 —2200274 1.398 10°
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NLO Gluon Splitting Function Evolution of G(x,t), In(Q%/A%)=6, G(x)=(1-x)°x *2
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Fig. 9.b

NLO FIG. 10. The values ofdG(x,Q%)/dInQ? for G(x,Q?)

FIG. . (3 The spiting funclior () and s power-seies._,"0%3 )5, de 10 the LO spliting funcioS(x) and the
and power-suppressed contrl ‘;ﬂg?ﬁﬁgo ed as lunctionsio LO+NLO splitting functionPgg™"°(x), plotted as functions of

=6. (b) The splitting functionsxPgq (x) plotted as a function for t=6 (Q2~6 GeV?). Also shown is the evolution due to the
of x for t=6 (Q?~6 Ge\?). Also shown is thed(a(Q?)) contri- O (Qz)() contributio)nP(x)=E(Q2)/x.
bution a(Q?), and the LO contributionx Po(x). s s

these is a very small contribution. The NLO corrected split-Splitting function increases the evolution above the double-
ting function is clearly not qualitatively different from that at leading-log result. One also sees that the effect of the NLO
LO, though it is quite a lot smaller at smallHence it seems corrections is certainly significant, and increases relatively
as though by including the infinite series of running couplingwith falling x, but it is clearly a correction rather than the
corrections the perturbative expansion of the BFKL splittingcomplete change in qualitative behavior induced by the NLO
function has been stabilized. However, the real importance oforrections without resummation of running coupling effects.
the NLO corrections as far as physics is concerned is the A further way often used to investigate the perturbative
effect they have on the evolution of the gluon structure func-stability of a fixed-order perturbative calculation is to inves-
tion. This is demonstrated in Fig. 10 where the evolution of aigate the renormalization-scale dependence. This is often
suitable model for the structure functi€®(x,Q?), i.e., (1  used fallaciously, e.g., if one calculatPgy(as,x) to NLO
—x)®x 92, is shown both for the LO running coupling split- in the standard perturbative expansion and then investigates
ting function, and for the NLO-corrected ofjell §(1—x) variation of renormalization scales one will never notice the
contributions other than at first order in(Q?) are in- influence of the terms at higher ordersdg which are also
cluded. Also shown is the evolution due just to the double- of higher order in In(). This is symptomatic of the fact
leading-log termP(x)=a¢(Q?)/x. As one sees, at this that the expansion purely in powers af is not really a
(fairly low) value oft, i.e.,Q?~6 Ge\?, the evolution driven  correct expansion scheme for splitting functidifisr a full

by the LO splitting function is very similar to that from the discussion se¢8]). However, once we have performed a
double-leading-log contribution, and is even slightly smallerresummation of large logarithms, as here, renormalization-
for x from 0.007 to 0.00001, corresponding to the dip in thescale variation should be more reliable. The renormalization
splitting function seen in Fig. 6. Below this the growth of the scheme dependence may be investigated by letting
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Renormalization Scale Variation tion is necessary, or even useful, beyond the running cou-
pling corrections. This is in distinct contrast to the case
03 T where both ends of the gluon ladder are associated with a
A hard scale. In this case the conventional BFKL expansion is
fundamentally flawed due to progressively higher order poles
at y=0 and y=1 (corresponding to large logs in the ratios
of the two scalek? andk3) as shown if13]. These large-
order poles need to be resummed, and without this resumma-
tion calculations are badly behaved over the whole range of
N (in fact explicit calculation shows that this is particularly
the case at larg8l). In the case of deep inelastic scattering
the collinear factorization procedure automatically orders the

L . k= _
o T S 05 poles aty=0 correctly, and the above problem shows up in
high order poles ay=1 only. The anomalous dimension is
023 = 1;4 = 1(;3 = 1(;2 = 1;1 —  totally dominated by the region very close 46=0, as this
* paper shows, and is very insensitive to effectgyatl. In-
A B A B AL NI EER AR cluding the type of resummation ifil3,14] alters results
from the NLO-corrected case by only a very small amount,
/ and is likely to be no more influential than the remaining
1 _  LO+NLOP, k=1]

NNLO effects for which it does not account. Resummation
------------ k=2 of poles neary=1 would be essential if one attempted to
obtain information about the input form of the gluon, i.e.,
gl(Qg,N). However, as well as the fact th@% is an essen-
tially nonperturbative scale, this type of calculation, along
with the whole subject of single-scale processes, is also
plagued by the infrared ambiguity problem caused by behav-
ior of the coupling at low scales. A discussion of such issues
S can be found if15] and[29].
el ol el | close this section by noting that although the above re-
10 10 10 x 10 10 ! sults all look promising it is important to realize that they are
FIG. 11. (@ The renormalization scale variation of the all in a sense ambiguous because they deal with a particular

LO+NLO splitting functionPgg *™N-©. Shown are the three choices Way of defining the gluon parton distribution, which is a

of scaleQ?, 0.5Q2, and XQ? for t=6, i.e. Q?~6 Ge\A (b) The factorization scheme-dependent quantity. In this paper it is
same for the L@-NLO physical splitting functiorP}ON- defined in a manner which is natural from the point of view
of the solution of the BFKL equation, and which one may
think of as perhaps a good “physical” definition of the
aS(QZ)—>aS(kQ2)+BOIn(k)ag(kQZ) (4.24 gluon. However, it is very different from, for example, the
gluon defined in the modified minimal subtractidMS)

and in the LO part of the splitting function expanding out to Scheme. In order to investigate the real success of the ap-
first order in Ink), while in the NLO part using only the proach in this paper it is necessary to look at the results for
zeroth order, i.e., just lettings(Q?) — as(kQ?). In this case the real physical quantities, namely, the structure functions.
we must also use a similar procedure for the power-
suppressed corrections, i.e., these are really of the form
(A% u?3) rather than A%/Q?). The results fok=0.5 andk V. SMALL x STRUCTURE FUNCTIONS
=2 are shown in Fig. 11 fo@?~6 Ge\2. As with the NLO
corrections to LO the variation is significant but leads only to
a correction rather than a qualitative change. This implie
that the series expansion is stable, if not as rapidly conver
ing as one might ideally hope for.

Hence, the NLO corrections to the running coupling
BFKL derived splitting function are well under control, both - di2
in terms of the asymptotic powerlike behavior of the splitting .~/ ~2 n) — 2 k202 2 A2 2
functions and in terms of the evolution in the range currently QN asfo k2 7otk QUTINK Q5)gs(N. Qo).
accessible to experiments. For deep-inelastic scattering, or (5.0
indeed any process where there is factorization of the infra-
red physics into the input parton distributions, e.g., Drell-Yan
scattering in proton-proton collisions, no further resumma-where ai,g(klez) is the cross section for scattering of a

One may define a real structure function by a simple ex-
ension of the above methods, i.e., by including a hard scat-
lering cross section at the top of the gluon ladder. This modi-

ies Eq.(2.4) to
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virtual photon from a gluon with transverse momentkfn ~ Thus we may solve fofs;(N,t) in exactly the same way as
For the case of the longitudinal structure function this crosfor G(N,t), obtaining exactly the same divergent
section is well defined even in the limk’—0, but for  QZ?-independent part and@>-dependent part given by solv-
F»(N,Q?) the cross section diverges like @f(k?) as k® ing

—0 (for details see[34]). This demonstrates that for

FL(x,Q?) the solution in the leading W limit factorizes 1 [v2+i=h; o(y)

neatly into the gluon distribution and a multiplicative coeffi- FeilNt)=5— LfﬁO( V)

cient function, while forF,(N,Q?) there is interference at 2ml Jarg-i= Y

this order between the coefficient function and the result of —

solving the evolution equation including the anomalous di- Xexpyt=Xo(7)/(Bo.N)dy. (5.4
mensionasygg(as,N). In this latter case it is simplest in-

stead to differentiate with respect to Q) obtaining This may be evaluated numerically, using the same contour

as for the gluon, or in order to find the power-series solution
we may proceed as with the gluon structure function by ex-

dF,(Q2N) = dk2 dor, o(K2Q?) panding theh; 4(y) (which were calculated i§34]) as a
#r=as —TLf power series abouy=0. For the two cases we discussed
dinQ o Kk dinQ above we have

Xf(N,k2,Q9)gs(N.Q)), (5.2
hy () fPo(y) =1-0.33y+2.13y*+0.67y%+2.58y"

where [do o(k?/Q?)]/d InQ? is finite ask?—0. In this +2.99y°+1.92)6+- -, (5.5
case, if we work in a DIS-type scheme, i.e., one in which the

guark-gluon coefficient function vanishes beyond zeroth orgnd

der, there is a simple factorization between the anomalous

dimensionasygy(es,N) and the gluon distributiof. h fFBo( ) =142 17+ 2. 30v2+ 6.6 7v3+ 7 05
In order to progress it is first necessary to consider the 29(7) () APyt 230"+ 0.6+ 7.05
overall factor ofag in the above expressions, and particularly +12.92y°+15.475+- - (5.6

its scale. One might think that it should bg(k?), and thus

appear within the integrals with respectikt However, this |t seems natural to absorb tiie@ some sen9eNLO correc-
could only come about due to double counting of diagramstions from f#o(y) into the contributions from thé; ()
since the resummation of bubble diagrams required to makeince they are of exactly the same form, whereas the other
this equal toa(k?) has already been performed in defining NLO corrections have inverse powers Bf. Following the

the coupling in the BFKL equation ags(k?). Q? is the same steps as in Sec. Il B then results in an expression
only remaining scale, so it must be the scale of this coupling.

One can also justify this by considering the fact that there is B

a NLO correction to the input of the BFKL equation of the Fe (N, ) =tHEoN)
form — Boas IN(QY u) 8(k*—Q3) (coming from bubbles in a e

gluon propagatdr Introducing this into calculations leads to

multiplying each result by a factofl— ByasIn(QYu3)]. XA (— 1B, N))) 5.7
This splits into — Boars IN(QY12)+ BoasIN(QYQR), and the " o) '
latter term is an infrared divergence which contributes to the

one-loop gluon-gluon splitting function while the former \yhere theBi.n(ll(EON)) are now determined not only by the
goes into making the overall factor af; have renormaliza-  power series iny obtained from the expansion (), but

tion scaleQ?. _ ) also from the expansion df; 4(). In particular they now
Now removing the overall factor afs(Q?) [or in fact the contain parts at zeroth order in ﬁ({N)

. . 2
nor_mallzatlon fgctoras(Q )Nf/.(sw)]. from Eq. (5.1), an Using these results it is now a simple matter to derive the
taking the Mellin transformation with respect t@t/A?) longitudinal gluon coefficient function at leading powers of

leads to the simple expression In(1/x) plus running coupling corrections and similarly for
the quark-gluon anomalous dimension, i.e.,

No

1+ 2 Bin(M(BoN)E"

F(yN)=h; o(»)G(y.N). (5.3

as(Q?)Ng FeL(N,t)

Cuglas(Q2).N)= =25 = “2E,

(5.9

8Note that in this article | ignore the mixing with the quark input
distribution in general for simplicity. However, it does implicity . o 5
appear in the NLO correction to the kernel; i.e., it is the NLO With obvious generalization tg/qq(as(Q“),N). These mo-

correction to the anomalous dimension eigenvalue rather than tB1€Nt space expressions may easily be convertedsfuace.
¥4g Which | use since this is the quantity directly calculated in Truncating the series for the structure functions and the

[11,12. The contribution to this due to the quark mixing is very gluon at ny=5 results in the perturbative series for
small in practice. XCy g(as(Q%),%),
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2 _ aS(QZ)Nf 2 2 2 - 3 2 gz
XCy g(as(Q%), )= T e 6(1=x) = 0.330g(Q7) +2.1305(Q%) (£ — Bo) + a5(Q7)| —0. 933—+2 79B0¢— 18685
§3 & ¢ &
+ a;‘(QZ)( 2.32 —14. 6980— +27.8582¢—15. 4880) +a (QZ)( 8. 41—— 54. 4530— +125.282
& 89 ¢° & ¢ &
X ———121.283¢+42. qeo) +a8(Q?) 2 +7.76——27. 5330— +49. 4880 —44.59?8
21 ’30 6! 5!
2 7 6 5 4
><§—+15.77Eg§ +al(Q?) 115——33 LN 8805—419 3,30g +577.83
2! Bo 7! 6!
3 2 8 7 6 5
xi——404 934 ¢ ~+112. 9305) a4Q )( —85—— 72. 275— +335. 7/303— 838. 280 a2t —+ 121083
: 180 .
¢ 8 & .
X 1004,30— 441765~ 79.0886¢ | |. (5.9

However, as for the gluon splitting function we have to calculate the power-suppressed correction by evaluating the inverse
Mellin transformations numerically. This is done in precisely the same way as for the gluon, and results in the correction to
XCy g(@s(Q?),x) of the form

as(Qz)Nf % as() ) 3.026 % as(t) ) 0.875
— 5| (~1.168-0.482+0.1108ex — 1) 5(1—X) +exy ~ 1) —4.68 ~ 35 +34.28 s
@ (t) 0. 07452 as(t) 0.7853 Ols(t) 1.3754
o 594{ (45) 2 458](as<4.5>) 5_17'9‘<as(4.5>> a
1) | V7" ayt) |27
+3'365<as<4.5>> 510294 2€as<4.5>) EH (510

where in this case it was necessary to modelhe «©, i.e., the5(1—x) part with a slightly more complicated form than
previously. Both expressions have been shown in a form which is sufficien®orl GeV? and x>0.00001. The full

XCy 4(x,t) is shown in Fig. 12a) along with the two contributions above. Note that #(@ —x) term atO(a(Q?)) in the

power series is obtained from the inverse Mellin transformation of the limiit-a® of the full O(as(Q?)) coefficient function

and in the figure we replace it by the full(as(Q?)) contribution, &2(1—x), for ease of presentatidit not being easy to
represent the normalization of ti#1 —x) term|. The §(1—x) term is simply missing from the power-suppressed part, though

this is insignificant. We see that the power-suppressed contribution is now a much larger fraction of the total than for the gluon,
though it does not increase as quickly with falli@f. In Fig. 12b) we showxC 4(x,t) along with the O(as(Q?))
contribution and with the naive LO BFKL result in this factorization scheme, which grows far more quickly than the resummed
result.

Similarly we can calculate the perturbative seokés}g(as(Qz),x),

a’s(Qz)Nf

™

52

XPyg(as(Q?),x)= 8(1—X)+2.17a4(Q?) +2.3022(Q?) (£~ Bo) + a¥(Q )( 5. 07—— 15.21B,¢+10.1482

A ) §;3 €_—2 §4 53
+al(Q?)| 880_—47 5030— +81.0826—42.3083 | + 23(Q?)| 18. 88, 156 7,80—+478 QB2

& , | 4.95¢&° & & 54 _, &
X —620. 5+ 280.38 | + a8(Q2)| 225 o 4415 +150.933 293, 430— +269.78
Bo ©
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LO Longitudinal Coefficient Function
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FIG. 12. (a) The full leading In(1X) plus running coupling corrections coefficient functie@, 4(x,t) plotted as a function of for t
=6 andN;=4. Also shown are the contributions from the power-series and the power-suppressed part. Note that<tl# terr) in the
power senes is replaced by the f@(a(Q?)) contribution 6(1—x), and the terms: 5(1—x) in the power-suppressed part are absent.
(b) xC 9(x,t) plotted as a function ok for t=6 andN;=4. Also shown is the coefficient function obtained from the naive LO BFKL
calculatlon and the contribution &(as(Q?)) alone.

2 08 &7 6 5 4 3 o
X3 5— 97. 03305) + aS(Qz)( — g—l— 86.535— +385. 68(%— 899. gsof, + 1153805— 764.08;
By 7!
52 7.15 58 57 o 66 55 54 -
X 57 +203. 8oé | +a%(Q )( N g7~ 234627+ 13548557~ 426355;a + 7882.9585— 85193;
53 _ & — 3.97¢9 51.57¢&° &8 &
X537 +496230—— 1199305) S(QZ)< = 1o E—O g T269.55;—647. 5307| +258.832
§6 —, & 3 & &
Xar+ 2451,805— 696285 Tt 8473805— 514585 o7+ 125980§> } (5.10)

and we have a power-suppressed contributiomlitgg(as(Qz),x) of the form

as(Q)Ng
37

w125 |t ast) |
12.86 ex9— 1.521) 8(1—x) + expl — 1) —14-31(a(4'5)) +36297( (4,5)) & 411‘<a(4.a)
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The full XPyq(as(Q?),X) is shown in Fig. 18 along
with the two contributions above. As withC, 4(x,t) the
8(1—x) term atO(as(Q?)) in the power series is replaced
by the full O(ay(Q?)) contribution which is 1.8[x%+ (1
—x)?]. Again thed(1—x) term is missing from the power-
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along with theO(a4(Q?)) contribution and with the naive
LO BFKL result in this factorization scheme, which again
grows far more quickly than the resummed result.

These above results, along with the LO gluon splitting
function, allow for a LO in In(2X) (with running coupling

suppressed part, and again this is insignificant. In this caseorrection$ calculation and analysis of structure functions.

the power-suppressed part is tinytat 6, though from the
large powers ofag(Q?) in Eq. (5.12 we see that it grows
very quickly at lowerQ?. In Fig. 13b) we showx Pgg(x,t)

LO Quark-Gluon Splitting Function

T T T T T
0.6 LOP, .
............ Power-Series
04 Power-Supp
02
0 SECCFCTEFCPEELr PRIy
1 1 |IIII|| 1 1 |IIII|| 1 1 ||IIII| 1 1 ||IIII| 1 Lt 1111
107 107 10° X 107 10" 1
T AR ALAL B ALY T T
0.6 \ LOP, ]
____________ Simple LO BFKL
04 NN e O(0tg) Contribution |
02
0 vl Lol Lol ”4”{__'____]_'_,;»"' INEEN!
-5 3 2 -1
10 107 107 X 10 10 1

FIG. 13. (a) The full leading In(1xX) plus running coupling cor-
rections coefficient functiorP,4(x,t) plotted as a function of for
t=6 andN;=4. Also shown are the contributions from the power-
series and the power-suppressed part. Note that the ¢ef(l
—x) in the power series is replaced by the f@(a(Q?)) contri-
bution 1.X[x?+(1—x)?], and the terms:5(1—x) in the power-
suppressed part are abse(bb.ngg(x,t) plotted as a function aof
for t=6 andN;=4. Also shown is the coefficient function obtained
from the naive LO BFKL calculation, and the contribution at
O(a(Q?)) alone.

In previous paperg8] | have strongly warned against the use
of factorization-scheme-dependent splitting functions and
coefficient functions within the In(%) expansion. It is still
true that it is always possible to make huge redefinitions of
the unphysical parton distributions by factorization scheme
changes at a given ordéor even at all ordejs but the
changes invoked by transfer between the commonly used
schemes are diminished somewhat by the reduction of the
size of the splitting functions and coefficient functions by the
inclusion of the running coupling effects. It is also true that
many of the changes invoked by factorization scheme
changes are themselves due to running coupling effects, and
the resummation of these stabilizes the whole procedure a
great deal. Hence, it is now possible to work in terms of
these unphysical quantities if one wishes, without potential
disasters, as long as the ordering of the expressions is done
with particular care. Nevertheless, it is still very convenient
in some ways to eliminate the partons completely and work
directly in terms of the structure functiors (x,Q?%) and
F,(x,Q?) and the physical anomalous dimensidag]. In
fact we can easily argue a case for improved stability. At LO
the longitudinal coefficient function is positive and quite
large at smalk, and hencé | (x,Q?) will be enhanced com-
pared to the gluon at smatl At NLO the gluon evolution is
smaller than at LO. Hence, evolving down from a given
gluon at very highQ? (where everything is simpler and more
reliable the NLO gluon will be larger at smafD? than the
LO gluon. However, we expect the NLO corrections to
C,_,g(x,QZ) to be negative, and thus counteract this increase
in the NLO gluon in the calculation oF, (x,Q?). Hence
FL(x,Q?) is (probably a more stable perturbative quantity at
small x than G(x,Q?).

The physical anomalous dimension which is most closely
related to the gluon anomalous dimension is

dIn(FL(N,1))

I (N = dt

(5.13

Ignoring the mixing with the quark sector this is given in
terms of the parton-related quantities by

dIn(Cp 4(N,t))

(NS = gg(N D) + dt \

(5.19
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where | will use the convention of ignoring the overall powerthe two definitions are equivalent, but the latter allows a
of ag(Q?) in the coefficient function which would just result single power-suppressed correction to be calculated rather
in a single contribution of- ﬂoag(Qz) to Eq.(5.14. Using  than having to combine those far,,(N,t) and C, 4(N,t)

the LO vy44(N,t) plus running coupling corrections, and and thus the potential error is minimized. The asymptotic
similarly for C,_4(N,t) we see that the latter gives entirely powerlike behavior forP(x,t) is not identical to that of
running - coupling corrections, and the total is the LOPpLO(x 1) and is shown in Fig. 4. The difference is only rela-
799(N.1) with an extended set of running coupling correc-tvely minor, but one sees that the powerlike growth for
tions. This total expression could be calculated from the- L(x,Q?) is slightly smaller than for the gluon, and is also

Yg(N.1) and G, 4(N,t) already calculated, but part of the o1y lessQ? dependent. The result for the LO in Ing)/
advantage in using physical anomalous dimensions is that It ower series SO|utIOD(P||:(B(aS(Q2) X) is unfortunately a

reduces the number of perturbative quantities governing th ] .
b 9 9 g ittle less convergent than the previous LO quantities, due to

structure function evolution, i.e., the four splitting functionsI fici d in taking the derivati ith
and four coefficient functions used to defifg(x, Qz) and arge coefficients generated In taking the derivative with re-

F_(x,Q%) are reduced to four truly independent physicalSPeCt tot of the expression forFi (N,t) [or of Cp ¢(N,t)].
splitting functions. Hence, we notice that using Esj4) for Hence, in order to obtain an expression which is sufficiently

the longitudinal structure function we can calculiig (N,t) ~ accurate foQ*>1 GeV* andx>0.00001 we need to go to
andP,, (x,t) directly, rather than from Eq5.14). Of course, about 12th order. This results in the explicit expression

3
XPL2(as(Q?),X) = @ Q?) + 0.33%2(Q?) B+ a3(Q?) (— 4.157Byé + 4.26683) + a;‘<Q2>( 2. 4§—— 11.2%8,

& iy )

2
‘ +ag(Q )( 0. 12180— +37. 8580—— 99. 8880§+ 61. 9280

xS 12 9482£—4.0283

§5 54 §3 §2
6(Q )( —75. 1480— +454, 7E%—— 103480— + 101],80§ 358. 880> + as(Q )

— 1394423 6880—— 39. 4880 + 121. 930—— 155285

-+ 61. 1430§)
Bo 7

X( §7 & & & &

- ( 3 £ _, £ S _, £ )
+a4(Q?)| —16. 91— +348. 880—— 2087,80 -+ 552230—— 73058 -+ 475430—— 121585%¢

9 8 7 6 5 4
+a3(Q%) ( — g__ 119. 5§— + 1173803— 505280 Tl . 1204480£— 1744434 ‘
Bo 9

—+ 1552885

1.536 £ 16.73¢1° 9 8
+agd(Q?) £ £ 83375402, 230i +155982
B2 11 g, 10 9!

3 2
Xi__ 785980 gt —+ 172880¢ | +

4 §2

¢ —y £° & ¢
Bo=— —+ 6128030—— 7275:‘;30 + 4272030—— 999330§> +a(Q?)

Xt 204330—— 2442785

_18538 05 298880— + 529030 - 2225:%3;— 13589(393a +32140485

" gll glO §9 §;8 57 o 56
B, LU

& & — & &
Xor 42548530— + 33062(30—— 14137(;80— + 257473()5) +al(Q?)

2.82 13 141.7 12 11 o 10 9 8 o
X ( 28287 a7em, 1757%— 103473015—OI + 39345535— 11909@?33 + 2950584

¢ — &° — & & & §2
X 53883480 —+ 65833930 49968%0— + 21191430—— 3831130 (5.15
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Comparison of Physical Anomalous Dimensions
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FIG. 14. (a) The anomalous dimensions for the gluon structure

function at LO and forF (N,t) at LO plotted as functions dfl for

t=6. Also shown is the)(a(Q?)) contribution common to each.

(b) The anomalous dimensions fé; (N,t) at LO and “NLO” plot-

ted as functions oN for t=6.
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LO Longitudinal Splitting Function
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FIG. 15. (a) The splitting functionsxP:2(x) and its power-
series and power-suppressed contributions plotted as a function of
for t=6. (b) The splitting functiorx P:2(x) plotted as a function of
x for t=6 (Q?~6 GeV?). Also shown is theD(as(Q?)) contribu-
tion a5(Q?), the gluon splitting functiorPg5(x), and the naive LO

g
BFKL splitting function with couplinga(Q?).

The power-suppressed correction is calculated in the usual

manner and is of the form
as(t)
ag (4.5

052
21

36.57 expp—1.7%) 8(1—x) +exp(—1)

734 :
‘51'34 o 2(

a+0.170

) —2.78

4.626<

ag(t) )
ay(4.5

at) | 00
ay(4.5)
as(t)
ay(4.5

f

—2.2756
g .
(5.16
The anomalous dimensiditO(N,t) is plotted in Fig. 14a).
Until N is very small it is similar toys(N,t) and both are
close to the commonag(Q?)/N contribution, though
T't2(N,t) is a little larger at largeN. However, at lowe,

-0.58
£+67.2

0.17 ¢3
L o188

a

S(t
ay(4.5

|

F'[(B(N,t) dips below the others before eventually rising
above a4(Q?)/N but staying belovvf'ég(N,t). Clearly the
effect of the additional coefficient function, and hence addi-
tional running coupling corrections, is to maKe, (N,t) dip
significantly below theO(as(Q?)) contribution ag(Q?)/N

for a region and to reduce the value of the intercept com-
pared to the gluon structure function. The effective splitting
functionxPF2(x,t) is shown in Fig. 15. In Fig. 1B) we see
that the power-suppressed contribution is larger
xPLD(x,t) than it was forxPgo(x,t). In Fig. 15b) we see
the outcome of the comparison of the anomalous dimensions
for F_ and the gluonxP}(x,t) starts a little higher ak

=0 and the dip below th€(a(Q?)) part is considerably
more pronounced than foxPgo(x,t). Also, going to X
~107°, we see that the splitting function dips again, show-
ing that the subleading poles in the anomalous dimension
may have large residues compared to the leading pole, and
that the increase iRP-Y(x) with decreasing is not mono-

for
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tonic. This corresponds to the significant fall Bf  (N,t) relevantx and Q? range which one needs, and this requires
below a(Q?)/N at N~0.6. The eventual rise df  (N,t) the sort of detailed calculation in this paper.

guarantees that the splitting function will eventually rise One can follow exactly the same procedure for the other
again with the calculated intercept, i.e., like®?3 at even important physical anomalous dimension defined by
smallerx. However, fort=6 this asymptotic power behavior

does not set in untik<10 %% and in the region ok~10""’

xPEO(x) even becomes slightly negative. For higheven 9F»(N,Q?) ) ,

smallerx is required, e.g.t=8 (Q?~30Ge\?) needsx to TQZ:FZL(Q N)FL(N,Q%), (5.17
become as low as 10° before the powerlike behavior sets

in, though the size of the dip before this is smaller than for

t=6. This illustrates very clearly that as far as phenomenolsimply by using the LO  expressions for
ogy at HERA, or any foreseeable collider, is concerned th¢dF,(N,Q?)]/d In Q%> and F (N,t). The powerlike behavior
value of the intercept for the anomalous dimension is simplyasx— 0 is governed by the poles iA(N,t) as in the previ-

not relevant to the evolution of structure functions. Indeed, itous case, so the position of the intercepts is identical. The
is very possible that before the powerlike behavior has set ipower-series expression requires the first ten powers in order
unitarization effects have already become important. For colto be valid over the required range xandQ?, so | write it
lider phenomenology it is the splitting functions over the as

3

2 &
Y S
+a(Q )( 7.007_

XP52(ag(Q?),x) = 5(1—X)+2-5as(Q2)+aﬁ(Qz)(§—0-167ﬁo)+a§(Q2)(%-12-73§o§+12-@3

52 54 §3 52
—41. 4],60— +61. 42805 26. 8280) + as(Qz)( 5. 78—— 52. 9580— +253. (BO——444 wog

— 6 ) ( 56 §5 é\;4 §3 _352 )
+238.38;5 | + ad(Q?)| — o 87. 305— +4009. 730—— 773. 330 - +621. 730—— 176.634¢
Bo ©
0.348 £7 6 s 4 3 2
+al(Q?) ( — f—— 117. 85— +591. 480£— 170180 T -+ 2792303— 231580 at ~+741. 5305)
Bo T
8 7 6 5 4 3 2
+a8(Q? ( i— +52. 41§— +70. 6880£— 1954,30i + 662%0£— 950()30i + 6307,80 s
Bo :
4.64 0 9579¢° &8 _ & —, &8 —, &
_ 902y 208 T2 TFS s S
1596805) ad(Q )( 210 5 ol +657. 3a 1775. 750 -+ 450. qeo +941030
& — & — & 7.478¢Y 1157 glo &
- 204 S _ 10 2 > d—
26327,8 +3380580 2174380 +5614/30§) a(Q )( IR 10| 765. 79.
&8 _ & _, & — & & _ & & &

- 329380— + 8687,80—— 551],80—— 350335 + 1045363’0—— 12719330— + 7426030

- 17101535) ] (5.18
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The power-suppressed correction is LO Splitting Function P,y

(3.558+0.4218—0.15422)exp( —t) S(1—X)

- LOP,
L S~ Power-Series
as(t) )0.93 { as(t) )1.66 2 .. Power.S
+exp(—1)|72.1 x—78.0 .
: )[ faias 2345 .
as(t) 2.66 as(t) 0.58§2 .
+56.8E< as(4-5)) £-24.1 a4y 21
adt 2.50 ¢£3 adt —2.27 44
1350 2| TE g g4 s £
as(4.5) 3! agy(4.5 4! 0
adt —1.584¢5 adt —1.05 ¢6
+3.014 2 £ o514 2V i)
aS(4.5) 5' a5(4.5) 6' -1 | Lol Lol ol sl L1411
(5.19 107° 107 10? x 107 0" 1
2.5 T T T T T T
where it is necessary to introduce a tewx in order to get a | | | L0|P2L

good description at highl. The full xP, (x,t) is shown in
Fig. 16@ along with the two contributions above. Ti#1
—X) term is replaced in the power series by ih@ependence
in the O(as(Q?)) quark-gluon splitting function, i.ex[x?
+(1—x)?], normalized by 1.5 to give the corrett—0
limit. This corresponds to a slight modification of the usual
physical anomalous dimension in terms of ¥%ay(Q?))
longitudinal gluon coefficient function, but may be viewed as
an analytic function with the corre®{— 0 limit which aids
presentation herd. The §(1—x) terms in the power-
suppressed contribution are very small, and are simply left

out. In Fig. 1&b) we seexP, (x,t) plotted as a function of o Lol vl il ciionl

along with the naive LO BFKL calculation with coupling 10~ 10 107 x 107 10° 1

aS(QZ), and in order to illustrate the contribution of the ) ) )

higher-order terms, also the zeroth-order contribution F'C:16:(@ The full leading In(1X) plus running coupling cor-

1 5X[X2+(1_X)2] As with P_ (x,t) one can see that rections physical splitting functiorP,, (x,t) plotted as a function
. . LL y

P, (x,t) has a dip at smalt before the eventual powerlike of x for t=6. Also shown are the contributions from the power-
2L\ . P . 0 . P series and the power-suppressed part. In the power series the part
growth sets in, again only fax<10'%, and as with all cal-

o . . : « 5(1—x) is replaced by 1.8 x?+ (1—x)?] while in the power-

cglgte_d quantities the running coupling corrections severelyéuppressed part this contribution is simply absémtThe physical

diminish the strength (_Jf the ,Sma“grOWth' splitting function xP, (x,t) plotted as a function ok for t=6
We can also try to investigate the effect of NLO correc-5jong with the physical splitting function obtained from the naive

tions on physical quantities. In terms of partons the only o BFKL calculation with couplingas(Q?) and the zeroth order
known NLO correction is that to the gluon splitting function; contribution.

there is simply no information on the NLO corrections to

coefficient functions or the quark splitting functions. In terms - . L . . :
of the physical anomalous dimensions, similarly there is nocoeffICIent function, which is entirely running coupling de-

real information forl',, (N, t), but the situation is better for Pendent. Hence, by knowinglg°(N,t) we know the whole
' L(N,t). Let us look at the expression in terms of the par-Of I °(N,t) before resuming running coupling corrections.
tonic quantitieg5.14), for the moment in the leading In¢dy ~ Hence, we might hope that using an expression of the form
expansion without resumed running coupling corrections. A(5.4), but corrected in the way described in the previous sec-
LO in 1N, TI2(N,t) is equal toygo(N,t) since the differ- tion for the NLO corrections to the kernel, we might calcu-
entiation of the log of the coefficient function with respect to late the full NLO, running coupling corrected BFKL expres-
t automatically introduces an extra factor Bfa(Q?). At  sion forI'; | (N,t). Unfortunately, this is not quite the case.
NLO in 1/N T]N-O(N,t) picks up a contribution from This can be appreciated by again using E§14). When
yg'go(N,t) which is (largely) independent of the running solving this NLO-corrected expression {8k | (N,t) one in-
coupling, and the contribution from the derivative of the LO cludes all the running coupling corrections lyg‘;go(N,t)
just by the manner of solving the equation. But without
knowing the NLO correction to the coefficient function

9This modification to the physical splitting function will be dis- one Zmisses % r‘]’th'e Zseries O_f terms of the form
cussed in a future paper. as(Q)[ Boas(Q?) 1" f(as(Q%)/N) which would come from
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thed In (C 4(N,t))/dt term™ Thus, we do not yet know the

PHYSICAL REVIEW D 64 074005

19 mpax

full running coupling corrections to the NLO contribution to XPﬁtO(as(Qz),X)ZEs(QZ)nZl mZO as(Q?%)

' L(N,Y).

| will proceed to calculate the “NLO”-corrected

I' L (N,t) on the assumption that since the resummation of
the running coupling corrections stabilizes the perturbative
expansion the missing running coupling corrections will not

gmggf m—1

nm m|

+KnsBpd(1—x) |,

(5.22

lead to anything other than minor corrections. It is straight-
forward to generalize the results of Sec. IV to the case of thevhere the coefficients are listed in Table Il. The power-

physical quantity. Essentially we just replace E421) by

Fe (Noct™© ’ﬁou 71’<B°N)1hL,g(y)fﬁ°(7)eXp( yt

-2 (103, @iy

(BON) n=1 m=0
o |n(yt)—\1f<—_i)

Bo BoN
+WCO<_L) y BN ()

BoN '
1 - 2n+1

Xex;{ yt—EO—NnZl a,y ) dvy, (5.20

where we are currently missing a further term of the form
—Nt™© ’Bf’f y HEN=L5hy o(,BoN)FPo(y)
C

1 o0
><exp( yt——— > a,y*""1|dy. (5.21
BoN n=1

0

Using Eq.(5.20 we can calculate both the power-series and

power-suppressed NLO contributionsltp, (N,t) and hence
P L(x,t). The LO+“NLO” values of the intercept for the

asymptotic powerlike behavior are shown in Fig. 4. These “e[han at first order invg(Q
S

very slightly below the L&G-NLO intercepts for the gluon,

and hint at perhaps a more rapid convergence for the physi-
cal F than for the gluon. However, we would expect the
missing contributions to lower the intercept a little more. The

“NLO"-corrected anomalous dimensiod’ 0 *N"O(N,t) is
shown as a function o for t=6 in Fig. 14b). It is very
similar to that at LO until very lowN where the difference in
the leading intercept starts to become apparent.

As for the NLO correction taxPyq(x,t) the power series
is not very convergent and to work all the way downQ4

suppressed contribution is

X 3

) 0.346

~0.183 exp— 0.51) 5(1—X) + exp —t)
e
e ]S
{2
= 1.29;{ ;:(Sitg) 2'096325

The NLO correction to the splitting functionP[°(x,t) is
shown, minus the contributions §(1—x), in Fig. 17a).
Clearly there is a very large cancellation between the power-
series and power-suppressed contributions resulting in a rela-
tively small total NLO correction. We can see that unlike for
the gluon this NLO correction is actually positive in some
regions ofx, rather than everywhere negative. We also see
from Fig. 11b) that the NLO splitting function is quite simi-
lar to the LO splitting function over the whoberange.
However, as with the gluon, the real test of perturbative
stability is the evolution of the structure function itself. This
is shown in Fig. 18 where the evolution of a model for the
structure functionF | (x,Q?), i.e., (1-x)®x %2 is shown
both for the LO running coupling splitting function, and for
the “NLO"-corrected one[all §(1—x) contributions other
2) are included Also shown is the
evolution due just to the double-leading-log terR(x)
as(Q?)/x. Compared to the evolution of the gluon shown
in the previous section we see that the additional running
coupling contributions due to thiederivative of the coeffi-
cient function have slowed the LO evolution below that of
the double-leading-log result over the whole rangex ¢éx-
cept very highx), and this will only cease to be true at very
small x indeed, when the powerlike growth of the physical
splitting function finally sets in. In this case, however, the
difference between LO and LO'NLO” is much smaller

. (5.23

=1 Ge\* and x=0.00001 we again need the first 20 or SOthan for the gluon, and the perturbative expansion seems

terms. Hence the power-series contribution is

very stable indeed. As with the NLO corrections to the inter-
cepts this might be a sign that the expansion converges more
quickly for the physical structure functions than for the un-

1950me of these are automatically generated by using the NL@Physical gluon structure function. However, as a note of cau-
kernel in our solution, but the full set requires also the NLO cor-tion, the missing contributions at NLO are likely to be nega-
rection to the hard scattering cross section which will lead to NLOtive in general, and this difference between LO and NLO
corrections tchy 4(7). evolution will probably be increased a little. In fact it is
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TABLE II. The coefficientsK ,, in xPNLO(¢, a(Q%)=ay(Q) 12

Mmax —n
1 m=1

PHYSICAL REVIEW D 64 074005

QA (Ko EMB ™Ml +K,,580(1—X)). The series for the

part proportion&l to 8(1—x) is more  convergent iﬂaS(Qz) and for ill Q?=1Ge\ is given accurately bXES(QZ)é(l
—x){—0.3094 Boa(Q?)]-3.856 Boas(Q*) 1°+6.376 Boars(Q*)1°—50.36 Boars(Q%)1*+340.0 Boars(Q%)1°+55.51 [ Boas(Q?) 1°
— 1600 Boas(Q*)]" +2839 Boas(Q?)]® — 8457 Boas(Q?)1°+24526 Boas(Q?) ' + 57607 Boars(Q?) ] — 325984 Boas(Q?)]*

+477536 Boas(Q%) 1.

n m=5 m=4 m=3 m=2 m=1 m=0
m=11 m=10 m=9 m=8 m=7 m=6
m=17 m=16 m=15 m=14 m=13 m=12
m=23 m=22 m=21 m=20 m=19 m=18

1 —0.4236

2 —1.354 9.494

3 —7.040 25.89 —29.49

4 —5.672 63.20 —222.22 251.90

5 —-15.84 310.8 —1504 2766 —1964

6 243.4 —1444 4540 —7293 5206 —1100

—17.45

7 —5265 24975 —61945 82368 —55633 16210

—19.57 521.2
8 27358 —84630 162654 —187932 116668 —31108
—6.545 448.6 —5158
9 215634 —122925 —266550 550451 —383797 100196
—20.94 468.9 —-5027 31574 —114142
10 —1552522 1019004 567195 —1582395 1103037 —286332
—22.36 814.7 —12094 91607 —396924 1031187
11 3.965¢ 10’ —5.343x 10’ 4.627< 10 —2.425¢< 10’ 7013331 —1016798
1291 —23513 232273 —1492972 6537249 —1.956x 10’
—20.00
12 —2.424< 1C° 2.970< 10° —1.702< 10 1.214x 10° —3.553x 10’ 5390954
60402 —153923 —952951 1.05% 10 —4.805x 10 1.328x 10°
-22.33 641 —8519
13 —1.514x1C° —7.7974x 10 1.993x< 108 —1.426x1C° 4.814x 10 —7741384
—2256260 1.199 10 —4.586x 10 1.252x 108 —2.356x 1C° 2.796x10°
—23.25 1171 —25002 296133
14 4.934x 10° —2.902x 10° 9.784x 10° —1.227x 10 —1.883x 10’ 6764209
5.595x 10 —2.675< 108 9.236x 108 —2.317x10° 4.213<10° —5.475< 10°
—33.40 2462 -61331 876031 —8361477
15 —2.576x10% 1.702x 10 —7.397x 10° 1.968x< 10° —2.961x 1¢° 2.201x 107
—3.263x 10° 1.473x<10° —4.775<10° 1.147x 101 —2.052x 10 2.708x 10°
781.7 —-12818 114646 —395405 —2857628 4.708 10
—22.34
16 1.725¢ 10 —1.209x 10* 5.738< 10° —1.764x 10%° 3.314x10° —3.434x< 1C°
—1.550< 10° —7.835x 10° 1.583x 10%° —5.601x 10° 1.187x 10™ —1.710< 10"
—40001 623658 —6411756 4.638 10 —2.376x10° 8.205x 10°
—2.90 1464
17 —3.968x< 10" 3.104x 10 —1.572< 10" 5.059x< 10° —9.869x 10° 1.057x 10°
5.446x 101° —1.036x 10" 1.304x 10 —6.795< 10 1.099x 10™ 3.145< 101
1959861 —2.351x 10’ 2.013x 10° —1.264x10° 5.914x 10° —2.007x 10%°
—45.09 3674 -110727
18 —2.261x 10% 8.240< 101! —1.747< 10" 1.319x 10 2.293x10° —5.601x 1¢°
—8.652x< 10 2.018<10% —3.648< 10 5.066x 102 —5.319< 10*? 4.119x 10%?
—1.287x 10 2.343< 10° —1.611x10° 1.497x 10%° —7.492x 10%° 2.888x 101t
—21.44 885.6 —171708 177961 —514627
19 1.562 10" —6.662x 10*? 1.980x 10*? —3.942< 10" 4.967x 101° —3.565x< 10°
5.886x 102 —1.334x 10" 2.338<10'° —3.179< 10" 3.328<10'° —2.645< 10"
—6.036x 10° 1.710 10° 4.335< 10° —7.920<10%° 4.895< 10 —1.982x 10"
—21.75 1680 —54959 1031287 1.2710° 1.077x 108
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NLO Physical Splitting Function Evolution of F;, In(Q/A%)=6, F,=(1-0)%**
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FIG. 17. (8 The splitting functionsxP)-°(x) and its power- FIG. 18. The values ofdF (x,Q%)/dInQ? for F (x,Q%

series and power-suppressed contributions plotted as functions of:x*°-2(1—x)f5,_due to the L8+SNleci>tting function®2(x) and the
for t=6. (b) The splitting functionx P-o"NO(x) plotted as a func- LO+NLO splitting functionP 7 """(x), plotted as a function of
tion of x for t=6 (Q?~6 Ge\?). Also shown is theO(as(Q?)) for t=6 (Q?~6 Ge\?). Also shown is the evolution due to the
contributionag(Q?), and the LO contributio PEY(x). O(as(Q?)) contributionP(x) = ag(Q?)/x.

. .. L VI. CONCLUSIONS
desirable for these missing contributions to be non-

negligible. While if we decreaseo 4.5, i.e.Q?~1 Ge\?, at In this paper | have shown that it is possible to obtain
NLO everything remains relatively stable for the gluon, the@nalytic SO'“%"”S to the LO running coupling BFKL equa-
physical splitting function starts to develop extreme behaviofion for the Q®-dependent parts of the gluon _structurezfunc-
at this low scale—the minimum at~0.01 becomes much o0 and for the real physical structure functioRg(x,Q")

lower and the peak at~0.0001 becomes very much higher. andF(x,Q?). This results in_ a reszummation of the leading
This trend is illustrated in Fig. 1b), which shows the renor- In(1x) terms at each power ing(Q7) and also of the lead-

L LO+NLO - ing powers inB, at each power ofag(Q?) and In(1k).
glahz?n?r? sc_ale depen(zljentceb_lcfuf ()f’t) for t__ 6. | However, theQ3-dependent gluon input is plagued by con-
b ?z_atr_y etre IS ve;yfgoods abriity for an mcr?‘as.e n f‘hcaetamination from infrared nonperturbative physics, and has an

ut It IS Not S0 good for a decrease in ;c@llmug sINCe e inherent ambiguity of(Q(AZ/Qé). The analytic expressions
splitting function oscillates, the variation washes out to amay be expressed in the form of a power seriesfQ3?). In
large extgnt yvhen ev'olut|.on IS calculaled_'here IS very practice the main features of the solution are almost com-
good stability in both directions if one examines the varlatlonp|ete|y determined by only the first handiat5) of terms in
. . _ 2 . .

for a slightly highert, sayt=8 (Q“°~30 GeV?)._T_h|s Insta-  the expansion, in complete contrast with the case of fixed
in the evolution at=4.5, even though it appeared to be very the perturbative series for the structure functions is not con-
stable att=6. Hopefully, the inclusion of the missing terms vergent, and the analytic expression is most accurately ob-
will help stabilize this evolution, though it may simply be a tained by this truncation. The small remainder, which
sign that at this lowQ? some nonperturbative contribution is roughly speaking is suppressed by powers/®#/Q?), may
becoming essential. be calculated from the difference between a numerical solu-
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tion with the analytic solution, and then modeled by an anadecreasing with increasing?, and is therefore by no means
lytic expression ofQ? and N, which may easily be trans- a good indicator of physics at present or future colliders. In
formed tox space. There are two points to note here. Firstfact it is very likely that unitarization will stop this true pow-
this power-suppressed condition is both well defined and hasrlike behavior from ever being seen. Rather than the inter-
nothing to do with higher twist operators. Even though therecept, the detailed expressions for the splitting functions and
are infrared(and ultraviolet renormalons in the untruncated coefficient functions are needed in order to really calculate
perturbative expansion, they only appear due to the impossihe evolution at realistic values af

bility of expressing theQ?-dependent part of the structure  The procedure can also be extended to NLO without any
functions as a power series in(Q?), not because of some real modification, though there is some ambiguity in pre-
inherent ambiguity at leading twist, as is often the case withtjsely what the best definition of NLO i3.The choice is
renormalons. Hence, they are circumvented completely byyade so that the expressions for the structure functions are
this manner of calculation. Second, this procedure of an angyenuinely only a single power aiy(Q?) down on LO, up to
lytic cal<_:u|at|on as a truncated power series plus_a numericay ., (Q2) corrections, but iny(N,t)=d In(G(N,t))/dt the
calculation of the power-suppressed part, which is then mo f" NLO expression for[G(N,t)]"* is used, rather than

eled, seems to. ‘?IHOW for the mos_t accurate det_ermmatlon uncating its expansion at NLO, and hence the full NLO
x-space quantities. Transformation of numerical momen . : . . . .
; . correction to the intercept is obtained. This has little effect
space expressions tospace are subject to errors, and the ™" . . . )
until extremely smalix. Unlike leading In(1X) calculations

magnification of the power-suppressed contributionsxin ithout i f : i ffects the NLO
space, compared to moment space, seen in this paper hing out resummation ot running coupiing €fiects the

lights the potential effect of small errors in moment SpaCecorrection to the gluon splitting function here is moderate,

when ultimately working inx space. Hence, obtaining as both for the value of the intercept and for the exact size of

accurate an analytic moment space expression as possibletﬁhe splitting function and the evplution pf the glupn structure
vital in ultimately obtaining good accuracy for splitting func- function for x> 10°°. Hence, this running coupling resum-
tions and the evolution of structure functions. mation does a great deal to stabilize the perturbative series.
It is also demonstrated that there are well-defined, calcuUnfortunately it is not yet possible to calculate the complete
lable higher-twist contributions due to the transverse degred§LO correction to any real physical quantity, though one
of freedom of the two-gluon operator. However, both themay come close foP, (x,t), the splitting function govern-
normalization and Sp||tt|ng functions of these genuine|ying the evolution of the |Ongitudinal structure function in
higher twist operators decrease qu|ck|y s 0 [rough|y terms of itself, which is very similar tﬁgg(x,t) . In this case
like x>5cog0.5In(1k))] when the smalk resummation is ©nly a subset of the running coupling corrections to the NLO
performed. Unlike leading twist, this is largely insensitive toin IN(1/x) part is still unknown. Foi=_ the stability of the
the running coupling corrections. This result is only apparenperturbative series looks even better than for the gluon as
from resummation, and a f|dema|D order in aS(QZ), par- |0ng aSQ224 Ge\ﬁ, but begins to deteriorate below this,
ticularly first order only, gives very misleading results. Perhaps due to the missing corrections.
Hence, this one form of higher twist does not lead to any Let me also comment briefly on other methods which at-
sizable correction at all at smalland Q2. It is possible that tempt to incorporate the NLO correctioitand beyondl to
this unambiguous, smak-vanishing higher-twist contribu- the BFKL equation. First I note that my previous conjecture
tion to the two-gluon operator is responsible for the absenc#hat the effect of the running coupling in the BFKL equation
of a genuine ambiguity in the leading twist anomalous di-could be accounted for using ardependent scale for the
mensions. However, | note that this paper has nothing to sa§eupling[20], resulting in falling coupling for decreasing
about the size of shadowing corrections coming from fourturns out to be essentially correct so long as the change in the
gluon operators, except to point out that the double-leadingScale of the coupling is moderate compared to the scale it-
log type calculations often performed are likely to lead toSelf, though it fails if this condition is not satisfied. In prac-
huge overestimations. Neither does it consider the powettice this condition is identical to that specifying that diffusion
suppressed corrections due to nonperturbative effects whidf the fixed coupling BFKL equation is not too large, and
mix with higher twist, leading to mixing with leading twist, therefore that the virtualities sampled in the running coupling
and may well be important at extremely small15,29. equation are not too far away fro@?2. This results in the
The calculated expressions for leading twist structurgedquirement that®=20In(1k) [35]. This is true for all but
functions may be used to produce LO expressions for théhe lowestx andQ? at HERA. | also note that my approach
splitting functions and coefficient functions for physical pro- iS completely consistent with that 14,15, with both being
cesses, and also the physical splitting functions which allowpuilt upon the running coupling BFKL equation essentially
one to work directly in terms of physical quantities. My re- introduced long ag423,24,17,18 and generalized beyond
sults prove that the effect of the running of the coupling is to
weaken the asymptotic powerlike growth of the splitting
functions severely compared to the naive BFKL results, and 1i1he power-series expressions also become very complicated at
even to lower the splitting function below thg(Q?)/x con-  NLO. It will probably ultimately be more convenient to model them
tribution for 0.00Ex=0.2. It is also noted that the accurately with some simpler function af andt similar to the
asymptotic behavior of the form™* is often not approached manner in which the power-suppressed contributions are treated at
even approximately untik<0.00001, with the requirect  present.
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LO in [14]. The differences from this approach are that Istructure, and moreover is easy to directly incorporate into
ignore the collinear resummation which is a central theme irthe usual calculation of partons and structure functions in
this work, since as | stress it is an unnecessary complicatioterms of the coefficient functions and splitting functions.

in the calculation of splitting functions, the running coupling It will, of course, be interesting to examine the effect of
effects being the most important and stabilizing the calculaincorporating my resummed corrections to splitting function
tion themselves; that | concentrate on solving very accuratelyn a global fit to structure function and related data. Such an
and precisely for theQ?-dependent part of the gluon and analysis will also need to include a precise explanation of
structure functions, obtaining splitting functions over thehow the smallx-relevant expansions derived in this paper
range ofx and Q? relevant for a phenomenological treat- must be combined with the normal order-by-orderifQ?)
ment; and that | also ignore the complication of a real reguexpansion, and potentially large In{X) expansions. Full de-
larization of the coupling in the infrared regidthis latter  tails of such a fit, and the complete procedure used, will
point is also considered ifi36]). Hence, | obtain detailed appear in a future paper which awaits the release of new data
accurate results for all splitting functions and coefficientfrom a number of experimental collaborations. From the
functions in closed form, but ignore contributions consideredanalysis of presently published data it is clear that the quality
in these papers which are necessary if investigating singlesf such a fit is improved by inclusion of these smalte-
scale processes and/or potential nonperturbative effeceummed correction®, and that the predicte | (x,Q?) is
(which may be important for splitting functions at lo@>  smaller than that from a NLO-in(Q?) fit, but much more
and very smallx [29]). There is less similarity with other regular in shape at I0®? than that seen if5].X® This can be
approaches. Even though the approacti3f claims to in  seen as a solution to the lack of convergencd ofx,Q?)
some sense be dealing with the scale appropriate for the coapparent as one goes from LO to NLO to NLO in the con-
pling in this problem, it has no overlap with the approach inventional expansion scheme which is seefSh

this paper, and comments on this approach can be found in Hence, | conclude by claiming that this paper outlines a
[20]. Also there is no connection with the approach 8] method for including the most complete resummation of
which adopts a phenomenological approach to resummatiosplitting functions (and coefficient functions which is
beyond fixed orders in In(%) in terms of the asymptotic needed at smalt, and satisfies the theoretical requirements
powerlike behavior, which is a free parameter, and whichof stability of the perturbative expansion and the minimum
consequently loses true predictive power for the evolution abf model dependence as well as the more practical consider-
small x. Finally, there also seems to be no overlap with theations of being in a closed form which is easy to implement.
approach in the first part $89] which incorporates sublead- It will prove useful in an analysis of structure function data,
ing effects via a kinematic constraint while solving the and in a prediction of related quantities relevant for the Teva-
BFKL equation, resulting in an anomalous dimension whichtron and the LHC. However, at present it only really exists at
includes a resummation of some subset of higher order cori-O (and not even that for many quantitiesand for full
tributions, none of which is concerned with the running ofimplementation the calculation of the NLO impact factors
the coupling, but which stabilizes the calculati¢fihe latter  within the BFKL framework is urgently needed. Once this is
part of [39] also includes a running coupling and infrared done, a truly full NLO analysis of structure functions, which
regularization, but concentrates on the normalization rathewill be equally valid over the full perturbative range, will be
than the evolution.In this sense it has some similarities to possible.

the resummation of collinear logs [43], which also stabi-

lizes results even with fixed couplingnd which is essential

in single scale processe#ience, there appear to be a num- ACKNOWLEDGMENTS
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which results in explicit results in terms of an ordered power

series in the well-defined quantitiesy(Q?), In(1x), and 127 prediction fordF,(x,Q?)/d In Q? for preliminary ZEUS data
Bo. This stabilizes the smak-expansion without consider- is shown in Fig. 35 of40] which shows the clear improvement
ation of these other effects; indeed it leads to the most divereompared to a conventional NLO-imng(Q?) treatment.

gent terms ax— 0 [20] and alters the complete singularity °Figures showing this can be seen[#1].
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