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Running coupling Balitski�-Fadin-Kuraev-Lipatov anomalous dimensions and splitting functions
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I explicitly calculate the anomalous dimensions and splitting functions governing theQ2 evolution of the
parton densities and structure functions which result from the running coupling Balitski�-Fadin-Kuraev-Lipatov
~BFKL! equation at leading order; i.e., I perform resummation in powers of ln(1/x) and in powers ofb0

simultaneously. This is extended as far as possible to next-to-leading order~NLO!. These are expressed in an
exact, perturbatively calculable analytic form, up to small power-suppressed contributions which may also be
modeled to very good accuracy by analytic expressions. Infrared renormalons, while in principle present in a
solution in terms of powers inas(Q

2), are ultimately avoided. The few higher twist contributions which are
directly calculable are extremely small. The splitting functions are very different from those obtained from the
fixed coupling equation, with weaker powerlike growth;x20.25, which does not set in until extremely small
x indeed. The NLO BFKL corrections to the splitting functions are moderate, both for the form of the
asymptotic powerlike behavior and more importantly for the range ofx relevant for collider physics. Hence, a
stable perturbative expansion and predictive power at smallx are obtained.

DOI: 10.1103/PhysRevD.64.074005 PACS number~s!: 13.60.Hb, 12.38.Bx
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I. INTRODUCTION

Small-x physics has been a particularly active area of p
ticle physics research in the past few years, driven largely
the first data forx,0.005 being obtained by the DESY
electron-positron collider HERA experiments@1,2#. How-
ever, as well as the need to describe this HERA data
rectly, it will also be extremely important to understand t
correct way of calculating physics at smallx in order to
interpret the results coming from the CERN Large Hadr
Collider ~LHC! in a truly quantitative manner. For exampl
for the production of a particle of mass;100 GeV the typi-
cal value ofx probed~at central rapidity! is 0.005, but values
up to two orders of magnitude in either direction will als
have an almost equally large influence.1

The potential complication at smallx is that the splitting
functions and coefficient functions governing the evoluti
of parton distributions and their conversion to physical qu
tities have terms in their perturbative expansions which
have likeas

n lnm(1/x), wherem can reach up ton21. There-
fore, as the power of the coupling increases, the power
j5 ln(1/x) also increase, and rapid perturbative converge
is not really guaranteed ifj*1/as , i.e.,;5. This problem is
not really diminished at the LHC, where the coupling
likely to be smaller than at HERA, since the parton distrib
tions to be used will be those measured at HERA at m
lower scales and evolved up to LHC scales. This questio
large ln(1/x) terms is in principle addressed by the Balitsk�-
Fadin-Kuraev-Lipatov~BFKL! equation@4#, which is an in-
tegral equation for the unintegrated 4-point gluon Gree
function in the high energy limit. This sums the leading hig
energy, or in the deep inelastic scattering~DIS! case, small-x
behavior, which is dominated by the gluon, and thus allo

1For an illustration of thex andQ2 of parton distributions sampled
at the LHC, see Fig. 1 of@3#.
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the extraction of leading ln(1/x) terms for relevant quantities
such as splitting functions.

Hence, a major point of debate during the past decade
been whether the standard Dokshitzer-Gribov-Lipato
Altarelli-Parisi ~DGLAP! approach based on
renormalization-group equations and conventionally orde
simply in powers ofas(Q

2), or the BFKL equation, which
sums leading logarithms in (1/x), is the more effective way
of dealing with small-x physics~most particularly structure
functions!, and/or whether the two approaches need to
combined in some way, and if so, how? While the conve
tional DGLAP approach has been relatively successful
does have some significant problems~which are often over-
looked!: a valencelike, or even negative input gluon leadi
to a strange low-Q2 FL(x,Q2); undershooting of the data
systematically forx;0.01 at the highestQ2 when a global fit
is performed; and apparent instability at smallx order-by-
order inas up to next-to-next-to-leading order~NNLO! @5#.2

Nevertheless, the BFKL equation did not seem to h
these problems. The original LO BFKL prediction of a b
havior of the formx2l for structure functions and splitting
functions at smallx, with l;0.5, was clearly ruled out long
ago. A combination of the two approaches, using the BF
equation to supplement the Altarelli-Parisi splitting functio
with higher terms of the formas

n11 lnm(1/x), was originally
successful~so long as one avoided factorization scheme a
biguities by working in physical quantities! @8#, but this suc-
cess is not possible to sustain with the most recent d
@9,10#. Moreover, the subject was thrown into confusion
the calculation of the NLO correction to the BFKL equatio
@11,12#. The results of this calculation were not very enco
aging. Ignoring the running of the coupling at NLO, i.e

2Of course the full NNLO splitting functions are not known, b
good estimates are available@6# based on calculation of moments i
@7#.
©2001 The American Physical Society05-1
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ROBERT S. THORNE PHYSICAL REVIEW D 64 074005
proceeding with the same sort of calculations as at LO
including the scale-independent NLO correction to the k
nel, one obtains the ‘‘intercept’’ for the splitting functio
powerlike behavior,x2l, shifted from l54 ln 2ās to l
54 ln 2ās(126.5ās). This is clearly a huge correction, an
implies the breakdown of the perturbative expansion for t
quantity. More serious than this intercept is the power se
for the splitting function, which may be calculated even ta
ing into account the renormalization and scale depende
introduced at NLO. Expanding this out formally to NLO i
ln(1/x) one finds that it is dominated by the NLO correctio
at all values ofx below aboutx50.01. For example, using
the formulas in@11# the first few terms in the power serie
for P(x) go like

xP~x,Q2!5ās12.4ās
4j3/612.1ās

6j5/1201¯2ās~0.43ās

11.6ās
2j111.7ās

3j2/2113.3ās
4j3/6

139.7ās
5j4/241169.4ās

6j5/1201¯ !, ~1.1!

wherej5 ln(1/x) and as[as(Q
2). Clearly, the size of the

coefficients more than compensates for the extra powe
as(Q

2), particularly at lowQ2 where the perturbative analy
sis of structure function evolution often takes place.

Hence, this NLO correction left open the whole questi
of how to address the evolution of structure functions
smallx. There has been considerable progress on the stab
of the solutions to the BFKL equation in the intervenin
time. One major development was the observation that
resummation of double logarithmic terms in the transve
momentumk2 is necessary in order to eliminate colline
divergences. This renders the intercept of the BFKL equa
stable @13#, even when ignoring the renormalization sca
dependence. This initial idea has been further develope
@14–16# where the effect of running coupling is also cons
ered in these later papers. This development is particul
important for the case of so-called ‘‘single scale’’ proces
where both ends of the gluon Green’s function are at h
scales~not necessarily the same! where without this collinear
resummation, all calculations are badly behaved over the
range of energy, not just in the asymptotic limit.

However, for the type of situation embodied by DI
where one end of the gluon Green’s function is at some
nonperturbative scale, the factorization theorem simpli
the problem. Although the growth of the coupling at lo
scales actually renders the solution of the BFKL equat
formally divergent when the renormalization of the coupli
is encountered, as realized as long ago as@17# and studied in
detail in @19#, all the uncertainty and indeed all the effects
the low Q2 region are absorbed into the overall normaliz
tion of the gluon, leaving the evolution and coefficient fun
tions for hard scattering cross sections calculable. Howe
these perturbatively calculable quantities are affected by
running of the coupling, and it was argued in@20# that the
effective result was as if the usual LO BFKL splitting fun
tions should be evaluated at anx-dependent scale, whic
grows with decreasingx, due to increasing diffusion into th
ultraviolet, leading to a decrease in the coupling. Hence,
effect of running coupling totally transforms the more sim
07400
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plistic LO BFKL results, making overall normalization o
quantities incalculable, but moderating the effect of tho
governing the evolution inQ2. This moderation of the LO
quantities also translated into a moderation of the effects
NLO corrections, leading to a much improved stability of t
perturbative expansion, even without recourse to the typ
resummation in@13–15#. Indeed, for this case of deep inela
tic scattering further resummation of this type is redunda
These modified BFKL contributions to the splitting fun
tions, when combined with the conventional LO-in-as con-
tributions, also led to improved fits compared to the us
DGLAP approach@20# and a more sensible prediction fo
FL(x,Q2). This concept was put on a firmer footing in@21#
where an explicit calculation of the BFKL splitting function
in powers ofb0as(Q

2), i.e., a resummation of running cou
pling contributions, was outlined, and it was seen that ove
wide range of thex–Q2 range~including the HERA range!
the previous hypothesis was largely correct, and precise
sults were also obtained outside this range.

The purpose of this paper is to explain in detail and e
pand upon the results of this previous paper, i.e., to prese
full the calculation of splitting functions and coefficien
functions for deep inelastic scattering obtained from
BFKL equation~both LO and NLO! and incorporating run-
ning coupling contributions to all orders. Explicitly, whil
the usual BFKL equation presents an expression for th
quantities which sums the leading power ofj at each power
in as , I will extend this by producing expressions which al
include the leading power ofb0 at each power ofas(Q

2)
andj, e.g.,

xPgg~x,Q2!5 (
n51

`

(
m50

n21

anmas
n~Q2!jn212mb0

m , ~1.2!

though the formal divergence of the series will complica
this form a little. This presentation will begin, in Sec. II, wit
a brief review of the standard solution to the BFKL equati
at LO, and then a detailed presentation of the solution at
with running coupling. This will result in a solution for th
gluon splitting function in an analytic form up to a sma
unambiguous, correction of the formL2/Q2 ~which is not
higher twist! which may be modeled by an analytic functio
to excellent accuracy. Despite the integration over the in
red region when solving the running coupling BFKL equ
tion, there is no ambiguity in this splitting function. Next, i
Sec. III, will follow a discussion of some possible high
twist contributions at smallx. It is argued that these may b
much smaller than generally supposed, though the possib
of some large power-suppressed corrections~not necessarily
higher twist! is left open. In Sec. IV I discuss the solution o
the BFKL equation at NLO, defining precisely what I mea
by the ‘‘NLO BFKL splitting function,’’ and showing that the
NLO corrections for the gluon splitting function are mode
ate. In Sec. V I consider real physical quantities, i.e.,
structure functions. First, I calculate the quark-gluon splitti
function and coefficient functions, and then consider
rather more direct physical splitting functions@22#. I also
consider how far one can calculate to NLO, defining
‘‘nearly NLO’’ physical splitting functionPLL(x,Q2). The
5-2
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stability of the perturbative expansion is examined in det
and seen to be very good. Finally, in Sec. VI phenomenol
is briefly touched upon, and I present a summary and
conclusions.

II. BFKL EQUATION AT LO

The BFKL equation for zero momentum transfer is
integral equation for the 4-point, transverse-momentu
dependent gluon Green’s function for forward scattering
the high energy limit,f (k1 ,k2 ,as ,N), whereN is the Mellin
conjugate variable to energy. In the case of DIS the sec
momentumk2 is put equal to some nonperturbative sca
Q0 , we letk15k, andN becomes conjugate tox. In order to
obtain a structure function we attach the nonperturba
bare gluon distributiongB(N,Q0

2) to the nonperturbative en
of the gluon Green’s function and convolute a hard scatte
cross sectionh(Q2/k2,as ,N) to the perturbative end.

In this section I will illustrate the effect that introducin
the running coupling into the BFKL equation has. In order
do this I will first begin with a brief presentation of the fairl
simple traditional case of fixed coupling before moving
the far more complicated case of running coupling. As w
be seen, the introduction of renormalization, and hence
ning of the coupling, which is necessary except in the ar
cial model of no consideration beyond LO, complete
changes not only the detail of the information one is able
extract from the BFKL equation, but also what type of info
mation one is able to extract.

A. Fixed coupling

We simplify matters by working in moment space, i.
defining the moment of a structure function by

F~N,Q2!5E
0

1

xN21F~x,Q2!dx, ~2.1!

and similarly for the parton distributions~scaled byx!. Doing
this the BFKL equation is

f ~k2,ās /N!5 f I~k2,Q0
2!1

ās

N E
0

` dq2

q2 K0~q2,k2! f ~q2!,

~2.2!

wheref (k2,ās /N) is the unintegrated gluon four-point func
tion, f I(k

2,Q0
2) is the zeroth order input,ās5(3/p)as , and

the LO kernel is defined by

K0~q2,k2! f ~q2!5k2S f ~q2!2 f ~k2!

uk22q2u
1

f ~k2!

~4q41k4!1/2D .

~2.3!

It is convenient to define the input byf I(k
2,Q0

2)5d(k2

2Q0
2). In fact in the leading twist factorization theorem th

is the unique definition, andQ0
2 is really just a regularization

which we let→0 ultimately. Going beyond this approxima
tion the dependence onQ0

2 tells us about the higher twist du
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to the intrinsic transverse momentum of the gluon, and
will discuss this in Sec. III. The ‘‘gluon structure function’’ i
now given by

G~Q2,N!5E
0

Q2 dk2

k2 f ~N,k2,Q0
2!3gB~N,Q0

2!, ~2.4!

where gB(N,Q0
2) is the bare gluon density in the proto

which implicitly absorbs the collinear divergences inf (k2).
The BFKL equation is most easily solved by taking the M
lin transformation tog space, i.e.,

f̃ ~g,N!5E
0

`

dk2~k2!212g f ~k2,N!, ~2.5!

where it reduces to

f̃ ~g,N!5 f̃ I~g,Q0
2!1~ ās /N!x0~g! f̃ ~g,N!, ~2.6!

where f̃ (g,Q0
2)5exp„2g ln(Q0

2)… and x~g! is the character-
istic function

x0~g!52c~1!2c~g!2c~12g!. ~2.7!

A little simple manipulation leads to the expression

G~Q2,N!5
1

2p i E1/22 i`

1/21 i`

dg exp„g ln~Q2/Q0
2!…

3
gB~N,Q0

2!

g„12~ ās /N!x0~g!…
. ~2.8!

This inverse transformation has a leading twist compon
given by the contribution of the leading pole at
2(ās /N)x0(g)50, and the solution is

G~Q2,N!5
1

2~ ās /N!g0x08~g0! S Q2

Q0
2D g0

gB~N,Q0
2!.

~2.9!

The anomalous dimensiong0(ās /N) may be transformed to
x space as a power series inās ln(1/x), and has a branch
point at N5l54 ln 2ās ~at which g→ 1

2 ! leading to
asymptotic smallx behavior for the splitting function

xPgg
0 ~x,ās!→

0.07āsx
2l

~āsj!3/2 . ~2.10!

In a similar fashion, assuming that the leading small-x be-
havior is dominated by the perturbative physics rather th
by gB(Q0

2,N), one can transform tox space the normaliza
tion 1/@2(ās /N)g0x08(g0)# which leads to a gluon normal
ization xg(x)}āsx

2l/(āsj)1/2.

B. Running coupling

Beyond strict leading order it is impossible to ignore t
running of the coupling. At NLO ultraviolet regularization i
required, resulting in a correction to the LO kernel of t
form 2b0as(mR

2)ln(k2/mR
2)K0(q

2,k2), wheremR is the renor-
5-3
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ROBERT S. THORNE PHYSICAL REVIEW D 64 074005
malization scale which must now be introduced. Hence, i
unrealistic to simply use the LO kernel without consideri
the influence of such a correction. An obvious way in whi
to incorporate such a term is to simply use the running c
pling constant evaluated at the scalek2 in the previous LO
BFKL equation. Since this, or something similar, is unavo
ably forced upon us at NLO, it seems sensible to consider
fixed coupling LO BFKL equation as just a model whic
would apply in a conformally invariant world, and more r
alistically to work with the BFKL equation with running cou
pling @23,24,17,18# from the beginning. Doing this we obtai

f „k2,Q0
2,ās~k2!/N…5 f I~k2,Q0

2!

1
ās~k2!

N E
0

` dq2

q2 K0~q2,k2! f ~q2!,

~2.11!

where

as51/@b0 ln~k2/L2!#, ~2.12!

b05(1122Nf /3)/(4p), andNf is the number of active fla
vors.

One can solve this equation in the same way as for
fixed coupling case, i.e., take the Mellin transformation, b
now with respect to (k2/L2). It is most convenient first to
multiply through by ln(k2/L2), in which case one obtains

d f̃~g,N!

dg
5

d f̃ I~g,Q0
2!

dg
2

1

b̄0N
x~g! f̃ ~g,N!, ~2.13!

where b̄05(pb0/3). Hence, the inclusion of the runnin
coupling has completely changed the form of our dou
Mellin space equation, turning it into a first-order different
equation. This has a profound effect on the form of the
lutions. The equation may easily, if formally, be solved g
ing

f̃ ~g,N!5exp„2X0~g!/~ b̄0N!…

3E
g

` d f̃ I~ g̃,N,Q0
2!

dg̃
exp„X0~ g̃ !/~ b̃0N!…dg̃,

~2.14!

where

X0~g!5E
1/2

g

x0~ ĝ !dĝ[F2c~1!S g2
1

2D2 lnS G~g!

G~12g! D G .
~2.15!

X0(g)→ ln(g) at g50 and hence exp„2X0(g)/(b̄0N)… has a

branch point atg50 @exp„2X0(g)/(b̄0N)…→g21/b̄0N# with
similar branch points at all negative integers. It is easies
choose each of the cuts along the negative real a
exp„X0(g)/(b̄0N)… has similar branch points at every pos
tive integer, and it is easiest to choose these cuts along
positive real axis. This means that the integral in Eq.~2.14! is
07400
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ambiguous due to the available choice in avoiding the c
This ambiguity can only really be removed by regulating t
Landau pole in the definition of the coupling. However, th
introduces model dependence, and also makes ana
progress rather more difficult, so I simply accept this am
guity for this function.3

In order to simplify Eq.~2.14!, and introduce factorization
we trivially rewrite it as

f̃ ~g,N!5exp„2X0~g!/~ b̃0N!…F E
0

`

2E
0

g G
3

d f̃ I~ g̃,N,Q0
2!

dg̃
exp„X0~ g̃ !/~ b̄0N!…dg̃.

~2.16!

In the region ofg50 the integrand in Eq.~2.16! is }g1/b̄0N,

so the integral of this from 0→g is }g111/b̄0N. Hence, the
leading singularity in theg plane for exp„2X0(g)/(b̄0N)…,
is canceled by the integral from 0→g of this integrand@18#,
and the new leading singularity is atg521. SinceG(Q2,N)
is obtained by an inverse Mellin transformation with resp
to Q2/L2, the part of Eq.~2.16! coming from the integral
from 0 to g will behave likeL2/Q2 ~actually Q0

2/l2 as we
will see later!. Hence, discarding this power-suppressed c
rection, which will be considered in some detail in Sec. I
we keep only the first term in Eq.~2.16!, obtaining for the
gluon distribution

G~Q2,N!5
1

2p i E1/22 i`

1/21 i` 1

g
exp„g ln~Q2/L2!

2X0~g!/~ b̄0N!…dgE
0

`

exp„2g̃ ln~Q0
2/L2!

1X0~ g̃ !/~ b̄0N!…dg̃gB~Q0
2,N!

5GE~Q2,N!GI~Q0
2,N!gB~Q0

2,N!. ~2.17!

Therefore, we have factorization up to well-defined c
rections ofO(Q0

2/Q2), which genuinely do vanish asQ0
2

→0 ~see Sec. III!. As mentioned, exp„X0(g)/(b̄0N)… con-
tains singularities at all positive integers, andGI(Q0

2,N) is
not properly defined, since the integrand has singulari
lying along the line of integration. However, since this fact
is independent ofQ2, it does not contribute at all to the
evolution of the structure function. It is also divergent
Q0

2→0, and as usual in the factorization theorem these div
gences are implicitly canceled bygB(Q0

2,N), and we can

3The problem due to the Landau pole is illustrated using an al
native method of solution in@19#. In this paper the solution of the
equation where the NLO coupling effect is left simply a
2b0as(mR

2)ln(k2/mR
2)K0(q

2,K2) rather than resummed is also co
sidered. This does not improve the situation, i.e., an ambiguity
the solution remains even in this case.
5-4
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imagine the ambiguity to be canceled in the same manne
the overall normalization is incalculable, but there is a c
culable functionGE(Q2,N) whose form is determined by th
singularities of exp„2X0(g)/(b̄0N)… in the g plane. This
also leads to a fundamental difference between the case
the fixed and running couplings. Whereas previously
leading singularity was a pole at (ās /N)x(g)51, i.e., atg
→ 1

2 asN→4 ln 2ās, now the leading singularity is a cut a
g50: there is no powerlike behavior inQ2. Similarly, the
branch point in theN plane at 4 ln 2ās has become an esse
tial singularity atN50: there is no powerlike behavior inx
in the evolution factor for the gluon. The introduction of th
running of the coupling has changed the character of
solution completely.

One can now proceed with the solution to the LO BFK
equation by acknowledging that the only real informati
contained inGE(N,Q2) is on the evolution of the structur
function, i.e., defining

d ln G~N,Q2!

d ln~Q2!
5

d ln GE~N,Q2!

d ln~Q2!
[ggg~N,Q2!. ~2.18!

GE(N,Q2) gives us an entirely perturbative effective anom
lous dimension governing the evolution of the gluon stru
ture function. The usual technique for solving forGE(N,Q2)
is to expand the integrand in Eq.~2.17!, about the saddle
point. This results in a contour of integration parallel to t
imaginary axis, with real part→ 1

2 for the smallx solutions,
see Fig. 1. Using this results in an anomalous dimension

ggg~N,Q2!5g0„ās~Q2!/N…

1 (
n51

`

@2b0as~Q2!#ng̃n„ās~Q2!/N…, ~2.19!

i.e., the effective anomalous dimension is the naive lead
order result with coupling at scaleQ2 plus an infinite series
of corrections in increasing powers of2b0as(Q

2) @20#.
However, each of theg̃„ās(Q

2)/N… is singular at N
5l(Q2), and the power of the singularity increases w
increasingn. Hence, although the series for the resulti
splitting function is in the small quantityas(Q

2)b0 , the ac-
companying coefficients are progressively more singula
x→0. The saddle-point approximation is therefore not a
liable result asx→0 and explicit investigation reveals that
is only really quantitatively useful whenās(Q

2)ln(1/x) is so
small that the effective anomalous dimension is effectiv
the LO in as part, xPgg(x)5ās(Q

2) @20#. This translates
into x*0.01 in the HERA range. Therefore the calculatio
of the anomalous dimension which rely on an expans
about the saddle point, i.e., the conventional expansion
decreasing powers of ln(1/x) at fixed power ofas , leads to
very inaccurate and misleading results for smallx. This in-
stability is not surprising. If one examines the integra
along the saddle-point contour of integration one finds tha
is very different from the Gaussian form the saddle-po
method assumes@20#. Also this is an expansion obtaine
from approachingg5 1

2 and in terms of functions ofN which
are singular atN5l(Q2), whereas we know that the fu
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solution no longer sees these points as anything specia
fact, the known singularity structure of the integrand impli
that g50 is the point on which to concentrate.

This suggests an alternative method of solution for
anomalous dimension. In order to concentrate on this lead
singularity we may move the contour of integration to t
left and simultaneously use the property that the integr
dies away very quickly at infinity~for Reg<1

2! to close the
contour so that it simply encloses the real axis forg,0 ~Fig.
1!. It is then useful to expressx0(g) in the form

x0~g!51/g1 (
n51

`

2z~2n11!g2n, ~2.20!

which is, however, only strictly valid only forugu,1. Doing
this we may write

X0~g!5 ln~g!1gE1 (
n51

`

2
z~2n11!

2n11
g2n11, ~2.21!

and the integrand forGE(N,Q2) becomes

FIG. 1. The branch points and cuts associated w

exp„2X0(g)/(b̄0N)… and the saddle-point contour, the gamm
function contour and the numerical integration contour.
5-5
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g21/~ b̄0N!21 expXgt2
1

~ b̄0N!
S gE1 (

n51

`

ang2n11D C,
~2.22!

wheret5 ln(Q2/L2) andan52z(2n11)/(2n11). The con-
tribution to the integral from 0→2`1 i e is now the same as
that from 2`2 i e→0 up to a phase factor, and we ma
write

GE~N,t !52sinS p

~b̄0N!
D expS 2

gE

~ b̄0N!
D

3E
2`

0

g21/~ b̄0N!21 expS gt2
1

~ b̄0N!

3 (
n51

`

ang2n11D dg, ~2.23!

where the integral has to be understood as an analytic
tinuation, since there are singularities along the real axis,
strictly speaking the integrand is well defined only forg
.21. Since the factor of exp(gt) is present this latter poin
leads, in principle, to an error of order exp(2t), i.e.,
O(L2/Q2) into the value ofGE(N,t). This will be discussed
in more detail below.

In order to evaluate the above integral it is convenien
let y5gt, resulting in

GE~N,t !52sinS p

~b̄0N!
D expS 2

gE

~ b̄0N!
D t1/~ b̄0N!

3E
2`

0

y21/~ b̄0N!21 exp~y!expS 2
1

~ b̄0N!

3 (
n51

`

an~y/t !2n11D dy. ~2.24!

The latter exponential may be expanded as a power seri
y/t and each term in the integral then precisely evalua
using the standard result that

~21!nG„21/~ b̄0N!1n…5E
2`

0

y21/~ b̄0N!21 exp~y!yndy.

~2.25!

Hence, we may formally write

GE~N,t !52sinS p

~b̄0N!
D expS 2

gE

~ b̄0N!
D G„21/~ b̄0N!…

3t1/~ b̄0N!S 11 (
n53

`

An„1/~ b̄0N!…t2n~21!n

3
G~21/~ b̄0N!1n…

G„21/~ b̄0N!…
D , ~2.26!
07400
n-
d
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plus an error ofO(L2/Q2). We note that we could have
reached this final expression~2.26! in a slightly more rigor-
ous manner. After performing the expansion ofX0(g) in Eq.
~2.21! we could have produced a well-defined integral in E
~2.23! by taking the lower limit of integration to be211e
so that the expansion is valid over the region of integrati
This would mean that there is a region of integrationg
<21 absent, which due to the factor of exp(gt) would mean
a missing contribution ofO(L2/Q2). This new limit
of integration would result in the lower limit of2t in
Eqs. ~2.24! and ~2.25! and consequently we would obtai
incomplete gamma functionsg„21/(b̄0N)1n,t… rather
than G„21/(b̄0N)1n…. However, g„21/(b̄0N)1n,t…
5G„21/(b̄0N)1n…1O(L2/Q2), so discarding the contri-
butions of O(L2/Q2) we regain Eq.~2.26!, which is for-
mally equivalent to Eq.~2.23!, but we have seen explicitly
the origin of the intuitively obviousO(L2/Q2) corrections to
Eq. ~2.26!.

The result~2.26! was first noted in@25#, and was simpli-
fied by using the relationship that asN→0, @G„21/(b̄0N)
1n…/G„21/(b̄0N)…#→@21/(b̄0N)#n. However, it is impor-
tant to notice the more general result that for allN

~21!n
G„21/~ b̄0N!1n…

G„21/~ b̄0N!…
5Dn„21/~ b̄0N!…, ~2.27!

where

Dn„21/~ b̄0N!…5 (
m50

n21

~21!mdmn~ b̄0N!2n1m, ~2.28!

and dmn are positive coefficients andd0n51. Explicitly the
first few Dn„21/(b̄0N)… are

D1„21/~ b̄0N!…5S 1

~ b̄0N!
D

D2„21/~ b̄0N!…5S 1

~ b̄0N!
D 2

2S 1

~ b̄0N!
D

D3„21/~ b̄0N!…5S 1

~ b̄0N!
D 3

23S 1

~ b̄0N!
D 2

12S 1

~ b̄0N!
D

~2.29!

D4„21/~ b̄0N!…5S 1

~ b̄0N!
D 4

26S 1

~ b̄0N!
D 3

111S 1

~ b̄0N!
D 2

26S 1

~ b̄0N!
D

5-6
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D5„21/~ b̄0N!…5S 1

~ b̄0N!
D 5

210S 1

~ b̄0N!
D 4

135S 1

~ b̄0N!
D 3

250S 1

~ b̄0n!
D 2

124S 1

~ b̄0N!
D ,

These functions oscillate a great deal and only approach
asymptotic values of 1/(b̄0N)n at low values ofN which
decreases with increasingn. The comparison of
D4„(21/(b̄0N)… with 1/(b̄0N)4 is shown in Fig. 2, and illus-
trates this feature clearly.

Ignoring the common factor of2sin„p/(b̄0 N)…G„21/
(b̄0N)…exp„2gE /(b̄0N)…, which has nott dependence, and
is irrelevant for the calculation of the anomalous dimensi

GE~N,t !5t1/~ b̄0N!S 11 (
n53

`

An„1/~ b̄0N!…t2nDn„21/~ b̄0N!…D
~2.30!

where theAn are simply calculable from the expansion
exp„21/(b̄0N)Sn51

` an(y/t)2n11
…. The common factor of

FIG. 2. The expressionD4„21/(b̄0N)… as a function ofN com-

pared to 1/(b̄0N)4.
07400
he

,

t1/(b̄0N) is the well-known double-leading-log result comin
from just the LOas(Q

2)/N part of the anomalous dimen
sion. Multiplying this we have an expansion as a power
ries in 1/t or equivalently inas(Q

2). In fact

t2nDn„21/~ b̄0N!…5@ās~Q2!/N#n (
m50

n21

dmn@2b0as~Q2!#m

3@ās~Q2!/N#2m. ~2.31!

This explicitly demonstrates that we obtain a set of runn
coupling corrections to a LO result, i.e., in solving the BFK
equation we are now obtaining not only the leading powe
1/N @corresponding to the leading power of ln(1/x)# at each
order inas(Q

2), but we also obtain the leading power inb0
at each power ofas(Q

2) and 1/N. Substituting this type of
expansion into Eq.~2.30!, putting the resulting expressio
for GE(N,t) in Eq. ~2.18! and expanding in inverse powers o
t, one obtains an expression for the anomalous dimensio
a power series inas(Q

2), where at each order we have th
leading divergence in 1/N plus a sum of running coupling
correction type terms. With a little work one may regain t
whole leadingg0„as(Q

2)/N… ~though it is necessary to kee
some subleading terms in theDn to do this!, along with a
tower of terms which are subleading in powers ofb0as(Q

2)
to this leading anomalous dimension; one obtains all the c
rections to this naive LO anomalous dimension due to
running of the coupling i.e., the whole of Eq.~2.19! is re-
gained, but ordered in powers ofas(Q

2) rather than in
b0as(Q

2).
The general features of this full, running coupling BFK

gluon Green’s function and consequent anomalous dim
sion may be appreciated quite easily. The important fac
note is that although theDn„21/(b̄0N)…→@1/(b̄0N)#n asN

→0, the function oscillates a great deal with 1/(b̄0N), and
remains much smaller in magnitude than this asympto
form until very smallN, roughly until 1/N.n. This coupled
with the accompanying factor oft2n means that for reason
able t, i.e., t*425(Q2*1 GeV2), only the first five or so
terms in Eq.~2.30! make a significant contribution forN
.0.25. Hence, to a very good approximation

GE~N,t !5t1/~ b̄0N!S 12
2z~3!

3~ b̄0N!t3
D3„21/~ b̄0N!…

2
2z~5!

5~ b̄0N!t5
„21/~ b̄0N!…D , ~2.32!

and in fact the smallness of the coefficient makes even
t25 term almost negligible in this case.GE(N,t) initially

grows asN falls due to thet1/(b̄0N) term. However, forN
;0.6 the negative contribution from thet23 term starts to
become significant and ultimately drives the gluon struct
function to negative values. The result is shown in Fig.
dGE(N,t)/dt may simply be evaluated also using Eq.~2.30!,
5-7
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ROBERT S. THORNE PHYSICAL REVIEW D 64 074005
and shows the same general shape, but does not be
negative until a slightly lower value ofN as also seen in Fig
3. Hence the anomalous dimension develops a leading
at a finite value ofN, given by

t35
2z~3!

3~ b̄0N!
S 1

~ b̄0N!3
2

3

~ b̄0N!2
1

2

~ b̄0N!
D . ~2.33!

This result is accurate to better than 10% even atQ2

;1 GeV2, and is much better at higherQ2, the right-hand
side receiving corrections formally ofO„1/(t2b̄0

5N5)…, but
which are numerically small. The value ofN for this leading
pole is shown as a function oft in Fig. 4, and for the sort of
values oft relevant at HERA is;0.25. Going toN,0.25
higher-order terms in Eq.~2.30! become important, and th
positive 1/@(b̄0N)2t6#D6„21/(b̄0N)… term absent in Eq.
~2.30! pulls GE(N,t) back to positive values, and anoth

FIG. 3. TheQ2-dependent part of the gluon structure functio
GE(N,t), and of dGE(N,t)/dt as a function ofN for t56 (Q2

;6 GeV2). The Q2-independent factor of2sin„p/(b̄0N)…G„21/

(b̄0N)…exp„2gE /(b̄0N)… is included in both in order to produce
smootherN-dependent normalization of the functions.
07400
me

le

pole, with opposite sign residue, appears inggg(N,t). At
even lower N the analytic expression eventually brea
down, as discussed below, but numerical results show a
ries of poles coming closer together. Nevertheless, the p
tion of the leading pole is essentially determined by the fi
handful of terms in the power series inas(Q

2) for GE(N,t),
and hence so is the asymptotic behavior of the smallx split-
ting function, i.e.,Pgg(x,t);x20.25. So we see that the in
troduction of the running coupling has a dramatic effect
the singularity structure of the LO BFKL anomalous dime
sion, turning the cut into a series of poles, and changing
position of the rightmost singularity by a factor of;0.4. This
result of the pole in the anomalous dimension was previou
proved in detail in@15# using numerical techniques and
the context of the collinearly resummed NLO kernel, a
also indicated here using an approximate analytical solu
first suggested in@24#. However, in this paper I particularly
stress the quantitative result of the huge modification of
naive LO BFKL anomalous dimension due to the runni
coupling contributions alone. This is apparent over a w
range ofN, and in Fig. 5~a! I show the anomalous dimensio
as a function ofN for all values right of the leading singu

FIG. 4. The positions of the leading poles in the anomalo
dimensions for the gluon structure function at LO and NLO, and
FL at LO and NLO.
5-8
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larity. As one sees, it is much closer to the simpleas(Q
2)/N

expression than to the naive BFKL result.
Before going into more precise detail and more gene

situations there are two important points I should addre
These are the choice of the scale of the running couplin
Eq. ~2.11! ask2 and the fact that the expansion ofx0(g) in
powers ofg is not convergent over the whole range of t
contour of integration. The former of these is the simpler,
first I shall address the choice of scale. It was known in@26#
that the correct scale seemed as if it were really the symm
ric choice (k2q)2, but thatk2 could be used instead, leadin
to a contribution to the NLO kernel which is proportional
b0 . In practice it is much easier to obtain analytic resu
usingk2, and thisb0-dependent NLO term leads to a cont
bution to the Mellin transformation of the NLO kerne
x1(g), of the form 1

2 b̄0@x0
2(g)1x08(g)#. Including this in

the integrand for the expression forGE(N,t) at NLO ~to be
discussed in detail in Sec. IV! leads to a multiplicative con
tribution of the form exp„1/2(ln (x0(g)…1X0(g)…[ f b0(g)).
This can be expanded as a power series which at
orders is

FIG. 5. ~a! The anomalous dimension for the gluon structu
function at LO plotted as a function ofN for t56 (Q2;6 GeV2).
Also shown is theO„as(Q

2)… contributionās(Q
2)/N, and the full

naive LO BFKL anomalous dimension.~b! The anomalous dimen
sions for the gluon at LO and at NLO plotted as functions ofN for
t56.
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f b05111.60g311.24g520.163g611.15g71¯ .
~2.34!

Including this additional factor in Eq.~2.23! modifies Eq.
~2.32! to

GE~N,t !5t1/~ b̄0N!S 12
@2/3z~3!21.60~ b̄0N!#

~ b̄0N!t3

3D3„21/~ b̄0N!…2
@2/5z~5!21.24~ b̄0N!#

~ b̄0N!t5

3D5„21/~ b̄0N!…D . ~2.35!

For a given power ofas(Q
2) these new contributions pro

duce terms a power ofb̄0N up on the other terms and henc
not surprisingly, result in additional running coupling corre
tions to the gluon and anomalous dimension. However,
new terms in the series in powers ofg do not start until third
order and have rather small coefficients. The result
change in the anomalous dimensions, both for general va
of N and for the position of the leading pole, is very mino
Therefore, the correction for my original ‘‘incorrect’’ choic
of scale is very small. However, in principle it seems
though the factor just considered should really be taken
part of the LO result since it just gives running couplin
corrections. I will adopt this convention and the LO anom
lous dimensions and splitting functions presented in this
per will explicitly contain the corrections from this facto
and in fact the results already presented in Figs. 3–5 incl
these~very small! effects. In principle one could sum th
corrections needed due to the simple choice ofk2 in the
coupling, rather than (k2q)2, by including contributions in-
duced in the kernel at NNLO and beyond. In practice, b
yond NLO the change seems too tiny for one to be c
cerned.

I should also comment on the limit of applicability of th
analytic expression~2.30!. As noted, it is obtained via a se
ries expansion which is not valid over the whole contour
integration. This is reflected in the error ofO(L2/Q2) we
discovered for this expression but also in the fact that
overall magnitude of theDn„2(1/(b̄0N)… actually increases
like n! in general. This latter point means that the series
Eq. ~2.30! is actually asymptotic. It turns out that it contain
both infrared and ultraviolet renormalon contributions, a
hence it must be truncated to obtain sensible results.
greatest accuracy may be obtained from Eq.~2.30! by trun-
cating the series at ordern0;t, the precise value dependin
on the size of the coefficients in the series expansion. For
LO gluon these are small and one could usen0;10, but
from experience with other variables~see later! and the de-
sire to go down toQ2;1 GeV2, i.e. t;4 – 5, in practice I
always usen055. ~For the LO gluon the contribution from
n56→10 is practically negligible.! Using the truncated ex
5-9
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ROBERT S. THORNE PHYSICAL REVIEW D 64 074005
pression forGE(N,t) in the manner already discussed th
results in an infinite series inas(Q

2) for ggg(N,t) which is
convergent for anyN right of the leading pole, but differen
from the real, divergent series beyond sixth order inas(Q

2).
It is vital to note that although the formal expression f

the gluon, and hence anomalous dimension, as a power s
in as(Q

2) ~2.30! contains infrared renormalons,4 and hence
has an ambiguity ofO(L2/Q2), the integral in Eq.~2.17!,
which properly defines the leading twist gluon and anom
lous dimension, does exist and produces well-defined res
The ambiguity ofO(L2/Q2) in Eq. ~2.30! cancels with an
ambiguity in theO(L2/Q2) correction to this power-serie
expansion which we discovered in the derivation of E
~2.30!. The accuracy of the~truncated! analytic expression
can be found by comparing with results obtained from eva
ating Eq.~2.17! using numerical integration along the co
tour shown in Fig. 1. For the gluon structure function forN
to the right of the leading pole the analytic approximation
the anomalous dimension is found to be a fraction of a p
cent for t56, and falls like exp(2t). Strictly speaking there
is an exp(2t) contribution from the correction to Eq.~2.30!
~with the renormalon ambiguity removed! plus a 1/t7 correc-
tion due to the truncation. However, 1/t7 is similar to
exp(2t) in the range considered. Hence, we have a power
correction to the power series inas(Q

2) obtained from the
truncated expression which is completely well defined. T
illustrates that the presence of infrared renormalons i
physical quantity is not necessarily due to an inherent am
guity in the quantity itself~due, for example, to the Landa
pole in the coupling! as is commonly thought, but rather du
to the impossibility of completely expressing the physic
quantity as a power series inas(Q

2) @28#. In truncating the
power-series expansion in Eq.~2.30! I simply choose to split
the expression for the gluon as some general function oN
andQ2 into a perturbatively calculable part as a power-ser
in as(Q

2) and a remainder which is approximately of ord
O(L2/Q2). The point of truncation is then chosen empi
cally so as to make this remainder term as small as poss
This seems to be the way to obtain the most accurate ana
results. It is important to note that the remainder term,
though power suppressed, is not in any way higher tw
since it is obtained from the leading twist part of the soluti
to the BFKL equation.

Having gotten these two points out of the way we c
now begin to discuss the quantitative results of the runn

4In unphysical regularization schemes, such asMS; the anoma-
lous dimensions are not expected to contain renormalons~see sec-
tion 3.4 of @27# for a discussion!, these being confined to the coe
ficient functions relating the parton distributions to physic
quantities. However, by regularizing via a finiteQ0 , and defining
the gluon density as the bare density convoluted with the gl
Green’s function, we have implicitly chosen a more physically m
tivated factorization scheme which allows the presence of renor
lons.
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coupling BFKL equation. In order to investigate the real e
fect of the BFKL anomalous dimension on structure functi
evolution it is necessary to calculate the BFKL splitting fun
tion as a function ofx. This is where an analytic expressio
for the anomalous dimension is particularly useful. A ser
of numerically obtained values ofggg(N,t) allows an ap-
proximate determination ofP(x,t), but it is extremely diffi-
cult to be accurate, especially for the wildly oscillating fun
tions of 1/N which do in fact make upGE(N,t). However, I
now have an explicit series forggg(N,t) in powers of
as(Q

2), obtained from the truncated expression forGE(N,t).
TheN-dependent functions at each power ofas(Q

2) become
larger at smallN as the series progresses, of course, and
reach small enoughx more and more terms are needed. Ho
ever, at a fixed value ofN there is no such growth, and th
same is therefore true for fixedx. Hence, one only needs t
work to a finite order. Limiting oneself tox.1025 and t
.4.5 i.e., Q2*1 GeV2, the suppression of the
Dn„21/(b̄0N)… is quite significant and seventh order
as(Q

2) is easily sufficient. This results in a power-seri
contribution to the splitting function

xPgg
LO
„j,as~Q2!…5ās~Q2!1ās

4~Q2!S 2.4
j3

3!
212.01b̄0

j2

2

19.206b̄0
2j29.60b̄0

3D1ās
6~Q2!S 2.08

j5

5!

226.95b̄0

j4

4!
1134.6b̄0

2 j3

3!
2320.7b̄0

3 j2

2

1359.8b̄0
4j2148.8b̄0

5D1ās
7~Q2!

3S 1.92

b̄0

j7

7!
219.23

j6

6!
178.94b̄0

j5

5!

2169.2b̄0
2 j4

4!
1199.8b̄0

3 j3

3!
2122.9b̄0

4 j2

2

130.72b̄0
5j D . ~2.36!

This contribution to the splitting function fort56 is shown
in Fig. 6~a!. Note that because of the truncation ofGE(N,t),
beyond sixth order the expression forPgg

LO
„j,as(Q

2)… is not
what one would really get from the true power series.
particular there are higher powers ofj than strictly allowed.
Nevertheless, it represents a very accurate approximatio
the full result whereas the correct series would simply
verge.

We also have to consider the power-suppressed contr
tion. Although this is only calculated numerically inN space
it is only a small correction of order 0.05% forggg

LO(N,t) at
t56, and can also be calculated for a wide variety of valu
of N andt without too much work. It can then be modeled b
an analytic function which may easily be converted tox

l

n
-
a-
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space. Hence, I choose to calculate it fort54.5 (Q2

;1 GeV2) and t56 (Q2;6 GeV2) and N values 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2, 3, 5,`. The lowert value is the
lower limit at which we will trust this LO perturbative resul
and for t above 6 the power-suppressed effect is very sm
The N values go low enough to correspond safely tox
.0.00001 and are sufficient that very accurate modeling
be done. The values are fit to a function of the form

a0 exp~2b0t !1exp~2t !F (
n51

7

anS as~ t !

as~ t54.5! D
bn 1

NnG . ~2.37!

Introducing further degrees of freedom beyond this does
seem to change the results. This expression can then be
ally converted tox space. Performing this procedure in th
case of the power-suppressed contributions to the LO gl
anomalous dimension I obtain the explicit result

FIG. 6. ~a! The splitting functionxPgg
LO(x) and its power-series

and power-suppressed contributions plotted as functions ofx for t
56. ~b! The splitting functionxPgg

LO(x) plotted as a function ofx for
t56 (Q2;6 GeV2). Also shown is theO„as(Q

2)… contribution
ās(Q

2), and the naive LO BFKL splitting function with coupling
as(Q

2).
07400
ll.

n

ot
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n

4.92 exp~21.62t !d~12x!1exp~2t !F1.068S as~ t !

as~4.5! D
1.98

15.257S as~ t !

as~4.5! D
3.06

j218.73S as~ t !

as~4.5! D
2.90j2

2!

121.56S as~ t !

as~4.5! D
2.90j3

3!
211.60S as~ t !

as~4.5! D
2.79j4

4!

13.00S as~ t !

as~4.5! D
2.55j5

5!
20.301S as~ t !

as~4.5! D
2.17j6

6! G .
~2.38!

This power-suppressed correction is shown along with
power-series part and the full LO splitting function in Fi
6~a!. Although the power-suppressed contribution inx space
turns out to be a larger fraction of the total than inN space,
it still only makes a very small correction to the evolutio
However, one notices that the logarithmic terms in Eq.~2.38!
are such that it falls more quickly than (L2/Q2), or alterna-
tively, grows more quickly than this asQ2 falls. This may be
due to the presence of a significant (L4/Q4) term in practice.

The full LO splitting function is shown in Fig. 6~b! along
with the purely orderas(Q

2) contribution and the naive
BFKL splitting function. One sees that it is hugely su
pressed compared with the naive LO BFKL splitting fun
tion, and is even lower than theO„as(Q

2)… contribution for
x between about 0.1 and 0.001. Finally I note that the
running coupling BFKL equation has also been calculated
@29#, but numerically, with coupling scale equal to (k
2q)2, and with the coupling frozen below a particular sca
andQ0 taken to be a finite value. The results are display
for high t ~where my power series is essentially exact! and
despite the above differences seem to be in very good ag
ment with the results in@21# and this paper. The freezing o
the coupling and the finiteQ0 introduce choice-dependen
nonperturbative effects which become important at
tremely low values ofx, which in general become lower a
Q0 and the scale of freezing decrease. This seems to sup
the results obtained by my method of formally factorizin
the nonperturbative effects intoGI(Q0

2,N) and extracting as
much information as possible in an analytic mod
independent manner.

III. HIGHER TWIST AT SMALL x

In this section I will show that as far as the informatio
from the BFKL equation is concerned calculable higher tw
contributions are small. I will also suggest that some ot
powerlike corrections at smallx may perhaps be less signifi
cant than often claimed. As a first point I note that it has be
claimed that there are likely to be large infrared renorma
contributions to structure functions at smallx @30#. As shown
in the previous section for the case of the gluon both infra
and ultraviolet renormalons do show up in the solution to
BFKL equation if one insists upon trying to express resu
entirely in terms as a power series inas(Q

2) and uses the
whole of Eq.~2.30! rather than truncating. Presumably the
are an extension of the small-x divergent contribution to the
renormalons in@30#. However, these renormalons are c
5-11
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cumvented if one considers the full solution to t
Q2-dependent part of the BFKL equation. Precisely the sa
argument works for the case of real structure functions
will be shown explicitly in Sec. V. This is not to say tha
there are not relatively large power-suppressed correction
the ~truncated! perturbative series. We have already see
non-negligible contribution toPgg

LO(x,Q2), and the power-
suppressed contributions turn out to be larger for phys
quantities. However, these contributions are calculable
unambiguous. Hence, solution of the BFKL equation, wh
provides results more general than a power series inas(Q

2),
avoids the renormalon ambiguity. This means that renor
lons obtained from unresummed@in ln(1/x)# calculations re-
quire not only a ln(1/x) resummation but also the conside
ation of results beyond the power-series expansion. T
implies they do not really tell us anything truly quantitativ
about power corrections in practice.

Now let us consider genuine higher twist effects. Some
these are contained within the BFKL equation, since ifQ0

2 is
allowed to be nonzero a series in powers of (Q0

2/Q2) is ob-
tained which tells us about the higher twist contributions d
to the intrinsic transverse momentum in the two-gluon o
erator. This is the only information, however, and we lea
nothing about the other three contributions to next-to-lead
twist ~discussed, for example in@31#!, in particular those due
to the four-gluon operator and hence possible saturation
fects. However, it is possible to obtain some useful and
teresting results.

Let us first consider the fixed coupling BFKL equatio
When solving Eq.~2.8! it is straightforward to also calculat
the higher twist contributions by picking up the nonleadi
poles ing. The easiest way to proceed is to obtainG(Q2,x)
by first taking the exact inverse Mellin transformation ba
g

h

s

07400
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to
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f
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to x space by picking up the simple pole atN5āsx0(g)
resulting in

xG~Q2,x!}
1

2p i E1/22 i`

1/21 i`

dg exp„g ln~Q2/Q0
2!…

3exp„jāsx0~g!…. ~3.1!

This can now accurately be evaluated in the asymptotic sm
x limit using the saddle-point technique, i.e., integrati
along the contour determined by the conditio
@dx0(g)/dg#50 which definesg0 . At leading twist, 0
>Reg>1, g051/2, and x0(g0)54 ln(2), leading to the
usual powerlike growth at smallx. However, looking for the
solutions to@dx0(g)/dg#50 for 21>Reg>0, i.e., exam-
ining the higher twist operator and its anomalous dimensi
one finds

g0
HT520.42560.474i , x0~g0

HT!522.6462.393i .
~3.2!

Hence, the features of the saddle point are completely dif
ent at next-to-leading twist. Not only are there complex co
jugate saddle points leading to an oscillatory behavior,
the real part ofx0(g0

HT) is negative rather than positive. In
serting Eq.~3.2! into Eq. ~3.1! one obtains

xGHT~Q2,x!}x2.64ās cos~2.393āsj!, ~3.3!

i.e., a valencelike gluon rather than one growing at smalx.
The corresponding higher twist splitting function has t
same general behavior as the gluon asx→0.

One can also find the splitting function by solving
5(ās/N)x0(g) as a power series in (ās /N) for the next-to-
leading twist solution. This results in the explicit series
g0
HT~ ās /N!115S ās

N D22S ās

N D 2

12S ās

N D 3

14.4S ās

N D 4

229.2S ās

N D 5

180.2S ās

N D 6

290.6S ās

N D 7

2298S ās

N D 8

12084S ās

N D 9

26446S ās

N D 10

19157S ās

N D 11

120919S ās

N D 12

2187924S ās

N D 13

1666008S ās

N D 14

21.23106S ās

N D 15

11.33106S ās

N D 16

11.93107S ās

N D 17

27.73107S ās

N D 18

21.73108S ās

N D 19

22.13107S ās

N D 20

22.03109S ās

N D 21

1¯ , ~3.4!
xt-
re

en
his
ies
c-

tor
which can be easily converted tox space. The correspondin
splitting function is plotted forās50.2 in Fig. 7, and it
clearly fits the expectation thatxPgg

HT(x,ās);x0.5cos(0.5j)
as x→0.5 Hence, although the first term in the series is t
same as at leading twist, and implies a growth at smallx, the

5Unfortunately, because of large cancellations, the first 21 term
the series forxPgg

HT(x,ās) are needed forx>0.00001.
e

summation of the series is extremely different, and the ne
to-leading twist contributions from the BFKL equation a
not only suppressed by (Q0

2/Q2), but also become negligible
at smallx. This can also be shown to be true for the ev
higher twist contributions using the same techniques. T
highlights the danger of using low order terms in the ser
for the splitting functions to estimate higher twist corre
tions, as in@31#. The summation of leading ln(1/x) terms
may be very important; in this case of the two-gluon opera

in
5-12
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leading to a complete change of conclusion on the impor
higher twist. Unfortunately, there is no knowledge at all
the corresponding series for the four-gluon operators.

Given that the results from the fixed coupling BFK

FIG. 7. The next-to-leading twist splitting function forās

50.2.
is
g
le

e
g
a

07400
f
f

equation were altered so dramatically at leading twist by
inclusion of the running coupling, we should see what ha
pens at higher twist. As already mentioned, the higher tw
contribution to the running coupling BFKL equation is give
by

GHT~Q2,N!5
1

2p i E2e2 i`

2e1 i` 1

g
exp„g ln~Q2/L2!

2X0~g!/~ b̄0N!…dgE
g

0

exp„2g̃ ln~Q0
2/L2!

1X0~ g̃ !/~ b̄0N!…dg̃gB~Q0
2,N!, ~3.5!

where the contour in the first integral has been moved to
left since the leading singularity atg50 is eliminated by the
second integral.

Let us consider first the case wheret5 ln(Q2/L2)@t0
5ln(Q0

2/L2), which would be the case for deep inelastic sc
tering. Let us also, without justification for the moment, l
the lower limit on the second integral be a constant,k;
21, so that we have factorization imposed. In this case
can evaluate the two integrals separately. Both the integ
can be calculated accurately using the saddle-point met
Thus, using the type of steps outlined in Eqs.~4.1!–~4.5! of
@20# one obtains

expS EQ2

g0
HT
„ās~q2!/N…d ln q2D

g0
HT
„ās~Q2!/N…@2x08~g0

HT
„ās~Q2!/N…!#1/2

, ~3.6!

for the first integral and

expS 2EQ0
2

g0
HT
„ās~q2!/N…d ln q2D

@2x08~g0
HT
„ās~Q0

2!/N…!#1/2
, ~3.7!

for the second. It can be verified numerically that these
pressions are indeed good approximations to the precise
sults. Combining these we get the full next-to-leading tw
gluon Green’s function.
expS E
Q0

2

Q2

g0
HT
„ās~q2!/N…d ln q2D

g0
HT
„ās~Q2!/N…@2x08~g0

HT
„ās~Q2!/N…!#1/2@2x08~g0

HT
„ās~Q0

2!/N…!#1/2
. ~3.8!
to
his
t
-

Hence, the anomalous dimension for the higher tw
operator is simply that obtained for the fixed couplin
but with the coupling constant allowed to run with the sca
while the normalization is~roughly! the root of the fixed
coupling normalization evaluated foras(Q

2) multiplied
by the same foras(Q0

2). Hence, the result is much the sam
as for the fixed coupling case, with both the splittin
function and the normalization decreasing and oscillating
x→0.
t
,
,

s

It order to justify this conclusion it is only necessary
explain why we could assume the factorization. To do t
we note that the saddle point for the first integrand is at
5(1/b̄0N)x0„g0

HT(t)… and similarly for the second inte
grand witht→t0 . However, sincet@t0 , g0

HT(t0) is signifi-
cantly to the right of g0

HT(t). The value of exp„2g̃t0

1X0(g̃)/(b̄0N)… along the real axis along withg̃
5g0

HT(t0), g0
HT(t) is shown in Fig. 8. It is simple to rewrite

Eq. ~3.5! in the equivalent form
5-13
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GHT~Q2,N!5
1

2p i Eg0
HT

~ t !2 i`

g0
HT

~ t !1 i` 1

g
exp„g ln~Q2/L2!

2X0~g!/~ b̄0N!…dgF E
g0

HT~ t !

0

exp„2g̃

3 ln~Q0
2/L2!1X0~ g̃ !/~ b̄0N!…dg̃

1E
g

g0
HT

~ t !
exp„2g̃ ln~Q0

2/L2!

1X0~ g̃ !/~ b̄0N!…Gdg̃gB~Q0
2,N!. ~3.9!

Using Fig. 8, and remembering that the saddle-point inte
for the first integral is parallel to the imaginary axis, and th
the integrand very quickly decreases away fromg0

HT(t), we
conclude that the value of the second integral in the sec
line of Eq. ~3.9! is negligible compared with the first. Als
noting from Fig. 8 that there is little change if we alter th
lower limit of the first integral in the second line tok
;21, we obtain the factorization assumed above. Hence

FIG. 8. The value of exp„2g̃t01X0(g̃)/(b̄0N)…, along the real
axis for N50.4 and t052, along with g̃5g0

HT(t0), g0
HT(t) for t

@t0 .
07400
al
t

d

in

this t@t0 limit we find that we obtain factorization of the
next-to-leading twist solution and that as for the fixed co
pling case this is negligible asx→0.

Even if t0 approachest, the results can be shown to b
similar by numerical calculation. For example, in the e
treme limit of t5t0 the first integral in the second line of Eq
~3.9! gives only half the saddle-point contribution, but on
can check that the previously negligible second integral n
gives a roughly equal contribution for allN. However, fac-
torization is now clearly broken. Detailed numerical inves
gation shows that fort0 not much smaller thant we can write
the higher twist contribution in the form
(Q0

2/Q2) f (Q2,Q0
2,N) where the total is a function ofN

which grows slowly withN, approaching a constant asN
→0. This is consistent with the formxa cos„b ln(1/x)… which
we get for the factorized next-to-leading twist solution„the
Mellin transformation of which is (N1a)/@(N1a)21b2#…,
and certainly confirms that the gluon Green’s function is fa
ing asx→0.

Therefore, the higher twist operators and their anomal
dimensions derived from either the fixed coupling or runni
coupling BFKL equation are negligible at smallx, and for
these higher twist contributions the use of the running c
pling equation does not qualitatively change anything. Ho
ever, we are currently not able to say anything about
contributions from the four-gluon operators, and hence ab
shadowing corrections, etc., beyond relatively simple resu
e.g., anomalous dimensions in the small-x limit at LO in as .
There have been various suggestions that such shado
corrections are large, but I feel that these estimates may
be severely exaggerated by the use of the approximatio
this LO in as anomalous dimension, and also by the fact th
the even more restrictive double-leading logarithmic a
proximation is often used. This often seriously overestima
the size of the anomalous dimensions, coefficient functio
and also the gluon distribution. I hope I have demonstra
that for the evolution of the higher twist two-gluon operat
the LO-in-as double-leading-log approximation is indeed t
tally misleading. It is also interesting to note that a mo
complete calculation of the higher twist coefficient functio
for the evolution ofF2(x,Q2) due to the four-gluon opera
tors@32# implies that the double leading log approximation
a vast overestimate. Even using very small values of
screening length~R52 GeV22 rather than the more usua
R;10 GeV22! and the very large LO GRV gluon distribu
tion @33#, it seems that the shadowing correction is alm
negligible in the perturbative HERA range. Saturation effe
will no doubt eventually set in for low enoughx andQ2, but
presently I feel the technology is not such as to predict wh
with any real accuracy. Certainly, resummations in ln(1x)
tend to decrease the size of the gluon extracted from d
and this combined with the above considerations sugges
much smaller saturation effect, and total higher twist effe
than often supposed. Certainly the model-independent ‘‘r
of thumb’’ for strong saturation contributions tha
dF2(x,Q2)/d ln Q2'Q2s(x) and hence d ln „F2(x,Q2)…/
d ln Q2'1 is not even closely approached for any HERA da
with Q2>1 GeV2.
5-14
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However, I note that in my examination of higher twist
have not examined the mixing between leading twist a
higher twist operators or included any nonperturbative c
tributions due to, for example, the behavior of the coupl
constant at low scales. These two effects are related to
other. Such questions have been considered for toy mode
@15# and @29#, and numerically for the full LO running cou
pling BFKL equation@29#. These papers have considered t
full anomalous dimension defined byd ln„G(Q2,N)…/dt, and
the way in which this is affected by the higher twist corre
tions, rather than justd ln„GHT(Q2,N)…/dt considered above
They demonstrate that there are potentially serious modifi
tions to the leading twist anomalous dimension due to
higher twist corrections introducing sensitivity to the form
the normalization factorGI(Q0

2,N) which depends on the
regularization of the coupling at low scales and on theQ0

2

dependence. Depending on the assumptions about the
perturbative physics, these contributions can be importan
extremely smallx, generally changing the precise form of th
powerlike behavior, and for more severe imposition of no
perturbative effects, i.e., letting them set in at higher sca
introducing a completely different asymptotic behavior. U
fortunately, within the framework of my paper the form
divergence ofGI(Q0

2,N) makes a similar study impossibl
and, as mentioned at the end of the previous section, I sim
have to appeal to these alternative results, in particular
smallness ofx at which the power-suppressed modificatio
set in, in order to support the reliability of my more form
calculations. However, I also note that the smallness of
higher twist operators and their anomalous dimensions
culated in this section suggest that while these contributi
from nonperturbative sources only set in at lowQ2 or very
smallx indeed it seems perfectly possible that they will gi
a comparable, or even larger contribution at lowx and low
Q2 than the genuine higher twist contributions.

IV. NLO CORRECTIONS

In Sec. II I demonstrated that usingas(k
2) in the BFKL

equation, as in Eq.~2.11!, has a profound effect on the form
of the solution both for the normalization and for the anom
lous dimension. However, given the first conclusions rega
ing NLO corrections in the essentially fixed coupling case
is particularly necessary to check that the results prese
are not severely modified by the inclusion of the NLO ke
nel, i.e., that the perturbative calculations are stable.
NLO kernel was presented in@11# and the way in which to
solve at NLO with a running coupling was presented in@14#.
Writing the NLO equation as

f ~k2,Q0
2!5 f I~k2,Q0

2!1S ās~k2!

N D E
0

` dq2

q2 @K0~q2,k2!

2as~k2!K1~q2,k2!# f ~q2!, ~4.1!
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and using just the one-loop expression for the coupli6

leads to a second-order differential equation ing space

d2 f̃ ~g,N!

dg2 5
d2 f̃ I~g,Q0

2!

dg2 2
1

b̄0N

d„x0~g! f̃ ~g,N!…

dg

2
p

3b̄0
2N

x1~g! f̃ ~g,N!. ~4.2!

This can be solved in a very similar way to LO, i.e., it fa
torizes into the same form as Eq.~2.17! with the
Q2-dependent part given by

GE
1~N,t !5

1

2p i E1/22 i`

1/21 i` 1

g
exp„gt2X1~g,N!/~ b̄0N!…dg.

~4.3!

However,X1(g,N) is rather more complicated than the pr
vious X0(g). It can still be expressed in the form

X1~g,N!5E
1/2

g

xNLO~ ĝ,N!dĝ, ~4.4!

but now xNLO(g,N) can be written as a power series inN
beginning at zeroth order withx0(g). As seen in@14#,
though here ignoring resummations inN, the explicit form is

xNLO~g,N!5x0~g!2N
x1~g!

x0~g!
1

N2

x0
F2S x1~g!

x0~g! D
2

2b0S x1~g!

x0~g! D 8G1¯ , ~4.5!

where the currently unknown NNLO contribution to the ke
nel, x2(g), would also appear at orderN2 in principle.

As already discussed in Sec. II there is a contribution
x1(g) from the b0-dependent terms induced by an ‘‘inco
rect’’ choice of the scale for the coupling—k2 rather than
(k2q)2. Taking this contribution to the term in Eq.~4.5!
which is linear inN, and combining with the LO expressio
we find the previously discussed result of only a min
change in the anomalous dimension and splitting funct
extracted. Hence, the choice ofas(k

2) is reliable, and is
easily corrected for. In this section I consider the rest of
NLO correction to the kernel, which is much larger, a
henceforth I denotex1(g) as the NLO kernel with the

6Using the full NLO expression for the running coupling wou
lead to a huge degree of complication, and this has never b
attempted. Since, so long asL is chosen appropriately, the one- an
two-loop couplings are very similar, I do not imagine any ma
errors in the results below.
5-15
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b0-dependent part12 b̄0@x0
2(g)1x08(g)# already extracted

and include the multiplicative factorf b0(g) in the integrand
in Eq. ~4.3!. This still leaves a decision as to precisely wh
I take ‘‘the NLO calculation’’ to mean. There are variou
possibilities. I could work at the level of the NLO correctio
to the kernel, and hence the BFKL equation, and solve
~4.1!, producing the infinite series in Eq.~4.5!. Alternatively,
I could truncatexNLO(g,N) in Eq. ~4.5! after the second
term. However, doing this still leaves the question of whet
to use the whole of exp„1/b̄0*1/2

g @x1(ĝ)/x0(ĝ)#dĝ… or just

expand it out to first order inb̄0
21.

There are particular problems associated with all choic
If one solves using the full NLO corrected kernel then the
is an infinite series in powers ofN to consider in Eq.~4.5!,
which turns out to be important in practice~see below!. Also,
the gluon Green’s function and anomalous dimensions
tained from this solution contain many subleading terms
yond just LO and NLO in ln(1/x) ~and running coupling type
corrections to these!, as is essentially obvious from lookin
at Eq. ~4.1!; iteration of f leads to the last term producin
NNLO then NNNLO and so on. Hence, this choice is d
carded. If one instead truncates Eq.~4.5! at orderN, one still
generates a subset of higher order terms beyond those
wishes, though it is possible to proceed in this case at le
One can see the explicit form of the solution by substitut
the truncated Eq.~4.5! into Eq. ~4.3! and proceeding as in
Sec. II. The contribution toX1(g,N) coming from the sec-
ond term,2N@x1(g)/x0(g)#, leads to an expression of th
same form as in Eq.~2.21!, i.e.,

X1~g,N!5X0~g!2clN ln~g!2Nc02N(
n51

`

cngn, ~4.6!

where thecn may be calculated easily by performing
power-series expansion of the known functions ofg, i.e.,

(
n51

`

cngn50.424g10.805g210.521g312.290g411.287g5

12.980g61¯ . ~4.7!

Hence, the integrand forGE
1(N,Q2) becomes

g2~12clN!/~ b̄0N!21f b0~g!expXgt2
1

~ b̄0N!
S gE2c0N

1 (
n51

`

~ang2n112Ncngn!D C. ~4.8!

Performing precisely the same type of manipulations as
Sec. II results in the expression
07400
t

q.

r

s.
e

b-
-

-
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g
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GE
1~N,t !52sinS p~12clN!

~ b̄0N!
D G„2~12clN!/~ b̄0N!…

3expS 2
gE2c0N

~ b̄0N!
D t ~12clN!/~ b̄0N!

3H 11 (
n51

(
m51

@~11Ãn„1/~ b̄0N!…!

3~11Cm~1/b̄0!!21#

3t2n2mDn1mS 2~12clN!

~ b̄0N!
D J , ~4.9!

where

11 (
m51

`

Cm~1/b̄0!gm5expS 1

b̄0

(
n51

`

cngnD , ~4.10!

and theÃ@1/(b̄0N)# include the contributions fromf b0(g),
i.e., are of the form in Eq.~2.35!. The factoring of the terms
independent oft then results in the expression

GE
1~N,t !5t ~12clN!/~ b̄0N!H 11 (

n51

`

(
m51

`

@~11Ãn„11/~ b̄0N!…!

3„11Cm~1/b̄0!…21#t2n2m

3Dn1mS 21~12clN!

~ b̄0N!
D J . ~4.11!

There are two sources of corrections beyond NLO in ln(1/x),
other than running coupling corrections, in Eq.~4.11!. First,
Cn(1/b̄0) can be expanded as a power series in 1/(b̄0). Only
the first term in this series is genuinely a NLO correction
the LO result. Terms of higher order lead to contributions
the anomalous dimensions which are beyond NLO in ln(1x)
without compensating factors ofb0 which would enable
them to be interpreted as running coupling corrections. S
ond, when one expands terms of the form@(12clN)/
(b̄0N)] n which appear in theDn in Eq. ~4.11!, one obtains a
power series of the form,

S ~12clN!

~ b̄0N!
D n

5S 1

~ b̄0N!
D nF12nclN

1
n~n21!

2
~clN!21¯G . ~4.12!

The second term in this series gives the NLO in ln(1/x)
correction while the remainder give higher corrections wi
out compensating powers ofb0 . Therefore, both these
5-16
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power-series expansions, i.e., of theCn in powers of 1/(b̄0),
and theDn in powers ofN should be stopped at first order
b̄0

21 or N, and the cross terms coming from first order in bo
expansions, which are of overall second order, should
eliminated to obtain truly NLO results.7

Ultimately I define NLO by appealing to the perturbativ
form of the gluon Green’s function and anomalous dime
sion produced and hence by choosing the NLO definit
such that the Green’s function does receive only correcti
which are no more than one power ofas(Q

2) ~without com-
pensating factors ofb0! down on the leading order one. Th
means using an expression for the gluon Green’s functio
the form

GE
1~N,t !5t ~12clN!/~ b̄0N!S 11 (

n51

`

(
m51

`

@~11Ãn„1/~ b̄0N!…!

3~11cn /b̄0!21#t2n2mDn1m„21/~ b̄0N!…

2
cl

b̄0

(
n51

`

Ãn„1/~ b̄0N!…t2n
dDn„21/~ b̄0N!…

d„21/~ b̄0N!…
D ,

~4.13!

where thecn /b̄0 are obtained by expanding the exponent
expression exp„1/b̄0(*1/2

g @x1(ĝ)/x0(ĝ)1cl1c0#)dĝ…, out

to just first order in 1/b̄0 . Implicitly there is also a factor of

2sinS p~12clN!

~b0N! DGS 21~12clN!

~b0N! Dexp„2gE /~ b̄0N!

1c0 /b̄0…

which contributes to the normalization in Eq.~4.13!.
Now that we have this NLO expression for the glu

Green’s function it is necessary to make one more decis
regarding the definition of the anomalous dimension. Thi
obtained from gLO1NLO(N,t)5@d ln „GE

1(N,t)…/dt#. How-
ever, strictly speaking, in order to obtain only NLO cont
butions to the anomalous dimension@GE

1(N,t)#21 in this ex-
pression should be expanded only to NLO. This leads t
formal problem already pointed out in Sec. VI of@20#. Using
the whole of@GE

1(N,t)#21 in the expression for the anoma

7Ignoring this requirement and using the whole of Eq.~4.11!, it
turns out that the resultant expression is very badly behaved, b
ing up at largeN. This is almost entirely due to the higher-ord

terms in the expansion of theDn . Using the fullCn(1/b̄0) does not
change things much in practice. This largeN instability translates
into huge corrections in the splitting function at largex. Presumably
this instability at largeN and x is cured if one resums the whol
series in Eq.~4.5!. Including just theO(N2) term does seem to
improve matters.
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lous dimension we notice that the position of the first zero
changed from that at LO, leading to a shift, in fact a d
crease, in the leading pole for the anomalous dimension,
hence in the power of leading behavior of the splitting fun
tion asx→0. So thex→0 behavior of the splitting function
becomesPgg(x)5exp(l0 j2Dlj). However, sinceDl is due
to NLO corrections, the strict NLO expansion is ju
Pgg(x)5exp(l0 j)2Dlj exp(l0 j). This definition does not
explicitly retain the shift in the power-like behavior, and al
leads to the NLO correction ultimately becoming larger th
the LO result. Hence, I choose to retain the whole
@GE

1(N,t)#21 in the definition of the NLO anomalous dimen
sion, thus obtaining the fullPgg(x)5exp(l0 j2Dlj) as x
→0, even though in practice the choice makes little diff
ence at the values ofx relevant to HERA.

So now I can use Eq.~4.13! to determine analytic expres
sions for the NLO gluon Green’s function and anomalo
dimension. However, the formal definition again results in
divergent power series, and as at LO I really truncate
series in Eq.~4.13! at n055. This leaves the problem o
calculating the power-suppressed corrections. In order to
this it is necessary to have an exact definition forGE

1(N,t) in
the form of an inverse Mellin transformation, as in Eq.~4.3!.
This requires finding the integral expression which wou
lead to Eq.~4.13! if a power-series expansion of the inte
grand is performed. Unfortunately this is not that simple. T
problem comes with the manner of treating the2clN ln(g)

term in Eq.~4.6!. In order to have the leadingt (12clN)/(b̄0N)

factor in Eq.~4.13!, and hence obtain the correct expressi
for the O„as(Q

2)… part of the anomalous dimension, it
necessary to keep2clN ln(g) in the exponential in the

integrand, giving a factor g2cl /b̄0. Expanding out
exp„2cl ln(g)/b̄0 … to first order would lead to ln(t) contribu-
tions to the anomalous dimension. However, keeping the

g2cl /b̄0 factor results in the argument of theDn being2(1
2clN)/(b̄0N) as in Eq.~4.11!. Hence, there is no simple
way to generate only NLO corrections from this term.
order to obtain an expression equivalent to Eq.~4.13! I

choose to effectively put the known factor oft @2clN/(b̄0N)# in
by hand and to generate the derivatives of theDn within the
integral with respect tog.

In order to see how to do this I consider the LO expre
sions~2.17! and~2.26!. It is quite simple to generate the firs
part of Eq. ~4.13!. All one needs to do is insert the serie
expansion 111/(b̄0)(n51

` cngn expanded to first order in

1/b̄0 into the integral representation, i.e.,

GE
1,I~N,t !5E

C
g21/~ b̄0N!21f b0~g!expS gt2

1

~ b̄0N!

3 (
n51

`

ang2n11D S 11 (
m50

~1/b̄0!cmgmD dg,

~4.14!

where the integral is over the full, unspecified contour, a

w-
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generates thet-independent factor sin„2p/(b̄0N)…G„21/(b0N)…, as well as thet-dependent parts explicitly in Eq.~4.13!. On

top of this one must also insert thet2clN/(b̄0N) factor by hand. If one is also concerned with theN-dependent normalization i
is probably most consistent to also multiply by the factor

sin„p~12clN!/~ b̄0N!…G~2~12clN!/~ b̄0N!…exp„2~gE2c0N!/~ b̄0N!…

sin„p/~ b̄0N!…G„21/~b0N!…
, ~4.15!

in order to obtain the overall factor of

2sin„p~12clN!/~ b̄0N!…G„2~12clN!/~ b̄0N!…expS 2gE1c0N

b̄0N
D . ~4.16!

Generating the second part of Eq.~4.13! is rather more complicated. One has to somehow modify the integral represen
so that the derivatives of theDn„21/(b̄0N)… are obtained. To see how to do this we let 1/(b̄0N)5z, in which case the
equivalence of Eqs.~2.23! and ~2.30! ~ignoring the divergence of the series! is

E
C
g2z21 expS gt2z(

n51

`

ang2n11D dg52sin~pz!G~2z!tzS 11 (
n53

`

An~z!t2nD~2z1n!D , ~4.17!

where I have removed the trivial factor of exp„2gE /(b̄0N)… from each side. Differentiating both sides with respect toz we
obtain

2E
C

ln~g!g2z21 expS gt2z(
n51

`

ang2n11D dg2E
C
g2z21 (

m51

`

amg2m11 expS gt2z(
n51

`

ang2n11D dg

5C~2z!sin~pz!G~2z!tzS 11 (
n53

`

An~z!t2nD~2z1n!D 2p cot~pz!sin~pz!G~2z!tzS 11 (
n53

`

An~z!t2nD~2z1n!D
2 ln~ t !sin~pz!G~2z!tzS 11 (

n53

`

An~z!t2nD~2z1n!D 2sin~pz!G~2z!tzS 11 (
n53

`

An~z!t2n
dD~2z1n!

dz D
2sin~pz!G~2z!tzS (

n53

`
dAn~z!

dz
t2nD~2z1n!D . ~4.18!
g
t

e
n

the
x-
The last terms on each side are equivalent, and rearran
the rest we obtain an expression for a series containing
derivatives of theDn(z):

sin~pz!G~2z!tzS (
n53

`

An~z!t2n
dD~2z1n!

dz D
5E

C
ln~g!g2z21 expS gt2z(

n51

`

ang2n11D dg1@C~2z!

2p cot~pz!2 ln t#sin~pz!G~2z!tz

3S 11 (
n53

`

An~z!t2nD~2z1n!D , ~4.19!

which using Eq.~4.17! becomes
07400
ing
he sin~pz!G~2z!tzS (

n53

`

An~z!t2n
dD~2z1n!

dz D
5E

C
@ ln~g!2@C~2z!2p cot~pz!2 ln t##g2z21

3expS gt2z(
n51

`

ang2n11D dg. ~4.20!

Therefore, the right-hand-side of Eq.~4.20!, multiplied by

2cl /(b̄0)t @2clN/(b̄0N)#, gives the second term in Eq.~4.13!
with some t-independent normalization which should b
multiplied by Eq.~4.16! to be consistent with the first term i
the preceding paragraph. Thus, we have a prescription for
full calculation at NLO which is equivalent to the series e
pansion in Eq.~4.13!, i.e.,
5-18
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GE
1~N,t !}t2cl /b̄0E

C
Fg21/~ b̄0N!21f b0~g!expS gt2

1

~ b̄0N!

3 (
n51

`

ang2n11D S 11 (
m50

~1/b̄0!cmgmD
2

cl

b̄0
F ln~gt !2CS 2

1

b̄0N
D

1p cotS p

b̄0N
D Gg2@1/~ b̄0N!#21f b0~g!

3expS gt2
1

b̄0N
(
n51

`

ang2n11D Gdg. ~4.21!

and once again one should multiply by Eq.~4.16! to get the
most suitable normalization. We can now insert the ab
expression into gLO1NLO(N,t)5@d ln „GE

1(N,t)…/dt# and
evaluate numerically in order to get the NLO anomalo
dimension without recourse to the truncated series exp
sion.

We are now in a position to solve for the anomalous
mension and splitting function at NLO. Unlike the case
fixed coupling, or the simplistic results of the saddle-po
evaluation, the NLO corrections to the LO anomalous
mension are under control. This is simply illustrated by t
positions of the leading pole in the anomalous dimensi
which are shown in Fig. 4, and one can see that they cha
from about 0.25 forggg(N,t) at LO to 0.17 at NLO, and tha
the Q2 dependence reduces a little. However, as alre
noted at LO, the value of the intercepts has little to do w
physics at HERA, the powerlike behavior only really settli
down for lowerx, and this is even more true at NLO. Bein
more particular one notices that the anomalous dimen
ggg(N,t) over a wide range ofN shows only a relatively
small change going from LO to NLO. This is shown in Fi
5~b! where the part of the NLO anomalous dimension at fi
order inas(Q

2), i.e., 20.935as(Q
2), is not included, since

this should properly be included at LO in a combined lead
order in as(Q

2) and as(Q
2)ln(1/x) expansion scheme. Al

ternative definitions of NLO lead to very similar results e
cept at very high values ofN, where less sophisticated defi
nitions lead to blowing up at largeN, as already mentioned
For this case of the gluon structure function the NLO corr
tion is negative except for very largeN. I should also note
that the powerlike correction to the purely analytic result i
larger proportion of the NLO correction than of the LO co
tribution, but would still be almost impossible to spot
shown in Fig. 5~b!. The correction to the analytic value fo
the intercept is about 7% att56, however.

One can also make the transformation tox space and cal-
culate the NLO-corrected splitting function. Unfortunate
due to the increase in size of thecn coefficients compared to
the an ~particularly the absence of zeros! and also to the
factors ofn invoked by differentiating theDn in Eq. ~4.11!,
07400
e

s
n-

-
f
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the power-series inas(Q
2) is much less convergent than

LO. In order to obtain an expression which is reliable dow
to x50.00001 atQ251 GeV2 it is necessary to go to 20th
order inas(Q

2). Hence we can write the NLO correction t
the splitting function as

xPgg
NLO

„j,as~Q2!…5ās~Q2! (
n51

19

(
m50

mmax

ās
n~Q2!

3S Knm

jmb̄0
n2m21

m!

1Kndb̄0
nd~12x! D , ~4.22!

where because we have truncated the series for the g
structure functionmmax can be greater than the naive expe
tation of mmax5n21. The coefficients for the series ar
shown in Table I. If one is only concerned withx.0.0001 or
Q2.4 GeV2 then the series can be truncated at about 1
order.

As at LO we also have to model theN dependence of the
power-suppressed correction by an analytic function. Fo
nately, exactly the same type of function is sufficient and
obtain the power-suppressed NLO correction to the splitt
function of the form

22.86 exp~21.02t !d~12x!1exp~2t !F13.59S as~ t !

as~4.5! D
0.88

229.61S as~ t !

as~4.5! D
1.21

j139.76S as~ t !

as~4.5! D
1.315j2

2!

233.765S as~ t !

as~4.5! D
1.48j3

3!
116.89S as~ t !

as~4.5! D
1.77j4

4!

24.479S as~ t !

as~4.5! D
2.16j5

5!
10.4839S as~ t !

as~4.5! D
2.63j6

6! G .
~4.23!

The full NLO correctionxPgg
NLO(x) and its power series

and power-suppressed contributions are shown in Fig. 9~a!,
where the relatively unimportant terms}d(12x) are absent.
As at LO the power-suppressed correction is proportiona
much larger inx space than in moment space and certai
needs to be considered att56 and below. Also as at LO it
tends to oppose the form of the power-series express
hence reducing the total NLO correction. The powers ofas
in Eq. ~4.23! are slightly smaller than for LO, and hence th
power-suppressed correction does not fall quite so quic
with Q2.

The total NLO splitting function, i.e., LO plus the NLO
correction, is shown fort56 in Fig. 9~b!, where the contri-
butions }d(12x) both from theO„as(Q

2)… part and the
running coupling corrections to this are absent. The latte
5-19
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TABLE I. The coefficientsKnm in xPgg
NLO

„j,as(Q
2)…5ās(Q

2)(n51
19 (m51

mmax ās
n(Q2)(Knmjmb̄0

n2m/m! 1Kndb̄0
nd(12x)). The series for the

part proportional to d(12x) is more convergent inas(Q
2) and for all Q2*1 GeV2 is given accurately byās(Q

2)d(1

2x)$9.0@b̄0ās(Q
2)#31139.5@b̄0ās(Q

2)#5138.88@b̄0ās(Q
2)#61964.2@b̄0ās(Q

2)#81167.0@b̄0ās(Q
2)#915605@b̄0ās(Q

2)#10%.

n m55
m511
m517
m523

m54
m510
m516
m522

m53
m59
m515
m521

m52
m58
m514
m520

m51
m57
m513
m519

m50
m56
m512
m518

1 20.4236
2 21.354 1.611
3 27.000 30.22 234.63
4 25.686 46.92 2103.2 63.85
5 216.14 193.5 2797.2 1373 2918.0
6 186.0 2971.0 2518 23323 2045 2458.9

214.35
7 21386 5051 29865 10113 24281 709.2

210.60 192.0
8 21431 259800 99225 295325 49058 211483

224.48 511.5 24497
9 70532 246099 225896 59631 229684 2798

217.21 349.4 23100 15284 244034
10 2126387 2261087 735693 2761882 373984 277690

212.01 326.1 23758 23801 288010 179647
11 8688676 29665206 6981022 23087487 771318 2102010

1117.6 215044 119789 2620744 2179220 25256680
237.57

12 21.6213107 1.8643107 21.2883107 5044618 2962638 64963
46536 2211318 563130 2547416 21766356 8225690

218.36 506.4 26353
13 1.1393108 21.2363108 8.5763107 23.6773107 9106782 21186015

2400076 1467162 22855626 2645255 2.1363107 26.6233107

212.58 453.6 27298 68149
14 4.4253108 22.0893108 6.2253107 21.1293107 2061380 2386008

1.4253107 25.5413107 11.5893108 23.3453108 5.1353108 25.6253108

246.85 180.1 232842 359398 22678626
15 27.7233108 1.3403108 1.3913108 21.0753108 3.1703107 24331143

21.1463107 1.1083108 24.0283108 9.0693108 21.3613109 1.3393109

639.2 2103283 101509 2640342 2523533 24527424
218.33

16 1.40331010 28.0663109 3.1723109 28.1883108 1.3243108 21.2273107

2.9873109 21.4903109 4.5983109 29.8653109 1.52931010 21.72431010

211408 137101 21076349 5431540 21.4813107 29014694
212.37 552.7

17 21.10831010 7.8093109 23.0963109 6.8073108 27.1843107 1672556
9.3063109 21.67631010 2.17231010 21.82431010 6.0573109 6.5713109

803905 27783462 5.5443107 22.9823108 1.2273109 23.8693109

257.64 2645 258085
18 7.12931010 24.89031010 2.10731010 25.7333109 9.5313108 28.8843107

23.69031010 6.57431010 28.02431011 5.60431010 3.1953109 25.77331010

7633219 22.0063107 24.4673107 7.5553108 24.1853109 1.48031010

217.59 741.8 214788 180754 21460081
19 4.46731011 21.57331011 3.98631010 27.3403109 9.7373108 28.3983107

4.96231011 29.47731011 1.40231012 21.60231012 1.39931012 29.19831011

24.7783107 26.2483107 1.9483109 21.37231010 6.15331010 22.00531011

211.75 620.5 215217 225792 22200274 1.3983107
074005-20
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these is a very small contribution. The NLO corrected sp
ting function is clearly not qualitatively different from that a
LO, though it is quite a lot smaller at smallx. Hence it seems
as though by including the infinite series of running coupli
corrections the perturbative expansion of the BFKL splitti
function has been stabilized. However, the real importanc
the NLO corrections as far as physics is concerned is
effect they have on the evolution of the gluon structure fu
tion. This is demonstrated in Fig. 10 where the evolution o
suitable model for the structure functionG(x,Q2), i.e., (1
2x)6x20.2, is shown both for the LO running coupling spli
ting function, and for the NLO-corrected one@all d(12x)
contributions other than at first order inas(Q

2) are in-
cluded#. Also shown is the evolution due just to the doub
leading-log term P(x)5ās(Q

2)/x. As one sees, at thi
~fairly low! value oft, i.e.,Q2;6 GeV2, the evolution driven
by the LO splitting function is very similar to that from th
double-leading-log contribution, and is even slightly smal
for x from 0.007 to 0.00001, corresponding to the dip in t
splitting function seen in Fig. 6. Below this the growth of th

FIG. 9. ~a! The splitting functionxPgg
NLO(x) and its power-series

and power-suppressed contributions plotted as functions ofx for t
56. ~b! The splitting functionsxPgg

LO1NLO(x) plotted as a function
of x for t56 (Q2;6 GeV2). Also shown is theO„as(Q

2)… contri-
bution ās(Q

2), and the LO contributionxPgg
LO(x).
07400
-

of
e
-
a

-

r

splitting function increases the evolution above the doub
leading-log result. One also sees that the effect of the N
corrections is certainly significant, and increases relativ
with falling x, but it is clearly a correction rather than th
complete change in qualitative behavior induced by the N
corrections without resummation of running coupling effec

A further way often used to investigate the perturbat
stability of a fixed-order perturbative calculation is to inve
tigate the renormalization-scale dependence. This is o
used fallaciously, e.g., if one calculatesPgg(as ,x) to NLO
in the standard perturbative expansion and then investig
variation of renormalization scales one will never notice t
influence of the terms at higher orders inas which are also
of higher order in ln(1/x). This is symptomatic of the fac
that the expansion purely in powers ofas is not really a
correct expansion scheme for splitting functions~for a full
discussion see@8#!. However, once we have performed
resummation of large logarithms, as here, renormalizati
scale variation should be more reliable. The renormalizat
scheme dependence may be investigated by letting

FIG. 10. The values ofdG(x,Q2)/d ln Q2, for G(x,Q2)
5x20.2(12x)6, due to the LO splitting functionPgg

LO(x) and the
LO1NLO splitting functionPgg

LO1NLO(x), plotted as functions ofx
for t56 (Q2;6 GeV2). Also shown is the evolution due to th
O„as(Q

2)… contributionP(x)5ās(Q
2)/x.
5-21
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as~Q2!→as~kQ2!1b0 ln~k!as
2~kQ2! ~4.24!

and in the LO part of the splitting function expanding out
first order in ln(k), while in the NLO part using only the
zeroth order, i.e., just lettingas(Q

2)→as(kQ2). In this case
we must also use a similar procedure for the pow
suppressed corrections, i.e., these are really of the f
(L2/mR

2) rather than (L2/Q2). The results fork50.5 andk
52 are shown in Fig. 11 forQ2;6 GeV2. As with the NLO
corrections to LO the variation is significant but leads only
a correction rather than a qualitative change. This imp
that the series expansion is stable, if not as rapidly conv
ing as one might ideally hope for.

Hence, the NLO corrections to the running coupli
BFKL derived splitting function are well under control, bo
in terms of the asymptotic powerlike behavior of the splitti
functions and in terms of the evolution in the range curren
accessible to experiments. For deep-inelastic scattering
indeed any process where there is factorization of the in
red physics into the input parton distributions, e.g., Drell-Y
scattering in proton-proton collisions, no further resumm

FIG. 11. ~a! The renormalization scale variation of th
LO1NLO splitting functionPgg

LO1NLO . Shown are the three choice
of scaleQ2, 0.5Q2, and 2Q2 for t56, i.e. Q2;6 GeV2. ~b! The
same for the LO1NLO physical splitting functionPLL

LO1NLO .
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tion is necessary, or even useful, beyond the running c
pling corrections. This is in distinct contrast to the ca
where both ends of the gluon ladder are associated wi
hard scale. In this case the conventional BFKL expansio
fundamentally flawed due to progressively higher order po
at g50 andg51 ~corresponding to large logs in the ratio
of the two scalesk1

2 andk2
2! as shown in@13#. These large-

order poles need to be resummed, and without this resum
tion calculations are badly behaved over the whole range
N ~in fact explicit calculation shows that this is particular
the case at largeN!. In the case of deep inelastic scatterin
the collinear factorization procedure automatically orders
poles atg50 correctly, and the above problem shows up
high order poles atg51 only. The anomalous dimension
totally dominated by the region very close tog50, as this
paper shows, and is very insensitive to effects atg51. In-
cluding the type of resummation in@13,14# alters results
from the NLO-corrected case by only a very small amou
and is likely to be no more influential than the remaini
NNLO effects for which it does not account. Resummati
of poles nearg51 would be essential if one attempted
obtain information about the input form of the gluon, i.e
G1(Q0

2,N). However, as well as the fact thatQ0
2 is an essen-

tially nonperturbative scale, this type of calculation, alo
with the whole subject of single-scale processes, is a
plagued by the infrared ambiguity problem caused by beh
ior of the coupling at low scales. A discussion of such issu
can be found in@15# and @29#.

I close this section by noting that although the above
sults all look promising it is important to realize that they a
all in a sense ambiguous because they deal with a partic
way of defining the gluon parton distribution, which is
factorization scheme-dependent quantity. In this paper i
defined in a manner which is natural from the point of vie
of the solution of the BFKL equation, and which one m
think of as perhaps a good ‘‘physical’’ definition of th
gluon. However, it is very different from, for example, th
gluon defined in the modified minimal subtraction~MS!
scheme. In order to investigate the real success of the
proach in this paper it is necessary to look at the results
the real physical quantities, namely, the structure functio

V. SMALL x STRUCTURE FUNCTIONS

One may define a real structure function by a simple
tension of the above methods, i.e., by including a hard s
tering cross section at the top of the gluon ladder. This mo
fies Eq.~2.4! to

Fi~Q2,N!5asE
0

` dk2

k2 s i ,g~k2/Q2! f ~N,k2,Q0
2!gB~N,Q0

2!,

~5.1!

where s i ,g(k2/Q2) is the cross section for scattering of
5-22
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virtual photon from a gluon with transverse momentumk2.
For the case of the longitudinal structure function this cr
section is well defined even in the limitk2→0, but for
F2(N,Q2) the cross section diverges like ln(Q2/k2) as k2

→0 ~for details see@34#!. This demonstrates that fo
FL(x,Q2) the solution in the leading 1/N limit factorizes
neatly into the gluon distribution and a multiplicative coef
cient function, while forF2(N,Q2) there is interference a
this order between the coefficient function and the resul
solving the evolution equation including the anomalous
mensionasgqg

0 (as ,N). In this latter case it is simplest in
stead to differentiate with respect to ln(Q2) obtaining

dF2~Q2,N!

d ln Q2 5asE
0

` dk2

k2

ds2,g~k2/Q2!

d ln Q2

3 f ~N,k2,Q0
2!gB~N,Q0

2!, ~5.2!

where @ds2,g(k2/Q2)#/d ln Q2 is finite as k2→0. In this
case, if we work in a DIS-type scheme, i.e., one in which
quark-gluon coefficient function vanishes beyond zeroth
der, there is a simple factorization between the anoma
dimensionasgqg

0 (as ,N) and the gluon distribution.8

In order to progress it is first necessary to consider
overall factor ofas in the above expressions, and particula
its scale. One might think that it should beas(k

2), and thus
appear within the integrals with respect tok2. However, this
could only come about due to double counting of diagram
since the resummation of bubble diagrams required to m
this equal toas(k

2) has already been performed in definin
the coupling in the BFKL equation asas(k

2). Q2 is the
only remaining scale, so it must be the scale of this coupl
One can also justify this by considering the fact that there
a NLO correction to the input of the BFKL equation of th
form 2b0as ln(Q0

2/mR
2)d(k22Q0

2) ~coming from bubbles in a
gluon propagator!. Introducing this into calculations leads t
multiplying each result by a factor@12b0as ln(Q0

2/mR
2)#.

This splits into 2b0as ln(Q2/mR
2)1b0as ln(Q2/Q0

2), and the
latter term is an infrared divergence which contributes to
one-loop gluon-gluon splitting function while the forme
goes into making the overall factor ofas have renormaliza-
tion scaleQ2.

Now removing the overall factor ofas(Q
2) @or in fact the

normalization factoras(Q
2)Nf /(3p)# from Eq. ~5.1!, and

taking the Mellin transformation with respect to (Q2/L2)
leads to the simple expression

F̃i~g,N!5hi ,g~g!G̃~g,N!. ~5.3!

8Note that in this article I ignore the mixing with the quark inp
distribution in general for simplicity. However, it does implicitl
appear in the NLO correction to the kernel; i.e., it is the NL
correction to the anomalous dimension eigenvalue rather tha
ggg which I use since this is the quantity directly calculated
@11,12#. The contribution to this due to the quark mixing is ve
small in practice.
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Thus we may solve forFi(N,t) in exactly the same way a
for G(N,t), obtaining exactly the same diverge
Q2-independent part and aQ2-dependent part given by solv
ing

FE,i~N,t !5
1

2p i E1/22 i`

1/21 i` hi ,g~g!

g
f b0~g!

3exp„gt2X0~g!/~ b̄0 ,N!…dg. ~5.4!

This may be evaluated numerically, using the same con
as for the gluon, or in order to find the power-series solut
we may proceed as with the gluon structure function by
panding thehi ,g(g) ~which were calculated in@34#! as a
power series aboutg50. For the two cases we discusse
above we have

hL,g~g! f b0~g!5120.33g12.13g210.67g312.58g4

12.99g511.92g61¯ , ~5.5!

and

h2,g~g! f b0~g!5112.17g12.30g216.67g317.05g4

112.92g5115.47g61¯ . ~5.6!

It seems natural to absorb the~in some sense! NLO correc-
tions from f b0(g) into the contributions from thehi ,g(g)
since they are of exactly the same form, whereas the o
NLO corrections have inverse powers ofb0 . Following the
same steps as in Sec. II B then results in an expression

FE,i~N,t !5t1/~ b̄0N!S 11 (
n51

n0

Bi ,n„1/~ b̄0N!…t2n

3Dn„21/~ b̄0N!…D , ~5.7!

where theBi ,n„1/(b̄0N)… are now determined not only by th
power series ing obtained from the expansion ofX0(g), but
also from the expansion ofhi ,g(g). In particular they now
contain parts at zeroth order in 1/(b̄0N).

Using these results it is now a simple matter to derive
longitudinal gluon coefficient function at leading powers
ln(1/x) plus running coupling corrections and similarly fo
the quark-gluon anomalous dimension, i.e.,

CL,g„as~Q2!,N…5
as~Q2!Nf

3p

FE,L~N,t !

GE~N,t !
, ~5.8!

with obvious generalization togqg„as(Q
2),N…. These mo-

ment space expressions may easily be converted tox space.
Truncating the series for the structure functions and
gluon at n055 results in the perturbative series fo
xCL,g„as(Q

2),x…,

to
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xCL,g„as~Q2!,x…5
as~Q2!Nf

3p F d~12x!20.33as~Q2!12.13as
2~Q2!~j2b̄0!1as

3~Q2!S 20.933
j2

2!
12.79b̄0j21.86b̄0

2D
1as

4~Q2!S 2.32
j3

3!
214.69b̄0

j2

2!
127.85b̄0

2j215.48b̄0
3D 1as

5~Q2!S 8.41
j4

4!
254.45b̄0

j3

3!
1125.2b̄0

2

3
j2

2!
2121.2b̄0

3j142.0b̄0
4D 1as

6~Q2!S 20.89

b̄0

j6

6!
17.76

j5

5!
227.53b̄0

j4

4!
149.48b̄0

2 j3

3!
244.59b̄0

3

3
j2

2!
115.77b̄0

4j D 1as
7~Q2!S 2.74

b̃0

j7

7!
233.41

j6

6!
1164.8b̄0

j5

5!
2419.3b̄0

2 j4

4!
1577.2b̄0

3

3
j3

3!
2404.9b̄0

4 j2

2!
1112.9b̄0

5j D 1as
8~Q2!S 6.48

b̄0

j8

8!
272.27

j7

7!
1335.7b̄0

j6

6!
2838.2b̄0

2 j5

5!
11210b̄0

3

3
j4

4!
21004b̄0

4 j3

3!
1441.7b̄0

5 j2

2!
279.05b̄0

6j D G . ~5.9!

However, as for the gluon splitting function we have to calculate the power-suppressed correction by evaluating the
Mellin transformations numerically. This is done in precisely the same way as for the gluon, and results in the corre
xCL,g„as(Q

2),x… of the form

as~Q2!Nf

3p H ~21.16820.482t10.1106!exp~2t !d~12x!1exp~2t !F24.685S as~ t !

as~4.5! D
23.026

134.25S as~ t !

as~4.5! D
20.875

3j259.47S as~ t !

as~4.5! D
0.074j2

2!
145.81S as~ t !

as~4.5! D
0.78j3

3!
217.94S as~ t !

as~4.5! D
1.37j4

4!

13.365S as~ t !

as~4.5! D
1.77j5

5!
20.2942S as~ t !

as~4.5! D
1.78j6

6!G J , ~5.10!

where in this case it was necessary to model theN→`, i.e., thed(12x) part with a slightly more complicated form tha
previously. Both expressions have been shown in a form which is sufficient forQ2.1 GeV2 and x.0.00001. The full
xCL,g(x,t) is shown in Fig. 12~a! along with the two contributions above. Note that thed(12x) term atO„as(Q

2)… in the
power series is obtained from the inverse Mellin transformation of the limit asN→0 of the fullO„as(Q

2)… coefficient function
and in the figure we replace it by the fullO„as(Q

2)… contribution, 6x2(12x), for ease of presentation@it not being easy to
represent the normalization of thed(12x) term#. Thed(12x) term is simply missing from the power-suppressed part, tho
this is insignificant. We see that the power-suppressed contribution is now a much larger fraction of the total than for th
though it does not increase as quickly with fallingQ2. In Fig. 12~b! we show xCL,g(x,t) along with theO„as(Q

2)…
contribution and with the naive LO BFKL result in this factorization scheme, which grows far more quickly than the resu
result.

Similarly we can calculate the perturbative seriesxPqg„as(Q
2),x…,

xPqg„as~Q2!,x…5
as~Q2!Nf

3p
F d~12x!12.17as~Q2!12.30as

2~Q2!~j2b̄0!1as
3~Q2!S 5.07

j2

2!
215.21b̄0j110.14b̄0

2D
1as

4~Q2!S 8.80
j3

3!
247.50b̄0

j2

2!
181.02b̄0

2j242.30b̄0
3D 1as

5~Q2!S 18.88
j4

4!
2156.7b̄0

j3

3!
1478.0b̄0

2

3
j2

2!
2620.4b̄0

3j1280.3b̄0
4D 1as

6~Q2!S 4.95

b̄0

j6

6!
244.15

j̄5

5!
1159.9b̄0

1 j4

4!
2293.4b̄0

2 j3

3!
1269.7b̄0

3
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3
j2

2!
297.03b̄0

4j D1as
7~Q2!S 7.98

b̄0

j7

7!
286.53

j6

6!
1385.6b̄0

j5

5!
2899.9b̄0

2 j4

4!
11153b̄0

3 j3

3!
2764.0b̄0

4

3
j2

2!
1203.8b̄0

5j D 1as
8~Q2!S 17.15

b̄0

j8

8!
2234.6

j̄7

7!
11354b̄0

j6

6!
24263b̄0

2 j5

5!
17882.9b̄0

3 j4

4!
28519b̄0

4

3
j3

3!
14962b̄0

5 j

2!
21199b̄0

6j D 1as
9~Q2!S 3.97

b̄0
2

j10

10!
2

51.57

b̄0

j9

9!
1269.5

j8

8!
2647.5b̄0

j7

7!
1258.8b̄0

2

3
j6

6!
12451b̄0

3 j5

5!
26962b̄0

4 j4

4!
18473b̄0

5 j3

3!
25145b̄0

6 j2

2!
11259b̄0

7j D G ~5.11!

and we have a power-suppressed contribution toxPqg„as(Q
2),x… of the form

as~Q2!Nf

3p H 12.86 exp~21.521t !d~12x!1exp~2t !F214.31S as~ t !

as~4.5! D
2.695

136.297S as~ t !

as~4.5! D
2.93

j241.14S as~ t !

as~4.5! D
3.03

FIG. 12. ~a! The full leading ln(1/x) plus running coupling corrections coefficient functionxCL,g(x,t) plotted as a function ofx for t
56 andNf54. Also shown are the contributions from the power-series and the power-suppressed part. Note that the term}d(12x) in the
power series is replaced by the fullO„as(Q

2)… contribution 6x2(12x), and the terms}d(12x) in the power-suppressed part are abse
~b! xCL,g

LO (x,t) plotted as a function ofx for t56 andNf54. Also shown is the coefficient function obtained from the naive LO BF
calculation, and the contribution atO„as(Q

2)… alone.
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3
j2

2!
125.34S as~ t !

as~4.5! D
3.20j3

3!
29.096S as~ t !

as~4.5! D
3.44j4

4!
11.85S as~ t !

as~4.5! D
3.695j5

5!
20.1693S as~ t !

as~4.5! D
3.80j6

6!G J . ~5.12!
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The full xPqg„as(Q
2),x… is shown in Fig. 13~a! along

with the two contributions above. As withxCL,g(x,t) the
d(12x) term atO„as(Q

2)… in the power series is replace
by the full O„as(Q

2)… contribution which is 1.5x@x21(1
2x)2#. Again thed(12x) term is missing from the power
suppressed part, and again this is insignificant. In this c
the power-suppressed part is tiny att56, though from the
large powers ofas(Q

2) in Eq. ~5.12! we see that it grows
very quickly at lowerQ2. In Fig. 13~b! we showxPqg(x,t)

FIG. 13. ~a! The full leading ln(1/x) plus running coupling cor-
rections coefficient functionxPqg(x,t) plotted as a function ofx for
t56 andNf54. Also shown are the contributions from the powe
series and the power-suppressed part. Note that the term}d(1
2x) in the power series is replaced by the fullO„as(Q

2)… contri-
bution 1.5x@x21(12x)2#, and the terms}d(12x) in the power-
suppressed part are absent.~b! xPqg

LO(x,t) plotted as a function ofx
for t56 andNf54. Also shown is the coefficient function obtaine
from the naive LO BFKL calculation, and the contribution
O„as(Q

2)… alone.
07400
se

along with theO„as(Q
2)… contribution and with the naive

LO BFKL result in this factorization scheme, which aga
grows far more quickly than the resummed result.

These above results, along with the LO gluon splitti
function, allow for a LO in ln(1/x) ~with running coupling
corrections! calculation and analysis of structure function
In previous papers@8# I have strongly warned against the u
of factorization-scheme-dependent splitting functions a
coefficient functions within the ln(1/x) expansion. It is still
true that it is always possible to make huge redefinitions
the unphysical parton distributions by factorization sche
changes at a given order~or even at all orders!, but the
changes invoked by transfer between the commonly u
schemes are diminished somewhat by the reduction of
size of the splitting functions and coefficient functions by t
inclusion of the running coupling effects. It is also true th
many of the changes invoked by factorization sche
changes are themselves due to running coupling effects,
the resummation of these stabilizes the whole procedu
great deal. Hence, it is now possible to work in terms
these unphysical quantities if one wishes, without poten
disasters, as long as the ordering of the expressions is d
with particular care. Nevertheless, it is still very convenie
in some ways to eliminate the partons completely and w
directly in terms of the structure functionsFL(x,Q2) and
F2(x,Q2) and the physical anomalous dimensions@22#. In
fact we can easily argue a case for improved stability. At L
the longitudinal coefficient function is positive and qui
large at smallx, and henceFL(x,Q2) will be enhanced com-
pared to the gluon at smallx. At NLO the gluon evolution is
smaller than at LO. Hence, evolving down from a giv
gluon at very highQ2 ~where everything is simpler and mor
reliable! the NLO gluon will be larger at smallQ2 than the
LO gluon. However, we expect the NLO corrections
CL,g(x,Q2) to be negative, and thus counteract this incre
in the NLO gluon in the calculation ofFL(x,Q2). Hence
FL(x,Q2) is ~probably! a more stable perturbative quantity
small x thanG(x,Q2).

The physical anomalous dimension which is most clos
related to the gluon anomalous dimension is

GLL~N,t !5
d ln„FL~N,t !…

dt
. ~5.13!

Ignoring the mixing with the quark sector this is given
terms of the parton-related quantities by

GLL~N,t !5ggg~N,t !1
d ln„CL,g~N,t !…

dt
, ~5.14!
5-26
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where I will use the convention of ignoring the overall pow
of as(Q

2) in the coefficient function which would just resu
in a single contribution of2b0as

2(Q2) to Eq. ~5.14!. Using
the LO ggg(N,t) plus running coupling corrections, an
similarly for CL,g(N,t) we see that the latter gives entire
running coupling corrections, and the total is the L
ggg(N,t) with an extended set of running coupling corre
tions. This total expression could be calculated from
ggg(N,t) and CL,g(N,t) already calculated, but part of th
advantage in using physical anomalous dimensions is th
reduces the number of perturbative quantities governing
structure function evolution, i.e., the four splitting functio
and four coefficient functions used to defineF2(x,Q2) and
FL(x,Q2) are reduced to four truly independent physic
splitting functions. Hence, we notice that using Eq.~5.4! for
the longitudinal structure function we can calculateGLL(N,t)
andPLL(x,t) directly, rather than from Eq.~5.14!. Of course,
07400
e
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e

l

the two definitions are equivalent, but the latter allows
single power-suppressed correction to be calculated ra
than having to combine those forggg(N,t) and CL,g(N,t)
and thus the potential error is minimized. The asympto
powerlike behavior forPLL

LO(x,t) is not identical to that of
Pgg

LO(x,t) and is shown in Fig. 4. The difference is only rel
tively minor, but one sees that the powerlike growth f
FL(x,Q2) is slightly smaller than for the gluon, and is als
slightly lessQ2 dependent. The result for the LO in ln(1/x)
power-series solutionxPLL

LO
„as(Q

2),x… is unfortunately a
little less convergent than the previous LO quantities, due
large coefficients generated in taking the derivative with
spect tot of the expression forFL(N,t) @or of CL,g(N,t)#.
Hence, in order to obtain an expression which is sufficien
accurate forQ2.1 GeV2 andx.0.00001 we need to go to
about 12th order. This results in the explicit expression
xPLL
LO
„as~Q2!,x…5ās~Q2!10.333as

2~Q2!b̄01as
3~Q2!~24.157b̄0j14.266b̄0

2!1as
4~Q2!S 2.4

j3

3!
211.29b̄0

3
j2

2!
112.94b̄0

2j24.02b̄0
3D 1as

5~Q2!S 0.121b̄0

j3

3!
137.85b̄0

2 j2

2!
299.88b̄0

3j161.92b̄0
4D

1as
6~Q2!S 2

j5

5!
275.14b̄0

j4

4!
1454.7b̄0

2 j3

3!
21034b̄0

3 j2

2!
11011b̄0

4j2358.8b̄0
5D 1as

7~Q2!

3S 1.92

b̄0

j7

7!
213.94

j6

6!
123.68b̄0

j5

5!
239.48b̄0

2 j4

4!
1121.9b̄0

3 j3

3!
2155.2b̄0

4 j2

2!
161.14b̄0

5j D
1as

8~Q2!S 216.91
j7

7!
1348.8b̄0

j6

6!
22087b̄0

2 j5

5!
15522b̄0

3 j4

4!
27305b̄0

4 j3

3!
14754b̄0

5 j2

2!
21215b̄0

6j D
1as

9~Q2!S 2.56

b̄0

j9

9!
2119.5

j8

8!
11173b̄0

j7

7!
25052b̄0

2 j6

6!
112044b̄0

3 j5

5!
217444b̄0

4 j4

4!
115528b̄0

5

3
j3

3!
27859b̄0

6 j2

2!
11728b̄0

7j D 1as
10~Q2!S 1.536

b̄0
2

j11

11!
2

16.73

b̄0

j10

10!
183.37

j9

9!
2492.2b̄0

j8

8!
11559b̄0

2

3
j7

7!
12043b̄0

3 j6

6!
224427b̄0

4 j5

5!
161280b̄0

5 j4

4!
272753b̄0

6 j3

3!
142720b̄0

7 j2

2!
29998b̄0

8j D 1as
11~Q2!

3S 2
18.53

b̄0

j11

11!
1444.0

j10

10!
22988b̄0

j9

9!
15290b̄0

2 j8

8!
222253b̄0

3 j7

7!
2135896b̄0

4 j6

6!
1321404b̄0

5

3
j5

5!
2425485b̄0

6 j4

4!
1330620b̄0

7 j3

3!
2141370b̄0

8 j2

2!
125747b̄0

9j D 1as
12~Q2!

3S 2.82

b̄0
2

j13

13!
2

141.7

b̄0

j12

12!
11757

j11

11!
210347b̄0

j10

10!
139345b̄0

2 j9

9!
2119096b̄0

3 j8

8!
1295058b̄0

4

3
j7

7!
2538834b̄0

5 j6

6!
1658339b̄0

6 j5

5!
2499685b̄0

7 j4

4!
1211914b̄0

8 j3

3!
238311b̄0

9 j2

2! D . ~5.15!
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The power-suppressed correction is calculated in the u
manner and is of the form

36.57 exp~21.75t !d~12x!1exp~2t !F4.626S as~ t !

as~4.5! D
22.78

237.84S as~ t !

as~4.5! D
20.58

j167.22S as~ t !

as~4.5! D
0 j2

2!

251.30S as~ t !

as~4.5! D
0.17j3

3!
118.82S as~ t !

as~4.5! D
20.01j4

4!

23.316S as~ t !

as~4.5! D
20.69j5

5!
10.1706S as~ t !

as~4.5! D
22.27j6

6! G .
~5.16!

The anomalous dimensionGLL
LO(N,t) is plotted in Fig. 14~a!.

Until N is very small it is similar toggg
LO(N,t) and both are

close to the commonas(Q
2)/N contribution, though

GLL
LO(N,t) is a little larger at largeN. However, at lowerN,

FIG. 14. ~a! The anomalous dimensions for the gluon structu
function at LO and forFL(N,t) at LO plotted as functions ofN for
t56. Also shown is theO„as(Q

2)… contribution common to each
~b! The anomalous dimensions forFL(N,t) at LO and ‘‘NLO’’ plot-
ted as functions ofN for t56.
07400
al

GLL
LO(N,t) dips below the others before eventually risin

aboveas(Q
2)/N but staying belowGgg

LO(N,t). Clearly the
effect of the additional coefficient function, and hence ad
tional running coupling corrections, is to makeGLL(N,t) dip
significantly below theO„as(Q

2)… contribution ās(Q
2)/N

for a region and to reduce the value of the intercept co
pared to the gluon structure function. The effective splitti
functionxPLL

LO(x,t) is shown in Fig. 15. In Fig. 15~a! we see
that the power-suppressed contribution is larger
xPLL

LO(x,t) than it was forxPgg
LO(x,t). In Fig. 15~b! we see

the outcome of the comparison of the anomalous dimens
for FL and the gluon.xPLL

LO(x,t) starts a little higher atx
50 and the dip below theO„as(Q

2)… part is considerably
more pronounced than forxPgg

LO(x,t). Also, going to x
;1025, we see that the splitting function dips again, sho
ing that the subleading poles in the anomalous dimens
may have large residues compared to the leading pole,
that the increase inxPLL

LO(x) with decreasingx is not mono-

FIG. 15. ~a! The splitting functionsxPLL
LO(x) and its power-

series and power-suppressed contributions plotted as a functionx
for t56. ~b! The splitting functionxPLL

LO(x) plotted as a function of
x for t56 (Q2;6 GeV2). Also shown is theO„as(Q

2)… contribu-
tion ās(Q

2), the gluon splitting functionPgg
LO(x), and the naive LO

BFKL splitting function with couplingas(Q
2).
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tonic. This corresponds to the significant fall ofGLL(N,t)
below ās(Q

2)/N at N;0.6. The eventual rise ofGLL(N,t)
guarantees that the splitting function will eventually ri
again with the calculated intercept, i.e., likex20.23, at even
smallerx. However, fort56 this asymptotic power behavio
does not set in untilx,10210 and in the region ofx;1027

xPLL
LO(x) even becomes slightly negative. For highert even

smallerx is required, e.g.,t58 (Q2'30 GeV2) needsx to
become as low as 10213 before the powerlike behavior se
in, though the size of the dip before this is smaller than
t56. This illustrates very clearly that as far as phenomen
ogy at HERA, or any foreseeable collider, is concerned
value of the intercept for the anomalous dimension is sim
not relevant to the evolution of structure functions. Indeed
is very possible that before the powerlike behavior has se
unitarization effects have already become important. For
lider phenomenology it is the splitting functions over t
07400
r
l-
e
y
it
in
l-

relevantx andQ2 range which one needs, and this requir
the sort of detailed calculation in this paper.

One can follow exactly the same procedure for the ot
important physical anomalous dimension defined by

]F2~N,Q2!

] ln Q2 5G2L~Q2,N!FL~N,Q2!, ~5.17!

simply by using the LO expressions fo
@dF2(N,Q2)#/d ln Q2 andFL(N,t). The powerlike behavior
asx→0 is governed by the poles inF(N,t) as in the previ-
ous case, so the position of the intercepts is identical.
power-series expression requires the first ten powers in o
to be valid over the required range ofx andQ2, so I write it
as
xP2L
LO~as~Q2!,x!5F d~12x!12.5as~Q2!1as

2~Q2!~j20.167b̄0!1as
3~Q2!S j2

2!
212.72b̄0j112.0b̄0

2D 1as
4~Q2!S 7.007

j3

3!

241.41b̄0

j2

2!
161.42b̄0

2j226.82b̄0
3D 1as

5~Q2!S 5.78
j4

4!
252.95b̄0

j3

3!
1253.0b̄0

2 j2

2!
2444.1b̄0

3j

1238.32b̄0
4D 1as

6~Q2!S 5.80

b̄0

j6

6!
287.30

j5

5!
1409.7b̄0

j4

4!
2773.3b̄0

2 j3

3!
1621.7b̄0

3 j2

2!
2176.6b̄0

4j D
1as

7~Q2!S 9.348

b̄0

j7

7!
2117.8

j6

6!
1591.4b̄0

j5

5!
21701b̄0

2 j4

4!
12792b̄0

3 j3

3!
22315b̄0

4 j2

2!
1741.5b̄0

5j D
1as

8~Q2!S 24.380

b̄0

j8

8!
152.41

j7

7!
170.68b̄0

j6

6!
21954b̄0

2 j5

5!
16623b̄0

3 j4

4!
29500b̄0

4 j3

3!
16307b̄0

5 j2

2!

21596b̄0
6j D 1as

9~Q2!S 4.64

b̄0
2

j10

10!
2

95.79

b̄0

j9

9!
1657.3

j8

8!
21775.7b̄0

j7

7!
1450.0b̄0

2 j6

6!
19410b̄0

3 j5

5!

226327b̄0
4 j4

4!
133805b̄0

5 j3

3!
221743b̄0

6 j2

2!
15614b̄0

8j D 1as
10~Q2!S 7.478

b̄0
2

j11

11!
2

115.7

b̄0

j10

10!
1765.7

j9

9!

23293b̄0

j8

8!
18687b̄0

2 j7

7!
25511b̄0

3 j6

6!
235038b̄0

4 j5

5!
1104536b̄0

5 j4

4!
2127198b̄0

6 j3

3!
174260b̄0

8 j2

2!

217101b̄0
9j D G . ~5.18!
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The power-suppressed correction is

~3.55810.4216t20.1542t2!exp~2t !d~12x!

1exp~2t !F72.17S as~ t !

as~4.5! D
0.93

x278.03S as~ t !

as~4.5! D
1.66

156.85S as~ t !

as~4.5! D
2.66

j224.16S as~ t !

as~4.5! D
0.58j2

2!

113.50S as~ t !

as~4.5! D
2.50j3

3!
210.32S as~ t !

as~4.5! D
22.27j4

4!

13.918S as~ t !

as~4.5! D
21.584j5

5!
20.5141S as~ t !

as~4.5! D
21.05j6

6! G ,
~5.19!

where it is necessary to introduce a term}x in order to get a
good description at highN. The full xP2L(x,t) is shown in
Fig. 16~a! along with the two contributions above. Thed(1
2x) term is replaced in the power series by thex dependence
in the O„as(Q

2)… quark-gluon splitting function, i.e.,x@x2

1(12x)2#, normalized by 1.5 to give the correctN→0
limit. This corresponds to a slight modification of the usu
physical anomalous dimension in terms of theO„as(Q

2)…
longitudinal gluon coefficient function, but may be viewed
an analytic function with the correctN→0 limit which aids
presentation here.9 The d(12x) terms in the power-
suppressed contribution are very small, and are simply
out. In Fig. 16~b! we seexP2L(x,t) plotted as a function ofx
along with the naive LO BFKL calculation with couplin
aS(Q2), and in order to illustrate the contribution of th
higher-order terms, also the zeroth-order contribut
1.5x@x21(12x)2#. As with PLL(x,t) one can see tha
P2L(x,t) has a dip at smallx before the eventual powerlik
growth sets in, again only forx,1010, and as with all cal-
culated quantities the running coupling corrections seve
diminish the strength of the small-x growth.

We can also try to investigate the effect of NLO corre
tions on physical quantities. In terms of partons the o
known NLO correction is that to the gluon splitting functio
there is simply no information on the NLO corrections
coefficient functions or the quark splitting functions. In term
of the physical anomalous dimensions, similarly there is
real information forG2L(N,t), but the situation is better fo
GLL(N,t). Let us look at the expression in terms of the p
tonic quantities~5.14!, for the moment in the leading ln(1/x)
expansion without resumed running coupling corrections
LO in 1/N, GLL

LO(N,t) is equal toggg
LO(N,t) since the differ-

entiation of the log of the coefficient function with respect
t automatically introduces an extra factor ofb0as(Q

2). At
NLO in 1/N GLL

NLO(N,t) picks up a contribution from
ggg

NLO(N,t) which is ~largely! independent of the running
coupling, and the contribution from the derivative of the L

9This modification to the physical splitting function will be dis
cussed in a future paper.
07400
l
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n
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coefficient function, which is entirely running coupling de
pendent. Hence, by knowingggg

NLO(N,t) we know the whole
of GLL

NLO(N,t) before resuming running coupling correction
Hence, we might hope that using an expression of the fo
~5.4!, but corrected in the way described in the previous s
tion for the NLO corrections to the kernel, we might calc
late the full NLO, running coupling corrected BFKL expre
sion for GLL(N,t). Unfortunately, this is not quite the cas
This can be appreciated by again using Eq.~5.14!. When
solving this NLO-corrected expression forFE,L(N,t) one in-
cludes all the running coupling corrections toggg

NLO(N,t)
just by the manner of solving the equation. But witho
knowing the NLO correction to the coefficient functio
one misses a whole series of terms of the fo
as(Q

2)@b0as(Q
2)#nf „ās(Q

2)/N… which would come from

FIG. 16. ~a! The full leading ln(1/x) plus running coupling cor-
rections physical splitting functionxP2L(x,t) plotted as a function
of x for t56. Also shown are the contributions from the powe
series and the power-suppressed part. In the power series the
}d(12x) is replaced by 1.5x@x21(12x)2# while in the power-
suppressed part this contribution is simply absent.~b! The physical
splitting function xP2L(x,t) plotted as a function ofx for t56
along with the physical splitting function obtained from the nai
LO BFKL calculation with couplingas(Q

2) and the zeroth order
contribution.
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RUNNING COUPLING BALITSKIĬ-FADIN-KURAEV- . . . PHYSICAL REVIEW D 64 074005
thed ln „CL,g(N,t)…/dt term.10 Thus, we do not yet know the
full running coupling corrections to the NLO contribution
GLL(N,t).

I will proceed to calculate the ‘‘NLO’’-corrected
GLL(N,t) on the assumption that since the resummation
the running coupling corrections stabilizes the perturba
expansion the missing running coupling corrections will n
lead to anything other than minor corrections. It is straig
forward to generalize the results of Sec. IV to the case of
physical quantity. Essentially we just replace Eq.~4.21! by

FE,L
1 ~N,t !}t2cl /b̄0E

C
Fg21/~ b̄0N!21hL,g~g! f b0~g!expS gt

2
1

~ b̄0N!
(
n51

`

ang2n11D S 11 (
m50

~1/b̄0!cmgmD
2

cl

b̄0
F ln~gt !2CS 2

1

b̄0N
D

1p cotS p

b̄0N
D Gg2@1/~ b̄0N!#21hL,g~g!

3expS gt2
1

b̄0N
(
n51

`

ang2n11D Gdg, ~5.20!

where we are currently missing a further term of the form

2Nt2cl /b̄0E
C

g21/~ b̄0N!21dhL,g~g,b̄0N! f b0~g!

3expS gt2
1

b̄0N
(
n51

`

ang2n11D dg. ~5.21!

Using Eq.~5.20! we can calculate both the power-series a
power-suppressed NLO contributions toGLL(N,t) and hence
PLL(x,t). The LO1‘‘NLO’’ values of the intercept for the
asymptotic powerlike behavior are shown in Fig. 4. These
very slightly below the LO1NLO intercepts for the gluon
and hint at perhaps a more rapid convergence for the ph
cal FL than for the gluon. However, we would expect t
missing contributions to lower the intercept a little more. T
‘‘NLO’’-corrected anomalous dimensionGLL

LO1NLO(N,t) is
shown as a function ofN for t56 in Fig. 14~b!. It is very
similar to that at LO until very lowN where the difference in
the leading intercept starts to become apparent.

As for the NLO correction toxPgg(x,t) the power series
is not very convergent and to work all the way down toQ2

51 GeV2 and x50.00001 we again need the first 20 or
terms. Hence the power-series contribution is

10Some of these are automatically generated by using the N
kernel in our solution, but the full set requires also the NLO c
rection to the hard scattering cross section which will lead to N
corrections tohL,g(g).
07400
f
e
t
-
e

d

e

si-

xPLL
NLO

„as~Q2!,x…5ās~Q2! (
n51

19

(
m50

mmax

ās
n~Q2!

3S Knm

jmb̄0
n2m21

m!
1Kndb̄0

nd~12x! D ,

~5.22!

where the coefficients are listed in Table II. The pow
suppressed contribution is

20.183 exp~20.51t !d~12x!1exp~2t !

3F31.90S as~ t !

as~4.5! D
20.274

280.22S as~ t !

as~4.5! D
0.346

j

156.67S as~ t !

as~4.5! D
0.60j2

2!
19.017S as~ t !

as~4.5! D
3.15j3

3!

225.925S as~ t !

as~4.5! D
1.715j4

4!
110.28S as~ t !

as~4.5! D
1.875j5

5!

21.298S as~ t !

as~4.5! D
2.09j6

6! G . ~5.23!

The NLO correction to the splitting functionxPLL
NLO(x,t) is

shown, minus the contributions}d(12x), in Fig. 17~a!.
Clearly there is a very large cancellation between the pow
series and power-suppressed contributions resulting in a
tively small total NLO correction. We can see that unlike f
the gluon this NLO correction is actually positive in som
regions ofx, rather than everywhere negative. We also s
from Fig. 17~b! that the NLO splitting function is quite simi
lar to the LO splitting function over the wholex range.

However, as with the gluon, the real test of perturbat
stability is the evolution of the structure function itself. Th
is shown in Fig. 18 where the evolution of a model for t
structure functionFL(x,Q2), i.e., (12x)6x20.2, is shown
both for the LO running coupling splitting function, and fo
the ‘‘NLO’’-corrected one@all d(12x) contributions other
than at first order inas(Q

2) are included#. Also shown is the
evolution due just to the double-leading-log termP(x)
5ās(Q

2)/x. Compared to the evolution of the gluon show
in the previous section we see that the additional runn
coupling contributions due to thet derivative of the coeffi-
cient function have slowed the LO evolution below that
the double-leading-log result over the whole range ofx ~ex-
cept very highx!, and this will only cease to be true at ver
small x indeed, when the powerlike growth of the physic
splitting function finally sets in. In this case, however, t
difference between LO and LO1‘‘NLO’’ is much smaller
than for the gluon, and the perturbative expansion see
very stable indeed. As with the NLO corrections to the int
cepts this might be a sign that the expansion converges m
quickly for the physical structure functions than for the u
physical gluon structure function. However, as a note of c
tion, the missing contributions at NLO are likely to be neg
tive in general, and this difference between LO and NL
evolution will probably be increased a little. In fact it i

O
-

5-31
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TABLE II. The coefficientsKnm in xPLL
NLO

„j,as(Q
2)…5ās(Q

2)(n51
19 (m51

mmax ās
n(Q2)(Knmjmb̄0

n2m/m! 1Kndb̄0
nd(12x)). The series for the

part proportional to d(12x) is more convergent inas(Q
2) and for all Q2*1 GeV2 is given accurately byās(Q

2)d(1

2x)$20.3094@b̄0ās(Q
2)#23.856@b̄0ās(Q

2)#216.376@b̄0ās(Q
2)#3250.36@b̄0ās(Q

2)#41340.0@b̄0ās(Q
2)#5155.51 @b̄0ās(Q

2)#6

21600@b̄0ās(Q
2)#7 12838@b̄0ās(Q

2)#8 2 8457@b̄0ās(Q
2)#9124526@b̄0ās(Q

2)#10 1 57602@b̄0ās(Q
2)#112 325984@b̄0ās(Q

2)#12

1477536@b̄0ās(Q
2)#13%.

n m55
m511
m517
m523

m54
m510
m516
m522

m53
m59
m515
m521

m52
m58
m514
m520

m51
m57
m513
m519

m50
m56
m512
m518

1 20.4236
2 21.354 9.494
3 27.040 25.89 229.49
4 25.672 63.20 2222.22 251.90
5 215.84 310.8 21504 2766 21964
6 243.4 21444 4540 27293 5206 21100

217.45
7 25265 24975 261945 82368 255633 16210

219.57 521.2
8 27358 284630 162654 2187932 116668 231108

26.545 448.6 25158
9 215634 2122925 2266550 550451 2383797 100196

220.94 468.9 25027 31574 2114142
10 21552522 1019004 567195 21582395 1103037 2286332

222.36 814.7 212094 91607 2396924 1031187
11 3.9653107 25.3433107 4.6273107 22.4253107 7013331 21016798

1291 223513 232273 21492972 6537249 21.9563107

220.00
12 22.4243108 2.9703108 21.7023108 1.2143108 23.5533107 5390954

60402 2153923 2952951 1.0573107 24.8053107 1.3283108

222.33 641 28519
13 21.5143108 27.79743107 1.9933108 21.4263108 4.8143107 27741384

22256260 1.1993107 24.5863107 1.2523108 22.3563108 2.7963108

223.25 1171 225002 296133
14 4.9343109 22.9023109 9.7843108 21.2273108 21.8833107 6764209

5.5953107 22.6753108 9.2363108 22.3173109 4.2133109 25.4753109

233.40 2462 261331 876031 28361477
15 22.57631010 1.70231010 27.3973109 1.9683109 22.9613108 2.2013107

23.2633108 1.4733109 24.7753109 1.14731010 22.05231010 2.70831010

781.7 212818 114646 2395405 22857628 4.7063107

222.34
16 1.72531011 21.20931011 5.73831010 21.76431010 3.3143109 23.4343108

21.5503109 27.8353108 1.58331010 25.6013109 1.18731011 21.71031011

240001 623658 26411756 4.6383107 22.3763108 8.2053108

22.90 1464
17 23.96831011 3.10431011 21.57231011 5.05931010 29.8693109 1.0573109

5.44631010 21.03631011 1.30431011 26.79531010 1.09931011 3.14531011

1959861 22.3513107 2.0133108 21.2643109 5.9143109 22.00731010

245.09 3674 2110727
18 22.26131012 8.24031011 21.74731011 1.31931010 2.2933109 25.6013108

28.65231011 2.01831012 23.64831012 5.06631012 25.31931012 4.11931012

21.2873107 2.3433108 21.6113109 1.49731010 27.49231010 2.88831011

221.44 885.6 2171708 177961 2514627
19 1.56231013 26.66231012 1.98031012 23.94231011 4.96731010 23.5653109

5.88631012 21.33431013 2.33831013 23.17931013 3.32831013 22.64531013

26.0363108 1.7103109 4.3353109 27.92031010 4.89531011 21.98231012

221.75 1680 254959 1031287 1.2713107 1.0773108
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desirable for these missing contributions to be no
negligible. While if we decreaset to 4.5, i.e.,Q2;1 GeV2, at
NLO everything remains relatively stable for the gluon, t
physical splitting function starts to develop extreme behav
at this low scale—the minimum atx;0.01 becomes much
lower and the peak atx;0.0001 becomes very much highe
This trend is illustrated in Fig. 11~b!, which shows the renor
malization scale dependence ofPLL

LO1NLO(x,t) for t56.
Clearly there is very good stability for an increase in sca
but it is not so good for a decrease in scale~though since the
splitting function oscillates, the variation washes out to
large extent when evolution is calculated!. There is very
good stability in both directions if one examines the variat
for a slightly highert, say t58 (Q2;30 GeV2). This insta-
bility in the physical splitting function results in instabilitie
in the evolution att54.5, even though it appeared to be ve
stable att56. Hopefully, the inclusion of the missing term
will help stabilize this evolution, though it may simply be
sign that at this lowQ2 some nonperturbative contribution
becoming essential.

FIG. 17. ~a! The splitting functionsxPLL
NLO(x) and its power-

series and power-suppressed contributions plotted as functionsx
for t56. ~b! The splitting functionxPLL

LO1NLO(x) plotted as a func-
tion of x for t56 (Q2;6 GeV2). Also shown is theO„as(Q

2)…
contributionās(Q

2), and the LO contributionxPLL
LO(x).
07400
-

r

,
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VI. CONCLUSIONS

In this paper I have shown that it is possible to obta
analytic solutions to the LO running coupling BFKL equ
tion for theQ2-dependent parts of the gluon structure fun
tion and for the real physical structure functionsF2(x,Q2)
andFL(x,Q2). This results in a resummation of the leadin
ln(1/x) terms at each power inas(Q

2) and also of the lead-
ing powers inb0 at each power ofas(Q

2) and ln(1/x).
However, theQ0

2-dependent gluon input is plagued by co
tamination from infrared nonperturbative physics, and has
inherent ambiguity ofO(L2/Q0

2). The analytic expression
may be expressed in the form of a power series inas(Q

2). In
practice the main features of the solution are almost co
pletely determined by only the first handful~;5! of terms in
the expansion, in complete contrast with the case of fix
coupling, where an all orders summation is needed. In
the perturbative series for the structure functions is not c
vergent, and the analytic expression is most accurately
tained by this truncation. The small remainder, whi
roughly speaking is suppressed by powers of (L2/Q2), may
be calculated from the difference between a numerical s

f

FIG. 18. The values ofdFL(x,Q2)/d ln Q2, for FL(x,Q2)
5x20.2(12x)6, due to the LO splitting functionsPLL

LO(x) and the
LO1NLO splitting functionPLL

LO1NLO(x), plotted as a function ofx
for t56 (Q2;6 GeV2). Also shown is the evolution due to th
O„as(Q

2)… contributionP(x)5ās(Q
2)/x.
5-33
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tion with the analytic solution, and then modeled by an a
lytic expression ofQ2 and N, which may easily be trans
formed tox space. There are two points to note here. Fi
this power-suppressed condition is both well defined and
nothing to do with higher twist operators. Even though th
are infrared~and ultraviolet! renormalons in the untruncate
perturbative expansion, they only appear due to the impo
bility of expressing theQ2-dependent part of the structur
functions as a power series inas(Q

2), not because of som
inherent ambiguity at leading twist, as is often the case w
renormalons. Hence, they are circumvented completely
this manner of calculation. Second, this procedure of an a
lytic calculation as a truncated power series plus a numer
calculation of the power-suppressed part, which is then m
eled, seems to allow for the most accurate determinatio
x-space quantities. Transformation of numerical mom
space expressions tox space are subject to errors, and t
magnification of the power-suppressed contributions inx
space, compared to moment space, seen in this paper
lights the potential effect of small errors in moment spa
when ultimately working inx space. Hence, obtaining a
accurate an analytic moment space expression as possi
vital in ultimately obtaining good accuracy for splitting fun
tions and the evolution of structure functions.

It is also demonstrated that there are well-defined, ca
lable higher-twist contributions due to the transverse deg
of freedom of the two-gluon operator. However, both t
normalization and splitting functions of these genuine
higher twist operators decrease quickly asx→0 @roughly
like x0.5cos„0.5 ln(1/x)…# when the smallx resummation is
performed. Unlike leading twist, this is largely insensitive
the running coupling corrections. This result is only appar
from resummation, and a fixed~small! order inas(Q

2), par-
ticularly first order only, gives very misleading result
Hence, this one form of higher twist does not lead to a
sizable correction at all at smallx andQ2. It is possible that
this unambiguous, small-x vanishing higher-twist contribu
tion to the two-gluon operator is responsible for the abse
of a genuine ambiguity in the leading twist anomalous
mensions. However, I note that this paper has nothing to
about the size of shadowing corrections coming from fo
gluon operators, except to point out that the double-lead
log type calculations often performed are likely to lead
huge overestimations. Neither does it consider the pow
suppressed corrections due to nonperturbative effects w
mix with higher twist, leading to mixing with leading twis
and may well be important at extremely smallx @15,29#.

The calculated expressions for leading twist struct
functions may be used to produce LO expressions for
splitting functions and coefficient functions for physical pr
cesses, and also the physical splitting functions which al
one to work directly in terms of physical quantities. My r
sults prove that the effect of the running of the coupling is
weaken the asymptotic powerlike growth of the splitti
functions severely compared to the naive BFKL results, a
even to lower the splitting function below theas(Q

2)/x con-
tribution for 0.001*x*0.2. It is also noted that the
asymptotic behavior of the formx2l is often not approached
even approximately untilx!0.00001, with the requiredx
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decreasing with increasingQ2, and is therefore by no mean
a good indicator of physics at present or future colliders.
fact it is very likely that unitarization will stop this true pow
erlike behavior from ever being seen. Rather than the in
cept, the detailed expressions for the splitting functions a
coefficient functions are needed in order to really calcul
the evolution at realistic values ofx.

The procedure can also be extended to NLO without a
real modification, though there is some ambiguity in p
cisely what the best definition of NLO is.11 The choice is
made so that the expressions for the structure functions
genuinely only a single power ofas(Q

2) down on LO, up to
b0as(Q

2) corrections, but ing(N,t)5d ln„G(N,t)…/dt the
full NLO expression for@G(N,t)#21 is used, rather than
truncating its expansion at NLO, and hence the full NL
correction to the intercept is obtained. This has little effe
until extremely smallx. Unlike leading ln(1/x) calculations
without resummation of running coupling effects the NL
correction to the gluon splitting function here is modera
both for the value of the intercept and for the exact size
the splitting function and the evolution of the gluon structu
function for x.1025. Hence, this running coupling resum
mation does a great deal to stabilize the perturbative se
Unfortunately it is not yet possible to calculate the compl
NLO correction to any real physical quantity, though o
may come close forPLL(x,t), the splitting function govern-
ing the evolution of the longitudinal structure function
terms of itself, which is very similar toPgg(x,t). In this case
only a subset of the running coupling corrections to the N
in ln(1/x) part is still unknown. ForFL the stability of the
perturbative series looks even better than for the gluon
long asQ2*4 GeV2, but begins to deteriorate below thi
perhaps due to the missing corrections.

Let me also comment briefly on other methods which
tempt to incorporate the NLO corrections~and beyond! to
the BFKL equation. First I note that my previous conjectu
that the effect of the running coupling in the BFKL equatio
could be accounted for using anx-dependent scale for th
coupling @20#, resulting in falling coupling for decreasingx,
turns out to be essentially correct so long as the change in
scale of the coupling is moderate compared to the scale
self, though it fails if this condition is not satisfied. In pra
tice this condition is identical to that specifying that diffusio
in the fixed coupling BFKL equation is not too large, an
therefore that the virtualities sampled in the running coupl
equation are not too far away fromQ2. This results in the
requirement thatt3*20 ln(1/x) @35#. This is true for all but
the lowestx andQ2 at HERA. I also note that my approac
is completely consistent with that in@14,15#, with both being
built upon the running coupling BFKL equation essentia
introduced long ago@23,24,17,18# and generalized beyon

11The power-series expressions also become very complicate
NLO. It will probably ultimately be more convenient to model the
accurately with some simpler function ofx and t similar to the
manner in which the power-suppressed contributions are treate
present.
5-34
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LO in @14#. The differences from this approach are tha
ignore the collinear resummation which is a central theme
this work, since as I stress it is an unnecessary complica
in the calculation of splitting functions, the running couplin
effects being the most important and stabilizing the calcu
tion themselves; that I concentrate on solving very accura
and precisely for theQ2-dependent part of the gluon an
structure functions, obtaining splitting functions over t
range ofx and Q2 relevant for a phenomenological trea
ment; and that I also ignore the complication of a real re
larization of the coupling in the infrared region~this latter
point is also considered in@36#!. Hence, I obtain detailed
accurate results for all splitting functions and coefficie
functions in closed form, but ignore contributions conside
in these papers which are necessary if investigating sin
scale processes and/or potential nonperturbative eff
~which may be important for splitting functions at lowQ2

and very smallx @29#!. There is less similarity with othe
approaches. Even though the approach in@37# claims to in
some sense be dealing with the scale appropriate for the
pling in this problem, it has no overlap with the approach
this paper, and comments on this approach can be foun
@20#. Also there is no connection with the approach in@38#
which adopts a phenomenological approach to resumma
beyond fixed orders in ln(1/x) in terms of the asymptotic
powerlike behavior, which is a free parameter, and wh
consequently loses true predictive power for the evolution
small x. Finally, there also seems to be no overlap with
approach in the first part of@39# which incorporates sublead
ing effects via a kinematic constraint while solving th
BFKL equation, resulting in an anomalous dimension wh
includes a resummation of some subset of higher order c
tributions, none of which is concerned with the running
the coupling, but which stabilizes the calculation.~The latter
part of @39# also includes a running coupling and infrare
regularization, but concentrates on the normalization ra
than the evolution.! In this sense it has some similarities
the resummation of collinear logs in@13#, which also stabi-
lizes results even with fixed coupling~and which is essentia
in single scale processes!. Hence, there appear to be a num
ber of ways in which the apparent poor convergence of
perturbative series at smallx can be improved. However
since one must ultimately deal with the contribution of t
running coupling in all perturbative QCD calculations I pr
fer to concentrate on this feature and consider just the re
ing b0 resummation combined with the ln(1/x) resummation,
which results in explicit results in terms of an ordered pow
series in the well-defined quantitiesas(Q

2), ln(1/x), and
b0 . This stabilizes the small-x expansion without consider
ation of these other effects; indeed it leads to the most di
gent terms asx→0 @20# and alters the complete singulari
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structure, and moreover is easy to directly incorporate i
the usual calculation of partons and structure functions
terms of the coefficient functions and splitting functions.

It will, of course, be interesting to examine the effect
incorporating my resummed corrections to splitting functi
in a global fit to structure function and related data. Such
analysis will also need to include a precise explanation
how the small-x-relevant expansions derived in this pap
must be combined with the normal order-by-order inas(Q

2)
expansion, and potentially large ln(12x) expansions. Full de-
tails of such a fit, and the complete procedure used,
appear in a future paper which awaits the release of new
from a number of experimental collaborations. From t
analysis of presently published data it is clear that the qua
of such a fit is improved by inclusion of these small-x re-
summed corrections,12 and that the predictedFL(x,Q2) is
smaller than that from a NLO-in-as(Q

2) fit, but much more
regular in shape at lowQ2 than that seen in@5#.13 This can be
seen as a solution to the lack of convergence ofFL(x,Q2)
apparent as one goes from LO to NLO to NLO in the co
ventional expansion scheme which is seen in@5#.

Hence, I conclude by claiming that this paper outlines
method for including the most complete resummation
splitting functions ~and coefficient functions! which is
needed at smallx, and satisfies the theoretical requiremen
of stability of the perturbative expansion and the minimu
of model dependence as well as the more practical consi
ations of being in a closed form which is easy to impleme
It will prove useful in an analysis of structure function dat
and in a prediction of related quantities relevant for the Te
tron and the LHC. However, at present it only really exists
LO ~and not even that for many quantities!, and for full
implementation the calculation of the NLO impact facto
within the BFKL framework is urgently needed. Once this
done, a truly full NLO analysis of structure functions, whic
will be equally valid over the full perturbative range, will b
possible.
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