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Abstract 
 
T lymphocyte numbers in the human body are kept constant by homeostatic 

mechanisms balancing cell gain and loss. These mechanisms eventually fail in HIV 

infection, which is characterized by progressive immune deficiency attributable to a 

slow but relentless depletion of CD4+ T cells, the main viral targets. HIV infection is 

also associated with increased T cell turnover and a state of generalized immune 

activation. One of the fundamental questions in the field of HIV research is the 

relation between CD4+ T cell depletion and immune activation. It has been suggested 

that the virus has a direct effect by killing CD4+ T cells and increased T cell turnover 

reflects a homeostatic response to CD4+ T cell depletion. Alternatively, chronic 

immune activation may lead to enhanced turnover of T cells by ongoing proliferation-

differentiation and cell death. In both cases, AIDS is the result of an exhaustion of the 

regenerative capacity of the immune system. 

 

To address these questions we examined the consequences of activated CD4+ T cell 

killing in a virus-free mouse model. Immunodeficiency viruses are highly selective 

for activated/memory and regulatory CD4+ T cells due to restricted expression of 

CCR5, the co-receptor for HIV and SIV, or CD134 (OX40, TNFRSF4), the cellular 

receptor for FIV. Activated CD4+ T cells were depleted by conditional reactivation of 

diphtheria toxin gene mediated by Tnfrsf4-driven Cre recombinase expression. 

Conditional ablation of activated CD4+ T cells resulted in accelerated turnover, with 

only a minimal apparent effect on their numbers, and was associated with a reduction 

in CD4:CD8 ratio and development of CD4+ T cell immune deficiency, resembling 

HIV infection. Importantly, activated CD4+ T cell killing also resulted in generalized 
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immune activation, including lymph node enlargement, B cell expansion, elevated 

serum levels of proinflammatory cytokines and increased turnover and activation of 

CD8+ T cells, characteristic of HIV infection. CD8+ T cell activation correlated with 

lack of regulatory CD4+ T cell function and was prevented upon regulatory CD4+ T 

cell reconstitution. 

 

We therefore propose a causal link between memory and regulatory T cell depletion 

and immune deficiency and immune activation, respectively. 
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1. Introduction 

 

 

1.1. Infection with HIV 

 

 

1.1.1. Introduction 

Acquired immunodeficiency syndrome (AIDS) was first described in 1981 in two 

papers in the New England Journal of Medicine. These papers described 

Pneumocystis carinii pneumonia in individuals with low CD4+ T cell counts (Masur 

et al., 1981; Gottlieb et al., 1981). Two years later, the etiological agent of AIDS was 

isolated and shown to be a retrovirus, now known as human immunodeficiency virus 

type 1 (HIV-1) (Barre-Sinoussi et al., 1983). In 1986, a second retrovirus strain, 

known as HIV-2, was isolated from patients with AIDS from West Africa (Clavel et 

al., 1986). HIV-2 has approximately 40-60% homology with HIV-1, but the majority 

of infected people do not progress to disease and die of unrelated causes (Rowland-

Jones and Whittle, 2007; Leligdowicz et al., 2007).  

 

HIV-1 has spread rapidly and the HIV epidemic has become a major global health 

problem.  According to the global summary of the AIDS epidemic published by 

UNAIDS in December 2007, 33.2 million people worldwide are living with HIV and 

2.1 million died as a result of AIDS in that year. The situation is particularly serious 



 19

in Sub-Saharan Africa, where the same report states an adult prevalence of 5% 

(http://data.unaids.org/pub/EPISlides/2007/2007_epiupdate_en.pdf).  

 

At present there is no cure for AIDS. Although highly active anti-retroviral therapy 

(HAART) - a combination of anti-retroviral drugs - can suppress HIV-1 replication 

and delay illness for many years, it does not clear the virus completely. Moreover, 

access to antiretroviral treatment is limited in many parts of the world and even when 

antiretroviral treatment is available, it is associated with serious side effects and 

problems with adherence to therapy. Although much research has been done in order 

to develop a vaccine against HIV-1, none of the candidate vaccines that have been 

tested in clinical trials has been successful. This highlights the necessity for more 

basic research to understand the complex relationship between HIV and the immune 

system. 

 

1.1.2. Origin of HIV strains 

HIV strains have evolved in multiple cross-species transmissions from simian 

immunodeficiency viruses (SIVs) that infect nonhuman primates in Africa. HIV-1 

evolved from a strain of  SIV of chimpanzee (Pan troglodytes troglodytes) (Gao et al., 

1999), whereas HIV-2 originated in SIV found naturally in sooty mangabey monkeys 

(Cercocebus atys) (Hirsch et al., 1989). 

 

SIVs do not appear to cause AIDS in their natural African host: infected sooty 

mangabeys, African green monkeys, mandrils, sun-tailed monkeys, just to mention a 

few, are free of clinical disease and have a normal life span (Hirsch, 2004). In 

contrast, several species of Asian macaques (Macaca spp), like the rhesus macaque 
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(Macaca mulatta), develop AIDS when infected with a common non-pathogenic virus 

of African sooty mangabeys, albeit in a relatively short time when compared to HIV 

infection in humans (Heeney et al., 2006). Nevertheless, SIV infection of macaques 

has provided a powerful experimental model system to study the pathogenesis of 

AIDS. Additionally, studies of the differences between non-pathogenic SIV infections 

as well as of the less pathogenic HIV-2 infection and HIV-1 infection have also 

provided important clues on the determinants of immune deficiency in HIV-1 infected 

humans. 

 

1.1.3. CD4+ T cell depletion in HIV disease 

The major hallmark of HIV-1 infection is the progressive CD4+ T cell destruction and 

subsequent loss of immune function, which manifests clinically as an increased 

susceptibility to opportunistic infections and tumours. What drives the loss of CD4+ T 

cells in this infection is still unclear. 

 

Interestingly, idiopathic CD4+ lymphocytopenia which is a rare immunodeficiency of 

unknown cause, clinically very much resembles HIV infection. Patients have 

persistently low CD4+ T cell counts and experience opportunistic infections, 

autoimmune disease and hematologic malignancies (Bonilla and Geha, 2006). Thus, 

the immunodeficiency seen in HIV infection resembles the CD4+ T cells primary 

immunodeficiencies (Carneiro-Sampaio and Coutinho, 2007). 

 

No human virus other than HIV-1 causes such extensive and unavoidable CD4+ T cell 

loss. HIV-2 targets the same cells as HIV-1 (i.e. CD4+ T cells ) and has the same 

capacity to infect and replicate as suggested by the fact that proviral loads of HIV-2 
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and HIV-1 infected patients at the same disease stage are similar (Popper et al., 2000). 

Nevertheless, HIV-2 does not usually cause high viremia or such severe CD4+ T cell 

depletion. Another retrovirus that exhibits the same tropism for CD4+ T cells, the 

human T cell leukemia/lymphotropic virus 1 (HTLV-1), results in CD4+ T cell 

lymphocytosis rather than lymphopenia (Matsuoka and Jeang, 2007).  

 

1.1.4. Clinical stages of HIV disease 

The typical course of untreated HIV-1 infection can be artificially divided in distinct 

phases. Primary infection occurs via the mucosal (gastrointestinal or reproductive) or 

parenteral route and is often associated with a febrile illness and clinical signs of viral 

dissemination to lymphoid tissues, central nervous system and other sites and may last 

from a few days to 4 weeks and then subside. This stage is characterized by active 

viral replication and high viremia and a sharp drop in peripheral blood CD4+ T cell 

counts (Fig. 1). Viral replication then falls concurrently with the appearance in 

circulation of virus-specific CD8+ T cells (Koup et al., 1994). This lower viral load set 

point is predictive of the rate of progression to AIDS in untreated individuals: the 

higher the level, the worse the prognosis (Mellors et al., 1996).  

 

Recently it has been shown that very early after infection there is a rapid and dramatic 

depletion of mucosal-associated memory CD4+ T cells, which is not reflected in blood 

cell counts (Brenchley et al., 2004; Mehandru et al., 2004). This is also observed in 

pathogenic (Mattapallil et al., 2005; Li et al., 2005) and non-pathogenic infections 

with SIV (Pandrea et al., 2007; Gordon et al., 2007; Milush et al., 2007). 
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Figure 1. Changes in plasma viral load, peripheral blood CD4+ T cell counts and 

HIV-1 specific CD8+ T cell counts in the course of a typical untreated HIV-1 

infection. 
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Following the acute infection, there is a partial rise in blood CD4+ T cell counts and 

although there may be no further evidence of illness for the next decade, peripheral 

blood CD4+ T cell counts slowly decline and viremia slowly rises (Fig. 1).   

 

Circulating antibodies to HIV antigens appear within a few weeks of infection, 

usually after viral levels have begun to fall to the steady-state level. Although some of 

these antibodies may have strong neutralizing activity, rapid viral escape is 

characteristic. 

 

This long clinically asymptomatic period is misleading, because HIV infection is not 

latent. The steady-state in CD4+ T cell counts actually represents a balance between 

rapid cell depletion and powerful restoration within the immune system. Eventually, 

the regenerative capacity of the immune system becomes exhausted and CD4+ T cell 

counts drop below a threshold of about 200 cells/µl, when opportunistic infections 

occur (Douek et al., 2003; Weiss, 2008). 

 

Despite 25 years of research and many important events in HIV immunology 

(reviewed in (Rowland-Jones, 2003)), the precise mechanisms responsible for the 

unrelenting decline of CD4+ T cell function and number are still unclear. In healthy 

individuals there is a rigorous control of the number of T cells in the body, but in 

HIV-1 infection these dynamics are affected. It is thus crucially important to 

understand how CD4+ T cells are regulated to be able to understand what is happening 

in HIV-1 infection.  
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1.2. Regulation of CD4+ T cells 

 

1.2.1. Peripheral CD4+ T cell subsets  

T cell progenitors are generated in the bone marrow and migrate to the thymus where 

they rearrange their T cell receptors (TCRs) and undergo a process of selection. The 

TCR is designed to recognise antigens on cell surfaces and ignore structures that are 

soluble or free-floating (such as virus particles outside infected cells). TCRs recognise 

small peptide fragments on cell surfaces, bound to major histocompatibility complex 

(MHC) molecules. T cells with TCRs specific for self antigen are deleted through a 

process of negative selection, whereas T cells with TCRs specific for foreign antigens 

are retained by positive selection. T cells that survive selection differentiate to either 

CD4+ or CD8+ mature T cells and are exported to peripheral lymphoid tissues.  

 

1.2.1.1. Naïve and memory CD4+ T cells 

T cells that leave the thymus are called naïve (Fig. 2) because they have not yet 

encountered their cognate antigen, and are thus in a resting state. They have a diverse 

distribution of TCRs with specificities capable of recognizing a broad array of 

peptides bound to MHC molecules. 

 

Naïve T cells home to secondary lymphoid tissues (spleen, lymph nodes and Peyer’s 

patches) and migrate continuously from one lymphoid organ to another, via blood and 

lymph. Entry to lymph nodes and Peyer patches is highly specific and occurs through 

high endothelial venules (HEV). 



 25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of peripheral CD4+ T cell pools. Naïve CD4+ 

T cells migrate from the thymus to the periphery. Upon encounter with antigen 

presented on the surface of MHCII molecules on antigen presenting cells, naïve cells 

differentiate into effector cells, some of which are selected to enter the memory pool 

once the infection is cleared. The memory pool is a heterogeneous population 

composed of central memory and effector memory cells. Regulatory T cells are a 

distinct lineage originated in the thymus, although under certain conditions they can 

also be induced in the periphery. 
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Naïve T cells express L-selectin (CD62L), chemokines (C-C motif) receptor 7 

(CCR7) and lymphocyte function-associated antigen 1 (LFA-1) which interact with 

molecules on HEV. This combination of molecules is uniquely found on HEV and is 

essential for efficient homing of naïve T cells in lymphoid tissues. In these organs, 

naïve T cells travel to the T cell areas in search of antigen presented by antigen 

presenting cells (APCs). Continuous migration of naïve T cells through secondary 

lymphoid tissues is thus highly important for allowing T cells to make rapid contact 

with antigens released from pathogens. 

 

When naïve lymphocytes in T cell areas of secondary lymphoid organs encounter 

their cognate antigen presented on the surface of specialized APCs they become 

activated, clonally expand and differentiate into effector lymphocytes that can migrate 

to B cell areas or to inflamed tissues where they mediate clearance of the pathogen.  

 

After resolution of the infection, 90%–95% of antigen-specific T cells die by 

programmed cell death, leaving behind a long-lived population of resting T cells, 

called memory T cells, which provide protection upon re-infection (Fig. 2). Memory 

T cells form the cellular basis of immunological memory which can last for decades 

and is dependent on cell division (Bellier et al., 2003).  

 

Memory T cells possess several properties crucial for their function, including higher 

frequencies than naïve precursors, the ability to rapidly reactivate upon antigen 

stimulation, the ability to survive and self-renew for long periods in the absence of 

cognate antigen and wide tissue distribution. Indeed, whereas only a minority of naïve 
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T cells can be found in peripheral sites as part of their recirculation (Cose et al., 

2006), memory cells can be found in virtually all tissues of the body (Reinhardt et al., 

2001; Stockinger et al., 2004). Importantly for HIV-1 pathogenesis, a large population 

of memory CD4+ T cells resides in mucosal sites (particularly the lamina propria) 

(Paiardini et al., 2008). 

 

Naïve and memory CD4+ T cells can be distinguished by expression of distinct 

surface markers. In mice, naïve cells express CD62L and low levels of CD44, 

whereas memory cells lose CD62L and gain high levels of CD44 expression. Other 

markers are transiently expressed by memory cells upon activation, such as CD25, 

CD69 and CD43. 

 

Memory T cells are heterogeneous in terms of both homing capacity and effector 

function and are classified as central memory (TCM) and effector memory T cells 

(TEM) (Sallusto et al., 1999). TCM cells home to lymph nodes and have limited effector 

function, but they proliferate and become effector cells upon secondary stimulation. 

By contrast, TEM cells are able to enter peripheral non-lymphoid tissues, can rapidly 

produce effector cytokines such as interferon-γ (IFN-γ) upon antigenic stimulation, 

but have limited proliferative capacity (Bouneaud et al., 2005; Lanzavecchia and 

Sallusto, 2005). It has been suggested that TCM cells act as memory stem cells, self 

renewing and at the same time continuously replenishing the TEM pool (Lanzavecchia 

and Sallusto, 2002). 

 

Although several models have been proposed, there is good evidence that T cells 

differentiate progressively according to a linear sequence: from naïve T cell to central 
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memory cell to effector memory cell. Lanzavecchia and Sallusto have proposed that 

these two memory populations result from survival of effector cells and intermediate 

cells generated in a primary infection that are arrested at different stages of 

differentiation. This progressive differentiation theory is based on the fact that these 

stages depend on the strength of antigenic and cytokine stimulation that a cell has 

received (Lanzavecchia et al., 2002).  
 

1.2.1.2. Regulatory CD4+ T cells 

Naturally-occurring regulatory CD4+ T cells originate in the thymus and migrate to 

the periphery as a different lineage of CD4+ T cells (Fig. 2). They are called 

regulatory because they are committed to suppressing both physiological and 

pathological immune responses and are essential in establishing and maintaining self-

tolerance and immune homeostasis. In mice, depletion of regulatory CD4+ T cells 

activates self-reactive T cell clones inducing widespread autoimmune/inflammatory 

diseases in otherwise normal animals. Humans suffering from IPEX 

(immunodysregulation, polyendocrinopathy and enteropathy X-linked) syndrome lack 

regulatory T cells and develop autoimmune diseases and severe allergies (Sakaguchi 

et al., 2006). 

 

Naturally-occurring regulatory CD4+ T cells have several features that make them 

unique among other T cells. Most regulatory CD4+ T cells are produced by the 

thymus as a functionally distinct and mature T cell subpopulation, i.e. they are already 

specialized for suppressive function even before antigen encounter. Their TCR 

repertoire is as broad and diverse as that of naïve cells but it is more self-reactive and 
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only partially overlapping with that of naïve T cells (at least in mice) (Sakaguchi et 

al., 2006). 

 

 Regulatory CD4+ T cells do not produce proinflammatory cytokines upon antigenic 

stimulation and therefore do not cause harm to the host despite high self-reactivity. 

Finally, they potently suppress the activation, proliferation and/or effector function of 

other CD4+ and CD8+ T cells, and possibly NK cells, NK T cells, B cells and 

dendritic cells (DCs) (Sakaguchi et al., 2006). 

 

Regulatory CD4+ T cells account for approximately 10% of peripheral CD4+ T cells 

and most express the CD25 marker on the cell surface. Indeed regulatory CD4+ T 

cells have an activated phenotype, with expression of a number of activation markers 

including cytotoxic T lymphocyte Ag 4 (CTLA-4), glucocorticoide induced tumor 

necrosis factor receptor related protein (GITR), CD134 and LFA-1. Regulatory CD4+ 

T cells are also characterized by lower levels of the α chain of the IL-7 receptor 

(CD127) (Liu et al., 2006; Seddiki et al., 2006).  

 

The most reliable marker of regulatory CD4+ T cells at present is however the 

expression of the transcription factor forkhead box P3 (FoxP3) (Hori et al., 2003; 

Fontenot et al., 2003; Khattri et al., 2003). It is becoming clear that FoxP3 can also be 

transiently expressed in peripheral naïve T cells without inducing suppressor function. 

It has been proposed that regulatory CD4+ T cells lineage is rather determined by a 

high-order regulatory system that sustains high levels of FoxP3 (Hori, 2008). 
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In the mouse, it has been shown in a number of experimental settings that regulatory 

CD4+ T cells can also be induced by antigen in the periphery. These cells are called 

adaptive regulatory CD4+ T cells and are phenotypically and functionally 

indistinguishable from the thymus-derived naturally occurring regulatory CD4+ T 

cells (Thorstenson and Khoruts, 2001; Cobbold et al., 2004; Apostolou and von 

Boehmer, 2004). However it is questionable whether these cells are generated in 

physiological situations. 

 

Regulatory CD4+ T cells are not anergic but they have proliferative capacity in vivo. 

They expand when transferred into lymphopenic hosts (Annacker et al., 2001; Gavin 

et al., 2002) and in response to immunization (Walker et al., 2003). In normal 

unmanipulated mice, regulatory T cells are heterogeneous: some are quiescent while 

others are constantly cycling and have an activated phenotype (Fisson et al., 2003). 

For this reason, these subsets are sometimes called ‘naïve’ and ‘memory’ regulatory T 

cells, respectively. 

 

In humans it has been shown that regulatory T cells are highly proliferative but very 

susceptible to apoptosis resulting in a limited self-renewal capacity. It has been 

proposed that they are continuously recruited from the memory CD4+ T cell pool 

(Vukmanovic-Stejic et al., 2006) and various studies showing homology of TCR 

repertoire strongly support this idea (Kasow et al., 2004; Scheinberg et al., 2007; 

Ebinuma et al., 2008; Vukmanovic-Stejic et al., 2006).  
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1.2.2. Lymphocyte homeostasis  

Lymphocyte homeostasis is the process by which appropriate numbers of 

lymphocytes are maintained. Indeed, except fluctuations during infection or stress and 

predictable age-related changes, the number of lymphocytes stays within a relatively 

narrow range (Grossman et al., 2004). Homeostatic regulation occurs to maintain total 

numbers of lymphocytes but also diverse subpopulations of lymphocytes.  

 

1.2.2.1. CD4+ and CD8+ T cell homeostasis 

CD4+ T cells are key players in the adaptive immune system being involved in both 

cellular and humoral responses whereas CD8+ T cells are involved in response to 

viruses and tumours. In mice, the number of CD4+ and CD8+ T cells is co-regulated, 

i.e., in the absence of either subset the other will compensate to achieve the same total 

number of T cells (Freitas and Rocha, 2000). In MHC-I-/- and MHC-II-/- or CD4-/-  and 

CD8-/- mice, the absence of either of the two T cell subsets can be compensated by the 

remaining subset and the total number of T cells remains similar to that of normal 

mice (Tanchot et al., 1997). 

 

Similarly, most people with primary MHC-II deficiency, also known as the Bare 

Lymphocyte Syndrome, have normal number of circulating total T cells, but the 

number of CD4+ T lymphocytes is reduced (Reith and Mach, 2001). Conversely, 

patients with absence of CD8+ T cells due to mutations in the CD8α gene display 

normal numbers of CD3+ T cells (Calle-Martin et al., 2001). 
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With age, the CD4:CD8 ratio in mice is reduced. This reduction is due to oligoclonal 

expansion of CD8+ T cells responding to environmental antigens (Callahan et al., 

1993) and it is therefore dependent on the health status of the mice. In contrast, mice 

kept in specific pathogen free (SPF) facilities, the CD4:CD8 ratio remains constant or 

even increases with time (Bourgeois et al., 2005). 

 

Similar to mice housed in conventional facilities, the ratio CD4:CD8 drops in ageing 

humans. This is often due to expansion of cytomegalovirus (CMV)-specific CD8+ T 

cells (Khan et al., 2002). Interestingly, the changes seen in ageing humans show many 

common features with changes seen in untreated HIV-1 infected patients, for example 

drop in CD4:CD8 ratio, decreased thymic output and reduced naïve cell numbers 

(Appay and Rowland-Jones, 2002). 

 

1.2.2.2. Naïve and memory T cell homeostasis 

The maintenance of balanced naïve and memory compartments is critical for immune 

function: diverse naïve T cell repertoire ensures adequate responses against new 

pathogens while memory T cells respond rapidly on re-encountering the same 

pathogens (Ge et al., 2002). 

 

The size of the naïve T cell pool is much more dependent on the input of new thymus 

emigrants than the size of the memory pool (Freitas et al., 2000) and in normal mice 

naïve T cells divide infrequently (La Gruta et al., 2000).  

 

Pivotal studies on the kinetics of bromodeoxyuridine (BrdU) labelling of T cells in 

BrdU-treated mice have shown that memory cells have a much higher rate of division 
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(turnover) than naïve cells (Tough and Sprent, 1994) and the same has been 

confirmed in humans by using different methods such as ex vivo BrdU incorporation 

(Geginat et al., 2003), Ki67 expression (Champagne et al., 2001), and in vivo 

incorporation with deuterated glucose into DNA (Macallan et al., 2003; Macallan et 

al., 2004). 

 

The pools of naïve and memory T cells are maintained independently, at least in 

steady state conditions (Stockinger et al., 2004), implying that the generation of new 

memory cells  results in competition for survival with existing memory cells, but not 

with naïve T cells (Tanchot et al., 1997; Bourgeois et al., 2005). Consequently, the 

sensors for space must differ between naïve and memory cells, and these pools are 

often referred to as occupying distinct ‘niches’ (Freitas et al., 2000). 

 

Because naïve T cells depend on replenishment from the thymus, with ageing and 

thymic atrophy, their numbers are reduced. Memory cell numbers, on the other hand, 

are not reduced in ageing animals (Bourgeois et al., 2005). The naïve T cell pool in 

humans is thought to be less reliant on thymic function than in mice, and displays a 

certain degree of self-renewal capacity. As a result, numbers of  peripheral T cells in 

ageing humans decline less than in ageing mice (Goronzy and Weyand, 2005; Akbar 

et al., 2004).   

 

1.2.2.3. Lymphopenia driven proliferation 

T cell lymphopenia can occur after chemo- or radiotherapy or after certain infections, 

for instance transiently in measles (Okada et al., 2000) and highly virulent Influenza 

A infection (Tumpey et al., 2000) and chronically in HIV-1 infection. 
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In lymphopenic conditions, the requirements for homeostatic proliferation differ from 

those of an immune response. Indeed, both naïve and memory cells extensively divide 

in the absence of their nominal antigen (Jameson, 2002). Naïve CD4+ and CD8+ T 

cells that proliferate under these conditions convert to a memory-like phenotype and 

lose their naïve status (Murali-Krishna and Ahmed, 2000; Tanchot et al., 2001). 

Interestingly, although the existence of memory CD4+ cells of broad repertoire 

efficiently inhibits proliferation/differentiation of naïve CD4+ T cells, a memory 

population of similar size but with a repertoire of limited diversity fails to do so (Min 

et al., 2004).  

 

1.2.2.4. Shared resources: the niche effect  

One of the hypothesized mechanisms by which the homeostatic control of cell 

numbers is achieved is that lymphocyte populations must compete for survival signals 

and resources are limited. To avoid competition, exclusion and to maintain diversity, 

cell populations have different requirements for resources defining different 

‘ecological niches’ (Tanchot et al., 1997). 

 

The survival of naïve T cells requires continuous contact with self peptides bound to 

MHC molecules together with interleukin (IL)-7. In contrast, survival of memory T 

cells is less reliant on TCR ligation. At least for memory CD8+ T cells, the turnover 

and survival is controlled mainly by cytokines, namely IL-7 which enhances survival, 

and IL-15, which mediates proliferation (Goldrath et al., 2002; Tan et al., 2002; 

Kieper et al., 2002). What controls turnover and survival of CD4+ memory T cells is 
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not clear but IL-7 and IL-15 have also been implicated, as has been TCR signalling 

(Li et al., 2003; Seddon et al., 2003). 
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1.3. Selectivity of HIV/SIV/FIV for memory and regulatory CD4+ 

T cells 

 

1.3.1. Cellular tropism of HIV and SIV 

The key event in the course of viral entry into a target cell is the interaction between 

the virus and its cellular receptor(s). Both viral cell tropism and pathogenicity are 

determined by the specificity of these interactions.  

 

The CD4 molecule is the primary cellular receptor for HIV-1 and HIV-2 (Dalgleish et 

al., 1984; Klatzmann et al., 1984). These viruses bind CD4, which causes a change in 

the viral entry proteins, allowing them to bind the co-receptor and enter the cell 

(Doms and Moore, 2000).  

 

HIV-1 predominantly uses two different major co-receptors: CCR5 (Alkhatib et al., 

1996; Deng et al., 1996; Dragic et al., 1996) and CXC chemokines receptor (CXCR4) 

(Feng et al., 1996). These are members of the family of seven-transmembrane 

spanning chemokines receptors. CCR5 is almost always the initial target co-receptor 

for naturally transmitted virus. However, in about 50% of HIV-infected individuals 

progressing to AIDS, CXCR4-using viruses emerge late in the course of disease 

(Scarlatti et al., 1997). These ‘X4’ strains are more virulent than the initial ‘R5’ 

strains and probably accelerate the depletion of CD4+ T cells and the onset of disease. 

However, switch to CXCR4 is not necessary for disease progression. Certain variant 

strains are dual tropic and exhibit features of both groups. There are more than a 
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dozen of other minor co-receptors that HIV can use in vitro, but their significance in 

vivo is not clear (Clapham and McKnight, 2001). 

 

Accordingly, HIV mainly infects hematopoietic cells that express CD4 and CCR5 or, 

in late stages of disease of some individuals, CXCR4. It is interesting to note that a 

broader use of receptors and co-receptors would mean a wider cell tropism which 

could be advantageous for the virus. However HIV has not evolved variants capable 

of using alternative receptors/co-receptors. The factors that restrict the use of co-

receptors other than CCR5 and CXCR4 in vivo are not known (Clapham et al., 2001).  

 

CD4 is expressed predominantly in lymphocytes but can also be expressed by cells of 

the monocyte-macrophage lineage, dendritic cells and microglia cells in the brain.  

 

CCR5 is expressed in memory/activated and regulatory CD4+ T cells (Bleul et al., 

1997; Oswald-Richter et al., 2004) and directs their migration along CCL3 

(macrophage inflammatory protein 1α- MIP-1α), CCL4 (MIP-1β) and CCL5 

(regulated upon activation, normal T cell expressed and secreted (RANTES)) 

gradients (Samson et al., 1996; Raport et al., 1996). CD4+ CCR5+ T cells are 

infrequent in the peripheral blood, lymph nodes and spleen but account for almost all 

CD4+ T cells in other tissues including the mucosal surfaces of the intestine, 

respiratory and reproductive tract. CCR5 expression has also been reported (primarily 

from mouse studies) on multiple other cell types including macrophages, dendritic 

cells, neutrophils and hepatic stellate cells.  
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CXCR4 is more widely expressed in cells of both the immune, particularly by naïve T 

cells (Bleul et al., 1997) and the central nervous systems and regulates cell migration 

along gradients of stromal cell-derived factor-1 (SDF-1 or CXCL12) (Oberlin et al., 

1996; Bleul et al., 1996).  

 

The importance of CCR5 as primary co-receptor for the pathogenesis of AIDS is 

illustrated by the fact that individuals with polymorphisms in the CCR5 gene show 

increased resistance to HIV infection and/or slower disease progression (Michael, 

1999).  

 

Similar to HIV, primary SIV isolates use CD4 as the main receptor and mainly CCR5 

as co-receptor for host cell entry (Chen et al., 1998; Gautam et al., 2007). However, 

unlike HIV, co-receptor switching form CCR5 to CXCR4 has not been demonstrated 

in vivo for SIV. A switch from macrophage-tropism to lymphocyte tropism has been 

shown to be due not to co-receptor switching but to the way CCR5 is exploited as co-

receptor (Mori et al., 1992).  

 

1.3.2. Receptors for FIV 

FIV, the feline immunodeficiency virus, is the only non primate lentivirus that causes 

a disease similar to AIDS in its natural host species, the domestic cat (Pedersen et al., 

1987).  

 

The feline immunodeficiency syndrome is characterized by a progressive decline in 

the number of circulating CD4+ T cells and an associated inversion of the CD4:CD8 

ratio, activated CD8+ T cells, polyclonal B cell activation and 
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hypergammaglobulinemia (Willett et al., 1997b; Novotney et al., 1990). Clinical 

manifestations include wasting, neurological disturbances, chronic stomatitis and 

gingivitis and increased incidence of lymphoma.  

 

In contrast to HIV and SIV, however, FIV does not use CD4 as its viral receptor. The 

primary receptor for FIV is CD134 (or OX40) (Shimojima et al., 2004), a T cell 

activation antigen and co-stimulatory molecule. CXCR4 is the sole co-receptor for 

infection (Willett et al., 1997a) although with disease progression, the viral cell 

tropism becomes broader (English et al., 1993; Dean et al., 1996).  

 

CD134 is a member of the tumour necrosis factor receptor (TNFR) superfamily 

(TNFRSF4) (Watts, 2005). It is a co-stimulatory receptor that, unlike CD28, is not 

constitutively expressed on naïve CD4+ T cells but is induced within 12-24 hours after 

antigen recognition, peaking at 48 hours and declining after 72 to 96 hours 

(Gramaglia et al., 1998). In regulatory CD4+ T cells, expression of CD134 is 

constitutive (Takeda et al., 2004; McHugh et al., 2002). Although largely restricted to 

CD4+ T cells, under conditions of strong antigenic stimulation, CD134 can also be 

induced in CD8+ T cells (Baum et al., 1994). 

 

CD134 ligand is normally expressed on APCs such as B cells, dendritic cells, 

macrophages and endothelial cells when activated (Watts, 2005). 

 

Thus, although using different receptor/co-receptor combinations, all retroviruses that 

cause immunodeficiency predominantly target the same type of cells, i.e. 

activated/memory CD4+ T cells and regulatory CD4+ T cells (Fig. 3).  
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Figure 3. Immunodeficiency viruses target memory and regulatory CD4+ T cells. 

Viral cellular tropism is dictated by receptor/co-receptor usage: HIV and SIV use the 

broadly expressed CD4 molecule as receptor for host cell entry, while the specificity 

of the target cells is given by the more strictly expressed co-receptor, CCR5, which is 

solely expressed in activated/ memory and regulatory CD4+ T cells. FIV, on the other 

hand, utilizes the broadly expressed co-receptor CXCR4. Specificity for target cells in 

this case is given by the usage of CD134 as receptor. 
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1.4. Pathogenesis of HIV/SIV infections 

Virtually every arm of the immune response is affected by HIV, but the precise 

mechanisms that lead to immune dysfunction are still poorly understood. While it is 

now clear that CD4+ T cell numbers decrease because there is a failure to replenish 

them, what drives their loss in the first place is unclear.  

 

1.4.1. Tap and drain hypothesis 

Early studies done even before the HIV-1 receptor was discovered showed that 

infected CD4+ T cells are directly killed by the virus, providing a logical explanation 

for the progressive decline of these cells in HIV-infected individuals (Ho et al., 1995; 

Wei et al., 1995). 

 

According to this ‘tap and drain’ model of CD4+ T cell depletion, the rate of CD4+ T 

cell destruction by HIV is too fast to be compensated for by natural CD4+ T cell 

production by the immune system, ultimately resulting in CD4+ T depletion (Ho et al., 

1995). 

 

The impact of HIV-1 on the human immune system could be solely explained by the 

crucial role CD4+ T cells have in coordinating a range of immune functions. 

However, there was a discrepancy between the number of infected CD4+ cells in the 

circulation and extend of T cell dysfunction. This issue was clarified when it was 

shown that HIV infected T cells are trapped in the follicular dendritic cells network in 

the lymph nodes (Spiegel et al., 1992). Indeed we now know that in the early stages of 
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infection 1,000-times more infected cells are present in lymphoid tissue that can be 

found in the blood (Pantaleo et al., 1993; Embretson et al., 1993). 

 

1.4.2. Immune activation hypothesis 

While some recent studies (Okoye et al., 2007) continue to indicate a role for viral 

destruction in CD4+ T cell depletion, other important experimental observations 

suggest that factors others than (or in addition to) destruction by viral infection are 

responsible for CD4+ T cell depletion in the setting of HIV-1 infection. 

 

It has been shown that during chronic HIV infection, more CD4+ T cells die that can 

be accounted for by direct infection, and that, in fact, an increased death rate is 

observed in non-target cells, such as CD8+ T cells (Finkel et al., 1995). This bystander 

loss of uninfected T cells is thought to be related to a state of generalized immune 

activation that is consistently associated with HIV infection.  

 

This immune activation is characterized by increased frequencies of B and T cells 

expressing activation markers and exhibiting a memory phenotype, increased plasma 

levels of proinflammatory  cyokines and increased turnover of T and B and NK cells 

and accessory cells (Grossman et al., 2006). 

 

Based on these findings, it has been proposed that chronic immune activation plays a 

key role in the HIV-associated CD4+ T cell depletion. Consistent with this model is 

the finding that the expression of activation markers on T cells is a strong predictor of 

disease progression in HIV-infected individuals, independently of viral loads (Muro-

Cacho et al., 1995; Giorgi et al., 1999; Leng et al., 2001; Sousa et al., 2002). 
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Thus, HIV-associated chronic immune activation results in a constant recruitment of 

CD4+ T cells from the central memory and naïve pools to the effector pool, thus 

creating a strain on the homeostatic mechanisms of CD4+ T cell maintenance.  

 

The causes of this generalized immune activation are however not well understood. 

Possible proposed causes include HIV antigens and non-HIV antigens such as 

translocated microbial products and impairment of regulatory T cells. 

 

Recent studies have shown that HIV encodes single stranded RNA sequences that can 

directly activate the immune system via Toll-like receptor (TLR)7 and TLR8 (Meier 

et al., 2007). Another proposed cause of immune activation is based on the early 

direct cytopathic effects of HIV on the gastrointestinal tract CD4+ T cells. As a 

consequence of the depletion of these cells, the integrity of the mucosa is 

compromised, which in turn allows commensal bacterial to leak into the circulation (a 

phenomenon known as microbial translocation) (Brenchley et al., 2007). Chronic 

immune activation may also be due to antigen processing during cell death. In HIV 

infection, CD4+ T cells die predominantly by apoptosis - the process of programmed 

cell death. Excessive levels of T cell apoptosis in HIV-1 infection release protein 

fragments that trigger the formation of autoreactive CD8+ T cells. These CD8+ T cells, 

that would normally not be activated, undergo clonal expansion and are primed by 

cross-presenting APCs, which in turn cause more apoptosis and results in chronic 

immune activation (Rawson et al., 2007). Eventhough this may occur, it is known that 

apoptotic cells are cleared by macrophages. Finally, the susceptibility of regulatory T 
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cells to HIV infection (Oswald-Richter et al., 2004) may remove the control of 

excessive immune activation. 

 

The relationship between immune activation and progressive immune deficiency is 

supported by studies in non-human primates. Sooty mangabeys present high levels of 

SIV replication but manifests limited evidence of disease (Rey-Cuille et al., 1998). 

This lack of pathogenicity is accompanied by absence of the extensive immune 

activation and cellular proliferation that characterizes SIV infection of other primates 

such as the rhesus macaque, in which immune activation closely mimics the 

activation seen in HIV-infected humans (Chakrabarti et al., 2000). Moreover Sooty 

mangabeys seem to maintain thymic and bone marrow function and do not 

demonstrate bystander lymphocyte apoptosis (Silvestri et al., 2003).  

 

1.4.3. Diminished production 

Not only HIV-1 has an effect on CD4+ T cell dynamics, but it is also responsible for 

alterations in the organs responsible for the primary production of these cells. Indeed 

late stages of HIV infection are often characterized by cellular hypoproductivity of the 

bone marrow, which is not limited to the CD4+ T cells and leads to the pancytopenia 

that is often observed in advanced AIDS. The mechanisms responsible for this 

impairment of bone marrow productivity are not well understood but concurrent 

infections with opportunistic agents may play a role. Furthermore, hematopoietic 

progenitor cells in the bone marrow are susceptible to infection with HIV (Stanley et 

al., 1992) and their function is impaired (Marandin et al., 1996; Louache et al., 1992). 
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Although some studies show preservation of thymus size (particularly in older 

individuals) (McCune et al., 1998; Kalayjian et al., 2003) and suggest that thymic 

output is maintained in HIV infected individuals (Zhang et al., 1999), there is also 

evidence that HIV can infect thymic stromal cells and that HIV strains that use 

CXCR4 co-receptor can infect thymocytes as well (Berkowitz et al., 1998).  
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1.5. Mouse tools 

Genetic manipulations of the mouse genome, such as random integration of 

transgenes or homologous recombination in embryonic stem cells, are widely used 

and have been instrumental for the understanding of gene function. These 

technologies allow the introduction of a permanent genetic alteration in the mouse 

germ line, but they do not allow manipulating the genome in a spatially or temporally 

controlled manner. For example, a knock-out of a given gene results in the absence of 

its expression in all cells of the animal and throughout pre- and post-natal 

development, thus precluding the analysis of the gene’s function in a specific cell type 

or at a given time.  

 

These conventional genome modifications can be combined with site-specific 

recombination systems to generate tissue-specific, time-specific or inducible genetic 

alterations. 

 

1.5.1. Conditional mutagenesis: the Cre-loxP system 

The Cre/loxP recombination system has been successfully used as a tool for genome 

engineering (Sauer, 1998). Cre is a 38 kDA recombinase protein from bacteriophage 

P1 which catalizes site specific recombination between two loxP sites (locus of 

crossing over). A loxP site consists of two 13 basepair inverted repeats separated by 

an 8 basepair asymmetric spacer region (Fig. 4).  
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Figure 4. Application of Cre/loxP approach for cell type specific expression. 

Expression of Y gene in the double mutant is initiated by cell specific Cre-mediated 

recombination between two loxP sites and consequent excision of a STOP cassette. 

Sequence of a loxP site is depicted in callout balloon. 
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Depending on the relative orientation of the loxP sites, Cre-mediated recombination 

can result in DNA excision or inversion. Recombination between two loxP sites 

positioned in the same orientation excises the intervening DNA whereas 

recombination between loxP sites positioned in inverted orientations inverts the 

intervening DNA sequences. If the two loxP sites are located in different 

chromosomes, the product is a interchromosomal translocation (reviewed in (Sauer, 

1993)). 

 

1.5.1.1. Conditional gene activation 

The exact excision of DNA can be used to eliminate a gene (conditional gene 

deletion) or alternatively to activate a transgene (conditional gene activation) by 

excising an intervening stop sequence between the promoter and the coding region of 

the transgene (Fig. 4).  

 

For this purpose, two mouse strains are required. One is a mouse line expressing Cre 

in a lineage-specific manner. Cre can either be introduced into the genome by 

conventional transgenesis or can be ‘knocked in’ into a defined locus to give the 

required expression. 

 

The second mouse strain has a transgene incorporated whose 5' regulatory elements 

are separated from the coding region with a loxP-flanked (or floxed) stop sequence. 

The recombination, i.e. excision of the stop signal, occurs only in those cells 

expressing Cre depending on the specificity of the Cre construct. Therefore, the 

transgene can be transcribed in this special cell type whereas it remains inactive in all 

other Cre non-expressing cells. 
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This second strain can be used for gene activation in a number of different tissues or 

at different developmental times, by simply mating with a Cre strain that displays the 

desired tissue or temporal specificity of expression. 

 

The Cre/loxP system can also be used to generate inducible gene (in)activation. For 

this purpose, the expression of Cre is controlled by a inducible promoter, for example, 

the promoter of the Mx1 gene. This gene is not expressed in healthy animals, but it is 

transiently activated by interferon (IFN)α or IFNβ or poly-IC. The progeny of mice 

carrying the Mx1-cre transgene and mice carrying a floxed allele can be treated with 

IFN or poly-IC to inactivate the floxed target gene (Kuhn et al., 1995; Seibler et al., 

2003). 

 

1.5.1.2. Strain validation 

The availability of Cre mouse strains in which Cre activity is tightly controlled in 

space and time is critical to the success of conditional mutagenesis. Indeed, leaky 

expression of Cre from a cell-type specific or inducible promoter can occur, resulting 

in recombination events in unwanted cell types (Gustafsson et al., 2001; de Boer et 

al., 2003) or at the wrong time (Kuhn et al., 1995). The expression of Cre can also be 

mosaic, in which case the excision will only occur in a subset of cells of a given tissue 

(Campsall et al., 2002).  

 

Therefore it is essential to evaluate the pattern of Cre expression at the cellular level. 

RNA or DNA methods have the limitation of giving an estimate of the overall 

recombination rate of total populations of cells rather than of individual cells. On the 

other hand, reporter mouse strains allow monitoring of Cre-mediated recombination at 
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the single-cell level. In these lines, expression of a cellular marker (for example 

yellow fluorescence protein (YFP)) can be checked by flow cytometry. 

 

One commonly used reporter mouse strain has the YFP gene targeted to the 

ubiquitously expressed Rosa26 gene locus (Srinivas et al., 2001). As expression from 

the R26 locus is ubiquitous, any leaky expression of Cre can be readily detected. 

Another advantage of this reporter over similar reporters, such as lacZ, is that 

visualization of YFP in living tissue does not require a substrate.  

 

1.5.2. Cell ablation by Diphtheria toxin gene expression 

Diphtheria toxin (DT) is secreted by Corynebacterium diphtheriae, the causative 

agent of diphtheria. Once internalized into a mammalian cell, diphtheria toxin blocks 

protein synthesis and causes rapid cell death. The toxin polypeptide is composed of 

two subunits: DTA and DTB. The DTB subunit binds to the receptor, a cell surface 

expressed heparin-binding epidermal growth factor (HB-EGF), facilitating the 

translocation of DTA into the cell. Once inside the cell, DTA is extremely toxic. Its 

enzymatic activity (ADP rybosylation of elongation factor 2) leads to the inhibition of 

protein synthesis and concomitant host cell death (Collier, 2001; Naglich et al., 1992).  

 

Intracellular production of diphtheria toxin has been used to kill cells in a variety of 

systems. Killing of cells within a selected lineage can be achieved by transgenic mice 

that express the diphtheria toxin under the control of cell-specific regulatory elements 

or have diphtheria toxin ‘knocked-in’ into specific locus (Palmiter et al., 1987; 

Breitman et al., 1987; Kaplan et al., 2005). Alternatively, expression of diphtheria 

toxin in a cell type specific manner can be driven by Cre-expression by using the 
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Cre/loxP system described above (Matsumura et al., 2004; Brockschnieder et al., 

2004). In this case, a floxed stop cassette is inserted between the promoter and the 

DTA gene, thereby preventing expression of the toxin independently of Cre. 

 

1.5.2.1. DTA mode of action 

DT induces apoptosis by inhibition of protein synthesis and activating components of 

the death receptor pathway, thus without inducing inflammation or other side effects 

(Thorburn et al., 2003; Bennett et al., 2005; Miyake et al., 2007). 

 

Studies performed in the related DT receptor (DTR)/DT based system, have shown 

that DTA-mediated depletion occurs within 24 hours after injection of DT (Bennett et 

al., 2005).  

 

Even if released from the cytoplasm of apoptotic cells, the DTA fragment is unable to 

enter neighbour cells in the absence of the DTB fragment, thus preventing non-

specific cell death (Palmiter et al., 1987). In addition, sensitivity of mammalian cells 

to diphtheria toxin varies with the receptor. Rat and mouse cells are resistant because 

their receptor has very low affinity for the toxin (Cha et al., 1999). 
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1.6. Aim of this work 

The aim of this work was to understand the contribution of HIV driven CD4+ T cell 

depletion for AIDS pathogenesis. Due to the complexity of phenomena triggered by 

the virus during infection, it is very difficult to disentangle the relationship between 

cause and effect of CD4+ T cell depletion and immune activation. For this reason, we 

have chosen a reductionist approach to deplete the same cells that HIV targets, 

namely activated CD4+ T cells, in a virus-free system. We have chosen the mouse 

model due to the availability of genetically altered strains that allow us to specifically 

deplete the desired cell types. With this model, we intended to dissociate CD4+ T cell 

depletion from any other effects the virus might have in the development of disease 

and observe whether CD4+ T cell depletion of activated cells alone is sufficient to 

generate all or some of the homeostatic disturbances observed in HIV infection. 
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2. Materials & Methods 

 

2.1. Animals 

Inbred C57BL/6 (B6) and CD45.1-congenic B6 mice (B6.SJL-Ptprca Pep3b/BoyJ) 

were originally obtained from the Jackson Laboratory (Bar Harbor, Maine, USA) and 

were subsequently maintained at NIMR. B6-backcrossed Rag1-deficient mice 

(B6.129S7-Rag1tm1Mom/J or Rag1-/-) (Mombaerts et al., 1992), Rag2-deficient mice  

(B6.129-Rag2tm1Shi or Rag2-/-) (Shinkai et al., 1992), MHCII-deficient mice 

(B6.129S2-H2dlAb1-Ea/J or MHCII-/-) (Madsen et al., 1999) and T cell receptor α 

(TCRα)-deficient mice (B6.129-Tcratm1Phi or Tcra-/-) (Philpott et al., 1992) have been 

previously described  and have also been maintained at NIMR.  

 

Mice with an activatable gene encoding YFP targeted into the ubiquitously expressed 

Gt(ROSA)26Sor (R26) locus have been described (Srinivas et al., 2001) and were 

backcrossed onto the B6 genetic background for at least 10 generations. 

 

Mice with an activatable gene encoding diphtheria toxin fragment A (DTA) targeted 

into the R26 locus were kindly provided by Drs Adam Williams and Dimitris 

Kioussis, Division of Molecular Immunology, NIMR. They were generated by gene-

targeting in embryonic stem cells which were subsequently injected into B6 

blastocysts. Germ-line transmitting R26Dta/+ mice were backcrossed onto the B6 

genetic background for at least 6 generations.  
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Mice with a targeted insertion of Cre recombinase into the Tnfrsf4 locus have been 

kindly provided by Dr Nigel Killeen, Department of Microbiology and Immunology, 

University of California, USA, and were backcrossed onto the B6 genetic background 

for at least 6 generations.  

 

To obtain Tnfrsf4Cre/+ R26Dta/+ progeny, homozygous Tnfrsf4Cre/Cre mice were mated 

with heterozygous R26Dta/+ mice. In all experiments Tnfrsf4Cre/+ R26+/+ littermates 

were included as controls for Tnfrsf4Cre/+ R26Dta/+ mice to control for any potential 

effects of CD134 hemizygosity.  

 

Mice with intestinal epithelial cell-specific deletion of Ikbkg (encoding for IKKγ, also 

called NEMO) were obtained by crossing mice with a floxed Ikbkg allele (Ikbkgfl/-) 

with mice expressing Cre under the intestinal epithelial-specific Villin promoter (Vil-

Cre) and have been previously described (Nenci et al., 2007). Ikbkgfl/- Vil-Cre and 

control Ikbkgfl/- mice were bred and maintained at the Institute for Genetics, Cologne, 

Germany. Spleens and lymph nodes from Ikbkgfl/- Vil-Cre and control Ikbkgfl/- mice 

were harvested at Cologne and shipped to NIMR, where they were analysed the 

following day.  

 

All animal experiments were conducted according to local government regulations 

and institutional guidelines. 
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2.2. Flow cytometry 

2.2.1. Cell and tissue preparation 

Single cell suspensions were prepared from thymus, spleen or lymph nodes of donor 

mice by mechanical disruption through a 70 µm cell strainer (Falcon, Becton 

Dickinson Labware). All cell suspensions were prepared and kept in Air-Buffered 

(AB) Iscove’s Modified Dulbecco’s Medium (IMDM) containing 25 mM HEPES 

buffer and L-glutamine and supplemented with 0.21% NaCl, 60 µg/ml penicillin, 100 

µg/ml streptomycin (Invitrogen, Life technologies), and 2% heat inactivated foetal 

calf serum (FCS) from BioSera.  

 

Spleen cell suspensions were treated with ACK lysis buffer (0.15 M NH4Cl, 1 mM 

KHCO3, 0.1 mM EDTA, pH 7.2-7.4) for erythrocyte lysis. Bone marrow cell 

suspensions were prepared by flushing the bone cavities of femurs and tibiae from 

donor mice with AB IMDM and red blood cells were lysed with ACK lysis buffer. 

Peritoneal cells were obtained by carefully injecting 5 ml of AB IMDM intra-

peritoneally (i.p.) in euthanized mice, followed by gentle abdominal massage and 

subsequent aspiration of medium-containing cells.  

 

Cell numbers were determined by an automated cell counter (Casy1, Schaerfe 

Systems). Lymph node cellularity was calculated as the sum of the cellular contents of 

inguinal, axillary, brachial, superficial cervical and mesenteric lymph nodes. Total 

numbers of each cell type in each organ were calculated from the frequency of each 
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cell type determined by flow cytometry, and the total number of cells recovered from 

each organ. 

2.2.2. Cell surface marker staining 

Cell surface expression of lymphocyte antigens was measured by monoclonal 

antibody (mAb) staining of freshly isolated cells, followed by Fluorescence Activated 

Cell Sorter (FACS) analysis. Cell concentrations were adjusted to 107cells/ml for 

analysis. Cells were incubated with anti-FcR monoclonal antibody (2.4G2) to block 

non-specific binding through Fc receptors, and stained with directly-conjugated 

antibodies to surface markers or biotin-conjugated mAbs for 20-30 minutes, followed 

by PE-TexasRed-, APC-Cy7- or PerCP-streptavidin staining. All stainings were 

performed at 4oC and cells were washed with FACS buffer (phosphate-buffered saline 

(PBS), 2% FCS, 0.1% azide). Antibodies used were obtained from eBiosciences, 

CALTAG/Invitrogen, BD Biosciences or prepared at NIMR and are summarized in 

Table 1.  

 

Shedding of the adhesion molecule L-selectin (CD62L) was prevented by preparing 

cell suspensions in medium containing 50 µM of the inhibitor TAPI-2 (Peptides 

international, Inc) in an adaptation of a previously described procedure (Jabbari and 

Harty, 2006). 

 

Up to 4-colour samples were acquired on an analytical flow cytometer (FACSCalibur, 

BD Biosciences) and analyzed with FlowJo v8.7 software (Tree Star Inc). Up to 8-

colour cytometry was performed on a CyAn flow cytometer (Dako) and analyzed with 

Summit v4.3 analysis software (Dako). 
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 Table 1: Specificity and clone name of anti-mouse Abs used for extra-cellular 

staining. Alternative names are show in parenthesis. 

 
Specificity Clone name Company 
Fcγ III/II R 2.4G2 Made at NIMR 
CD4 (L3T4) RM4-5 eBiosciences / Caltag 
CD8a (Ly-2) 53-6.7 eBiosciences /BD Biosciences 
CD11b (Mac1α; integrin αM 
chain) 

M1/70 eBiosciences 

CD11c  (integrin αX chain) N418 eBiosciences 
CD19 MB19-1 eBiosciences 
CD25 (IL-2 receptor α chain PC61.5 eBiosciences 
CD38 90 eBiosciences 
CD43 (Ly-48; leukosialin) 1B11 BD Biosciences  
CD44 (Pgp-1; H-CAM; Ly-24) IM7 eBiosciences 
CD45.1 (Ly-5.1) A20 eBiosciences 
CD45.2 (Ly-5.2) 104 eBiosciences 
CD45R (B220) RA3-6B2 eBiosciences 
CD45RB C363.16A eBiosciences 
CD49b (integrin α2 chain) HMα2 BD Biosciences  
CD62L (L-selectin; LECAM-
1; Ly-22) 

MEL-14 eBiosciences 

CD70 FR70 eBiosciences 
CD103 (integrin αIEL chain) 2E7 eBiosciences 
CD127 (IL-7receptor α chain) A7R34 eBiosciences 
CD134 (Ox40) OX-86 eBiosciences 
TCR β H57-597 eBiosciences 
IgM DS-1 BD Biosciences  
IgD 11-26c eBiosciences 
MHCII (I-Ab) M5/114.15.2 eBiosciences 
Ter119/Erythroid cells (Ly-76) TER-119 eBiosciences 
Gr1 (Ly-6G) RB6-8C5 eBiosciences 
F4/80 BM8 eBiosciences 
GL7 (Ly-77) GL-7 BD Biosciences  
Glyco-Gag 34 Made at NIMR 
mIgG2b-FITC R12-3 BD Biosciences  
2nd layers   
streptavidin-PETxR  Caltag  
streptavidin-APCCy7  BD Biosciences  
streptavidin-PerCp  BD Biosciences  
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2.2.3. Intracellular cytokine staining 

For intracellular cytokine staining, cytokine production was induced by stimulating 

cells for 4 hours with phorbol 12, 13-dibutyrate (PDBu) and ionomycin (both at 0.5 

µg/ml, from Sigma chemical Co) at 37°C, together with surface staining antibodies. 

One hour later, an inhibitor of intracellular transport, monensin (at 1µg/ml), was 

added to block secretion of cytokines. Three hours later, cells were washed and 

resuspended in fixation buffer (eBioscience) for 20 minutes at room temperature (RT) 

and then washed and incubated in permeabilization buffer (eBioscience) with 

antibodies for cytokine staining for one hour at RT. Antibodies used for cytokine 

intracellular staining are summarized in Table 2. 

 

Table 2: Specificity and clone name of anti-mouse Abs used for cytokine intra-

cellular staining. 

Cytokines Clone name Company 
IFN-γ XMG1.2 eBiosciences 
IL-10 JES5-16E3 eBiosciences 
IL-2 JES6-5H4 eBiosciences 
TNF-α MP6-XT22 eBiosciences 
IL-4 11B11 eBiosciences 
IL-17A TC11-18H10.1 eBiosciences 
 

 

2.2.4. FoxP3 intranuclear staining 

Intranuclear staining for Foxp3 was done with a Foxp3 staining kit purchased from 

eBioscience following manufacturer’s instructions. Briefly, 106 cells were first stained 

for surface molecules. Cells were then washed and incubated for 1 hour at 4°C with 

fixation/permeabilization buffer and then washed 3 times with permeabilization buffer 
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followed by staining with anti-Foxp3 antibody (Clone FJK-16s) at 4°C for at least 30 

minutes. 

 

2.2.5. Analysis of cell turnover by BrdU 

BrdU is a thymidine analogue that incorporates into dividing cells during DNA 

synthesis (Gratzner, 1982). Mice were given BrdU (Sigma chemical Co) -containing 

water (0.8 mg/ml) for 7 days following a single i.p. administration of 0.8 mg of BrdU. 

BrdU-containing water preparations were made fresh or kept frozen, changed daily 

and kept protected from light. Single cell suspensions of the spleen and lymph nodes 

were labelled with cell-surface antibodies, as usual, washed and fixed for one hour to 

overnight with fixation buffer (eBioscience) and washed. Afterwards they were 

incubated with 0.1% NP40 (Sigma chemical Co) in PBS-azide-free for 3 minutes on 

ice, washed twice and stained with 20-40 µl of  FITC-conjugated anti-BrdU (clone 

B44) with DNase (FastImmune Anti-BrdU FITC with DNase) in the dark for one 

hour. 

 

2.2.6. Analysis of cell turnover by Ki67 

Ki67 is a nuclear cell proliferation-associated antigen expressed in all active stages of 

the cell cycle (Kubbutat et al., 1994) that was detected by intranuclear staining. The 

fixation protocol and reagents used were similar to the ones used for FoxP3 staining 

except that 20 µl of PE mouse anti-human Ki-67 or matched isotype control were 

used (clone B56 and clone MOPC-2, respectively, both provided in PE mouse anti-

human Ki-67 set from BD Pharmingen). 
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2.2.7. Analysis of apoptosis by Annexin V staining 

Apoptosis was assessed by Annexin V staining. In the early stages of apoptosis, cells 

expose phospholipid phosphatidylserine to the external cellular environment which is 

bound by Annexin V. Cells that are undergoing apoptosis can therefore be detected by 

flow cytometry using Annexin V conjugated to a fluorochrome (Vermes et al., 1995). 

 

Apoptotic cells were stained using an AnnexinV-PE Apoptosis detection Kit (BD 

Biosciences) according to the manufacturer’s instructions. Briefly, cells were stained 

with 5 µl of Annexin V-PE and 5 µl of 7-AAD in binding buffer provided for 15 

minutes at RT in the dark and analysed within one hour. 

 

2.2.8. Cell purification and sorting 

Target cells were enriched in lymph node and spleen suspensions using 

immunomagnetic positive or negative selection (EasySep beads, StemCell 

Technologies) according to the manufacturer’s instructions. For example, for in vitro 

T cell activation experiments, negative selection was performed by first staining the 

cells with CD8α- and B220-PE conjugated antibodies. Then, PE selection cocktail 

was added and single cell suspension incubated at RT for 20 minutes. Magnetic beads 

were added and incubated for a further 15 minutes at RT. The tube containing the 

cells was then placed on a magnet (EasySep Magnet) for 10 minutes and supernatant 

was poured off to a new tube which was loaded on the magnet. After repeating this 

procedure two times, negatively-selected cells were collected, centrifuged and 

counted.  
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For in vivo regulatory CD4+ T cell transfers, positive selection was done following the 

same purification procedure as described above, with the exception that cells were 

initially stained with CD25 PE-conjugated antibody and in the last step, tube with 

cells was placed on the magnet for 5 minutes, and supernatant was poured off. After 

two washes, positively-selected cells were collected by removing the tube from the 

magnet.  

 

Enriched cell suspensions were counted and when necessary stained with antibodies 

to surface markers and then further purified by cell sorting, performed on MoFlo cell 

sorters (Dako) by the NIMR Cell Sorting facility. Typical cell purity following cell 

sorting was higher than 98%. 

 

2.3. In vitro T cell activation 

Culture medium used for in vitro cultures and cell lines was IMDM supplemented 

with 5% heat inactivated FCS (BioSera) and 2 mM L-glutamine, 100 U/ml penicillin, 

100 µg/ml streptomycin and 10-5 M mercaptoethanol (all Sigma Chemicals Co). 

 

For YFP in vitro kinetics, single cell suspensions were prepared from the spleen and 

lymph nodes of Tnfrsf4Cre/+ R26Yfp/+ mice. CD4+ T cells were purified by using CD8/ 

B220 negative selection by Easysep beads and subsequently sorted as CD4+YFP-. 

Depending on the experiment, 0.25 × 106, 0.5 × 106 or 4.5 × 106 sorted T cells per 

well were stimulated in 96 well-plates with CD3/CD28 coated beads (Dynal Mouse 

CD3/CD28 T Cell Expander, Invitrogen Dynal AS), at 1:1 ratio for the indicated 

length of time in IL-2 (10 ng/ml) containing IMDM medium. 
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For in vitro apoptosis analysis, single cell suspensions were prepared from the spleen 

and lymph nodes of Tnfrsf4Cre/+ R26Dta/+ mice. CD4+ T cells were purified as 

described for YFP analysis and sorted as CD4+CD25-CD45RBhigh cells. Purity after 

sort was 98% in one experiment and 99% in another experiment. Depending on the 

experiment, 0.75-1 × 106 sorted naïve T cells per well were stimulated as described 

for YFP analysis. 

 

2.4. Histology 

Organs were collected in formalin immediately after donor death and sent for 

histological analysis (Dr Mark Stidworthy at IZVG Pathology, Leeds, UK). For the 

analysis of growth retarded and normal Tnfrsf4Cre/+ R26Dta/+ mice the following organs 

were collected: skin, kidney, lung, brain, salivary glands, stomach, liver, gall bladder, 

pancreas, small and large intestines, spleen and lymph nodes. Histological sections 

were stained with haematoxylin and eosin (H&E) unless otherwise stated. 

 

2.5. Serum preparation 

Serum was prepared by leaving non-heparinised blood to clot at room temperature for 

2 hours or at 4°C overnight. Clot was then detached from the sides of tubes which 

were then centrifuged at 3,000 rpm for 5 minutes. Clear sera were transferred to new 

tubes which were centrifuged at 12,000 rpm for 5 minutes. Clear sera were transferred 

to new tubes. For luminex assay and detection of serum immunoglobulins, sera were 

stored at -20°C. For neutralizing antibody (nAb) assays, sera were first heat 

inactivated at 56°C for 10 to 15 minutes and then stored at -20°C.  
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2.6. Analysis of serum cytokines by luminex assay 

Simultaneous measurement of serum levels of mouse fibroblast growth factor (FGF) 

basic, vascular endothelial growth factor (VEGF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), interferon-gamma (IFN-γ), tumour necrosis factor 

(TNFα), IL (interleukin) -1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40⁄p70, IL-

13, IL-17, IP-10 (or chemokine (C-X-C motif) ligand 10 (CXCL10)), KC (CXCL1), 

monocyte chemotactic protein-1 (MCP-1 or Chemokine (C-C motif) ligand 2 

(CCL2)), macrophage inflammatory protein-1 α (MIP-1 α or CCL3) and monokine 

induced by IFNγ (MIG or CXCL9) was performed by using a multiplex cytokine bead 

array (20-plex ab bead kit, BioSource), using the Luminex 100 System (Luminex). A 

second experiment was done using a multiplex cytokine bead array (BioRad) allowing 

the detection of seven additional factors: IL-3, IL-9, IL12p70, Eotaxin (CCL11), G-

CSF, MIP-1β (CCL4), regulated upon activation, normal T cell expressed and 

secreted (RANTES or CCL5). 

Serum samples were diluted two fold in PBS, and 50 µl transferred to 96 well plates 

pre-wet in Bio-Plex assay buffer and containing 50 µl of multiplex beads. Samples 

were incubated for 60 minutes at room temperature in a plate shaker (300 rpm) 

followed by 3 washes with Bio-Plex wash buffer and the addition of 50 µl of biotin-

labelled detection antibody. Following 30 minutes incubation at room temperature in 

plate shaker and 3 washes, 25 µl of Streptavidin-PE were added and a further 

incubation step for 10 minutes at room temperature was performed. Following 3 

washes, samples were ressuspended in 150 µl of Bio-Plex assay buffer and analysed 

on the luminex 100 System. 
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2.7. Bone marrow chimeras  

Whole bone marrow cells (after red blood cell lysis) were injected intravenously (i.v.) 

into non-irradiated Rag-deficient mice via the tail vein in 0.1-0.2 ml of AB IMDM. 

Recipient mice were periodically bled via the tail vein to analyse peripheral blood for 

reconstitution and were killed and analysed twelve to fourteen weeks after transfer. 

Donor- and recipient-derived cells were distinguished by cell surface expression of 

CD45.1 or CD45.2 allotypes. In mixed bone marrow chimeras experiments, mixed 

populations were injected at a 1:1 ratio.  

 

2.8. Adoptive transfer of cells 

For transfers into TCRα-/- recipients, titrating amounts of CD4+ T cells (purified by 

positive selection) were injected i.v. via the tail vein in 0.1 ml of AB IMDM. Total 

amount of CD4+ T was considered to be ~6x107/mouse (Bourgeois et al., 2005) and 

percentage of ‘take’ in cell transfer ~20%. Accordingly 3x107, 3x106, 3x105 and 3x104 

cells were transferred to represent 10%, 1%, 0.1% and 0.01% of total CD4+ T cells of 

B6 mice.  

 

For regulatory T cell transfer experiments, 1-3x106 sorted CD4+CD25bright cells (Fig. 

5) from spleen and lymph nodes of WT mice were injected i.v. via the tail vein in 

Tnfrsf4Cre/+ R26Dta/+ and control mice and periodically tail bled. Mice were killed and 

analysed 7-10 weeks post transfer. 
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Figure 5. Sort profile of CD4+CD25bright cells. Cell suspension from spleen and 

lymph nodes from 30 B6.CD45.1 mice were enriched with immunomagnetic positive 

selection for CD25 and further purified by cell sorting. The flow cytometry plot 

shows the positioning of the gate used to sort CD4+CD25bright cells. The plot is of one 

out of 3 independent experiments. In all 3 experiments, purity was ≥98%. 
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2.9. Experimental infections in mice 

2.9.1. Friend virus infection   

The Friend virus (FV) used in this study is a retroviral complex of a replication-

competent B-tropic helper murine leukaemia virus (F-MuLV-B) and a replication-

defective polycythemia-inducing spleen focus-forming virus (SFFVp). The FV stock 

(kindly provided by Dr. Kim Hasenkrug, Laboratory of Persistent Viral Diseases, 

Rocky Mountain Laboratories, NIAID, NIH, Hamilton, MT, USA) was free of lactate 

dehydrogenase-elevating virus (LDV) and was obtained as previously described 

(Robertson et al., 2008). FV was propagated in vivo and prepared as 10% w/v 

homogenate from the spleen of 12-day infected BALB/c mice. Mice received an 

inoculum of FV complex containing between 1,000-2,000 spleen focus-forming units 

(SFFU) injected via the tail vein in 0.1 ml of PBS. 

 

2.9.1.1. Friend virus detection by FACS   

Cell-associated virus in infected mice was estimated by flow cytometric detection of 

infected cells using surface staining for the glycosylated product of the viral gag gene 

(glyco-Gag), using the matrix (MA)-specific monoclonal antibody 34 (mouse IgG2b), 

followed by an antimouse IgG2b-FITC secondary reagent (Table 1). 

 

2.9.1.2. Friend virus nAb titre assay   

FV-neutralizing antibodies in the sera of infected mice were measured using a 

modification of a previously described viral titre assay (Bock et al., 2000). Mus dunni 
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cells (Lander and Chattopadhyay, 1984) were transduced with the XG7 replication-

defective retroviral vector, expressing green fluorescent protein (GFP) from a human 

cytomegalovirus (hCMV) promoter and a neomycin-resistance gene under the control 

of the LTR (Bock et al., 2000). Mus dunni and Mus dunni-XG7 cells were both kindly 

provided by Dr J. Stoye, Division of Virology, NIMR. Maintenance of GFP 

expression was ensured by constant selection with 1 mg/ml G418. Mus dunni-XG7 

cells were then infected with F-MuLV-B and supernatant, which contained the 

pseudotyped XG7 vector, was harvested. Serial dilutions of sera from infected mice 

were mixed with ~1,500 infectious units (iu)/ml pseudotyped XG7 vector and allowed 

to incubate for 30 minutes at 37°C in IMDM cell culture medium containing 5% FCS. 

Mixtures were then added to untransduced Mus dunni cells and incubated for 3 days. 

The percentage of GFP+ Mus dunni cells at the end of the incubation period was 

assessed by flow cytometry and the dilution of serum which resulted in 75% 

neutralization (i.e. 75% reduction in the percentage of GFP+ Mus dunni cells) was 

taken as the neutralizing titre. 

 

2.9.2. Influenza virus infection 

The A/PR/8/34 (PR8) strain of influenza A virus (IAV) (kindly provided by Ms Rose 

Gonsalves, Division of Virology, NIMR) was an allantoic fluid preparation from 

PR8-infected embryonated eggs. Non-anaesthetized mice were infected with 250 

hemagglutinin units (HAU) of PR8 by instillation onto their nasal cavities. After 6, 12 

and 18 days, non-heparinised blood was collected by tail bleeding.  
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2.9.2.1. Influenza nAb titre assay 

Serum titres of PR8-neutralizing antibodies were measured using a modified Madin 

Darby canine kidney (MDCK)-based assay. Serial dilutions of the sera were added to 

monolayers of MDCK cells in 96-well COSTAR cell culture plates (Corning, Inc), 

which were subsequently infected with a tissue culture infective dose (TCID95) of 

PR8. MDCK cell viability was measured with an Alamar blue (Biosource) based 

assay 3 days after infection. Cultures were washed and pulsed with Alamar blue for 1-

2 hours and fluorescence was measured with a fluorescence plate reader (Safire, 

Tecan). The dilution of serum which resulted in 50% neutralization of MDCK death 

was taken as the neutralizing titre. 

 

2.9.3. Pneumocystis murina infection 

Pneumocystis murina (P. murina) was obtained from ATCC/LGC Promochem (stock 

PRA-111) as lung tissue homogenate from P. murina infected rats. Non-anaesthetized 

mice were administered P. murina by instillation onto their nasal cavities. Mice were 

killed 17 weeks later, and left lower lung lobe was removed and frozen and 

subsequently used to extract genomic DNA. The remaining lung tissue was gently 

inflated via the tracheae with formalin and sent for histological analysis. Histological 

sections were examined for general architecture (haematoxylin and eosin (H&E) 

stain) and Pneumocystis organisms (Gomori’s silver stain). 

 

2.9.3.1. Detection of Pneumocystis in lungs by PCR 

Lungs were incubated overnight with 0.5 ml of lysis buffer (100 mM Tris-HCl 

(pH7.5), 5 mM EDTA, 200 mM NaCl, 0.2% SDS) and 200 µg/ml proteinase K 
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(Roche diagnostics GmbH). The extracts were treated with buffered phenol and DNA 

was precipitated with ethanol and dissolved in water. To detect P. murina in the lung, 

DNA samples were subjected to nested PCR using specific primers (MGW biotech 

AG) for the mitochondrial large-subunit ribosomal RNA (rRNA) of P. murina. PCR 

reactions contained ~50 ng of the genomic DNA, 2 mM MgCl2 (Abgene Ltd), 0.2 mM 

dNTP (G.E. Healthcare), 0.4 pmol/µl sense and antisense primer, and 0.1 U Taq DNA 

polymerase (Abgene Ltd) in the supplier’s buffer in a volume of 20 µl, and were 

amplified in an Eppendorf mastercycler termocycler. PCR amplifications were carried 

out with a 2.5 minutes denaturation step at 94˚C and then 30 cycles of denaturation at 

94˚C for 30 seconds, annealing at 55˚C for 30 seconds and extension at 72˚C for 30 

seconds, followed by a final 5 minutes extension at 72˚C. Nested PCR amplifications 

were performed using 1 µl of this PCR product following the same protocol except 

for the annealing temperature which was 50˚C. The outer primers were pAZ102-H 

(5’-GTG TAC GTT GCA AAG TAC TC-3’) and pAZ102-E (5’-GAT GGC TGT 

TTC CAA GCC CA-3’). The internal primers were pAZ102-X (5’-GTG AAA TAC 

AAA TCG GAC TA-3’) and pAZ102-Z (5’-CCC ACT TCT T(A/G)A CTG TC-3’) as 

described elsewhere (Hori et al., 2002). The expected product size is 346 bp for the 

first PCR and 263 for the nested PCR. As a control, PCR amplifications of mouse 

Rag-1 gene were also performed. The primers were 5’-CTG TAG GAT CTG CAT 

TCT CAG ATG TC-3’ and 5’-CAG CCT TCA CAT CTC CAC CTT CTT C-3’, and 

the PCR condition were the same as described above. PCR products were separated 

on a 2% agarose gel containing ethidium bromide.  
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2.10. Analysis of serum immunoglobulins by ELISA 

Serum immunoglobulin (Ig) levels were determined by a standard enzyme-linked-

immunosorbent-assay (ELISA) technique. 50 µl of test supernatants were added to 

96-well polyvinyl flexiplates (Thermo Electron Corporation) coated overnight with 50 

µl of unlabeled goat anti-mouse Ig (H+L) (Southern Biotech) at 5µg/ml in coating 

buffer (0.2 M borate buffer, pH 8.5) and blocked with PBS supplemented with 10% 

FCS for at least 1 hour at RT. Following 3 washes, 50 µl of secondary antibody (IgG-

Alkaline phosphatase (AP) or IgM-AP, 1:1,000) (Southern Biotech) were added and 

incubated for 1 hour at RT. Wells were extensively washed and 200 µl of alkaline 

phosphate yellow liquid substrate (Sigma Chemicals Co) was added. Absorbance was 

read at 405 nm when yellow reaction products were formed. All washes were done 

with PBS supplemented with 0.05% tween20 (Sigma Chemicals Co). 

 

2.11. Statistical analysis 

Statistics were generated by Student’s t-test performed using SigmaPlot v10 software 

(Systat Software Inc). p values <0.05 were considered to be statistically significant. 
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3. Results 

 

 

 

 

 

3.1. Specific targeting of memory and regulatory CD4+ T cells 

by Tnfrsf4-driven Cre expression 

Immunodeficiency viruses are highly selective for activated/memory CD4+ T cells 

due to restricted expression of their receptors/co-receptors. One of the most specific 

markers of activation in CD4+ T cells is CD134, the cellular receptor for FIV. We 

generated a mouse model in which activated CD4+ T cells, i.e. CD134+CD4+ T cells 

are targeted.  

 

Specificity of CD134 (encoded by Tnfrsf4 gene) expression was evaluated using a 

reporter mouse strain. This strain was obtained by crossing the Tnfrsf4Cre/Cre knock-in 

strain in which Cre is knocked-in into the CD134 locus, with the R26Yfp/Yfp strain 

(Srinivas et al., 2001), in which expression of yellow fluorescent protein (YFP) under 

the ubiquitously expressed R26 promoter is prevented by a loxP flanked (floxed) stop 

cassette. We named this strain Tnfrsf4Cre/+ R26Yfp/+. Cre mediates excision of the 

floxed stop cassette in the R26 locus activating the YFP gene. Consequently, in these 

animals, all cells that are expressing or have expressed CD134-driven Cre (as well as 

their daughter cells), will also express YFP. 
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We examined the frequency of YFP-expressing cells in Tnfrsf4Cre/+ R26Yfp/+ mice by 

flow cytometry. The fluorescence intensity of YFP in these mice is very bright 

allowing an easy characterization of YFP-expressing cells (Fig. 6). 

 

In the thymus, where only ~ 1% of all cells expressed YFP (Fig 6), the majority of 

these were CD4 single positive (SP) thymocytes and ~ 30% were double positive 

(DP) thymocytes (Fig. 7-B). YFP was hardly detected on CD8 SP cells (Fig. 7-B). 

Mature CD4+ T cells can be subdivided into naïve, memory, and regulatory cells 

according to the expression of CD25 and CD44 markers. Naïve cells are CD25-

CD44low, memory cells are CD25-CD44high and regulatory cells are CD25+CD44int 

(Fig. 7-C). This has been the classification used throughout this work. While only 

approximately 14% of memory CD4+ T cells expressed YFP, more than half of 

regulatory CD4+ T cells (56%) expressed YFP (Fig. 7-D). Although it cannot be 

excluded that some of these cells could be re-circulating, this is consistent with the 

observation that the regulatory CD4+ T cell subset is already activated in the thymus 

(Takeda et al., 2004). 

 

In the spleen, the number of YFP+ cells increased with age until 8 weeks, possibly 

reflecting an age-related increase in antigen-experienced cells in this organ. In adult 

mice, lymph nodes contained approximately 6% of cells expressing YFP, while in the 

spleen these cells constituted around 4% of the total cells (Fig. 8-A).  
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Figure 6. Intensity of YFP expression in Tnfrsf4Cre/+ R26Yfp/+ mice. Flow cytometric 

analysis of YFP expression in thymus (THY), spleen (SP) and lymph nodes (LN) of 

Tnfrsf4Cre/+ R26Yfp/+ mice at 8 weeks of age. Numbers within dot plots indicate the 

percentage of YFP+ cells. 
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Figure 7. YFP expression in thymic subsets in Tnfrsf4Cre/+ R26Yfp/+ mice. (A) Flow 

cytometric example of subdivision of thymocytes in CD4+CD8+ (DP), CD4+CD8- 

(CD4 SP) and CD4-CD8+ (CD8 SP) subsets. (B) Frequency of DP, CD4 SP and CD8 

SP in gated YFP+ thymocytes in Tnfrsf4Cre/+ R26Yfp/+ mice. (C) Flow cytometric 

example of subdivision of CD4 SP cells into naïve (N, CD44lowCD25-), memory (M, 

CD44highCD25) and regulatory (R, CD25+) subsets. (D) Percentage of YFP+ cells in 

the indicated subsets. Mean values (±SEM) of 9 mice are shown. 
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Figure 8. YFP expression in peripheral lymphoid organs of Tnfrsf4Cre/+ R26Yfp/+ 

mice is largely restricted to the CD4+ T cell lineage. (A) Relative accumulation of 

YFP expressing cells in secondary lymphoid organs of Tnfrsf4Cre/+ R26Yfp/+ mice over 

time. Symbols represent the mean values (±SEM) of 2-3 mice per time point per 

organ. (B) Frequency of CD4+, CD8+ or CD19+ cells or cells negative for all three 

markers (other) in gated YFP+ cells from the spleen and lymph nodes of Tnfrsf4Cre/+ 

R26Yfp/+ mice. Mean values (±SEM) of 9 mice are shown. 
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We next analysed which cell types in spleen and lymph nodes expressed YFP. Our 

analysis revealed that ~95% of YFP+ cells were CD4+ T cells whereas only 2% were 

CD8+ T cells and 2% were B cells (Fig. 8-B), confirming the expected specificity of 

CD134 expression for CD4+ T cells (Watts, 2005). 

 

We looked at expression of YFP in CD4+ T cell subsets in spleen and lymph nodes. 

YFP expression in Tnfrsf4Cre/+ R26Yfp/+ mice marked ~ 55% and ~ 80% of memory 

and regulatory CD4+ T cells, respectively. In contrast, the vast majority of naïve CD4+ 

T cells (92%) were YFP- (Fig. 9-B). In young adult mice, regulatory CD4+ T cells 

constitute ~ 10% of total CD4+ T, while the frequency of memory CD4+ T is higher, 

particularly in the spleen, where they are twice as frequent as regulatory T cells, 

reaching more than 20% of  total CD4+ T cells. Thus, in total numbers, the majority of 

cells expressing YFP in Tnfrsf4Cre/+ R26Yfp/+ mice were memory CD4+ T cells. 

 

We next looked at CD8+ T cells in more detail in both spleen and lymph nodes. We 

subdivided CD8+ T cells in naïve and memory subsets by low or high expression of 

CD44, respectively (Fig. 9-C). This has been the classification used throughout this 

work. Although CD44 expression does not distinguish between true memory cells, 

that is antigen experienced cells, and ones that acquired phenotypic properties of 

memory cells, it is normally accepted to use CD44 expression to classify memory cell 

subsets. We observed that both naïve and memory CD8+ T cells (99% and 97%, 

respectively) were YFP- (Fig. 9-D). 
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Figure 9. Specific targeting of memory and regulatory CD4+ T cells in 

Tnfrsf4Cre/+ R26Yfp/+  mice. Flow cytometric example of subdivision of CD4+ T cells 

into naïve (N, CD44lowCD25-), memory (M, CD44highCD25-) and regulatory (R, 

CD25+) subsets (A), and of CD8+ T cells into naïve (N, CD44lowCD25-) and memory 

phenotype (M, CD44highCD25-) cells (C). Percentage of YFP+ cells in total, naïve, 

memory and regulatory CD4+ (B) or in total, naïve and memory CD8+ T cells (D) 

from the spleen and lymph nodes of Tnfrsf4Cre/+ R26Yfp/+ mice. Mean values (±SEM) 

of 9 mice are shown. 
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We further investigated whether YFP was expressed in non-lymphoid organs. We 

looked at peritoneal cavity, a site normally populated by activated cells, many (~50%) 

of which are macrophages. Although we saw an increase with age in the frequency of 

YFP+ cells it was always less than 5% of total cells, and the vast majority were CD4+ 

T cells (not shown). Analysis of lung and  liver showed no significant YFP expression 

(not shown).  

 

In summary, using this reporter line we have identified the cell populations that 

express YFP upon CD134 upregulation. YFP expression was observed almost 

exclusively in memory and regulatory CD4+ T cells, the major targets of 

immunodeficiency virus. We did not see significant YFP expression in other immune 

cells nor in non-lymphoid organs. This is in agreement with published results where 

expression of CD134 was assessed by surface staining with anti-CD134 antibody 

(Takeda et al., 2004).   
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3.2. DTA-mediated deletion of CD134+ CD4+ T cells 

Having confirmed the suitability of the Tnfrsf4-Cre-mediated targeting of activated 

CD4+ T cells, we generated a mouse strain in which these cells were being deleted. 

This was achieved by crossing the Tnfrsf4Cre/Cre knock-in strain with the R26Dta/+ 

transgenic strain, in which DTA expression under the R26 promoter is prevented by a 

floxed stop cassette. The progeny obtained was Tnfrsf4Cre/+ R26Dta/+ mice and 

Tnfrsf4Cre/+ R26+/+ littermate controls. In all experiments, littermate controls were 

included to rule out any potential Tnfrsf4 gene dose effect. 

 

We started by analyzing the efficiency of DTA-mediated deletion. For this purpose 

we generated mice expressing both DTA and YFP alleles in the R26 locus and named 

this heterozygous mice Tnfrsf4Cre/+ R26Yfp/Dta. Theoretically, if recombination and 

deletion are 100% efficient, these mice should have no YFP expressing cells. 

 

Our analysis revealed a 2.3- and 3- fold decrease in the total number of YFP 

expressing splenic and lymph node cells, respectively, in mice with both YFP and 

DTA alleles when compared with mice with YFP allele only (Fig. 10-A). The 

reduction in CD4+ T cells was about 2.3- fold in both organs and paradoxically there 

were more YFP expressing CD8+ T cells in mice with both alleles than in mice with 

YFP allele only (Fig. 10-A). The proportion of YFP expressing CD8+ T cells in 

Tnfrsf4Cre/+ R26Yfp/Dta was nevertheless very small. 
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Figure 10. DTA-mediated deletion of YFP+ CD4+ T cells in Tnfrsf4Cre/+ R26Yfp/Dta 

mice. Percentage of YFP+ cells in total, CD4+ and CD8+ T cells (A) or naïve, memory 

and regulatory (Reg.) CD4+ T cells (B) from Tnfrsf4Cre/+ R26Yfp/Dta (YFP/DTA) mice 

and littermates Tnfrsf4Cre/+ R26Yfp/+ (YFP/+). Numbers represent the fold difference in 

frequencies of YFP+ cells between YFP/+ and YFP/DTA mice. Mean values (±SEM) 

of 4 mice per group from 2 separate experiments are shown.  
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Analysis of the major YFP expressing populations, ie, memory and regulatory CD4+ 

T cells, showed that in comparison with Tnfrsf4Cre/+ R26Yfp/+ mice, the proportion of 

YFP+ memory and regulatory CD4+ T cells in Tnfrsf4Cre/+ R26Yfp/Dta mice was reduced 

by more than half in both organs (Fig. 10-B).  

 

This result suggests that more than 50% of the cells tagged with YFP in the absence 

of DTA expression were killed upon DTA reactivation. However, this analysis 

ignores the dynamic nature of T cell death and replacement. In Tnfrsf4Cre/+ R26Yfp/+ 

mice the immune system is at steady-state, but in Tnfrsf4Cre/+ R26Yfp/Dta mice the 

killing of activated CD4+ T cells leads to changes in T cell dynamics for both CD4+ 

and CD8+ T cells that are described in the following chapters. Consequently, the 

relative presence of activated CD4+ T cells and proportion of YFP+ T cells in 

Tnfrsf4Cre/+ R26Yfp/Dta mice reflect the balance between DTA-mediated killing, which 

reduces, and homeostatic replacement, which increases, the number of YFP+ activated 

CD4+ T cells. 

 

In addition to T cell dynamics, the interpretation of the proportion of YFP expressing 

cells in Tnfrsf4Cre/+ R26Yfp/Dta mice may also be influenced by the relative kinetics of 

YFP and DTA induction following T cell activation. YFP and DTA are different 

proteins and consequently may have a different kinetic of expression. For YFP 

expression to be detected, YFP simply needs to be expressed in the cytoplasm in 

sufficient amount to be revealed by flow cytometry. Similarly, for DTA-mediated 

deletion to be detected, DTA needs to be expressed in sufficient amount to kill a cell. 

DTA causes cell death by triggering the apoptosis (or programmed cell death) 

pathway (Lessnick et al., 1992; Chang et al., 1989).  Although it has been shown in 
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vitro that a single molecule is sufficient to kill a cell (Palmiter et al., 1987), it remains 

to be shown if this is true in vivo and for all cell types. In addition, cessation of 

protein synthesis and subsequent apoptosis are processes that take some time and thus 

the existence of YFP cells in the heterozygous mice could merely reflect the fact that 

cells have rearranged both alleles and are undergoing cell death but are not dead yet. 

In addition, it is plausible to consider that Cre-recombination could occur more easily 

in one allele than the other. These issues were addressed by comparing the kinetics of 

YFP and DTA induction following T cell activation in in vitro systems. 

 

To investigate YFP induction following activation, naïve CD134- YFP- CD4+ T cells 

from Tnfrsf4Cre/+ R26Yfp/+ mice were sorted and stimulated in vitro with anti-CD3 and 

anti-CD28. We then compared the expression of CD134 and YFP by flow cytometry 

at different times. Cells begun to express YFP already in the first day of culture, with 

a delay of ~1 day in relation to CD134 induction (Fig. 11-A and 11-B), which 

achieved its maximal expression already at 24 hours and declined after 48 hours. This 

transient expression of CD134 in vitro is in agreement with previous studies 

(Gramaglia et al., 1998). 

 

We tested the kinetics of DTA-mediated cell death by looking at Annexin V, a marker 

of early apoptosis, by flow cytometry. Sorted CD25- CD45RBhigh naïve CD4+ T cells 

from Tnfrsf4Cre/+ R26DTA/+ mice and littermate controls were stimulated in vitro with 

anti-CD3 and anti-CD28, and apoptosis was examined at different times. In the first 

24 hours post activation both groups of cells behaved in similar way, indicating that 

DTA was not yet active (Fig. 12-A and 12-B).  
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Figure 11. Kinetics of YPF and CD134 induction in CD4+ T cells upon in vitro 

stimulation. (A) Flow cytometric example of YPF and CD134 expression in 

unstimulated cells (0h) or after in vitro stimulation of sorted naïve YFP- CD4+ T cells 

from Tnfrsf4Cre/+ R26Yfp/+ mice at the indicated time points after stimulation. 

Representative plots of 1 out of 3 separate experiments. (B) Kinetics of YPF and 

CD134 induction in CD4+ T cells stimulated as in (A). The mean (±SEM) percentage 

CD134+ and CD134+YFP+ cells in CD4+ T cells from 4-6 mice from 3 separate 

experiments is shown. 
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Figure 12. Kinetics of apoptosis induction in CD4+ T cells by DTA expression 

upon in vitro stimulation. (A) Flow cytometric example of annexin V expression in 

unstimulated cells (d0) or following in vitro activation of sorted naïve CD4+ T cells 

from Tnfrsf4Cre/+ R26Dta/+ (DTA) or control Tnfrsf4Cre/+ R26+/+ (WT) mice at the 

indicated time points after stimulation. (B) Kinetics of apoptosis induction following 

in vitro activation as in (A). The mean (±SEM) percentage of annexin V+ cells in 

CD4+ T cells from 3-5 mice from 2 separate experiments is shown. 
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However, by day 2, we could see that DTA-originated cells had a higher percentage 

of Annexin V+ cells, which increased only slightly by day 3. In contrast, cells of WT 

origin decreased their percentage of apoptotic cells in culture (Fig. 12-A and 12-B), 

which reflects the proliferation of viable cells in the well. We concluded that the 

effect of DTA activation on survival of in vitro activated naïve CD4+ T cells from 

Tnfrsf4Cre/+ R26Dta/+ mice was not evident until the second day of culture. 

 

In summary, DTA-mediated deletion is delayed by one day in relation to YFP 

induction. This has implications for the interpretation of the analysis of Tnfrsf4Cre/+ 

R26Yfp/Dta mice, because the percentage of YFP cells could reveal cells on their way to 

die. 

 

Overall, we can conclude by the analysis of the two reporter lines described that in 

Tnfrsf4Cre/+ R26Dta/+ mice a majority of memory and regulatory cells are deleted. The 

fact that this deletion might not be absolute is not an obstacle. On the contrary, it 

makes the system more physiological, given that in in vivo infections, viruses only kill 

a proportion of these cells. 
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3.3. Immunological consequences of DTA-mediated deletion 

of CD134+CD4+ T cells 

The Tnfrsf4Cre/+ R26Dta/+ mice are fertile and do not display any gross physical or 

behavioural abnormalities 1. Upon macroscopic examination we observed significant 

lymph node enlargement in Tnfrsf4Cre/+ R26Dta/+ mice, in comparison with control 

Tnfrsf4Cre/+ R26+/+ mice (Fig. 13). Spleen size was not significantly different between 

the two groups. Microscopic examination of many non lymphoid tissues, including 

skin, kidney, lung, brain, salivary glands, stomach, liver, gall bladder, pancreas, small 

and large intestines showed no abnormalities, although mild lymphocytic infiltrates 

were sometimes observed in Tnfrsf4Cre/+ R26Dta/+ mice. Lymph nodes and spleen had 

normal follicular structure with active germinal centres and were architecturally 

indistinguishable from control mice (not shown). 

 

To see if the lymphoproliferation observed in lymph nodes was associated with a 

generalized proinflammatory status, we looked at serum levels of a panel of cytokines 

and chemokines by using a multiplex cytokine bead array. Indeed, we observed 

elevated serum levels of various proinflammatory cytokines (IL-1β, IL-5, Il-12p40, 

IL-13, IFNγ, TNFα and GM-CSF) and chemokines (IP-10, MIG, Eotaxin, MCP-1 and 

MIP-1α (Fig. 14).  

------------------------------------------------------------------------------------------------------- 

1 Occasionally, a very small proportion of mice showed retarded development already 
evident at weaning. These mice were excluded from further analysis. Pathology 
analysis was done in several organs from 3 young littermate mice of very small size 
and revealed exocrine pancreatic hypoplasia in all 3 mice but unremarkable remaining 
organs including endocrine pancreas. The exocrine pancreas produces and secretes the 
digestive enzymes necessary for digestion which can explain the animals’ small size. 
The cause of occasional developmental retardation in Tnfrsf4Cre/+ R26Dta/+ mice has 
not been further investigated. 
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Figure 13. Macroscopic examination of lymphoid tissue reveals 

lymphoadenopathy in Tnfrsf4Cre/+ R26Dta/+ mice. Size of inguinal (i), axillary (a), 

brachial (b), cervical (c), mesenteric (m) lymph nodes and spleen from Tnfrsf4Cre/+ 

R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice is shown.  
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Figure 14. Increased levels of serum proinflammatory chemokines and cytokines 

in Tnfrsf4Cre/+ R26Dta/+ mice. Serum levels of the cytokines IL-1β, IL-5, IL-12p40, 

IL-13,  IFNγ, TNFα and GM-CSF and of the chemokines IP-10 (CXCL10), MIG 

(CXCL9), Eotaxin (CCL11), MCP-1 (CCL2) and MIP-1α (CCL3) in Tnfrsf4Cre/+ 

R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice. Values are from two 

separate experiments and represent the mean (±SEM) of 5 or 7 mice per group, 

depending on the experiment. 
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To determine whether activated CD4+ T cell deletion had any impact on lymphocyte 

population dynamics we compared lymphoid organ cellularity and composition in 

Tnfrsf4Cre/+ R26Dta/+ and control mice (Fig. 15). Consistent with the enlargement 

observed macroscopically, we saw an increase in absolute number of cells in lymph 

nodes. Spleen cellularity was not significantly different between the two groups (Fig. 

15-B). To account for differential distribution between enlarged lymph nodes and 

spleen we calculated the sum of lymphocyte and myeloid populations in both organs. 

B cells, but not T cells or myeloid cells, were more numerous in Tnfrsf4Cre/+ R26Dta/+ 

mice than in control Tnfrsf4Cre/+ R26+/+ mice and lymph node B cells were primarily 

responsible for this increase (Fig. 15-B). An increase in lymph node T cells and 

myeloid cells was also observed, in proportion to the increase in total lymph node 

cellularity (Fig. 15-B). 

 

Remarkably, total CD4+ T cell numbers were only marginally reduced (Fig. 16-A), 

while total CD8+ T cell numbers were elevated in Tnfrsf4Cre/+ R26Dta/+ mice, 

compared with Tnfrsf4Cre/+ R26+/+ mice (Fig. 16-A). This became statistically 

significant when plotted as CD4:CD8 ratio (Fig. 16-B). This ratio is highly conserved 

between animals of the same inbred strain and shows effects masked by animal to 

animal variation. 
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Figure 15. Lymphoid organ cellularity and composition in Tnfrsf4Cre/+ R26Dta/+ 

mice. (A) Representative FACS plots showing gating strategy for analysis of B cells, 

T cells and macrophages in spleen (upper panel) and lymph nodes (lower panel) in 

Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice. Numbers 

represent percentage of cells in gate. (B) Total cellularity and numbers of CD19+ (B 

cells), CD4+ and CD8+ (T cells) and CD11b+F4/80+ (Mphi, macrophages) in the same 

mice, in spleen and lymph nodes in separate and pooled. Values represent the mean 

(±SEM) of 19-21 mice per group. 
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Figure 16. Decrease of CD4:CD8 ratio in Tnfrsf4Cre/+ R26Dta/+ mice. Numbers of 

CD4+ and CD8+ T cells (A) and CD4:CD8 ratio (B)  in Tnfrsf4Cre/+ R26Dta/+ (DTA) 

and control Tnfrsf4Cre/+ R26+/+ (WT) mice in spleen and lymph nodes in separate and 

pooled. Values represent the mean (±SEM) of 19-21 mice per group. 
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In order to investigate whether there was any fluctuation of numbers over time, we 

analysed mice of different ages. We did not observe any variation throughout a 6-

month observation period both in numbers of total CD4+ (Fig. 17-A) and total CD8+ 

(Fig. 17-B) T cell numbers, resulting in a stable CD4:CD8 ratio throughout the 

indicated period (Fig. 17-C) suggesting that total numbers were maintained 

irrespective of thymic output. 

 

In summary, deletion of activated CD4+ T cells resulted in a lymphoproliferative 

condition accompanied by a substantial systemic drop in CD4:CD8 ratio, mainly due 

to a paradoxical increase of CD8+ T cell numbers and, to a lesser extend, reduction in 

CD4+ T cell numbers. 
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Figure 17. T cell cellularity in Tnfrsf4Cre/+ R26Dta/+ mice over time. Total numbers 

of CD4+ (A), CD8+ T cells (B) or CD4:CD8 ratio (C) in pooled lymph nodes and 

spleen of Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice at the 

indicated times after birth. Each symbol represents an individual mouse. Lines 

represent hyperbolic regression (DTA: dashed line, WT: solid line). 
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3.3.1. Effect of CD134+ CD4+ T cell-specific DTA induction on CD4+ 

T cell homeostasis 

To assess whether activated CD4+ T cell numbers were selectively reduced in 

Tnfrsf4Cre/+ R26Dta/+ mice, we measured the numbers and proportion of naïve, 

memory and regulatory CD4+ T cells. Numbers of naïve CD4+ T cells were similar 

between Tnfrsf4Cre/+ R26Dta/+ and control Tnfrsf4Cre/+ R26+/+ mice (Fig. 18-A and 18-

B). Notably, numbers of memory CD4+ T cells were unchanged in the spleen and 

even elevated in the lymph nodes of Tnfrsf4Cre/+ R26Dta/+ mice, in comparison with 

control mice (Fig. 18-A and 18-B). Lastly, numbers of regulatory CD4+ T cells were 

reduced in Tnfrsf4Cre/+ R26Dta/+ mice by ~ 40%, compared with those in control mice 

(Fig. 18-A and 18-B). 

 

Regulatory CD4+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice, identified by expression of 

CD25, expressed atypically high levels of CD44 (Fig. 18-A). CD25 is a marker that 

can be upregulated upon activation suggesting that these cells could be effectors 

rather than regulatory CD4+ T cells. To exclude this possibility, we further 

characterized phenotypically this cell population. Regulatory T cells are characterized 

by the expression of the FoxP3 transcription factor (Hori et al., 2003; Fontenot et al., 

2003; Khattri et al., 2003)  and lower levels of the surface molecule CD4 (Sakaguchi 

et al., 2006; Fontenot et al., 2003; Khattri et al., 2003). We have thus analysed these 

parameters in the CD4+CD25+ population of Tnfrsf4Cre/+ R26Dta/+ mice. Similarly to 

regulatory CD4+ T cells from normal mice, these cells expressed low levels of CD4 

and homogeneously expressed the regulatory T cell-specific FoxP3 transcription 

factor (Fig. 19-A and 19-B). 
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Figure 18. Cellularity of CD4+ T cell subsets in Tnfrsf4Cre/+ R26Dta/+ mice. (A) 

Flow cytometric profile and (B) absolute numbers of naïve, memory and regulatory 

(reg.) CD4+ T cells from Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ 

(WT) mice in spleen and lymph nodes, in separate and pooled. Values represent the 

mean (±SEM) of 15-18 mice per group.  
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Figure 19. FoxP3 expression in CD4+ T cells from Tnfrsf4Cre/+ R26Dta/+ mice. (A) 

Illustrative FACS plot of CD4 and CD25 expression in splenocytes gate. Numbers 

indicate the median fluorescence intensity (MFI) value for CD4 staining in quadrants 

(top). Illustrative FACS plot of FoxP3 intracellular staining in CD4+ T cell gate. 

Numbers indicate percentage of FoxP3 expressing cells in quadrants (bottom). (B) 

Flow cytometry histograms of FoxP3 expression in naïve (N), memory (M) and 

regulatory (R) CD4+ T cells. Numbers indicate percentage of FoxP3+ cells. 
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We further analyzed their phenotypic differences from memory CD4+ T cells (Fig. 

20-B and 20-C). Resting regulatory CD4+ T cells are characterized by intermediate 

CD44 levels and the majority show high CD62L expression (Fisson et al., 2003). We 

have looked at these and other activation markers in the CD4+CD25+ population of 

Tnfrsf4Cre/+ R26Dta/+ mice. In contrast to regulatory CD4+ T cells from control mice, 

those from Tnfrsf4Cre/+ R26Dta/+ mice displayed a highly activated phenotype, 

characterised by down-regulation of CD62L and up-regulation of CD43, CD49b, 

CD103 and CD127. This activation is even more pronounced than in the ‘memory’ 

regulatory population from control Tnfrsf4Cre/+ R26+/+ control mice (Fig. 21). 

 

Differences between memory CD4+ T cells in Tnfrsf4Cre/+ R26Dta/+ and those in 

control Tnfrsf4Cre/+ R26+/+ mice were unremarkable with only modest increases in 

expression of CD43 and CD49b activation markers (Fig. 20-B). Regulatory T cells, in 

contrary to effector cells, are not expected to produce proinflammatory cytokines 

(Sakaguchi et al., 2006). We could hardly detect production of TNFα and IFNγ (Fig. 

20-C) and IL-2, IL-4, IL-10 and IL-17 (not shown) in this population. Memory cells, 

on the other hand, produced more IFNγ than controls, maybe reflecting their 

activation status (Fig. 20-B). 

 

In order to investigate the proliferative status of these cell populations, we analysed 

BrdU incorporation over a 6 days labelling period. Regulatory CD4+ T cells showed 

an increased turnover in lymph nodes and spleen, whereas memory CD4+ T cells in 

both organs were not significantly different when compared to controls (Fig. 22-B, 

22-C and 22-D).  
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Figure 20. Phenotype of CD4+ T cell subsets from Tnfrsf4Cre/+ R26Dta/+ mice. 

Expression of activation markers and production of cytokines following in vitro 

restimulation in naïve (A), memory (B)  and regulatory (C) CD4+ T cells in 

Tnfrsf4Cre/+ R26Dta/+ mice and littermate controls. Numbers within the plots represent 

the percentage of CD4+ T cells which are positive for each marker (or negative in case 

of CD62L). Specifically in the CD127 staining, numbers indicated the median 

fluorescence intensity (MFI). Plots are representative of 4-7 mice per group. 
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Figure 21. CD4+CD25+CD44bright regulatory T cells from Tnfrsf4Cre/+ R26Dta/+ 

mice are more activated than those of control mice. Expression of activation 

markers was analysed separately on CD4+CD25+CD44bright regulatory T cells. 

Numbers within the plots represent the percentage of cells that are positive for each 

marker (or negative in case of CD62L). Specifically for the CD127 staining numbers 

indicated the median fluorescence intensity (MFI). Plots are representative of 4-7 

mice per group. 
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Figure 22. Kinetics of CD4+ T cell subsets in Tnfrsf4Cre/+ R26Dta/+ mice. Levels of 

BrdU incorporation after a 6-day administration period and expression of Ki67 

nuclear antigen on naïve (A), memory (B) and regulatory (C) CD4+ T cells from 

Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice. BrdU+ cells 

were gated according to staining levels in untreated mice. Ki67+ cells were gated on 

MIF obtained with isotypic control. Each plot is representative of 6 mice (2 

independent experiments) for BrdU and 3 mice for Ki67 expression. Frequencies of 

BrdU+ (D) and Ki67+ (E) cells in lymph nodes and spleen. Values are the mean of 6 

(D) and 3 (E) mice per group. 
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To investigate if the apparent lack of accelerated turnover in the memory population 

was due to killing of dividing cells, cell division was analysed by the expression of 

Ki67 cell cycle antigen which gives a snapshot of cell turnover. Memory CD4+ T cells 

of Tnfrsf4Cre/+ R26Dta/+ mice contained more Ki67+ cells then control mice, although 

the difference was only significant in the spleen (Fig. 22-B and 22-E). Regulatory 

CD4+ T cells had considerably higher frequencies of dividing cells when compared to 

controls in both organs (Fig. 22-C and 22-E). 

 

In conclusion, despite higher expression of CD44, CD25+CD4+ T cells in Tnfrsf4Cre/+ 

R26Dta/+ mice were similar to regulatory CD25+CD4+ T cells in control mice but were 

more activated and had higher turnover rate. Furthermore, DTA-mediated destruction 

of activated CD4+ T cells had a significant effect on regulatory CD4+ T cell numbers 

and activation state, but little apparent effect on memory CD4+ T cells. 

 

Memory CD4+ T cells were deleted by DTA expression (by extrapolation of 

observations with Tnfrsf4Cre/+ R26Yfp/+ mice) as efficiently as regulatory CD4+ T cells; 

one would therefore expect their numbers to be decreased but we observed the 

opposite. Memory CD4+ T cells, under physiological conditions, display higher 

turnover rate, self-renewal potential and activation profile than either naïve or 

regulatory CD4+ T cells, which could compensate for or mask DTA-mediated loss. To 

reveal the full extent of memory CD4+ T cell killing in Tnfrsf4Cre/+ R26Dta/+ mice we 

set up mixed bone marrow (BM) chimeras.  
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Rag-deficient mice produce no mature B or T cells due to the deficiency in 

recombination activating gene (RAG), the enzyme necessary for antigen receptor 

gene rearrangement, which does not affect the development of other cell lineages. In 

theory, when bone marrow cells from Rag+/+ mice are transferred into Rag-/- 

recipients, lymphocyte precursors from both types of mice will have to compete with 

each other until the developmental stage at which RAG enzymes are expressed which 

is double negative 4 (DN4) stage – very early in development of these cells (Shinkai 

et al., 1992). Afterwards, Rag-sufficient cells have no competition and should be able 

to develop normally. For all other cell lineages, the transferred RAG-sufficient cells 

face a full host and therefore will have a competitive disadvantage and will not be 

reconstituted. Large numbers of BM cells (~20x106 cells) were transferred into non-

irradiated Rag2-deficient mice which were killed after 17 weeks and number of cells 

recovered calculated (Fig. 23-A). Donor and host-origin cells were discriminated by 

expression of CD45.2 and CD45.1 congenic markers, respectively. As shown in Fig. 

23-B and 23-C, reconstitution occurred exclusively in lymphoid lineages but not in 

myeloid lineages.  

 

Thus, although irradiation is common practice in bone marrow transplantation 

experiments, we show here that it is not necessary and that transferring high numbers 

of BM cells and giving enough time for reconstitution results in exclusive expansion 

of lymphocytes. The experiments described below were thus performed in non-

irradiated hosts. 
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Figure 23. Exclusive reconstitution of lymphoid lineages in non-irradiated Rag-

deficient recipients reconstituted with WT bone marrow. (A) Total cell numbers 

recovered from the spleen, lymph nodes, thymus and peritoneal cavity (PC) of 

CD45.1 Rag2-deficient recipients 16 weeks after reconstitution with 20x106 BM cells 

from B6 mice. B6 and Rag1-/- cell counts are shown for comparison. Flow cytometry 

plots showing reconstitution of lymphoid lineages (B) but not of myeloid lineages (C) 

in same chimeras as in A. Plots are representative of 3 mice. N.D: not done. 
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To address the issue of memory CD4+ T cell killing in Tnfrsf4Cre/+ R26Dta/+ mice, BM 

cells from CD45.1 wild-type and CD45.2 Tnfrsf4Cre/+ R26Dta/+ mice, mixed or on their 

own, were transferred into non-irradiated CD45.2 Rag1-/- hosts. Reconstitution was 

monitored in the blood and twelve weeks post transfer mice were killed and analysed. 

Compared with recipients reconstituted with wild-type BM alone, those reconstituted 

with Tnfrsf4Cre/+ R26Dta/+ BM alone showed a paradoxical increase in activated 

CD43+ CD44+ CD4+ T cells and a small reduction in regulatory CD25+CD4+ T cells 

(Fig. 24-B). This is reminiscent of the phenotype observed in Tnfrsf4Cre/+ R26Dta/+ 

mice. For the analysis of mixed BM chimeras, we assessed the proportion of 

Tnfrsf4Cre/+ R26Dta/+ -derived cells by the lack of expression of CD45.1 marker. We 

extrapolated the ratio of injection/efficiency of reconstitution by the Tnfrsf4Cre/+ 

R26Dta/+: wild-type ratio in the thymus or in peripheral B cells and CD8+ T cells 

(which should not be affected). As shown in Fig. 24-A, ~35% of cells in thymus and 

peripheral B cells and CD8 cells are of Tnfrsf4Cre/+ R26Dta/+ origin and ~65% are of 

WT origin. Notably, we observed a significant selective loss of Tnfrsf4Cre/+ R26Dta/+-

origin memory and regulatory CD4+ T cells, but not in the naïve pool, in which both 

Tnfrsf4Cre/+ R26Dta/+-origin  and WT –origin contributed in the expected proportion 

(Fig. 24-A). 

 

Thus, by co-transferring Tnfrsf4Cre/+ R26Dta/+ and WT cells in the same host, we were 

able to reveal the full extend of the DTA-mediated deletion that occurs preferentially 

in memory and regulatory CD4+ T cells.
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Figure 24.  Loss of memory and regulatory CD4+ T cells of DTA origin revealed 

in mixed bone marrow chimeras. CD45.2+ Tnfrsf4Cre/+ R26Dta/+ (DTA) and CD45.1+ 

C57BL/6 (B6) wild-type (B6) bone marrow (BM) cells were injected separately or 

mixed together (mixed BM chimeras) into non-irradiated Rag1-/- recipients and 

lymphoid organs were analyzed 12 weeks later. (A) Mean (±SEM) percentage of 

DTA-origin (CD45.2+) cells in thymocyte and peripheral lymphocyte subsets in 

mixed BM chimeras. (B) Expression of CD25, CD43 and CD44 on gated CD4+ T 

cells from these chimeras is shown. Numbers represent percentage of cells within the 

quadrants. Values are representative of 4-8 mice analyzed in 2 independent 

experiments. 
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 Overall, our results showed that while both memory and regulatory CD4+ T cell 

subsets were being killed with similar efficiency by DTA-activation, regulatory CD4+ 

T cells were incompletely replenished while the loss of memory CD4+ T cells was 

overcompensated. 

 

The result obtained with the Tnfrsf4Cre/+ R26Dta/+ BM chimeras has also excluded a 

potential role for ectopic or leaky expression of Cre or DTA in the phenotype of 

Tnfrsf4Cre/+ R26Dta/+ mice. Indeed, lymphocytes alone were able to recapitulate the 

homeostatic features observed in unmanipulated Tnfrsf4Cre/+ R26Dta/+ mice. 
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3.3.2. Partial CD4+ T helper cell immune deficiency in Tnfrsf4Cre/+ 

R26Dta/+ mice 

To investigate whether the accelerated death and replenishment of effector/memory 

CD4+ T cells compromised immune competence, we evaluated CD4+ T cell function 

in Tnfrsf4Cre/+ R26Dta/+ mice in a number of infections. 

 

3.3.2.1. Immune response of Tnfrsf4Cre/+ R26Dta/+ mice to a chronic 

viral infection 

Friend virus (FV) is a murine retrovirus that causes persistent infection in resistant 

strains of mice. It preferentially infects erythroid precursor cells (Ter119+ cells) but 

can also infect B cells and macrophages. CD4+ T cells have been shown to play an 

indispensable role in the control of chronic infection with FV (Super et al., 1998). We 

have experimentally infected Tnfrsf4Cre/+ R26Dta/+ and control mice with FV and 

evaluated their ability to produce FV-specific neutralizing antibodies as an indirect 

measure of helper T cell function. In comparison to Tnfrsf4Cre/+ R26+/+ littermates and 

B6 control mice, which showed a strong nAb response to and effectively contained 

infection with FV, the FV-specific nAb response was undetectable in 4 out of 7 

Tnfrsf4Cre/+ R26Dta/+ mice and was significantly delayed in the rest (Fig. 25-A). Cell-

associated virus can be estimated by flow cytometric detection of infected cells using 

surface staining for the glycosylated product of the viral gag gene (glyco-Gag).  
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Figure 25. Impaired immune response to chronic viral infection in Tnfrsf4Cre/+ 

R26Dta/+ mice. Tnfrsf4Cre/+ R26Dta/+ (DTA) and littermate control Tnfrsf4Cre/+ R26+/+ 

(WT) and B6 (B6) mice were infected with Friend virus (FV). (A) Serum titers of 

virus-neutralizing antibodies were measured at indicated time points. Values are the 

mean (±SEM) of 5-7 mice tested in 2 independent experiments. P≤0.018 and P≤0.007 

on days 21 and 28, respectively, between DTA mice and either WT or B6 mice. (B) 

Cell-associated FV loads were determined 15 weeks after infection by staining for 

FV-encoded glyco-Gag on the surface of infected erythroid precursor (Ter119+) cells. 

Numbers within quadrants represent the percentage of positive cells. Glyco-Gag+ 

Ter119+ cells were detected in 4 out of 7 Tnfrsf4Cre/+ R26Dta/+ mice and in 0 out of 6 

Tnfrsf4Cre/+ R26+/+ mice. 
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As shown in Fig. 25-B, infected cells could be detected in some Tnfrsf4Cre/+ R26Dta/+ 

mice but not in control mice 15 weeks after infection. The same mice that were unable 

to mount a strong Ab response were the ones that had not cleared the infection. 

 

In summary Tnfrsf4Cre/+ R26Dta/+ mice had defective FV-specific nAb response which 

correlated with inability to control FV replication. 

 

3.3.2.2. Immune response of Tnfrsf4Cre/+ R26Dta/+ mice to an acute 

viral infection 

Chronic viral infections, by their nature, create a continuous strain on the immune 

system which could have potentiated the effect of the deletion of activated cells in 

Tnfrsf4Cre/+ R26Dta/+ mice. We therefore assessed the response of these mice to an 

acute viral infection with the influenza A virus (IAV). CD4+ T helper cell is crucial 

for the production of neutralizing antibodies by B cells in IAV infection (Gerhard et 

al., 1997) and TCRα-/- mice, which lack T cells, are unable to produce high titres of 

nAb (Fig. 26-A). Titres of virus-neutralizing antibodies in the serum of Tnfrsf4Cre/+ 

R26Dta/+ mice were 2-fold and 2.7-fold reduced, compared with Tnfrsf4Cre/+ R26+/+ 

littermates and B6 mice, respectively, 18 days following IAV infection (Fig. 26-A).  

 

In IAV infection, production of nAbs is dependent on the provision of CD4+ T helper 

cells. We therefore determined the number of CD4+ T cells that were necessary to 

produce a titre equivalent to the one produced by Tnfrsf4Cre/+ R26Dta/+ mice. We 

transferred titrating amounts: 10%, 1%, 0.1% and 0.01% of total CD4+ T cells in 

normal B6 mice, as described in materials and methods, into TCRα-/- and infected 

them with IAV. 



 110

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26. Impaired immune response to acute viral infection in Tnfrsf4Cre/+ 

R26Dta/+ mice. (A) Tnfrsf4Cre/+ R26Dta/+ (DTA), littermate controls Tnfrsf4Cre/+ R26+/+ 

(WT), B6 and TCRα-/- mice were infected with Influenza A virus (IAV). Serum titers 

of virus-neutralizing antibodies were measured at indicated time points. Values are 

the mean (±SEM) of 6-9 mice tested in 3 independent experiments. P=0.002 between 

DTA and WT mice and P=0.00003 between DTA and B6 mice on day 18. (B) Titers 

of IAV-neutralizing antibodies in the serum of T cell-deficient TCRα-/- mice, which 

received titrated numbers of CD4+ T cells from wild-type B6 donor mice one day 

before IAV infection, are shown. Sera were tested 18 days post IAV infection. The X 

axis depicts the number of adoptively transferred CD4+ T cells, on the day of the 

transfer, expressed as a percentage of the total number of CD4+ T cells in wild-type 

B6 mice (100%). Symbols represent the mean (±SEM) of 3-4 mice.   
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Eighteen days later, we compared the nAb titres produced by each group receiving 

different numbers of CD4+ T cells with the titres produced by Tnfrsf4Cre/+ R26Dta/+ 

mice (Fig. 26-A and  26-B). This experiment revealed that the degree of reduction in 

IAV-specific nAb titers in Tnfrsf4Cre/+ R26Dta/+ mice corresponded to ~80% loss of 

CD4+ T cells. 

 

3.3.2.3. Immune response of Tnfrsf4Cre/+ R26Dta/+ mice to a fungal 

infection 

In humans, Pneumocystis carinii pneumonia (PCP) is a common clinical problem in 

immune compromised individuals, including HIV patients and there is a clear 

correlation between CD4+ T cell counts and the risk of PCP (Hanano and Kaufmann, 

1998). In mice, Pneumocyctis murina (P. murina), an opportunistic pulmonary 

pathogen, can cause pneumonia in immune deficient mice with features resembling 

PCP in humans. Mutant mice deficient in lymphocytes (Rag-/-), T cells (TCRβ-/-) or 

CD4+ T cells (MHC II-/-) have been shown to be extremely susceptible to P. murina 

pneumonia (Hanano et al., 1996). In contrast, immunocompetent  mice or mice 

deficient in CD8+ T cells (β2m-/-) are fully resistant to natural infection (Hanano et al., 

1996), revealing the central role of CD4+ T cells in controlling P. murina infection. 

 

We compared the immune response of Tnfrsf4Cre/+ R26Dta/+ mice and Tnfrsf4Cre/+ 

R26+/+ controls to experimental P. murina infection with respect to pulmonary 

inflammation and pathogen clearance. As positive and negative controls for the 

infection, we included MHC II-/- mice and B6 mice, respectively. Between week 10 

and week 17 after infection, Tnfrsf4Cre/+ R26Dta/+ mice failed to gain weight, while 

MHC II-/- mice had a more pronounced weight loss. Control Tnfrsf4Cre/+ R26+/+ and 
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B6 mice gained weight steadily during this period. Mice were killed and analysed 17 

weeks post infection. Histologically, lung sections from B6 and Tnfrsf4Cre/+ R26+/+ 

controls were unremarkable. All MHC II-/- mice analysed showed moderate to diffuse 

interstitial pneumonia with numerous intralesional organisms present whereas only 

one out of 4 Tnfrsf4Cre/+ R26Dta/+ mice analysed showed a moderate multifocal 

interstitial pneumonia, without evidence of organisms present in H&E stain or 

Gomori’s silver stain. PCR analysis was performed to detect numbers of organisms 

below histological detection levels. Using a standard PCR reaction, Pneumocystis 

specific DNA was detected exclusively in lung homogenates of MHC II-/- mice but 

not in other groups of mice. However a nested PCR reaction, setup with the first PCR 

product as template, revealed the presence of Pneumocystis in all Tnfrsf4Cre/+ R26Dta/+ 

-origin DNA analysed. In summary, all four Tnfrsf4Cre/+ R26Dta/+ mice were positive 

for Pneumocystis either by histology or by PCR.  

 

Thus, even though Tnfrsf4Cre/+ R26Dta/+ mice did not develop pneumonia as did MHC 

II-/-mice (Fig. 27-A), they were not free of P. murina organisms (Fig. 27-B). This was 

in contrast to littermate controls and B6 mice, in which there was no evidence for the 

presence of P. murina organisms. 

 

 

Taken together, these results showed that, despite the presence of normal numbers of 

CD4+ T cells, Tnfrsf4Cre/+ R26Dta/+ mice were partially CD4+ T cell-immune deficient. 
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Figure 27. Immune response of Tnfrsf4Cre/+ R26Dta/+ mice to Pneumocystis murina 

infection. Tnfrsf4Cre/+ R26Dta/+ (DTA), littermate control Tnfrsf4Cre/+ R26+/+ (CRE), 

B6 and MHCII-/- mice were infected with Pneumocystis murina. (A) Body weight as 

percentage of change in relation to weight at 10 weeks post infection is shown (mean 

±SEM). P=0.019 and P=0.033 between DTA and CRE or B6 mice, respectively, at 

week 17 (B) Representative lung histological sections after hematoxylin and eosin 

staining. 100x magnification. (C) Detection of Pneumocystis murina rRNA by 

standard and nested PCR.  
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3.3.3. Effect of DTA-mediated deletion of CD134+CD4+ T cells on 

the homeostasis of B cells, macrophages and CD8+ T cells 

 

3.3.3.1. B lymphocytes 

HIV infection is associated with increased immune activation that affects all 

lymphocyte populations. Polyclonal hypergammaglobulinemia, defective humoral 

immunity, expansion in B-cell areas of lymphoid tissues and increased expression of 

activation, proliferation and differentiation markers are all features of B lymphocytes 

in HIV untreated individuals (Moir and Fauci, 2008). 

 

We thus assessed whether B cells in Tnfrsf4Cre/+ R26Dta/+ mice showed signs of 

activation. We observed a comparable number of activated B cells (CD70+ cells) in 

Tnfrsf4Cre/+ R26Dta/+ mice and controls (data not shown) and both groups of mice 

expressed equivalent levels of MHC II as evaluated by MFI (data not shown), 

excluding B cell activation in Tnfrsf4Cre/+ R26Dta/+ mice. Moreover, there was no 

detectable difference between serum levels of both IgM and IgG isotypes between 

both groups of mice (Fig. 28-A). 

 

To determine whether the increased number of B cells observed in the lymph nodes of 

Tnfrsf4Cre/+ R26Dta/+ mice (Fig. 15) was associated with increased proliferation we 

measured BrdU incorporation. As shown in Fig. 28-B, the frequency of dividing B 

cells was similar in both groups. In addition, we did not observe any difference 

between the two groups with respect to the frequency of Ki67+ B cells (not shown). 
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As B cells were more numerous in Tnfrsf4Cre/+ R26Dta/+ mice than in controls, overall 

there was an increased number of dividing B cells in Tnfrsf4Cre/+ R26Dta/+ mice which 

however did not reach statistical significance.  

 

To assess the composition of the B cell pool, we looked at germinal centre B cells. 

These are cells that proliferate rapidly and at the same time acquire the capacity to 

undergo somatic hypermutation and isotype switching. They can be phenotypically 

characterized as B220+ CD19+ IgD- CD38low GL7+. Tnfrsf4Cre/+ R26Dta/+ mice had a 

higher frequency of these cells (Fig. 28-C) and higher numbers (Fig. 28-D) in the 

lymph nodes but not in spleen. 

 

In summary, immune activation in the B cell compartment of Tnfrsf4Cre/+ R26Dta/+ 

mice seemed to affect exclusively germinal centre B cells, but did not seem to impact 

on the production of immunoglobulins nor on the cell division rate of B cells. 
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Figure 28. Analysis of B cells in Tnfrsf4Cre/+ R26Dta/+ mice. (A) Serum levels of IgM 

and IgG in  Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice. 

Each symbol represents an individual mouse. (B) Frequency and absolute numbers of 

BrdU+ cells in lymph nodes from DTA and WT mice. (C) Flow cytometry of lymph 

node cells showing gating strategy to analyze germinal centre (CD38low GL7+) B cells. 

IgD- cells gated on B220+CD19+ were analyzed for cell expression of CD38 and GL7 

(left). (D) Absolute numbers of germinal centre B cells in spleen and lymph node 

cells in DTA and WT mice. Numbers within the plots in (B and C) denote the 

percentage of positive cells in indicated gates and values in graphs (B and D) 

represent the mean (±SEM) of 4 mice or 6 mice per group, respectively. 
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3.3.3.2. Macrophages  

Although the number of macrophages in lymph nodes of Tnfrsf4Cre/+ R26Dta/+ was 

increased compared to control mice (Fig. 15-B), this was proportional to the increase 

in the organ size. Examination of macrophages (CD11b+ F4/80+) revealed no major 

differences between Tnfrsf4Cre/+ R26Dta/+ and control mice in terms of expression of 

the activation marker CD70 and intensity of MHC-II staining (not shown). 

 

3.3.3.3. CD8+ T lymphocytes 

CD8+ T cells in HIV infection are increased in numbers and also display higher 

turnover rate and activation state (Papagno et al., 2004; Giorgi et al., 1999; Hazenberg 

et al., 2003; Deeks et al., 2004). We therefore assessed whether the increase in CD8+ 

T cell numbers in Tnfrsf4Cre/+ R26Dta/+ mice was also associated with higher activation 

and turnover. 

 

Elevated numbers of total CD8+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice, compared with 

control mice, were due exclusively to a systemic expansion of memory CD8+ T cells 

(Fig. 29).  

 

Notably, compared with the relatively homogeneous memory CD8+ T cell population 

in control mice, memory CD8+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice contained higher 

numbers of recently activated/effector CD8+ T cells, characterized by down-

regulation of CD62L and up-regulation of CD43 expression (Fig. 30-A). The 

expanded memory CD8+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice showed a pattern of 
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cytokine production similar to those in memory CD8+ T cells from control mice (Fig. 

30-B). Moreover, the rate of turnover of this population, evaluated by BrdU 

incorporation and Ki67 expression, was similar to control mice (Fig. 30-D). Since 

cytokine-producing proliferating T cells are restricted in the memory T cell pool, 

overrepresentation of memory CD8+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice was 

responsible for the higher activation state of the total CD8+ T cell population in these 

mice (Fig. 30-C).  

 

To examine whether expansion of memory CD8+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice 

was a consequence of accelerated activated CD4+ T cell turnover or a cell-

autonomous effect of DTA expression, we examined CD8+ T cells in the BM 

chimeras described in chapter 3.3.1. 

 

Compared with mice reconstituted with wild-type BM alone, mice reconstituted with 

Tnfrsf4Cre/+ R26Dta/+ BM alone had significantly elevated percentages of memory 

CD8+ T cells, which also contained higher percentages of CD62L- and CD25+ 

activated/effector CD8+ T cells (Fig. 31-A), and reduced CD4:CD8 ratios (Fig. 31-B). 

In contrast, in mice reconstituted with a mixture of wild-type and Tnfrsf4Cre/+ R26Dta/+ 

BM , CD8+ T cells of either wild-type- or Tnfrsf4Cre/+ R26Dta/+ BM-origin were 

comparable, with no signs of activation, and CD4:CD8 ratios were restored (Fig. 31-

A and 31-B). 
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Figure 29. Composition of CD8+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice. (A) Flow 

cytometric profile and (B) absolute numbers of naïve and memory CD8+ T cells from 

Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice in lymph node 

and  spleen, separate and pooled. Numbers within the plots in (A) denote the 

percentage of positive cells and values in (B) represent the mean (±SEM) of 15-18 

mice per group. 
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Figure 30. Phenotype and turnover of memory CD8+ T cells in Tnfrsf4Cre/+ 

R26Dta/+ mice. (A) CD62L and CD43 expression in gated memory CD8+CD44hi T 

cells from Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice. 

Numbers within the plots denote the percentage of positive cells. (B) TNF-α and IFN-

γ production by memory CD8+CD44hi T cells from the same mice. Numbers within 

the quadrants represent the percentage of the respective cytokine secreting cells and 

are representative of 4 mice per group. (C) Percentage of BrdU+ following a 6-day 

period of BrdU administration and Ki67+ cells in total CD8+ T cells in Tnfrsf4Cre/+ 

R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice. Values are the mean 

(±SEM) of 4 or 3 mice per group, respectively. (D) BrdU and Ki67 labelling in gated 

memory CD8+CD44hi T cells from the same mice. Numbers within the plots represent 

the percentage of positive cells for BrdU or Ki67 and are representative of 4 mice or 3 

miceper group, respectively. 
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In conclusion, the expansion and activation of memory CD8+ T cells seen in 

Tnfrsf4Cre/+ R26Dta/+ mice was an indirect result of altered CD4+ T cell homeostasis. 

We should therefore expect to see a similar phenotype in mice with primary CD4+ T 

cell immunodeficiency, such as MHC II-deficient mice. MHC II-deficient mice, in 

which generation of CD4+ T cells is blocked in the thymus, exhibited a proportional 

increase in numbers of both naïve and memory CD8+ T cells and the representation of 

memory CD8+ T cells was therefore similar to wild-type mice (Fig. 32-A and 32-B). 

Nevertheless, as was the case with Tnfrsf4Cre/+ R26Dta/+ mice, memory CD8+ T cells in 

MHC II-deficient mice contained higher percentages of CD62L- and CD43+ 

activated/effector CD8+ T cells, than wild-type mice (Fig. 32-C). 
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Figure 31. CD8 phenotype in Tnfrsf4Cre/+ R26Dta/+ mice is not cell intrinsic. Bone 

marrow chimeras, set up as in Fig. 18, were evaluated for the percentage of memory 

(CD44hi) and effector (CD44hiCD25+) CD8+ T cells (A, top row) or the percentage of 

CD62L- cells in gated CD44hiCD8+ T cells (A, bottom row), or the mean (±SEM) 

CD4:CD8 ratio (B). Values are representative of 4-8 mice analyzed in 2 independent 

experiments. 
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Figure 32. Composition and phenotype of CD8+ T cells in mice with primary 

CD4+ T cell immune deficiency. (A) Percentage and (B) absolute number (mean 

±SEM of 4-6 mice) of naïve and memory CD8+ T cells in MHC II-/- and wild-type 

control (WT) mice. (C) CD62L and CD43 expression in gated memory CD44hiCD8+ 

T cells from the same mice. Numbers within the plots in (A) and (C) represent the 

percentage of cells which are positive for each marker and are representative of 4-6 

mice. 
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3.4. Immune activation is neither a consequence of self-

reactivity to apoptotic T cells nor of bacterial translocation 

Although the precise causes of immune activation in HIV infection are not entirely 

clear, two distinct mechanisms have recently been proposed, namely self-reactivity to 

apoptotic T cells (Rawson et al., 2007) and translocation of microbial products in the 

intestinal mucosa (Brenchley et al., 2007). 

 

Reactivity to apoptosis-related self-peptides could be excluded as the cause of CD8+ T 

cell activation in Tnfrsf4Cre/+ R26Dta/+ mice as activation of these cells was not 

observed in mixed BM chimeras in the presence of wild-type CD4+ T cells (Fig. 31-

A), despite continuous apoptosis of Tnfrsf4Cre/+ R26Dta/+ CD4+ T cells.  

 

Although we found no evidence for intestinal pathology in Tnfrsf4Cre/+ R26Dta/+ mice 

it could be possible that a small degree of histologically undetectable bacterial 

translocation was occurring. To address this issue, we examined the effect of 

microbial translocation on the immune system of mice. Villin promoter-driven Cre-

mediated intestinal epithelial cell-specific deletion of NEMO (encoded by Ikbkg) 

leads to epithelial cell apoptosis, translocation of bacteria into the mucosa and TLR-

dependent intestinal inflammation and colitis (Nenci et al., 2007). We therefore 

assessed the immune activation status in the Ikbkgfl/- Vil-Cre (NEMO) mice. 

 

Lymph nodes in Ikbkgfl/- Vil-Cre mice were enlarged and contained increased 

numbers of both B and T lymphocytes, compared with Ikbkgfl/- littermate control mice 
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(Fig. 33-A and 33-B). This however, was at the expense of splenic lymphocytes (Fig. 

33-B) and overall numbers of B cell and CD4+ and CD8+ T cell subsets and the 

CD4:CD8 ratio in Ikbkgfl/- Vil-Cre mice were normal (Fig. 33-A, 34-A and 34-B). 

Compared with Ikbkgfl/- control mice, increased percentages and absolute numbers of 

memory CD4+ and CD8+ T cells were observed in enlarged lymph nodes but not in 

the spleens of Ikbkgfl/- Vil-Cre mice (Fig. 35-A, 35-B, 36-A and 36-B ). In contrast to 

lymphocytes, numbers of CD11b+F4/80+ myeloid cells were dramatically elevated in 

all secondary lymphoid organs of Ikbkgfl/- Vil-Cre mice and outnumbered B cells or T 

cells (Fig. 33-B). Thus, microbial translocation in this mouse model was associated 

with systemic expansion of myeloid cells, rather than memory CD8+ T cells. 
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Figure 33. Effect of microbial translocation through the intestinal mucosa on 

lymphoid organ cellularity and composition. (A) Flow cytometric profile of 

CD11b+F4/80+ macrophages in Ikbkgfl/- Vil-Cre (NEMO) and control Ikbkgfl/- (WT) 

mice lymph nodes. (B) Total cellularity and numbers of B220+ (B cells), CD4+ and 

CD8+ (T cells) and CD11b+F4/80+ (Mphi, macrophages) in spleen and lymph nodes 

separate and pooled. Values represent the mean (±SEM) of 9-11 mice per group. 
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Figure 34. Effect of microbial translocation through the intestinal mucosa on 

cellularity of CD4+ and CD8+ T cells. Numbers of CD4+ or CD8+ T cells and 

CD4:CD8 ratio in Ikbkgfl/- Vil-Cre (NEMO) and control Ikbkgfl/- (WT) mice in spleen 

and lymph nodes, in separate and pooled. Values represent the mean (±SEM) of 9-11 

mice per group. 
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Figure 35. Effect of microbial translocation through the intestinal mucosa on 

composition of CD4+ T cells. (A) Percentages and (B) absolute numbers of naïve, 

memory and regulatory (reg.) CD4+ T cells from Ikbkgfl/- Vil-Cre (NEMO) and 

control Ikbkgfl/- (WT) mice in spleen and lymph nodes separate and pooled. Values 

represent the mean (±SEM) of 9-11 mice per group. 
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Figure 36. Effect of microbial translocation through the intestinal mucosa on 

composition of CD8+ T cells. (A) Percentages and (B) absolute numbers of naïve and 

memory CD8+ T cells from Ikbkgfl/- Vil-Cre (NEMO) and control Ikbkgfl/- (WT) mice 

in spleen and lymph nodes separate and pooled. Values represent the mean (±SEM) of 

9-11 mice per group. 
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3.5. Immune activation is a consequence of CD4+ regulatory T 

cell homeostatic disturbances  

Our results argued against self-reactivity to apoptotic products or translocation of 

microbial products as the causes of immune activation in Tnfrsf4Cre/+ R26Dta/+ mice 

and instead supported immune activation as a direct consequence of CD4+ T cell 

death. 

 

To explore the mechanism by which activated CD4+ T cell deficiency leads to CD8+ 

T cell activation, we reconstituted selected subsets of CD4+ T cells affected in 

Tnfrsf4Cre/+ R26Dta/+ mice. The regulatory subset of CD4+ T cells is targeted by HIV, 

SIV and FIV (Oswald-Richter et al., 2004; Pereira et al., 2007; Joshi et al., 2004), 

leading to enhanced turnover and activation, and a relative deficit in this subset has 

been linked by certain studies to immune activation and disease progression in HIV 

infection (Kinter et al., 2004; Eggena et al., 2005). 

 

Purified wild-type regulatory CD4+ T cells (CD4+ CD25bright) adoptively transferred 

into Tnfrsf4Cre/+ R26Dta/+ mice expanded efficiently, reaching numbers comparable 

with those of regulatory CD4+ T cells in wild-type mice, and maintained their FoxP3 

expression (Fig. 37-A and 37-B). In contrast, the same cells transferred into 

regulatory CD4+ T cell-replete control mice failed to expand (Fig. 37-A and 37-B).  
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Figure 37. Adoptively transferred wild type regulatory CD4+ T cells expand in 

Tnfrsf4Cre/+ R26Dta/+ but not in control Tnfrsf4Cre/+ R26+/+mice. Tnfrsf4Cre/+ R26Dta/+ 

(DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) mice received 1-3 × 106 purified 

regulatory CD25+CD4+ T cells from CD45.1-congenic B6 donor mice. Expansion of 

transferred cells was followed in the blood of recipient mice (A), and expansion and 

retention of Foxp3 expression in donor CD45.1+CD4+ T cells was assessed in 

lymphoid organs at the end of a 10-week observation period (B). Values represent the 

mean (±SEM) of 7-9 mice per group pooled from 3 independent experiments. 
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The adoptively transferred regulatory CD4+ T cells had a significant effect on the 

proportion of memory CD8+ T cells in the blood (Fig. 38-A) and lymphoid tissues 

(Fig. 38-B) of Tnfrsf4Cre/+ R26Dta/+ mice, particularly those with an activated 

CD44hiCD62L- phenotype, which were reduced to wild-type levels over a period of 

three weeks (Fig. 38-C and 38-D). Thus, CD8+ T cell immune activation in 

Tnfrsf4Cre/+ R26Dta/+ mice is due to a deficit in regulatory CD4+ T cell function.  

 

Furthermore, transfer of regulatory T cells had an effect on the serum levels of some, 

but not all, proinflammatory cytokines and chemokines. Serum levels of IL-1β, IFNγ, 

MCP-1 (CCL2) and MIP-1α (CCL3) were restored to levels in control Tnfrsf4Cre/+ 

R26+/+ (Fig. 39). 
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Figure 38. Effect of regulatory CD4+ T cell transfer on proportion and 

phenotype of memory CD8+ T cells. (A) Percentage of memory (CD44hi) cells in 

CD8+ T cells in the blood of Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ 

R26+/+ (WT) mice, following transfer of 1-3 × 106 purified regulatory CD25+CD4+ T 

cells from CD45.1-congenic B6 donor mice. (B) Percentage of memory (CD44hi) cells 

in CD8+ T cells isolated from the spleen and lymph nodes of the same recipient mice 

(+ Treg), 10 weeks after transfer, or mice which did not receive CD25+CD4+ T cells (- 

Treg). (C) Percentage of effector/memory (CD62L-CD44hi) cells in CD8+ T cells in 

the blood of the same recipients of regulatory CD25+CD4+ T cells. (D) Percentage of 

effector/memory (CD62L-CD44hi) cells in CD8+ T cells isolated from the spleen and 

lymph nodes of the same recipient mice (+ Treg), 10 weeks after transfer, or mice 

which did not receive CD25+CD4+ T cells (- Treg). Values represent the mean 

(±SEM) of 7-9 mice per group pooled from 3 independent experiments.  
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Figure 39. Effect of regulatory CD4+ T cell transfer on serum levels of 

proinflammatory cytokines and chemokines in Tnfrsf4Cre/+ R26Dta/+ mice. Serum 

levels of the cytokines IL-1β and IFNγ, and of the chemokines MCP-1 (CCL2) and 

MIP-1α (CCL3) in Tnfrsf4Cre/+ R26Dta/+ (DTA) and control Tnfrsf4Cre/+ R26+/+ (WT) 

mice and after transfer of purified regulatory T cells from CD45.1-congenic B6 donor 

mice. Values represent the mean (±SEM) of 5 mice per group, pooled from two 

independent experiments. 
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4. Discussion 

 

In the present study we have induced conditional ablation of activated CD4+ T cells, 

the targets of immunodeficiency viruses, in a virus-free murine system. Depletion of 

these cells affects memory/effector and regulatory CD4+ T cells and leads to a 

disturbance in immune system homeostasis that shares many features with cell 

dynamics characteristic of HIV-1 infection. Specifically, partial deletion of 

memory/effector and regulatory CD4+ T cells results in generalized immune 

activation characterized by enlarged lymph nodes, increased production of 

proinflammatory cytokines and chemokines, decrease in the CD4:CD8 ratio and 

increased activation and turnover of CD4+ and CD8+ T cells. Furthermore the immune 

response of these mice to a number of pathogens tested is impaired even though CD4+ 

T cell numbers are relatively preserved. By separating killing from other viral-

mediated effects, we show that deficiency in regulatory T cells is sufficient to cause 

CD8+ T cell immune activation.  

 

4.1. Conditional mutagenesis in the mouse 

The success of the Cre-loxP technology is dependent upon tight regulation of Cre 

expression so that it is only expressed in the intended cells. In this respect, the 

Tnfrsf4Cre/+  mouse line used in this study has the advantage of having Cre inserted 

into the endogenous CD134 locus, thereby eliminating position effect variegation 

sometimes observed in the classical transgenesis approach (Kioussis and Festenstein, 

1997). In addition, by using a reporter line for Cre-mediated recombination, we were 

able to confirm that the expression of Cre in peripheral lymphoid tissues is restricted 
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almost exclusively to memory and regulatory CD4+ T cell subsets, as expected. 

Because the removal of the stop signal is a permanent genetic modification all cells 

that have expressed but subsequently downregulated CD134 and all daughter cells 

will therefore express the reporter marker YFP. It is thus likely that the proportion of 

YFP+ cells in the reporter line is an overrepresentation of the number of activated 

cells at any one moment. Importantly, we did not detect YFP expression in any other 

tissues analysed, indicating that Cre expression is tightly regulated in the Tnfrsf4Cre/+ 

line. Although we cannot exclude the expression of Cre in other non-hematopoietic 

tissues that we did not analyse, we were able to show that the phenotype we are 

reporting is not due to ectopic expression but rather is immune cell-dependent, and 

could be reproduced by transfer of hematopoietic cells in Rag-/- mice. 

 

It has been shown that CD134 can be up-regulated in CD8+ T cells that are activated 

in vitro through TCR stimulation (Baum et al., 1994), but the absence of YFP+ cells in 

the CD8+CD44+ fraction of Tnfrsf4Cre/+ R26Yfp/+ mice indicates that, under 

physiological conditions, the majority of memory-phenotype CD8+ T cells will not 

receive the amount of stimulation that in vitro TCR stimulation delivers. However, in 

Tnfrsf4Cre/+ R26Yfp/Dta mice, where the CD8+ T cell population is activated, we did see 

a small fraction of CD8+ YFP+. Because these cells also express DTA, this reporter 

strain does not permit evaluation of the true extent of CD8+ T cells that upregulated 

CD134. Importantly however, we have several lines of evidence that activation of 

CD8+ T cells is secondary to the CD4+ T cell phenotype we described. Firstly, CD8+ 

T cells are maintained in mixed bone marrow chimeras and are not activated. 

Secondly, in MHCII-/- mice the absence of CD4+ T cells results in CD8+ T cell 

activation. Lastly, transfer of regulatory CD4+ T cells is able to correct the CD8+ T 
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cell activation phenotype. Thus we can rule out DTA-mediated depletion of CD8+ T 

cells as contributing to their activated phenotype. 

 

With respect to the relevance of this system in our attempts to mimic CD4+ T cell-

specific deletion by HIV, a number of points should be taken into account.  

 

First, the kinetics of DTA-mediated depletion we observe is similar to the one 

estimated for cells infected with HIV. It is calculated that HIV has an eclipse time of 

~1 day  between cell entry and virion production (Perelson et al., 1996), and that 

productively infected cells have a lifespan of ~1 day (Markowitz et al., 2003). Thus it 

takes ~2 days for HIV to kill a cell from the moment of cell entry. Similarly, we have 

shown that it takes approximately one day for the cell to express CD134 after 

activation and that DTA-mediated cell death takes a further 24 hours.  

 

Second, although we aimed at depleting 100% of activated CD134-expressing cells, 

this was not achieved either due to inefficiency of DTA-mediated killing or rapid 

replacement of cells, or both. This is to our advantage because it reproduces better the 

deletion of available target cells by HIV in vivo, where only a proportion of them are 

killed. 

 

Finally, the genetic modification we have induced in the mouse genome is in place 

during the entire development of the mice, and therefore does not reproduce the acute 

onset of infection in adults. However it mimics situations of congenital infection. 
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4.2. CD4+ T cell depletion and deficiency: homeostasis and 

function 

The immune system has extraordinary self-regenerating capacity that allows the 

number of immune cells to be restored after serious insults, provided that the cues 

necessary for the maintenance of each subset are present. The proliferative capacity of 

each subset and its ability to self-regenerate are however different. 

 

We show here that despite the fact that CD4+ T cells are being depleted, the number 

of these cells in lymphoid tissues is not decreased. Furthermore, this depletion leads 

to changes in other immune populations by significantly increasing the numbers of B 

cells and CD8+ T cells and results in a decrease of the CD4:CD8 ratio. 

 

A decreased CD4:CD8 ratio is also a hallmark of HIV infection. In this case however, 

it reflects not only a similar increase in CD8+ T cell counts but also a slow and 

progressive decrease in CD4+ T cell counts.  

 

4.2.1. Memory and regulatory CD4+ T cells  

In our model, a significant proportion of memory and regulatory CD4+ T cells are 

depleted. However, the number of memory T cells is unchanged and in lymph nodes 

is even increased, reflecting the powerful capacity for self-renewal of this population. 

In contrast, regulatory T cells are reduced in Tnfrsf4Cre/+ R26Dta/+ mice, indicating a 

breakdown in the homeostasis of this subset.  
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Regulatory T cells have been shown to divide homeostatically in lymphopenic 

conditions (Annacker et al., 2001; Gavin et al., 2002) and after antigenic stimulation 

(Walker et al., 2003). We analysed this population in search for clues as to why this 

population is not restoring itself in our system. The phenotype of these cells is 

markedly different from those of control mice. An increased proportion of regulatory 

T cells in Tnfrsf4Cre/+ R26Dta/+ mice express activation markers such as low levels of 

CD62L and increased CD43, CD44 and CD49b expression. The increased activation 

of the regulatory T cell compartment in Tnfrsf4Cre/+ R26Dta/+ mice can be a 

consequence of a vicious cycle between killing of activated cells and elevated 

turnover of the remaining cells in order to replace the lost ones. The results obtained 

with BrdU and Ki67 labelling favour this hypothesis. Another possibility is that the 

regulatory population of Tnfrsf4Cre/+ R26Dta/+ mice is composed exclusively of the 

‘memory’ population seen in WT mice (Fisson et al., 2003) due to the depletion in the 

thymus of the ‘naïve’ regulatory T cell population. We have shown that, in the 

thymus, expression of YFP by regulatory T cells was almost as high as in the 

periphery (60% vs 80%), in agreement with other studies that pointed out that 

regulatory T cells are already activated in the thymus. However CD134 is expressed 

preferentially in the ‘memory’ population. In addition, our observation that regulatory 

cells in Tnfrsf4Cre/+ R26Dta/+ mice are more activated than the ‘memory’ regulatory 

population of control mice strongly supports the first hypothesis. Therefore, it is 

unlikely that the regulatory population in Tnfrsf4Cre/+ R26Dta/+ mice appears activated 

due to selective loss of the ‘naïve’ regulatory subset. 

 

Regulatory T cells from Tnfrsf4Cre/+ R26Dta/+ mice show a higher than two fold 

increase in the turnover rate in comparison to control mice, as evaluated by BrdU 
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incorporation and Ki67 staining. The increased homeostatic proliferation is however 

insufficient to compensate for the loss of these cells, indicating that death occurs 

faster than cell proliferation. It is also possible that a fraction of regulatory T cells 

have been generated by conversion of memory CD4+ T cells rather than by division of 

regulatory T cells (Akbar et al., 2007). 

 

Contrasting with the higher levels of activation and proliferation of regulatory T cells, 

the memory T cell compartment in Tnfrsf4Cre/+ R26Dta/+ mice does not show such 

profound changes in their activation profile and turnover rate compared with those in 

control mice. Indeed, except for a small increase in the expression of CD43 and 

CD49b markers and in the production of IFNγ, they are comparable to memory cells 

in control mice. Their proliferation rate as assessed by BrdU incorporation was not 

significantly different when compared to controls and analysis of Ki67 revealed only 

a mild increase. 

 

However, we demonstrated in the mixed bone marrow chimera experiments that 

Tnfrsf4Cre/+ R26Dta/+-origin memory cells are killed as efficiently as regulatory T cells.  

 

In normal mice in steady-state conditions, the memory CD4+ T cell pool contains a 

very high percentage of cells dividing at any one time (40% were labelled by Ki67) 

and consequently an equivalent proportion of cells must die as their absolute numbers 

do not change. Indeed, memory CD4+ T cells have a much higher turnover rate and 

thus shorter life-span, at the single-cell level, than naïve CD4+ T cells. 
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This means that the DTA-mediated depletion in memory CD4+ T cells will probably 

have a minor impact on top of the already high death rate, because many of the cells 

targeted by DTA are pre-destined to die anyway. Thus, it is the difference between 

DTA-mediated killing and normal cell intrinsic death rate that dictates the impact 

DTA has on each population.  

 

4.2.2. Preservation of CD4+ T cell numbers 

The mechanism responsible for the progressive decline of CD4+ T cells in HIV 

infection is not completely understood nor is the long time scale of this process, often 

over a period of ten years or longer. One proposed mechanism for the CD4+ T cell 

loss is that immune activation increases target cell availability and leads to ongoing 

cycles of infection and virus production resulting in depletion of more CD4+ T cells. 

However, mathematical modelling has shown that if this ‘runaway’ hypothesis were 

correct, then CD4+ T cells would fall to low levels in a matter of months, not years 

(Yates et al., 2007). Therefore, the slow decline of CD4+ T cells in HIV infection 

needs to be better understood. 

 

The average time to progress to AIDS is markedly shorter in SIV-infected Indian 

rhesus macaques than in untreated HIV-1 individuals. In contrast, in SIV-infected 

Chinese rhesus macaques the course of infection is slower, thus making them more 

similar to HIV-infected individuals (Ling et al., 2002). Interestingly, in SIV-infected 

Indian rhesus macaques, progression to AIDS is associated with a rapid depletion of 

circulating and mucosal CD4+CCR5+ memory T cells (Mattapallil et al., 2004) 

whereas Chinese rhesus macaques experience a relative expansion of the CD4+CCR5+ 

pool, the extent of which is clearly associated with markers of disease progression 
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(Monceaux et al., 2007). This is also the case for the asymptomatic phase of HIV-1 

infection where there is an increase in the proportion of CCR5 expressing CD4+ T 

cells (Ostrowski et al., 1998). Infection with HIV-2 which is characterized by a very 

slow disease progression, is also associated with an increase in the proportion of 

CCR5+ within the memory /effector CD4+ T cell pool which correlates with the 

degree of CD4+ T cell depletion and immune activation (Soares et al., 2006).  

 

Thus, progression to disease in slow SIV progressors  (Chinese rhesus macaques), 

HIV-2 and asymptomatic HIV-1 is associated with a relative increase of CD4+CCR5+ 

in the periphery, whereas in the fast SIV progressors (Indian rhesus macaques) 

disease is associated with depletion of the same cells. 

 

Interestingly, in our model, there is a relative increase in effector-memory CD4+ T 

cells, the same cells that are being killed, similarly to what happens in HIV-1 

infection. Our model is thus a good model for the asymptomatic phase of HIV-1. 

 

CD4+ T cells in Tnfrsf4Cre/+ R26Dta/+ mice, including the memory subset, are 

numerically stable over time, even in aged mice of 8 months of age, which was the 

latest time point analysed. It is therefore interesting to explore the mechanisms 

responsible for the memory CD4+ T cell preservation in these mice. 

 

Memory CD4+ T cells can be renewed either by cell division (proliferation) or by 

differentiation of naïve T cells. For naïve T cells to differentiate into memory cells 

they need to be activated and divide. In this process they will become targets for HIV, 

and in our system they will express CD134 and die. This continuous pressure would 



 143

drain the naïve pool in situations of thymic involution. Thus it is tempting to speculate 

that in our model, the maintenance of a normal thymus contributes to the maintenance 

of the CD4+ T cell numbers. 

 

In HIV infection, depletion of naïve CD4+ T cells can sometimes be observed, but 

whether it is critical for the decline of memory CD4+ T cells is not known. In SIV 

infection of macaques, some studies report depletion of naïve T cells (Nishimura et 

al., 2007), whereas other studies report intact CD4+ naïve cell compartment (Okoye et 

al., 2007). Observations that thymectomized rhesus macaques do not show significant 

differences in terms of T cell decay or disease progression (Arron et al., 2005), 

suggest that the naïve population is not a major determinant of memory CD4+ T cell 

homeostasis in chronic SIV infection.  

 

However, the age-associated thymic involution and HIV-mediated thymic inhibition 

are likely to make it more difficult for the thymus to keep up with the constant drain 

on the naïve T cell pool to flow into the memory T cell pool (Douek, 2003). Efficient 

thymopoiesis has been strongly associated with maintenance of circulating CD4+ T 

cells in slow progressors (Dion et al., 2007) and has also been implicated in a better 

outcome of HIV-2 infection when compared with HIV-1 (Gautier et al., 2007). 
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4.2.3. Immunodeficiency 

Tnfrsf4Cre/+ R26Dta/+ mice do not spontaneously develop any opportunistic infections, 

which is not surprising since they are housed in clean facilities, where even mice 

lacking innate (MyD88-/-) or adaptive (Rag-/-) immune systems live healthy. However, 

when submitted to experimental infection these mice proved to be immunodeficient. 

Thus, despite having normal numbers of CD4+ T cells, the accelerated turnover rate or 

the immune activation status of antigen experienced cells compromised their function.  

 

The inability to mount a strong immune response can be due to insufficient precursor 

frequency of one or more of the effector populations. However, this is unlikely to be 

the case for the Tnfrsf4Cre/+ R26Dta/+ mice, because naïve CD4+ or CD8+ T cells are 

not reduced. The accelerated turnover rate of effector/memory pool is more likely to 

be the cause, since cells respond to pathogens by becoming activated. A primary 

response peaks at ~7 days and by that time we have shown that cells are already 

affected by DTA-mediated killing.  

 

Although a contribution of CD8+ T cell activation phenotype in the 

immunodeficiency of these mice is possible, we measured immune deficiency by 

specifically assessing CD4+ T cell function. In the experimental infection with 

Influenza virus, we looked at the production of nAb that is absolutely dependent on 

CD4+ T cells. In Friend virus infection, we assessed both the production of 

neutralizing antibodies and the control of viremia both of which have been shown to 

be dependent on CD4+ T cells in the chronic stage of infection, but not on CD8+ T 

cells (Super et al., 1998). The correlation observed between production of neutralizing 

antibodies and control of infection further support a role of CD4+ T cells, in the 
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resolution of this infection. Finally, CD4+ T cells have been shown to be the critical 

subset in controlling Pneumocystis infection but also to be responsible for the 

deleterious effects of the inflammatory response. In this context, it was shown that 

regulatory T cells suppress the CD4+ T cell mediated pulmonary hyper-inflammation 

in immune deficient mice (Hori et al., 2002). 

 

In untreated HIV infection, there is a progressive loss of immune competence with 

some infections being more likely to occur at higher CD4+ T cells counts than others. 

For instance, candidiasis and herpes simplex virus, both of which have increased 

incidence among individuals with HIV, can occur even at fairly high CD4+ T cell 

counts. Mycobacterium tuberculosis carriers infected with HIV are more likely to 

develop tuberculosis than those without HIV, and this is also not necessarily 

associated to low CD4+ T cell counts. Bacterial pneumonia, very frequent in HIV-

positive individuals, occurs at all CD4+ T cell counts, although it becomes more 

frequent as CD4+ T cell counts go down (Hirschtick et al., 1995). Other infections 

however, develop only when CD4+ T cell counts drop below a certain threshold: 

Kaposi’s sarcoma, Pneumocystis pneumonia, toxoplasmosis and Cryptococcus, 

Mycobacterium avium complex and cytomegalovirus, all develop at < 250 CD4+ T 

cells/µl. 

 

Similarly, we find that Tnfrsf4Cre/+ R26Dta/+ mice are immune deficient to an array of 

infections, but the degree of deficiency depends on the type of infection and its 

chronicity. 
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4.3. Immune activation 

 

4.3.1. Immune activation in HIV 

It has long been recognised that HIV infection is characterized not only by 

immunodeficiency but also by immune activation. In fact, elevated levels of CD38 

expression in CD8+ T cells were already described in the initial reports of AIDS in 

1981 (Gottlieb et al., 1981; Masur et al., 1981).  

 

Immune activation has recently been proposed as the major driving force behind the 

systemic decline of CD4+ T cells in HIV infection (Grossman et al., 2006). The fact 

that activation marker expression correlates well with disease progression supports 

this idea (Silvestri and Feinberg, 2003; Sousa et al., 2002; Hazenberg et al., 2003). 

Moreover patients in whom highly active antiretroviral therapy fails to reduce viral 

loads, but who have low levels of T cell activation, show a continuous increase in 

CD4+ T cells (Hazenberg et al., 2002; Deeks et al., 2002). Conversely, patients with 

high levels of immune activation despite viral load suppression have poor gains in 

CD4+ T cell counts (Hunt et al., 2003). Additionally, SIV-infected sooty mangabeys 

and African green monkeys do not usually develop AIDS-like disease despite high 

viral loads. Contrary to SIV-infected macaques, they do not display marked immune 

activation (Silvestri et al., 2003; Kornfeld et al., 2005; Sumpter et al., 2007). Another 

piece of evidence comes from studies in the mouse. A transgenic mouse strain 

constitutively expressing the co-stimulatory molecule CD70 on B cells, shows 

persistent CD4+ and CD8+ T cell activation leading to excessive generation of 
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effector/memory CD4+ and CD8+ T cells and the gradual depletion of naïve CD4+ and 

CD8+ T cell pools. Notably, these mice develop lethal immunodeficiency (Tesselaar 

et al., 2003).  

 

4.3.2. Immune activation in Tnfrsf4Cre/+ R26Dta/+ mice 

Immune activation in HIV-infected individuals is manifested not only by an increase 

in activation and turnover of immune cells, but also by an enlargement of the lymph 

nodes and by increased serum levels of inflammatory factors. 

 

Tnfrsf4Cre/+ R26Dta/+ mice show systemic and dramatic lymphadenopathy. This 

condition occurs in many inflammatory and infectious states and has been proposed to 

be dependent on dendritic cell-mediated endothelial cell proliferation and induction of 

high endothelial venules and consequent recruitment of circulating cells in the lymph 

nodes  (Webster et al., 2006). However, mice lacking regulatory T cells such as 

FoxP3-/- (Fontenot et al., 2003) or the spontaneous mutant Scurfy (Brunkow et al., 

2001) or mice with an inducible regulatory T cell deficiency (Kim et al., 2007; Lund 

et al., 2008) also show enlarged lymph nodes. Whether this enlargement is the result 

of the generalized inflammatory state of these mice, or is a direct consequence of the 

lack of regulation by regulatory T cells is open to debate. 

 

Interestingly, although Tnfrsf4Cre/+ R26Dta/+ mice have a deficit in the regulatory CD4+ 

T cell compartment, they do not develop the severe pathology which includes wasting 

disease, failure to thrive, and inflammatory, autoimmune and allergic manifestations 

that is common in mice lacking regulatory T cells. Indeed Tnfrsf4Cre/+ R26Dta/+ mice 

do not show developmental problems or obvious signs of autoimmunity or 
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inflammation. One obvious difference between Tnfrsf4Cre/+ R26Dta/+ and regulatory T 

cell-deficient mice that could explain this finding is that in the latter all regulatory T 

cells are depleted, while in Tnfrsf4Cre/+ R26Dta/+ mice depletion is not complete but 

restricted to ~ 40% of these cells. The remaining cells however are activated and 

presumably have a strong suppressive effect. Furthermore, and perhaps more 

importantly, in Tnfrsf4Cre/+ R26Dta/+ mice both regulatory and activated/memory cells 

are targeted. In the FoxP3-/- or the natural mutant Scurfy it has been shown that the 

autoimmunity phenotype depends on a population of FoxP3-CD4+ T cells with self-

reactive TCR that act as effectors in the absence of regulation by regulatory T cells 

(Blair et al., 1994). It is thus possible that the effect of DTA depletion on possibly 

pathogenic non-regulatory T cells blocks the development of overt disease in 

Tnfrsf4Cre/+ R26Dta/+ mice.  

 

Mice deficient in regulatory T cells have excessive T cell activation and consequent 

excessive secretion of proinflammatory mediators such as TNFα (Kanangat et al., 

1996), IL-13, GM-CSF (Kim et al., 2007) and  CCL2 (MCP-1), CXCL9 and CXCL10  

(Lund et al., 2008). Similarly, Tnfrsf4Cre/+ R26Dta/+ mice have increased levels of these 

and other proinflammatory cytokines and chemokines in serum. Cytokines and 

chemokines create complex networks of signals for cells and the increase in specific 

cytokine and chemokines in Tnfrsf4Cre/+ R26Dta/+ mice is probably only part of the 

picture, but it is nevertheless the reflection of a systemic increase in activation of the 

immune system. 

 

Interestingly, HIV infection is also associated with increased levels of circulating 

inflammatory chemokines (Reinhart, 2003). Specifically, elevated levels of plasma 
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CXCL9 and CXCL10 have been observed in HIV-infected individuals with stable, 

chronic infection and with advanced disease when compared to uninfected controls 

(Brainard et al., 2007). IL-1α, IL-1β, IL-12 and IFNγ have been shown to be 4 to 12 

times increased in HIV-infected tonsil tissue when compared to uninfected controls, 

and were reduced after 4 weeks of HAART (Andersson et al., 1998). 

 

4.3.2.1. Immune activation of CD8 T cells 

Cellular activation is mostly defined by the expression of markers on the cell surface 

that are indicative of activation and also by increased turnover rate.  

 

In HIV infection the increase in total CD8+ T cell counts in the asymptomatic period 

is primarily due to an expansion of memory cells (Roederer et al., 1995). In addition, 

CD8+ T cells express activation markers and have higher turnover rates (Sachsenberg 

et al., 1998) and more recently it has been shown that the increased turnover of CD8+ 

T cells involves effector-memory cells, while normal levels of turnover are observed 

for both naïve and central memory T cells (Hellerstein et al., 2003). Importantly, 

CD8+ T cell activation is a better correlate for disease progression than viral loads or 

CD4+ T cell counts. 

 

We showed that the CD8+ T cell population in the lymph nodes of Tnfrsf4Cre/+ 

R26Dta/+ mice was increased when compared with control mice, and this was also due 

to increased numbers of memory CD8+ T cells. These cells express lower levels of 

CD62L, which is expressed in central memory but not effector memory CD8+ T cells, 

and higher levels of CD43 activation marker consistent with a phenotype of 

activated/effector memory CD8+ T cells. The CD8+ T cell population of Tnfrsf4Cre/+ 
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R26Dta/+ mice is thus activated, enriched in effector memory cells and with higher 

turnover rates, similar to the situation in HIV infection. 

 

Causes of immune activation 

Many factors have been proposed to drive immune activation, including HIV itself, 

microbes, cross reactivity to apoptotic cells and regulatory T cell depletion. 

 

HIV 

HIV-1 derived single-stranded RNA sequences have been implicated in the activation 

of the immune system. One way by which microbial products can activate the 

immune system is via interactions with toll-like receptors (TLRs) (Janeway, Jr. and 

Medzhitov, 2002). HIV-derived uridine-rich sequences have been shown to interact 

with TLRs. When CD4+ and CD8+ T cells were stimulated with these sequences in 

vitro, they upregulated CD69, a marker of recent activation (Meier et al., 2007). 

However the study did not include data on CD38 or HLA-DR markers, which are the 

activation markers usually reported to be increased in HIV studies. In addition, 

assuming that monkeys have a pattern of TLR expression similar to humans, the same 

activation should occur with SIV. However, natural hosts do not have immune 

activation. In this respect, it has been suggested that plasmacytoid dendritic cells 

(pDCs), the major IFN-α producing cells in response to viral infections, from sooty 

mangabeys stimulated with SIV failed to produce IFN-α, but were however 

responsive to influenza virus. In contrast, pDCs from rhesus macaques, were fully 

responsive to SIV. (Keystone Symposia, Determinants of Host resistance, 

Succeptibility or Immunopathology to Pathogens: Integrating knowledge from 

experimental models to human disease, 2006. Poster abstract 145, Klucking, S et al, 
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Inneficient production of IFN-α by pDCs is involved in the limited immune activation 

and AIDS-resistance in naturally SIV-infected SMs; Speaker abstract 006, Staprans S 

et al , Host-virus relationships in non-pathogenic SIV infections). 

 

It is thus possible that the differential signalling by TLRs of sooty mangabeys may 

result in attenuated response of the innate system and may explain the low levels of 

immune activation in these animals. Interestingly, another SIV natural host, the 

African green monkey, has been shown to have an early anti-inflammatory response 

in response to SIV infection, by producing high levels of TGF-β and IL-10 which 

could as well explain the lack of immune activation in this species (Kornfeld et al., 

2005). 

 

In any case, a direct effect of viral infection in immune activation can be excluded in 

our virus-free model, indicating that other causes must be responsible for the immune 

activation in Tnfrsf4Cre/+ R26Dta/+ mice. 

 

Other microbes 

The drop in CD4+ T cell counts and the inflammatory conditions occurring during the 

acute phase of HIV infection may favour the reactivation and replication of latent 

forms of CMV and Epstein-Barr virus (EBV) (Papagno et al., 2004). In addition, the 

chronic loss of CD4+ in the asymptomatic phase of the disease renders the immune 

system less capable of fighting microbes and HIV individuals are more susceptible to 

widespread diseases such as malaria, tuberculosis, pneumonia, etc. This heightened 

exposure to microbes has been proposed to contribute to generalized immune 

activation. 
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To address this issue, cells were stimulated in vitro with several TLR ligands. 

Stimulation lead to expression of the activation marker CD38 in CD4+ and CD8+ T 

cells but not HLA-DR (Funderburg et al., 2008), suggesting that systemic exposure to 

a number of microbial TLR agonists could drive, at least partly, immune activation in 

HIV. 

 

One way by which microbes can have access to the immune cells is through ‘leaky’ 

mucosas. It has been proposed that the early depletion of CD4+ T cells from the gut 

mucosa in HIV infection is critical to disease pathogenesis (Brenchley et al., 2006). 

According to this study, the direct cytopathic effects of HIV on CD4+CCR5+ T cells 

are the cause of the depletion which in turn compromises the gut mucosa, allowing 

commensal bacteria and/or their products to leak into the circulation by a 

phenomenon known as microbial translocation, which then leads to systemic 

activation. In support of this, plasma levels of lipopolysaccharide (LPS), a component 

of Gram negative bacteria, which can be used as a quantitative indicator of microbial 

translocation, are significantly elevated in individuals with chronic HIV infection and 

AIDS and the same is true for SIV-infected macaques but not for sooty mangabeys. 

However, people with acute/early HIV infection did not show elevated LPS levels. 

This could be explained by the presence of anti-LPS antibodies which wane over time 

as individuals with HIV become more immunodeficient. 

 

It has been argued that the depletion of CD4+ T cells from the gut is unlikely to be 

very important because the majority of these cells are short-lived effectors and the 

ability to replenish the gut is maintained (Grossman et al., 2006). Supporting this 
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argument is the fact that a similar depletion occurs in SIV-infected sooty mangabeys 

and African green monkeys, but these animals almost never develop 

immunodeficiency or immune activation (Gordon et al., 2007; Pandrea et al., 2007). 

 

More recently it has been shown that TH17 cells, a recently described CD4+ T cell 

subset that produces IL-17 and IL-22 and is involved in antimicrobial immunity at 

mucosal surfaces (Steinman, 2007), express CCR5 and are preferentially lost from the 

gastrointestinal tract of HIV-infected individuals and SIV-infected rhesus macaques 

but are maintained in SIV-infected sooty mangabeys (Brenchley et al., 2008; 

Raffatellu et al., 2008). Thus, depletion of TH17 cells can be the critical mechanism to 

explain loss of bacteria control and microbial translocation in pathogenic lentiviral 

infections. 

 

Although histological analysis performed on Tnfrsf4Cre/+ R26Dta/+ mice did not reveal 

alterations in the morphology or cellular composition of the intestinal mucosa, we 

cannot definitely exclude that a small degree of microbial translocation is occurring in 

the Tnfrsf4Cre/+ R26Dta/+ mice and that this is the mechanism involved in the CD8+ T 

cell activation in these mice.  

 

We do not favour this possibility because in a mouse model of severe microbial 

translocation, the Ikbkgfl/- Vil-Cre mice, the major immune compartment affected is 

the monocytic compartment rather than CD8+ T cells. However to rule out a role of 

microbial translocation in the Tnfrsf4Cre/+ R26Dta/+ mice, we are crossing them to 

MyD88-/- mice. MyD88 is an adaptor molecule essential for most TLR-mediated 

induction of inflammatory cytokines (Takeda and Akira, 2003). Although microbes 
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may trigger immune cells through pathways other than TLRs (Robinson et al., 2006), 

and a few TLRs can signal through Myd88-independent pathways (Kenny and 

O'Neill, 2008), MyD88 seems nevertheless to be essential for microbial translocation 

induced pathology, as evidenced by the fact that Ikbkgfl/- Vil-Cre mice rendered 

MyD88 deficient are free of any signs of disease. Ultimately, this issue can only be 

resolved by generating germ-free Tnfrsf4Cre/+ R26Dta/+ mice.  

 

Apoptotic/necrotic cells 

The continuous turnover of apoptotic cells has been proposed to generate fragments of 

cellular proteins cleaved by caspases which are capable of priming self-reactive CD8+ 

T cells. In HIV infection, the magnitude of the CD8+ T cell response directed against 

this apoptosis-derived peptides correlates with the decline in CD4+ T cell counts 

suggesting that these self-reactive CD8+ T cells can contribute to the systemic chronic 

immune activation (Rawson et al., 2007).  

 

In Tnfrsf4Cre/+ R26Dta/+ mice this could be a potential cause of chronic immune 

activation, since in this system there is a continuous deletion of CD4+ T cells by DTA-

mediated apoptosis. However, in mixed bone marrow chimeras, where there is a 

continuous depletion of CD4+ T cells, there is no evidence of CD8+ T cell activation. 

Thus, it is unlikely that this mechanism is involved in the CD8+ T cell immune 

activation seen in Tnfrsf4Cre/+ R26Dta/+ mice. 

 

Regulatory T cells  

Lack of immunosuppression by progressive loss of regulatory T cells during HIV 

infection has also been proposed as a possible mechanism of chronic immune 
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activation. Many studies have addressed the role of regulatory T cells in HIV and SIV 

infection but there is still controversy as to whether they are beneficial or detrimental. 

Although it is clear that regulatory T cells can be infected and killed by HIV (Oswald-

Richter et al., 2004; Antons et al., 2008), there is no consensus as to whether they are 

increased (Weiss et al., 2004; Tsunemi et al., 2005; Tsunemi et al., 2005; Kinter et al., 

2004; Montes et al., 2006), decreased (Oswald-Richter et al., 2004; Apoil et al., 2005) 

or unchanged (Aandahl et al., 2004) in the course of HIV infection. One of the 

reasons that could explain this discrepancy is the fact that some studies present data as 

proportion of CD4+ T cells rather than absolute numbers. Since total CD4+ T cells are 

diminished in HIV infection, the expression of regulatory T cells as percentage of 

CD4+ T cells will not reflect their loss. Indeed one study reported decreased absolute 

numbers but increased numbers of regulatory T cells as percentage of CD4+ T cells 

(Eggena et al., 2005). The inconsistency in the results may also be partly explained by 

the markers used to define this subset. Many studies have distinguished regulatory 

cells by the expression of CD25, but activated effector cells also express this marker 

transiently. Other studies have classified regulatory T cells according to the level of 

CD25 expression which has been shown to roughly divide activated T cells (low 

CD25 expression) from regulatory T cells (high CD25 expression) in the peripheral 

blood of healthy subjects (Baecher-Allan et al., 2001). Indeed, Foxp3 is expressed in 

more than 95% of peripheral blood CD4+CD25high but in only 35% of CD4+CD25int 

(Ziegler, 2006) supporting the notion that most regulatory T cells  would be included 

in the fraction of CD4+ T cells  expressing high intensity of CD25. Another important 

point to consider is that changes observed in peripheral blood are not representative of 

what is happening in the lymphoid tissues or intestinal mucosa but rather are the 

consequence of redistribution of regulatory T cells to tissues with active replication 
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(Epple et al., 2006; Nilsson et al., 2006; Andersson et al., 2005; Kinter et al., 2007). 

Moreover, the stage of disease at the time of sampling can also contribute to the 

disparity. Finally, it should be pointed out that classification of cells according to 

surface markers not necessarily correlates with functional activity of these cells, and it 

has been shown that functional regulatory T cells decrease with disease progression 

and increasing viral loads (Kinter et al., 2004).  

 

Considering all this, it is maybe not surprising that the role of regulatory T cells 

during HIV infection and pathogenesis is controversial. While some studies point to a 

beneficial role of regulatory T cells in limiting the overall immune activation (Kinter 

et al., 2004; Oswald-Richter et al., 2004; Tsunemi et al., 2005; Apoil et al., 2005; 

Eggena et al., 2005; Baker et al., 2007; Chase et al., 2008), others suggest that these 

cells are detrimental by impairing T cell responses and thus facilitating HIV 

persistence (Weiss et al., 2004; Aandahl et al., 2004; Andersson et al., 2005; Nilsson 

et al., 2006; Lim et al., 2007).  

 

Studies in non-human primates have not been able to clarify this issue. Some studies 

point for a detrimental role (Boasso et al., 2007; Estes et al., 2006; Hartigan-O'Connor 

et al., 2007) while others point to a beneficial role (Li et al., 2005; Pereira et al., 2007; 

Kornfeld et al., 2005; Chase et al., 2007) of regulatory T cells in the control of SIV 

infection. 

 

The decreased number of regulatory T cells in Tnfrsf4Cre/+ R26Dta/+ mice could imply 

less regulation and consequently activation of the CD8+ population. If regulatory T 

cells are responsible for the CD8+ T cells phenotype of Tnfrsf4Cre/+ R26Dta/+ mice, 



 157

then transfer of WT regulatory T cells should be able to revert the phenotype. Indeed, 

when we transferred WT regulatory T cells into Tnfrsf4Cre/+ R26Dta/+ and control mice 

we observed first that these cells failed to proliferate when transferred to Tnfrsf4Cre/+ 

R26+/+ full recipient mice, but did so in Tnfrsf4Cre/+ R26Dta/+ recipients, confirming 

that these cells are capable of homeostatic proliferation in regulatory T cells- 

lymphopenic hosts (Annacker et al., 2001; Gavin et al., 2002). Second, the levels of 

CD8+ memory cells in the blood started decreasing at 1 week and reached wild-type 

levels by week 3 which were maintained 4 weeks later. This was also true for the 

activated/effector memory CD8+ T cells which reach percentages similar to control 

mice in lymphoid tissues. Thus, the immune activation seen in Tnfrsf4Cre/+ R26Dta/+ 

mice is a consequence of the deficit in the regulatory T cell population. 

 

Some papers have implicated a role for CD25 cells on the suppression of memory 

CD8+ T cells proliferation and activation (Murakami et al., 2002; Piccirillo and 

Shevach, 2001; Camara et al., 2003)  while others pointed to a role of regulatory T 

cells in preventing CD8+ T cell–mediated autoimmunity (Poitrasson-Riviere et al., 

2008). Regulatory cells use multiple mechanisms to mediate their suppressive 

function, and specifically for what concerns their effect on CD8+ T cells, the 

following mechanisms have been proposed: consumption of IL-2 (Murakami et al., 

2002), suppression of DC maturation and function (Kim et al., 2007) and production 

of TGFβ (Mempel et al., 2006). 

 

If immune activation in HIV and SIV is due to a progressive depletion of regulatory T 

cells, how can it be explained that non pathogenic SIV infected animals do not show 

immune activation? It is generally accepted that regulatory T cells are depleted during 
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HIV and SIV infection although to our knowledge there are no studies addressing if 

regulatory T cells from non-human primates are infected and killed by SIV in non-

pathogenic natural infections. Interestingly, it has recently been show that TH17 are 

depleted in pathogenic, but not in non-pathogenic SIV infections (Raffatellu et al., 

2008; Brenchley et al., 2008). We could speculate that the same is true for regulatory 

T cells. It could be that regulatory T cells in natural hosts of SIV are more resistant to 

infection, perhaps due to reduced levels of CCR5 expression, or, to virus-mediated 

killing. Alternatively, it could be that regulatory T cells in these hosts are replenished 

more efficiently than those in humans. Indeed, it has been shown that SIV infection 

influences the level and function of regulatory T cells in rhesus macaques but not 

sooty mangabeys (Pereira et al., 2007). 

 

 

4.3.2.2. B cells 

Polyclonal hypergammaglobulinemia is a characteristic of chronic inflammatory 

conditions such as persisting viral infections and autoimmune diseases (Hunziker et 

al., 2003) and together with B cell hyperactivation is one of the hallmarks of HIV-1 

infection. However we did not observe any evidence of B cell activation other than an 

apparently innocuous increase in the number of germinal centre B cells in Tnfrsf4Cre/+ 

R26Dta/+ mice, suggesting that CD4+ depletion per se in not responsible or is not 

sufficient to activate this population. 

 

Consistent with this hypothesis, a recent study has involved the HIV-1 Nef protein as 

the factor responsible for the B lymphocyte hyperactivation and 

hypergammaglobulinemia observed in HIV-1 patients (Swingler et al., 2008). The 
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study shows that Nef activates ferritin production in macrophages which is necessary 

and sufficient for the above mentioned effects on B cells. In HIV-1 infected 

individuals, plasma viral RNA load correlates well with ferritin and immunoglobulin 

levels but not with immune activation. In addition, similar correlations were observed 

in mice transgenic for HIV-1 Nef suggesting that the elevated levels of ferritin and 

consequent B cell dysfunction are a direct result of Nef expression due to viral 

replication and excludes a role of immune activation in the phenotype of B cells 

(Swingler et al., 2008). 

 

Why are then B cell numbers increased in Tnfrsf4Cre/+ R26Dta/+ mice? One possibility 

is the lack of negative regulation by regulatory T cells. In a study where regulatory T 

cells were depleted, B cells were shown to be increased  by 3 fold in the spleen and 

1.8 fold in the lymph nodes (Kim et al., 2007) but this was most likely due to the 

generalized inflammatory state. The increase in B cell numbers could thus be an 

indirect consequence of the increase in lymph nodes size that is regulated by DCs 

(Webster et al., 2006). 

 

 

4.3.2.3. Macrophages 

Cells of the monocyte/macrophage lineage disseminate the virus and serve as 

ubiquitous reservoirs for HIV-1. Certain tissue-specific macrophage populations have 

been shown to be increased in numbers and activation state in HIV-1 infection (Lee et 

al., 2003; Evans and Wansbrough-Jones, 1996) although this has not been confirmed 

at the systemic level. Macrophage numbers are thought to be stable during HIV-1 

infection and to be a significant source of virus production when CD4+ T cell counts 
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are low (Orenstein et al., 1997). Similarly, infection of rhesus macaques with a 

chimeric HIV/SIV was associated with a gradual increase in macrophages over time, 

which were responsible for virus production at the time of CD4+ T cell loss (Igarashi 

et al., 2001). 

 

Our analysis of Tnfrsf4Cre/+ R26Dta/+ mice did not reveal overt macrophage activation. 

The small increase in numbers of macrophages in lymph nodes of these mice is 

proportional to the increase in total cells and probably just reflects the fact that lymph 

nodes are enlarged. In contrast, macrophage numbers were dramatically elevated in 

mice with primary microbial translocation through the intestinal mucosa. It thus 

appears that numbers of macrophages are more responsive to microbial exposure than 

regulatory T cell function. Interestingly, increased viremia often seen during 

opportunistic infection of HIV-1 infected individuals has been attributed to 

macrophage activation (Orenstein et al., 1997). 
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5. Concluding remarks 

The CD4+ T cell compartment is complex and heterogeneous, comprising several 

lineages and maturation/differentiation states that differ in their life-spans, capacity 

for self-renewal, and functional properties in the immune system. At least three 

distinct major subsets can be identified: naïve, memory and regulatory T cells. 

Memory and the regulatory subsets are heterogeneous. Memory cells can be classified 

as TEM and TCM while regulatory T cells can also be divided in naïve and 

effector/memory. Additionally, a fourth population of effector cells is transiently 

produced in the course of an immune response. 

 

These subsets are differentially targeted by HIV-1 infection and other 

immunodeficiency viruses. The fact that all retroviruses capable of causing 

immunodeficiency target the same cells indicates a central role of these cells in the 

pathogenesis of immunodeficiency disease. To test this hypothesis, our approach was 

to target the same cells in a virus-free murine model and assess whether specific 

depletion of these populations could cause disease. We were able to show a causal 

link between deletion of these cells and disease. Specifically, we were able to show 

that regulatory CD4+ T cell killing leads to generalized immune activation and that 

effector/memory CD4+ T cell killing results in immunodeficiency. Thus, the 

complexity of the dysfunction in HIV is a pure reflexion of the functional 

heterogeneity of its targets. 
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