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ABSTRACT

Platinum drugs are the most active agents in ovarian cancer. Their cytotoxicty results

from DNA crosslinking. High tumour response rates are seen, but 80 % of patients

relapse. Major mechanisms of platinum resistance in patients remain to be established.

We have studied DNA interstrand crosslinking and its repair in response to ex vivo

treatment with cisplatin in forty patients with ovarian cancer using the single cell gel

electrophoresis (comet) assay. Tumour cells from resected tumours or tumour and

mesothelial cells from ascites were obtained from chemonaïve patients and those

relapsing after platinum-based therapy. The average percent decrease in tail moment at

the peak of crosslinking was 61.1%9.25 in 34 pre-chemotherapy patient samples

following treatment with 100M cisplatin. In 14 post-chemotherapy patient samples it

was 58.1%9.94. The average percentage repair at 24 hours was 3.6%18.89 in pre-

chemotherapy patients and 44.6%43.4 for post-chemotherapy patients (p<0.001).

In 6 paired samples, before and after chemotherapy the average percentage repair at 24

hours was 7.2%12.64 increasing to 69.5%23.42 after chemotherapy. Differences in

cell cycling, and cell signalling gene expression levels using microarray analysis was

found, between pre- and post-chemotherapy patients. Real time PCR was also used to

investigate the levels of ERCC1 (excision-related cross complementation group 1) in 3

of these paired patient samples, which was found to be increased by an average of

14.4% +/-0.8% in 3 post-chemotherapy samples.

In ten pre-chemotherapy and seven post-chemotherapy patient tumours incubated ex

vivo with 50M melphalan, the percent decrease in tail moment at the peak of



crosslinking was 41.411.2, and 44.6 7.6, respectively. 24 hours later the percentage

repair was 3.1.25.6 for untreated and 2.826.3 for treated tumours. In conclusion,

repair of DNA interstrand crosslinks appears to be an important mechanism of clinical

platinum resistance in ovarian cancer. Repair of melphalan crosslinks is unaffected.
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1. INTRODUCTION

1.1 Ovarian cancer

Ovarian cancer is the leading cause of death from gynaecological malignancies. It is

the fourth most common cancer among women in the UK (Cancer Research UK,

2004), and the lifetime risk of a woman developing ovarian cancer is 1 in 70 (Ozols

et al., 2001). The cause of ovarian cancer is unknown however there are risk factors,

such as increased age. Half of all ovarian cancers occur in women after the age of 65

(Cancer Research UK, 2004). Women who have been pregnant have a 50%

decreased risk of developing ovarian cancer compared to nuliparous women (Garcia

et al., 2004), and further pregnancies confer additional protective effect, while the

oral contraceptive pill decreases the risk. These risk factors support the theory that

the risk of ovarian cancer is related to ovulation, and that suppressing ovulation

plays a protective role (Garcia et al., 2004). In addition, a prior history of breast

cancer increases a woman’s risk of ovarian cancer (Garcia et al., 2004).

Another important risk factor is family history. The lifetime risk for developing

ovarian cancer is 1.6% in the general population. This risk increases to 5% when one

first-degree relative has had ovarian cancer, rising to 7% when two first-degree

relatives have been affected (Garcia et al., 2004). Less than 5% of all ovarian

cancers are inherited, and so far two syndromes have been identified: breast/ovarian

cancer syndrome, and Lynch II syndrome (also called hereditary nonpolyposis

colorectal cancer) (Garcia et al., 2004). Breast/ovarian cancer syndrome is
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associated with early onset of either or both of the diseases. There are often several

family members affected. The inheritance follows an autosomal dominant

transmission, and can be inherited from either parent. Most cases are associated with

BRCA1 and BRCA2 gene mutations (Garcia et al., 2004). Families that have the

Lynch II syndrome are at high risk of developing colorectal, endometrial, stomach,

small bowel, breast, pancreas, and ovarian cancers, which is caused by mutations in

the mismatch repair genes (Garcia et al., 2004).

About 70% of women diagnosed with ovarian cancer are stage III or IV (Rustin et

al., 2004). They usually present at an advanced stage due to the vagueness of the

symptoms, the difficulty of diagnosis, and the lack of a screening test. Symptoms

include malaise, weight loss, pressure symptoms (e.g from ascites or an enlarging

tumour), pelvic pain, vaginal bleeding, abdominal distension, and change in bowel

habit. Physical findings are uncommon in patients with early disease, while patients

with advanced disease may have an ovarian pelvic mass, ascites, pleural effusion,

abdominal mass or bowel obstruction, or a combination of these. Investigations

include an ultrasound scan of the pelvis, a blood test for a tumour marker called

Cancer antigen –125 (Ca-125), an MRI scan of the abdomen and pelvis, and a Chest

X-ray, as well as routine blood tests, such as a full blood count, and urea and

electrolytes. Other investigations may be appropriate depending on the patients’

symptoms e.g a colonoscopy if they have bleeding from the rectum.

The standard care for ovarian cancer includes a primary staging and cytoreductive or

debulking laparotomy (Baird et al., 2001). Peritoneal washings are usually taken
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immediately on entering for cytology. A thorough exploration of the abdomen and

pelvis is performed to assess the extent of spread. The surface of the liver,

diaphragm, and spleen are examined, as well as the small and large bowel,

omentum, para-aortic and pelvic lymph nodes. A total abdominal hysterectomy,

bilateral salpingo-oophorectomy, omentectomy, para-aortic and pelvic lymph node

sampling, peritoneal biopsies, and peritoneal cytology (peritoneal washings) are

usually performed if ovarian cancer is confirmed. In advanced disease cytoreduction

or debulking surgery (where as much tumour tissue as possible is removed) is

performed, which will then offer the best response to subsequent chemotherapy. It is

recommended to achieve a residual disease of less than 1cm (Stuart et al., 2001).

When doubt exists about the diagnosis of ovarian cancer, a frozen section can be

performed. The ovaries are removed and placed in a dry container for a pathologist

to look at them immediately. They convey their findings whilst the patient is still on

the operating table, which helps the surgeon to decide what other tissues need to be

taken (if any).

1.1.1 Staging of Ovarian Cancer

The FIGO (Federation International of Gynaecology and Obstetrics) staging for

ovarian cancer is as follows:

1. Stage I – Growth limited to the ovaries

 Stage 1a – Growth limited to one ovary, no ascites, no tumour on

external surface, capsule intact

 Stage 1b – Growth limited to both ovaries, no ascties, no tumour on

external surface, capsule intact
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 Stage 1c – Tumour either stage 1a or 1b but with tumour on surface

of one or both ovaries, ruptured capsule, ascites with malignant cells

or positive peritoneal washings

2. Stage II – Growth involving one or both ovaries, with pelvic extension

 Stage IIa – Extension and/or metastases to the uterus or tubes

 Stage IIb – Extension to other pelvic tissues

 Stage IIc – Stage IIa or IIb but with tumour on surface of one or both

ovaries, ruptured capsule, ascites with malignant cells or positive

peritoneal washings.

3. Stage III – Tumour involving one or both ovaries, with peritoneal implants

outside the pelvis and/or positive retroperitoneal or inguinal nodes;

superficial liver metastases equals stage III.

 Stage IIIa – Tumour grossly limited to pelvis, negative lymph nodes

but histological proof of microscopic disease on abdominal peritoneal

surfaces

 Stage IIIb – Confirmed implants outside of pelvis in the abdominal

peritoneal surface; no implant exceeds 2cm in diameter and lymph

nodes are negative

 Stage IIIc – Abdominal implants larger than 2cm in diameter and/or

positive lymph nodes.

4. Stage IV – Distant metastases; pleural effusion must have a positive cytology

to be classed as stage IV; parenchymal liver metastases equals stage IV.
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The survival rates for ovarian cancer depend on the stage at diagnosis:

 Stage 1 – 90% 5 year survival

 Stage 2 – 70% 5 year survival

 Stage 3 – 21% 5 year survival

 Stage 4 – 6% 5 year survival (Cancer Research UK, 2004)

1.1.2 Histopathology of Ovarian Tumours

All tissues removed are sent to the hisopathologist who examines the material and

helps in assessing the stage (see above), grade and type of cancer. The grade of the

ovarian cancer refers to the cells themselves. The most important features in

assessment of grade are mitotic activity, nuclear size and pleomorphism, and

differentiation from the original cells (Underwood, 2000). Grading is not entirely

objective, and different pathologists may disagree on the grade of a particular

ovarian cancer, as there are different systems for grading ovarian cancers (Dolson,

2004). Pathologists usually use a combination of the pattern system and Broder’s

grading system.

There are three different grades; grade 1 (well differentiated), grade 2 (moderately

differentiated), and grade 3 (poorly differentiated) (Dolson, 2004). Tumours are

often heterogenous, and the grading should be performed on what appears to be the

least differentiated area (Dolson, 2004). Overall low-grade (grade 1) tumours grow

more slowly, and have a better prognosis than high-grade (grade 3) tumours

(Underwood, 2000). However, determining prognosis is multi-factorial (Dolson,
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2004). Ovarian tumours may be divided into five broad categories (Underwood,

2000) according to the World Health Organisation :

 Epithelial

 Germ-cell

 Sex-cord stromal

 Metastatic

 Miscellaneous

1.2 Chemotherapy

1.2.1 Chemotherapy agents used in ovarian cancer

There are many chemotherapeutic agents used to treat ovarian cancer, depending on

the type, grade, stage of the disease, and the health of the patient. Metaanalyses of

randomized clinical trials have shown that platinum compounds

(cisplatin/carboplatin), anthracyclines (doxorubicin/epirubicin), alkylating agents

(cyclophosphamide/melphalan), spindle poisons (paclitaxel/docetaxel),

antimetabolites such as gemcitabine, and the topoisomerase I inhibitor topotecan are

the most active agents in ovarian cancer (Berkenblit et al., 2005).

1.2.1.1 Spindle Poisons

Spindle poisons include taxanes such as paclitaxel and docetaxel, and promote the

assembly of microtubules by binding to -tubulin, which inhibits depolymerisation
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(Yoshida et al., 2001). This action disturbs mitosis in normal and malignant cells

(Schiff et al., 1979). The taxanes were originally derived from the bark of the

Pacific Yew tree, Taxus brevifolia, and paclitaxel was identified as the active

constituent in 1971 (McGuire et al., 2003). Docetaxel is a semi-synthetic taxoid

derived from the needles of T. baccata (Lister-Sharp et al., 2000) and has been

shown to be less neurotoxic than paclitaxel (Vasey et al., 2002). The introduction of

paclitaxel in the 1990’s to treat ovarian cancer increased the survival rates of women

with the disease (Rustin et al., 2004).

1.2.1.2 Anthracyclines

Anthracyclines such as doxorubicin and epirubicin, have several cytotoxic actions.

Their main mechanism of action appears to be mediated by their effect on

topoisomerase II, whose activity is markedly increased in dividing cells (Rang et al.,

2005). Topoisomerase II binds to the double stranded DNA, cleaves both strands of

duplex DNA and passes a second duplex through this transient cleavage, involving

hydrolysis of ATP, and enzyme recycling (Swift et al., 2006). The intermediate form

is termed the ‘cleavable complex’ (Swift et al., 2006). As a result of its double-

stranded DNA passage mechanism, topoisomerase II is able to remove negative or

positive superhelical twists (i.e., under- or overwinds) from the genetic material and

resolve intramolecular DNA knots as well as intermolecular tangles (Wang et al.,

1996)
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Doxorubicin poisons the cleavable complex, inhibiting religation of the cleaved

complex, resulting in double strand breaks of the DNA. Doxorubicin intercalates

into the DNA and becomes trapped (Epstein et al., 1998). Apoptosis results if the

cell is unable to repair these DNA double-strand breaks. However, these drugs have

additional modes of action such as production of oxygen free radicals, and formation

of covalent adducts which may contribute to its toxicity (Minotti et al., 2004).

1.2.1.3 Topoisomerase inhibitors

Topoisomerase I inserts a nick into one strand of the DNA to relax supercoiled DNA

that occurs when DNA replicates itself. It also re-ligates the cleaved DNA.

Irinotecan and topotecan (9-dimethylaminoethyl-10-hydroxycamtothecin) are potent

inhibitors of topoisomerase I (Xu et al., 2002).

In patients with platinum-resistant ovarian cancer, there was a low probability of

responding to single agent Topotecan (Main et al., 2006). Unfortunately Topotecan

in combination with gemcitabine in the treatment of platinum refractory ovarian

cancer in a phase I/II trial and has shown disappointing results (Goff et al., 2008).

1.2.1.4 Antimetabolites

Antimetabolites such as gemcitabine, interfere with nucleic acid production, either

by mimicking nucleotide structure, enabling them to be incorporated into nucleic
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acids, thus terminating their production, or by preventing synthesis of nucleotides

directly.

Gemcitabine (2’, 2’-difluorodeoxycytidine dFdC) is a fluorinated deoxycytidine

derivative, which can be used in a variety of solid tumours including ovarian cancer

(usually in combination with carboplatin), non-small cell lung cancer, head and neck

cancer, and genitourinary cancer (Fruscella et al., 2003). Gemcitabine enters the cell

through a membrane nucleoside transporter (Mackey et al., 1998), and it is activated

by phosphorylation to gemcitabine monophosphate, which is subsequently

phosphorylated to the 5’-diphosphate (dFdCDP) and triphosphate (dFdCTP), which

represent the active forms of gemcitabine (Fruscella et al., 2003). dFdCTP is

incorporated into DNA instead of cytosine, followed by one or more

deoxynucleotides, thus blocking DNA synthesis and preventing repair by 3’-5’-

exonuclease activity (Fruscella et al., 2003). Gemcitabinetriphosphate is also

incorporated into RNA, thus terminating RNA synthesis (Fruscella et al., 2003).

Only a proportion of gemcitabine is converted into the di- or triphosphate forms.

The majority of gemcitabine is rapidly inactivated in the blood, liver and kidneys by

deamination into 2’, 2’-diflourodeoxyuridine in a reaction catalysed by

deoxycytidine deaminase (CDD) (Fruscella et al., 2003).

1.2.1.5 Platinum compounds cisplatin and carboplatin

Cisplatin (cis-dichlorodiammine platinum(II)) was discovered serendipitously by

Rosenberg in the 1950’s while investigating inhibition of bacterial growth by
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electric currents (Rosenberg 1985). The resulting inhibitory complexes were

produced by the reaction of platinum electrodes with growth media. Cisplatin (a

neutral complex) was the most active of these, and was tested in clinical trials

(Higby et al., 1973).

Cisplatin and Carboplatin

It is thought that cisplatin enters the cell by both passive diffusion and facilitated

transport, possibly by a gated channel (Gateley et al., 1993). Some of the uptake is

dependent on energy because pharmacological agents such as ouabain (a Na+, K+-

ATPase inhibitor) reduce it (Judson I et al., 2002).

Cisplatin is a water-soluble complex, which has a central platinum atom surrounded

by two chlorine atoms and two ammonia groups (Rang et al., 1995) (figure 1).

When cisplatin enters the cell, the chloride ions dissociate (due to the low

concentration of intracellular chloride ions) leaving a reactive diamine-platinum

complex, which reacts with water and then, can interact with DNA (Rang et al.,

1995). Cisplatin binds preferentially to the N7 atom of guanine and adenine residues

(Eastman et al., 1987), although there are numerous potential reaction sites in all

four bases (Singer et al., 1977).

Cisplatin is widely used not only for the treatment of ovarian cancer, but also for

many other solid tumours such as those arising from the testes, bladder, lung, and

head and neck. Cisplatin was first introduced in 1973 for treatment of ovarian

cancer, which improved disease-free survival and response rates when compared to
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the then-standard treatments (Rustin et al., 2004). Cisplatin was either used alone or

in combination with cyclophosphamide (Rustin et al., 2004). Cisplatin causes very

severe nausea and vomiting, and is highly nephrotoxic (Rang et al., 1995).

(a)

(b)

(c)

Figure 1: Structure of (a) cisplatin (b) carboplatin (c) oxaliplatin
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In the early 1980’s carboplatin, which is a derivative of cisplatin, was introduced

(figure 1). Carboplatin causes less nephrotoxicity, neurotoxicity, and ototoxicity,

and less severe nausea and vomiting than cisplatin, but it is more myelotoxic (Rang

et al., 1995). Tinnitus and hearing loss in the high frequency ranges may occur, as

may peripheral neuropathies, hyperuricaemia, myelotoxicity and nephrotoxicity.

The cytotoxicity of cisplatin and carboplatin are believed to result from the

formation of platinum-DNA adducts. These include mononadducts, intrastrand

crosslinks, interstrand crosslinks (ICLs), and DNA-protein crosslinks (Fichtinger-

Schepman et al., 1995) (figure 2). There has been much debate about which adduct

is responsible for the cytotoxicity of cisplatin. Fischtinger-Schepman et al concluded

that 1,2 intrastrand crosslinks produced by cisplatin were responsible for its

cytotoxicity because the peak of formation of these lesions co-incided with the peak

of cytotoxicity in Chinese hamster ovary cells (CHO) (Fischtinger-Schepman et al.,

1995). Zamble et al., demonstrated that the 1,2-cisplatin adducts are poorly

recognised, adding support to the argument that they are a critical cytotoxic lesion

(Zamble et al., 1996). In contrast Zwelling L.A et al found a correlation between

cytotoxicity and ICLs in L1210 cells in vitro using alkaline elution (Zwelling et al.,

1979). Meyn et al demonstrated that an ERCC1 mutant CHO cell line, UV20, was

extremely sensitive to cisplatin and defective in the uncoupling of ICLs, which was

taken to demonstrate a direct relationship between sensitivity and ICL repair (Meyn

et al., 1982). In the nitrogen mustard class, there is a clear correlation between the

extent of interstrand crosslinks (ICL) and cytotoxicity (O’Connor et al., 1990).
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However, the platinum drugs produce a high proportion of intrastrand crosslinks that

clearly contribute to their activity (McHugh et al., 2000).

Figure 2: The different types of DNA adducts produced by cisplatin, and frequencies

of occurrence.

Carboplatin has a much slower rate of aquation and ICL formation compared to

cisplatin (Knox et al., 1986), and therefore the time to reach the peak of ICL

formation is much longer with carboplatin.

95%
Intrastrand
crosslinks

2%
Interstrand
crosslinks

2%
Monoadducts

1% DNA-
protein
crosslinks
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Oxaliplatin

Oxaliplatin is an analogue of cisplatin that was developed to try and overcome drug

resistance (figure 1). It has a different spectrum of anti-tumour activity and has

shown activity in treatment of advanced colorectal cancer either as a single agent or

in combination with 5-fluorouracil (Becouarn et al., 1998). Side effects of

Oxaliplatin include neurotoxicity, including facial dyaesthesia, which may be

provoked by cold weather, and peripheral sensory neuropathy (Judson et al., 2002).

1.2.1.6 Alkylating agents - Melphalan

There are a large number of alkylating agents used in cancer chemotherapy

including nitrogen mustards (e.g cyclophosphamide, melphalan, and chlorambucil),

chloroethylnitrosoureas (carmustine and lomustine), the alkylalkanesuphonate

busulphan, and the natural product mitomycin C. Uptake of alkylating agents into

the cell is usually by passive diffusion, although melphalan is transported into the

cell by a specific amino acid transport protein (Hartley, 2002).

Alkylating agents have the ability to form covalent bonds with suitable nucleophilic

substances within the cell (Rang et al., 1995). The main step is formation of a

carbonium ion – a carbon atom with only 6 electrons in its’ outer shell (Rang et al.,

1995). These ions are very reactive, and react immediately with an electron donor

group such as –SH, -OH, or an amine group. The 7 nitrogen (N7) of guanine, is

strongly nucleophilic, and is the main molecular target for simple alkylating agents,

although N1 and N3 of adenosine, O6 of guanine and N3 of cytosine may also be

affected (Rang et al., 1995). However, it is not just single bases that attract
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alkylating agents, but groups of bases, so guanine-rich sequences will attract these

agents more than a guanine base flanked by cytosines (Mattes et al., 1988). Most

chemotherapeutic alkylating agents have two alkylating groups (called bi-

functional), and can therefore react with two groups, causing intra- and inter-strand

crosslinking (Rang et al., 1995). Intra-strand crosslinking occurs if the two groups

are on the same strand of DNA, and ICL formation occurs if these two groups are on

the two opposite strands of the DNA.

Initially in the formation of crosslinks, monoadducts are formed in which only one

of the alkylating groups of the drug reacts with the DNA. For many drugs (e.g

melphalan) where only a fraction of monoadducts go on to form crosslinks, the

second reaction is slow (Spanswick et al., 2000). The ICLs distort the structure of

the DNA and prevent the two strands of the DNA from separating during replication

and transcription. ICLs also block DNA and RNA polymerases. If not repaired, the

cell undergoes apoptosis.

Melphalan

Melphalan (figure 3) was first synthesized in 1953, and is a phenylalanine derivative

of nitrogen mustard (also called L-phenylalanine mustard (L-PAM)) (Rothbarth et

al., 2002). It has been used to treat patients with breast cancer, melanoma, and

colorectal cancer, but is primarily used in multiple myeloma patients (Dollery et al.,

1991). The most commom side effect of melphalan is bone marrow suppression,

including leukopenia and thrombocytopenia (Rothbarth et al., 2002). However

melphalan has the potential to be carcinogenic itself, causing secondary
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malignancies such as acute nonlymphocytic leukaemia, and myeloproliferative

syndrome (Dollery et al., 1991). Twenty years ago alkylating agents such as

melphalan, cyclophosphamide, and chlorambucil were used as monotherapy to treat

ovarian cancer (Mcguire et al., 2003). These drugs were associated with overall

objective response rates ranging between 33% and 65%, with complete clinical

responses seen in 20% of patients (Young et al., 1979).

Melphalan can be given intravenously as well as orally, and enters the cell by

diffusion and by active transport via two distinct amino acid transport systems (Pu et

al., 2000). Melphalan is completely hydrolysed after 8 hours in water at 37ºC to

monohydroxymelphalan and dihydroxymelphalan – the chlorine atoms are replaced

in a nucleophilic attack by hydroxyl groups. The hydrolysis rate is dependent on pH,

temperature, protein concentration, and chloride ion concentration. Hydrolysis

decreases with increasing concentration of plasma proteins and in an acidic

environment (Bolton et al., 1993).

Melphalan exerts its cytotoxic effect by formation of interstrand and intrastrand

crosslinks as well as DNA-protein crosslinks by alkylation via the two chloroethyl

groups of the molecule (Kohn et al., 1981). Common sites of alkylation in DNA

include the N-7 position of guanine, the N-1, N-3, and N-7 positions of adenine, the

N-3 position of cytosine and the O-4 position of thymidine (Rothbarth et al., 2002).

As cell killing is observed throughout the cell cycle (although there are variations

within it), melphalan is a cell cycle phase non-specific agent (Tannock et al., 1986),
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and although rapidly dividing cells are killed preferentially, slower dividing cells are

also killed.

Figure 3: Structure of melphalan

1.2.2 Chemotherapy protocols in Ovarian Cancer

The usual first-line treatment for ovarian cancer is cytoreductive surgery, followed

by paclitaxel-carboplatin chemotherapy for stage III –IV disease which has been

tested (Baird et al., 2001) by the Gynaecologic Oncology Group (GOG) 111 trial

(McGuire et al., 1996) and the National Cancer Institute of Canada (NCIC) OV10

trial (Piccart et al., 2000). The GOG trial was a phase III randomised trial comparing

cisplatin and cyclophosphamide, with cisplatin and paclitaxel in patients with

suboptimal stage III/IV disease. Three hundred eighty-six patients with advanced

ovarian cancer entered the trial. Progression-free survival was significantly longer (P

<0.001) with cisplatin/paclitaxel (median, 12.9 v 17.9 months). Overall survival was

also significantly longer (P <0.001) with cisplatin/paclitaxel (median, 24.4 v 37.5

months) (McGuire et al., 2003). However, there has been some doubt about the

clinical value of platinum/taxane combinations after the publication of the large
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International Collaberative Ovarian Neoplasm Group 3 (ICON3), which looked at

2074 patients with ovarian cancer. The data from this trial suggest that there was no

benefit, in terms of either progression-free or overall survival, from the use of

paclitaxel/carboplatin compared with carboplatin alone or of

cyclophosphamide/doxorubicin/cisplatin (ICON 2002). Furthermore, the incidences

of alopecia, fever, and sensory neuropathy were significantly higher in the taxane

treatment arm compared with carboplatin alone (ICON 2002) This has lead to many

European women being offered single-agent carboplatin.

A recent randomised phase III study by Arbeitsgemeinschaft Gynaekologische

Onkologie-Group d’Investigateurs Nationaux pour L’Etude des Cancers Ovariens

(GINECO), involving 1200 patients with advanced ovarian cancer looked at the

addition of epirubicin to standard carboplatin-paclitaxel 1st line regimens. The

results showed no statisticall significant difference in overall survival between the

standard carboplatin-paclitaxel arm versus the carboplatin-epirubicin-paclitaxel arm.

Furthermore, the addition of epirubicin increased the number of side effects such as

nausea and vomiting, and grade 3 or 4 haematological toxicities (Du Bois et al.,

2006). As a result epirubicin cannot be recommended for clinical use in this

population of patients.

Another recent randomised controlled phase III study by the AGO-GINECO group

examined whether sequential administration of topotecan could improve the efficacy

of carboplatin and paclitaxel in first-line treatment of advanced epithelial ovarian

cancer. 1300 previously untreated patients with advanced ovarian cancer (FIGO
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stages III-IV) were randomized to receive the standard carboplatin-paclitaxel

regimen followed by four cycles of topotecan, or surveillance. The sequential

addition of topotecan to carboplatin-paclitaxel did not result in superior overall

response or progression-free or overall survival. Therefore, this regimen cannot be

recommended as standard of care treatment for ovarian cancer (Pfisterer et al.,

2006).

The Gynaecologic Oncology Group (GOG), have shown that intraperitoneal

chemotherapy regimen represents a new standard of care for patients with optimally

resected stage III ovarian cancer, but should be offered on an individualized basis

(Runowiscz et al., 2006) (Armstrong et al., 2006). In this study, 400 patients with

stage III ovarian cancer with residual disease of less than 1cm after debulking

laparotomy were included. Participants were randomly assigned to receive six cycles

of treatment with intravenous paclitaxel (135 mg/m2) on day 1 followed by

intravenous cisplatin (75 mg/m2) on day 2 (intravenous therapy), or six cycles of

intravenous paclitaxel (135 mg/m2) on day 1 followed by intraperitoneal cisplatin

(100 mg/m2) on day 2 and intraperitoneal paclitaxel (60 mg/m2) on day 8

(intraperitoneal therapy). The patients in the intraperitoneal chemotherapy arm had

statistically significant increased survival compared to the intravenous arm

(Armstrong et al., 2006). However, the quality of life up to 6 weeks after treatment

was much worse in the intraperitoneal chemotherapy arm due to side effects such as

haematological, gastrointestinal, neurologic toxicities, and catheter complications.

However, 1 year after treatment, there was no difference in quality of life between

the two groups (Armstrong et al., 2006). As a result of this trial, The National
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Cancer Institute (NCI) issued a bulletin suggesting that, in women with stage III

epithelial ovarian cancer, consideration should be given to the administration of

intraperitoneal cisplatin and a taxane (National Institute of Health, 2006).

Pegylated liposomal doxorubicin (PLD) has been used as consolidation

chemotherapy in patients with advanced ovarian cancer who have had a complete

response to standard carboplatin-paclitaxel regimens. In two studies, a total of 41

patients were given PLD at a dose of 40 mg/m2 every 28 days for four cycles

(Rocconi et al., 2006) (Disilvestro et al., 2006). These studies concluded that PLD

was well tolerated, and the main side effect was palmar-plantar erythrodysesthesia.

Overall survival results were promising, but more work needs to be done on optimal

dosage and schedule for these patients (Rocconi et al., 2006) (Disilvestro et al.,

2006).

In the recurrent disease setting, there are a number of second-line single

chemotherapeutic regimens. In a phase II Gynaecologic Oncology Group study Rose

et al (1998) reported a 27% response rate in platinum-resistant and 34% in platinum

sensitive patients given oral etoposide at 50 mg/m2/day for 21 days out of a 28-day

cycle. Bookman et al used topotecan 1.5 mg/m2 for 5 days on a 21 day schedule in a

phase II trial, and reported response rates of 12.4% in platinum-resistant patients,

and 19.2% response rate in platinum-sensitive patients (Bookman et al., 1998).

There are also combination chemotherapeutic regimens for treating relapsed disease.

Gemcitabine combined with either carboplatin or cisplatin has demonstrated an
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increase in progression-free survival in patients with clinically resistant ovarian

cancer compared to platinum chemotherapy alone (Villella et al., 2004).

Carboplatin is much less toxic than cisplatin, and has been used instead of cisplatin

since publication of a meta-analysis of 37 trials in over 5000 patients that showed

equivalent efficacy of cisplatin and carboplatin (Aabo et al., 1998). It also showed

the superiority of platinum- over non-platinum-based treatment (Aabo et al., 1998).

There have been very few clinical trials to assess the effectiveness and tolerability of

melphalan in patients with ovarian cancer which is resistant to platinum

chemotherapy. One small study investigated double intermediate-dose melphalan

(100mg/m2) supported by autologous stem cells in 14 patients with refractory

ovarian cancer and poor performance status (Magagnoli et al., 2004). This regimen

was well tolerated, and converted one patient from partial remission (PR) to

complete remission (CR). Another four patients had disease stabilisation with this

melphalan regimen. Nine patients with progressive disease (PD) showed a partial

response. Interestingly all patients had a marked improvement in their performance

status (Magagnoli et al., 2004).

In another study the effectiveness of 10mg of oral melphalan given once a day for 5

days every 6 weeks for 6 cycles was assessed in patients with platinum-resistant

relapsed ovarian cancer (Hasan et al., 2003). Melphalan was well tolerated, but there

were no responses in these 22 patients. Melphalan had no impact on progression-

free survival or overall survival (Hasan et al., 2003). Given these two small trials it



Page 22

is still unclear whether melphalan has a place in the clinical setting in patients with

platinum-resistant relapsed ovarian cancer.

Aggressive treatment that involves debulking surgery followed by carboplatin and

paclitaxel chemotherapy results in complete response rates of 70-80% (Ferry et al.,

2000). Unfortunately, 80% of complete responders eventually relapse at a median of

18-28 months (Ozols et al., 1999) with disease that is resistant not only to platinum

compounds, but also to a wide range of other chemotherapeutic agents (Rustin et al.,

2004). The prognosis for these patients remains poor, with a 5-year survival of 20%

(National Institues of Health, 2006). It is therefore important to overcome resistance

to chemotherapy to improve patient survival.
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1.3 Cellular pathways

When DNA damage occurs, the cell activates a complex series of pathways, which

are incompletely understood that involve DNA repair, cell cycle arrest and/or cell

death. There is a critical balance between cell cycle arrest (promoting DNA repair

and survival), and cell death following chemotherapy (Longley et al., 2005). If the

cell is unable to repair its damaged DNA following cell cycle arrest, then apoptosis

occurs.

BRCA 1 is involved in many of these cellular pathways. The gene encodes a

220kDa nuclear protein (Kennedy et al., 2004) and was discovered in 1994 by

genetic linkage studies, which localised it to chromosome 17q (Miki et al., 1994).

Patients with loss-of-function mutations in BRCA1 gene have an 82% risk of

developing breast cancer and up to 54% risk of developing ovarian cancer by 80

years of age (King et al., 2003). However, these mutations only account for about

5% of all ovarian cancers (Garcia, 2004). Approximately 70% of ovarian cancers

and 30% of breast cancers have reduced BRCA1 expression that is partly caused by

methylation of the BRCA1 promoter (Wang et al., 2004).

1.3.1 The Cell cycle

Cellular proliferation needs to be tightly controlled as loss of this control can lead to

cell death or deregulated proliferation characteristic of cancers. Dividing cells enter

the cell cycle in order to grow, replicate their DNA and divide in an organised and
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controlled manner. There are 4 distinct phases in a well defined order, each of which

should be completed successfully before the next begins. Between each step of the

cell cycle there are regulatory checkpoints.

The cell cycle controls cellular proliferation through the integration of negative

signals called cell cycle checkpoints, and positive signals (Lowndes et al., 2000).

Serine-threonine protein kinases called cyclin-dependent kinases (CDK1, 2, 4, 6)

and their essential activating coenzymes (cyclins A, B, D, E), as well as CDK-

inhibitory proteins (CDKIs) control cell cycle transitions (Funk et al., 1999).

The cell cycle starts with G1 in which the cells grow. The next step is S phase where

initiation of DNA synthesis takes place. Promotion of the transition from G1 to S

phase is regulated by cyclin D-cdk4, cyclin D-cdk6, cyclin E–cdk2 and cyclin A-

cdk2 (Lee et al., 2002). G2 is the next phase of the cell cycle followed by M phase

(mitosis). Cyclin A and B are involved in G2/M transition (Viallard et al., 2001).

1.3.1.1 The effect of DNA damage on the cell cycle

When DNA damage such as double-strand breaks (DSBs) occur in G1 or S phases

of the cell cycle, entry into S phase or progression through S phase is prevented or

slowed, respectively. When DSBs arise in G2, entry into mitosis is prevented

(Jackson et al., 2002)

It has been proposed that ICLs do not activate the G1 or G2 cell cycle checkpoint,

suggesting that they are tolerated by the cell until a DNA replication fork is
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encountered (Akkari et al., 2000). The S-phase checkpoint could have a major role

as co-ordinator of the cellular response to ICLs (Akkari et al., 2000).

The combined mechanisms of BRCA1 promote DNA repair and prevent replication

of damaged DNA by activating cell cycle checkpoints, although these processes

have different mechanisms. This is illustrated by mutation of the serine 988 residue

of BRCA1, (this residue is phosphorylated by CHK2 in order to activate BRCA1)

which results in defective DNA repair, but not activation of cell cycle checkpoints

(Zhang et al., 2004). Once BRCA1 is phosphorylated, it is thought that it stimulates

the transcription of p21 (cyclin-independent kinase inhibitor 1A), and p27 (cyclin-

dependent kinase inhibitor 1B) (Williamson et al., 2002), which arrests cells at the

G1/S boundary and S phase, respectively, by inhibiting cyclin-dependent kinase

(Williamson et al., 2002). BRCA1 also arrests cells at the G2/M–phase checkpoint,

through the reduction in cyclin B-cdc2 levels (Mullan et al., 2001), by a number of

mechanisms. These include, inhibiting its expression (Mullan et al., 2001), and

inducing other proteins such as GADD45 (Growth Arrest and DNA Damage-

inducible protein 45) (Mullan et al., 2001), Wee 1 kinase and 14-3-3. 14-3-3

binds to cdc25C, which is then prevented from activating the cyclin B-cdc2 complex

(Yarden et al., 2002). Wee1 kinase inhibits cdc2 by phosphorylation, which means it

cannot bind to cyclin B (Yarden et al., 2002). GADD45 binds to cyclin B-cdc2

preventing its localisation in the nucleus (Mullan et al., 2001).
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1.3.2 DNA Repair Pathways

There are many different DNA repair pathways that occur in the cell. The type of

lesion present in the DNA determines activation of a particular pathway.

1.3.2.1 Mismatch repair (MMR)

MMR plays a critical role in the maintenance of genomic stability in prokarytes,

simple eukaryotes and humans (Kolodner et al., 1999). DNA MMR deficiency

produces the microsatellite instability phenotype, which is detected as variations in

lengths of DNA repeat sequences present in the genome (Fischel et al., 1995). MMR

is an evolutionary conserved process that corrects mismatches generated during

DNA replication which escape proofreading (Kunkel et al., 2005). MMR is also

responsible for correcting base substitution mismatches and insertion-deletion

mismatches (IDLs) generated during DNA replication in organisms from bacteria to

mammals (Kunkel et al., 2005) Studies have indicated that excision is mismatch

dependent, is initiated at a nick or a gap, and has bidirectional capacity (Genschel et

al., 2002). MMR also preferentially proceeds along the shortest path to the

mismatch, and terminates about 150 nucleotides beyond the mismatch (Genschel et

al., 2002).

MMR starts with recognition of the lesion. The mammalian E.coli MutS homologs

(MSH proteins) are thought to directly contact double-stranded DNA, and slide

along it like a ‘sliding clamp’ until they encounter a base pair containing a mismatch

(Acharya et al., 2003). The MSH proteins then interact with a host of other proteins

including the mammalian E.coli MutL homologs (MLH), and yeast post-meiotic
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segregation (PMS) homolog proteins, as well as RPS, EXO1, and RFC (Kunkel et

al., 2005). Specific MSH proteins identify and repair different sizes of lesions, for

example, MSH2-MSH6 (MutSα) heterodimer is thought to primarily repair single

base substitutions and 1 base pair insertion-deletion mutations, while MSH2-MSH3

(MutSβ) heterodimer is thought to primarily repair larger 1-4 base pair insertion-

deletion mutations (Kunkel et al., 2005). MLH-PMS2 is the primary MutL complex

that interacts with both MSH2/6 and MSH2/3 complexes to help catalyse their

different functions (Kunkel et al., 2005).

There is evidence that PCNA (proliferating cell nuclear antigen) interacts with both

replication and MMR proteins (Gu et al., 1998), and is required at both early and

late stages of MMR (Gu et al., 1998), suggesting that it could be involved with the

initiation of MMR. RFC (replication factor C) is the factor required to load PCNA

onto the DNA, and may also be involved in MMR (Xie Y et al., 1999). PCNA is

also a processivity factor for replicative polymerases, and it interacts with and

stimulates the activity of proteins involved in processing Okazaki fragments. Early

evidence suggests that PCNA is required for MMR prior to DNA repair synthesis

and that PCNA interacts with MSH2 and MLH1 (Umar et al., 1996), leading to the

suggestion that replication and MMR may be physically coupled and that primers at

the replication fork may provide the strand discrimination signal.

In addition to undamaged mismatches, the MMR machinery also recognizes certain

DNA lesions generated by normal intracellular metabolism (e.g oxidative stress)

(Russo et al., 2004), and by physical and chemical insults from the external
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environment. MMR proteins activate cell cycle checkpoints and signal apoptosis

(Stojic et al., 2004). Loss of these functions decreases apoptosis, increases cell

survival, and results in resistance to chemotherapy (Stojic et al., 2004).

1.3.2.2 Base excision repair

Base excision repair corrects small alterations to bases, including oxidation and

alkylation, and is distinct from nucleotide excision repair which repairs bulky

adducts and helix distorting lesions. In base excision repair a lesion-specific

glycosylase removes the base and the resulting apurinic/apyrimidinic site is

converted to a break. A small gap, one or two nucleotides long is filled in by DNA

polymerase plus ligase (Evans et al., 2000). BER is also a key pathway in the repair

of DNA single-strand breaks (Wooster et al., 2003), and involves the enzyme poly

(ADP-ribose) polymerase (PARP) (Wooster et al., 2003). PARP inhibition leads to

persistent single-strand breaks in the DNA (Boulton et al., 1999). When single-

strand breaks are encountered by a replication fork, they become double-strand

breaks, and arrest of DNA replication occurs (Haber et al., 1999).

Tumours in carriers of BRCA1 and BRCA2 mutations lack wild-type BRCA1 and

BRCA2, but normal tissues retain a single copy of the relevant wild-type gene

(Bryant et al., 2005). This difference could be exploited to treat these patients using

PARP inhibitors, as the tumours would be unable to repair the persistent single-

strand breaks in the DNA effectively, leading to apoptosis (Bryant et al., 2005). This

principle could also be applied to other sporadic cancers that have impairments in
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the homologous recombination pathways, and thus has wider implications (Bryant et

al., 2005).

It is interesting that no diseases that are defective in BER have been reported. This is

probably because defects in this repair process include defective repair of oxidation

DNA damage caused by oxygen free radicals. Due to the abundance of oxygen free

radicals, many mutations would occur and thus would be lethal in embryo (Collins

et al., 2002).

1.3.2.3 Nucleotide excision repair (NER)

This is the main pathway used to repair bulky, helix-distorting DNA adducts

including those produced by platinum-based chemotherapy (McHugh et al., 2000),

such as intrastrand crosslinks, and ICLs. NER removes oligonucleotides of

approximately 28 bases long, and repairs the correspondingly long repair patch

(Collins et al., 2002). The importance of NER is highlighted, by the finding that

defects in this pathway result in hypersensitivity to cisplatin, and restoration of NER

activity reduces sensitivity to more normal levels (Furuta et al., 2002).

NER can be further subdivided according to how the lesion is initially recognised

into transcription-coupled repair, and global genomic repair pathways (Le Page et

al., 2000). Once recognition of the lesion is completed, both transcription-coupled

NER and global genomic NER have a common pathway involving TFIIH complex,

XPA, XPG, ERCC1 and XPF (Mitchell et al., 2003).
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Transcription-coupled nucleotide excision repair is initiated by the arrest of RNA

polymerase II at a lesion on the transcribed strand during transcription. TFIIH, XPG,

CSA and CSB are then recruited to the site of blocked transcription (Mitchell et al.,

2003), where they all participate in the removal of the stalled RNA polymerase

(Mitchell et al., 2003). Therefore DNA that is transcriptionally active is repaired

preferentially. MSH2 (mutS homolog 2) and MSH6 (mutS homolog 6) are also

involved. BRCA1 forms a complex with both MSH2 and MSH6 (Wang et al.,

2000), and is therefore indirectly linked to this pathway, which may explain the

increased cisplatin sensitivity shown in BRCA1-deficient cells (Quinn et al., 2003).

The first step of global genomic repair is recognition of the lesion. There is

supporting evidence for the involvement of the XPC (xeroderma pigmentosum

group C) and hHR23B (the human homologue of yeast RAD23) proteins in humans

(Batty et al., 2000). It is thought that XPC is one of the first proteins to be localised

to sites of helical distortions within the DNA (Sugasawa et al., 2000). Breast-Cancer

susceptibility gene 1 (BRCA1) can modulate the transcription of XPC, DDB2

(damaged DNA binding protein), and GADD45 (growth arrest and DNA damage

response protein 45), and has been implicated in global genomic repair (Hartmann et

al., 2002).

The zinc-finger protein XPA (xeroderma pigmentosum group A) and the

heterotrimeric replication protein RPA (replication protein A) are also involved in

recognising the damaged DNA (Ferry et al., 2000). The XPA-RPA complex is
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believed to recruit a large complex called TFIIH (transcription factor IIH), (Ferry et

al., 2000) which contains helicases (XPB and XPD) (McHugh et al., 2000). The

helicases unwind the DNA in the vicinity of the DNA lesion in an ATP-dependent

manner (Evans et al., 1997). The unwinding of the DNA produces a ‘bubble’

surrounding the lesion, which acts as a structural landmark for asymmetric dual

incisions that release the damage in the form of a lesion-containing nucleotide

(McHugh et al., 2000) (figure 4).

ERCC1 (excision repair cross-complementation group 1) is a single stranded DNA

endonuclease (Park et al., 1995) that forms a tight complex with its heterodimeric

partner XPF (xeroderma pigmentosum group F), and this complex is believed to

interact with both XPA (xeroderma pigmentosum group A) and RPA (replication

protein A) (Saijo et al., 1996). This suggests that ERCC1-XPF plays a role in DNA

damage recognition. The XPF-ERCC1 complex makes the initial cut in the DNA

strand 5’ (Sancar et al., 1996) (where XPF is thought to act as the nuclease

(McHugh et al., 2000) and the XPG (xeroderma pigmentosum group G) protein

makes the incision in the 3’to the DNA lesion. The oligonucleotide 24-32

nucleotides long, containing the damage is released (Sancar et al., 1996). DNA

synthesis occurs across the gap, followed by ligation, and the DNA is restored.The

rate-limiting step within this process is DNA damage recognition and excision (Mu

et al., 1995), particularly involving ERCC1.

The inherent sensitivity of testicular cancer to platinum has led to its curability,

which may be due to a defect in the NER pathway. They are defective in NER
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because they have very low amounts of XPA and XPF-ERCC1 proteins (Koberle et

al., 1999). In confirmation of this, the absence of ERCC1 is associated with the most

severe DNA repair defect yet discovered (Weeda et al., 1997).
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Figure 4: Pictorial representation of the key steps involved in mammalian nucleotide

excision repair (McHugh et al., 2001).
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The organisation of chromatin is crucial for the regulation of gene expression. The

nucleosome core within the cell contains DNA wrapped around a central histone

octamer comprising two molecules of each of the core histones. The four core

histones (H2A, H2B, H3, and H4) are subject to a wide variety of enzyme-catalysed

post-translational modifications, thereby modulating the function of the chromatin

such as acetylation (Yoshida et al., 2001). The primary sites of histone acetylation

are specific lysine residues in the positively charged N-termini tails that protrude

from the octamer, resulting in neutralisation of these residues (Yoshida et al., 2001).

Histone acetylation by histone acetyltransferases (HAT’s) loosens histone-DNA

contacts, and as such is an important step in transcription, and allows access by

DNA repair proteins to DNA (Kouzarides et al., 1999).

The architecture of the nucleosme, with the helical DNA strands wrapped almost

twice around a tight octameric histone core, presents an obvious physical barrier to

any repair proteins that need to interact with damaged DNA. The histones H2A and

H2B are known to be reversibly post-translationally modified by ubiquitination. The

globular ubiquitin molecule is added to specific lysine residues located on the

flexible histone C-termini, which is capable of relaxing chromatin (Wolffe et al.,

1999). This would be expected to make sites of DNA damage more accessible to

proteins of the NER pathway. Lending support to this hypothesis is the transient

unfolding of nucleosomes during NER in both normal and XPC human cells (Baxter

et al., 1998). It is also intriguing that the carboxy termini of the human hHR23A and

hHR23B RAD23 homologs contain a 50-amino-acid domain highly homologous to

E2 ubiquitin-conjugating enzymes (Masutani et al., 1997). The hHR23A and
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HHR23B enzymes form complexes with the XPC DNA damage recognition protein

(Masutani et al., 1997).

Proteasome inhibition stabilizes polyubiquitinated proteins, depletes cytosolic

unconjugated ubiquitin, and thereby promotes the deubiquitination of nucleosomal

histones in chromatin, resulting in the condensation of chromatin. The balance of

histone ubiquitination/deubiquitination is rapidly tilted in favour of the enzymatic

cleavage of ubiquitin from the histones because the nuclear pool of unconjugated

ubiquitin is normally low (Mimnaugh et al., 1997, Chen et al., 1998).

1.3.2.4 Homologous Recombination

Homologous recombination is a template-dependent DNA repair pathway that is

most efficient in late S and G2 phases of the cell cycle found in all organisms

studied (Heyer et al., 2006). It is critical for the repair of DNA damage, and the

recovery of stalled and broken replication forks which preserves genomic stability

(Heyer et al., 2006). Homologous recombination involves the exchange of DNA

between sequences of perfect or near perfect homology over several hundreds of

base pairs. In contrast, nonhomologous recombination occurs between sequences

with little or no sequence homology (Symington et al., 2002).

Homologous recombination can be divided into three stages, pre-synapsis, synapsis,

post-synapsis. In pre-synapsis formation of a protein complex consisting of BRCA1,

and RAD50-MRE11-Xrs2/ Nbs1 (neijman breakage syndrome) (Zhong et al., 1999),
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nicks the DNA using its 5’-3’ exonuclease activity to expose the 3’ ends on either

side of the DSB (Hoeijmakers et al., 2001). Exo1 is also involved in this process

(Heyer et al., 2006). Phosphorylation of the serine 1423 residue of BRCA1 activates

it, which is important for its function in DNA repair (Cortez et al., 1999). RPA then

binds to the ssDNA produced at the break site, and is able to recruit and activate

ATR (Zou et al., 2003).

The mediator proteins Rad52, Rad54, Brca2 (Chen et al., 1998), and the Rad 51

paralogs (Rad51B, Rad51C, Xrcc2, Xrcc3), orchestrate the formation of the pre-

synaptic Rad51 filament on RPA-coated ssDNA. In support of this, BRCA2-

deficient cells have increased sensitivity to ionising radiation, which indicates a

defect in DSB repair (Moynahan et al., 2001). BRCA2 regulates the intracellular

location and function of RAD51 (Davies et al., 2001). RAD51 directly binds 6 of

the 8 BRC repeats on the BRCA2 protein (Davies et al., 2001).

The homology driven pathway then enters synapsis in which single strand

annealing, or strand invasion pathways occur. During synapsis a physical connection

(d-loop) is generated between the recombinogenic substrate and an intact

homologous duplex DNA template leading to the formation of a heteroduplex (or

hybrid) DNA (Heyer et al., 2006).

The third and final part of homologous recombination is post-synapsis in which a

double-holiday junction intermediate is formed. This is resolved by crossover or
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non-crossover outcomes involving Rad51 and Rad54, in which the DNA strands are

restored (Heyer et al., 2006).

In strand invasion RAD51 coated single stranded DNA nucleoprotein filament

invades and pairs with a homologous region in the sister chromatid, (Baumann et

al., 2006) leading to crossing over of genetic material. This usually happens in G2

and S phases of the cell cycle (Kennedy et al., 2004).

Single strand annealing (SSA) forms part of homologous recombination, and occurs

when a DSB is flanked either side by homologous regions. This is likely to occur

frequently in the mammalian genome because there is a high proportion of repetitive

DNA (e.g Alu repeats) (McHugh et al., 2000). The DSB is resected as above, and

the complimentary 3’ ends anneal in the regions of homology, while the

overhanging ends are clipped off. Ligation completes the repair (McHugh et al.,

2000). Again a member of the RAD52 family is involved. The 3’ ends of the DNA

are removed by the XPF-ERCC1 heterodimer (Sargent et al., 2000). SSA is non-

conservative and an error prone mechanism of DSB repair.

1.3.2.5 Non-homolgous end-joining (NHEJ)

NHEJ is active throughout the cell cycle (Chu et al., 1997), but it is especially

important in G1. It appears to be the predominant pathway for repairing DSBs in

mammalian cells such as those caused by ionising radiation (McHugh et al., 2000).

In NHEJ the two ends of the DSB are directly joined together, requiring very little
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homology (McHugh et al., 2000) and because no template is used, it is less accurate,

and therefore is error prone.

NHEJ requires the removal of 1-10 nucleotides to uncover microhomology

sequences to allow proper base pairing and ligation of the broken ends (Ting et al.,

2004). It has been proposed that the MRN complex (Mre/Rad50/Nbs1) is involved

in processing the ends. In vitro Mre11 has 3’-5’ endonucleolytic activity which is

enhanced by the presence of Rad50 and Nbs1 (Paull et al., 1999). Brca1 inhibits the

nucleolytic activity of Mre11, suggesting that Brca1 regulates the function of the

MRN complex to prevent extensive DNA end processing (and hence loss of genetic

material) (Paull et al., 2001).

Once the ends have been processed, a heterodimeric complex of the Ku70 and Ku80

proteins stabilise the ends, by recruiting DNA protein kinase, and facilitates

rejoining by DNA ligase IV and ERCC4 proteins (McHugh et al., 2001) (figure 5).

Under electron microscopy a region of Brca1 (452-1079) is seen to form protein-

DNA complexes cooperatively between multiple DNA strands suggesting that Brca1

may act like DNA-PKcs to bridge adjacent DNA molecules (Paull et al., 2001).
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Figure 5: The main pathways for the repair of DSBs in eukaryotic cells. (a) classic

model for DSB repair based on experimental data from Saccharomyces cerevisiae.

(b) single-strand annealing (c) Non-homologous end-joining (McHugh et al., 2001).

In BRCA1- and BRCA2- deficient cells, RAD51-dependent homologous

recombination cannot occur, and the DSB is repaired by other error-prone

mechanisms such as non-homologous end-joining (NHEJ) (Lomonosov et al.,

2003). This results in large numbers of aberrations and chromatid breaks, leading to

loss of viability (Lomonosov et al., 2003).

1.3.3 Repair of different DNA lesions

1.3.3.1 Repair of single strand breaks

Single strand breaks can occur during DNA replication or repair, after UV

irradiation, or from intermediates of type 1 topoisomerases (Pacques et al., 1999).
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PARP-1 (poly(ADP-ribose)) binds to single-strand DNA breaks, and initiates the

recruitment of the DNA repair machinery (Leppard et al., 2003). There is evidence

that the DNA ligase IIIa-XRCC1 complex is recruited to DNA single-strand breaks

by virtue of the preferential binding of both subunits of the complex to automodified

PARP-1 (Leppard et al., 2003).

1.3.3.2 Repair of double-strand breaks

There are many ways in which Double strand breaks (DSB) may occur. They can

occur naturally, for example in meiosis where rearrangement of gene segments (VDJ

joining) during immune-cell development, are important developmentally regulated

processes involving DSB intermediates. They can also result from normal metabolic

processes that generate reactive oxygen species within the cell that attack DNA

(Sankaranarayanan et al., 2005). Ionising radiation (McHugh et al., 2000)

mechanical stress, endonucleases, or replication of a single-stranded nicked

chromosome can also produce DSBs (Pacques et al., 1999). DSBs can also arise

indirectly when a DNA replication fork collides with an un-repaired single-strand

break (SSB), giving rise to a collapsed replication fork (Haber et al., 1999).

DSBs are the sole instigators of recombination in meiotic cells and are a major

factor in recombination in mitotic cells (Pacques et al., 1999). DSB are lethal if left

unrepaired, and if mis-repaired can lead to translocations and other potentially

carcinogenic-causing chromosomal abnormalities (McHugh et al., 2000).
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DSBs are repaired by mechanisms such as, homologous recombination, and non-

homologous end joining (NHEJ), but there is co-operation between them

(Richardson et al., 2000). Single strand annealing, which is a variant of HR, is also

involved in the repair of DSBs. This takes place when direct repeat sequences flank

the two DNA ends (Jackson et al., 2002). Brca 1 is linked to HR and NHEJ, and is

likely to participate in establishing the mechanism of repair of the DSB (Ting et al.,

2004). In support of this notion, cells display either Rad50 or Rad51 IRIF (ionising

radiation-induced foci), and Brca1 co-localises with either Rad50 or Rad51, but not

with both at the same time (Zhong et al., 1999). Since the MRN complex may be

involved in both HR and NHEJ, Brca1 likely executes this decision through

coordinating the activities of the MRN complex (Ting et al., 2004).

BRCA1 is activated by ataxia telangiectasia mutated protein (ATM) and checkpoint

kinase 2 (CHK2) in the response to double strand breaks of the DNA (Tutt et al.,

2002). ATM and/or ATR become activated in response to DSB, and then

phosphorylate histone H2AX (Burma et al., 2001) at serine 139, which enables it to

recruit a number of proteins: Brca1, MRN (Mre11/Rad50/Nbs1) complex, DNA-

PKcs, Chk2 kinases, Mdc1/Nfbd1, 53BP1, and Rad51 all co-localise to histone

H2AX following ionising radiation and DSB production (Paull et al., 2000). The

phosphorylation of histone H2AX produces a type of nuclear foci (or ionising

radiation induced foci (IRIF)), and is rapidly detected within 3 minutes of ionising

radiation (Rogako et al., 1998). There is evidence that Mdc1/Nfbd1 and 53BP1 may

play redundant roles in initially associating with histone H2AX, which in turn

recruit Brca1 and MRN to histone H2AX (Goldberg et al., 2003) (Wang et al.,
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2002). In response to ICL formation, Fancd2 (one of the proteins involved in the

cancer susceptibility syndrome Fanconi anaemia (FA)) becomes mono-ubiquinated

and colocalises with Brca1 at IRIF (Garcia-Higuera et al., 2001).

1.3.3.3 Repair of DNA interstrand crosslinks (ICLs)

As the ICLs involve both strands, they are critical lesions since they block

transcription and replication (McHugh et al., 2001). The repair of ICLs in

mammalian cells involves components of different repair pathways such as NER,

and homologous recombination (McHugh et al., 2001). However, the full

mechanistic details of mammalian ICL repair have not been fully elucidated

(McHugh et al., 2001). It has been established that NER and homologous

recombination are important for the removal of cisplatin DNA adducts in

Eschierichia coli (Zdraveski et al., 2000) and yeast (McHugh et al., 2000). De Silva

et al demonstrated that the high cisplatin sensitivity of ERCC1- and XPF-mutant

cells likely results from a defect other than in excision repair (De Silva et al., 2002).

It has also been shown in human tissues from patients with ovarian cancer, a

possible molecular basis for co-ordinate mRNA expression of genes involved in

NER, suggesting that NER is important in human cancers (Zhong et al., 2000).

Defects in the homologous recombination repair pathways for DSBs result in

increased sensitivity to ICLs in human cells, suggesting that these pathways are
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involved in ICL repair (Moynahan et al., 2001). In support of this Brca1 (which is

involved in HR), deficient cells are sensitive to mitomycin C, which induces ICLs

(Dronkert et al., 2001). The observation that XRCC2 and XRCC3 mutants are

extremely sensitive to cisplatin suggests that homology-driven recombination plays

a major role in the repair of cisplatin DNA damage (Caldecott et al., 1991). XRCC2

and XRCC3 mutants are also unable to uncouple cisplatin ICLs, which raises the

possibility that homologous recombination is initiated prior to the incisions which

uncouple the cisplatin cross-link, and that the incision reaction depend upon an early

recombination intermediate being formed (De Silva et al., 2002)

1.3.4 Apoptosis

Apoptosis plays a major role in chemotherapy-induced tumour cell killing. There is

a careful balance between cell cycle arrest to enable DNA repair to occur, and

apoptosis. Apoptosis is carried out by the activation of caspases. There are two main

pathways to activate caspases: the intrinsic pathway regulated by Bcl-2 proteins, and

the extrinsic pathway regulated by tumour necrosis factor (TNF) receptor

superfamily (Reviewed in Hengartner et al., 2000).

In the intrinsic pathway, the pro-apoptotic Bcl-2 family proteins (such as bax, bad,

bak) promote the release of cytochrome c from mitochondria, which forms a

complex called the apoptosome with caspase 9 and APAF-1 in the cytosol
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(Reviewed in Hengartner et al., 2000). Caspase 9 is activated by the apoptosome,

leading to cleavage and activation of effector caspases such as caspase 3 and 7.

These executioner caspases bring about the morphological and biochemical changes

that characterise apoptosis, including, chromatin condensation and nuclear

fragmentation, membrane blebbing, and cell shrinkage (Reviewed in Hengartner et

al., 2000). The cell then breaks into membrane bound fragments called apoptotic

bodies that are cleared by phagocytosis without causing an inflammatory response

(Longley et al., 2005). Other Bcl-2 family members are anti-apoptotic such as Bcl-2

itself, Bcl-XL and Mcl-1. They bind to the pro-apoptotic members of the Bcl-2

family, and prevent them from becoming activated.

The extrinsic apoptotic pathway is regulated by cell surface ‘death’ receptors of the

TNF-receptor family, such as Fas (CD95/APO-1), DR4 (TNF-related apoptosis-

inducing ligand recptor 1, TRAIL-R1), and DR5 (TRAIL-R2). When Fas ligand

(FasL), binds to Fas, caspase 8 is recruited via an adaptor molecule FADD (Fas-

associated death domain) to form a death-inducing signalling complex (DISC)

(Nagata et al., 1999), which in turn activates the effector caspases 3 and 7 (Nagata et

al., 1999). FLIPP (FADD-like interleukin-1-converting enzyme-inhibitory protein)

binds to the DISC and inhibits capase 8 activation (Krueger et al., 2001).

Apoptosis is also inhibited by members of the IAP (inhibitors of apotosis) family,

which include c-IAP1, c-IAP2, X-IAP, and surviving (Salvesen et al., 2002). IAPs

can bind directly to caspases, such as caspase 3, 7, and 9, which inhibit their activity

(Salvesen et al., 2002). IAPs themselves are inhibited by Smac/DIABLO, which is
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released from mitochondria along with cytochrome c in response to pro-apoptotic

stimuli (Salvesen et al., 2002).

MEK is a MAP kinase kinase apoptosis inhibitor that plays a role in signal

transduction from growth factors in a receptor tyrosine kinase –RAS-RAF-MEK-

ERK cascade (Garrett et al.,1999). It has been shown that MEK may stimulate

antiapoptotic Bcl-2, Bcl-XL, and MCL-1 proteins (Boucher et al., 2000), as well as

inactivate proapoptotic protein BAD (Scheid et al., 1998). The role of MEK kinase

in response of cancer cell lines to cisplatin-based chemotherapy is unclear: some

report MEK inhibition of TP53-dependent apoptosis after cisplatin administration

(Hong et al., 1999), and others report an activation (Wang et al., 2000), although in

the latter case apoptosis was blocked by MEK inhibitors (Wang et al., 2000). In a

study by Kupryja et al, 2003, high MEK expression was associated with the highly

aggressive endometriod and clear cell carcinomas (p=0.049).

P53 is a tumour suppressor protein encoded by the TP53 gene, and has a central role

in the regulation of the cell cycle, apoptosis, survival, DNA repair, transcription,

differentiation, senescence as well as glucose metabolism oxidative stress and

angiogenesis (Vogelstein et al., 2000). Normal cells have low levels of P53 as it has

a short half life. Mutations in P53 often encode proteins that are resistant to

degradation, and mutant P53 often accumulates in the nucleus of cancer cells.

P53 protein downregulates Bcl-2 (an apoptosis inhibitor), and upregulates BAX

expression (an apoptosis promoter), thus promoting apoptosis (Miyashita et al.,
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1994). It has also been shown that cisplatin-induced apoptosis is associated with

wild-type TP53/BAX complex formation (Raffo et al., 2000). Cell line studies show

that TP53-regulated protein levels may differ before or after cisplatin administration

depending on the TP53 status (Jones et al, 1998), therefore evaluating functional and

dysfunctional TP53 protein, may possibly mask the biological significance of

proteins regulated or interacting with wild-type TP53, but not with mutant TP53.

BAX expression was a strong prognostic indicator of disease free survival in TP53

(+) ovarian carcinomas, but high levels of BAX expression negatively influenced

complete remission in all patient groups, which is in contrast to its pro-apoptotic

function (Kupryja et al., 2003)

Cisplatin induces apoptosis, which in the majority of ovarian carcinoma cell lines is

TP53-dependent (Jones et al., 1998). Impaired TP53 protein function resulting from

TP53 gene mutation contributes to cisplatin resistance in ovarian cancer cell lines

(Jones et al., 1998). TP53 is the most frequently mutated gene in human cancers,

with up to 50% of tumours carrying a mutation (Levine et al., 1997) and has a

central role in determining the response of tumour cells to chemotherapy following

DNA damage. This lack of functional p53 may contribute to drug resistance through

the inability of cells to undergo apoptosis in response to DNA damage (Ferreira et

al., 1999).

DNA damage results in the activation of upstream kinases such as ATM (ataxia-

telangiectasia-mutated), ATR (ATM and Rad-3 related), and DNA-PK (DNA-

dependent protein kinase), which directly or indirectly activate p53 (Ljungman et
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al., 2000). ATR (ATM-related kinase) also phosphorylates and activates BRCA1

(Zou et al., 2003).

Once activated, p53 acts as a transcription factor by up-regulating genes such as

GADD45 and p21, which induce cell cycle arrest in response to DNA damage

(Dotto et al., 2000). However, p53 can also trigger apoptosis by up-regulating pro-

apoptotic genes such as Bax, NOXA, TRAIL-R2 (DR5), and Fas (Schuler et al.,

2001). These processes act to maintain genomic integrity and prevent damaged

DNA from being passed on to daughter cells.

In breast cancer cell lines, BRCA1 induces apoptosis, mediated by caspases 9 and 3,

in response to spindle damage through activation of the c-jun N-terminal kinase

pathway (JNK) (Harkin et al., 1999). This pathway also involves activation of the

kinases H-Ras, MEKK4, Fas ligand and its receptor (Thangaraju et al., 2000), and is

specifically activated after treatment with spindle poisons such as paclitaxel (Mingo-

Sion et al., 2004).

However, there have been conflicting results in ovarian cancer cell lines. BRCA1

expression decreased paclitaxel sensitivity in BRCA1-mutant SNU human ovarian

cancer cell lines (Zhou et al., 2003), and expression of a dominant negative BRCA

in the ID-8 murine ovarian cancer cell line increased the sensitivity of the cells to

paclitaxel (Sylvain et al., 2002).
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1.4 Drug Resistance in Ovarian Cancer

Chemotherapy resistance is clinically defined as the progression of disease during

therapy, absence of regression during therapy, or recurrence within 6 months after

completed treatment. Progression of disease during therapy is defined by the

RECIST (response evaluation criteria in solid tumours) guidelines as a 20% increase

in the sum of the longest diameter of the target (i.e ovary) or non-target lesions

(Therasse et al., 2000). Absence of regression during therapy is defined by the

RECIST guidelines as neither disappearance of all target lesions (complete

response), >30% decrease in the sum of the longest diameter of target lesions

(partial response), or progressive disease (defined above) (Therasse et al., 2000).

Recurrence of disease is confirmed as a rise of serum Ca-125 levels to more than

twice the upper limit of normal (Rustin et al., 1996), and in patients with persistently

elevated Ca 125 serum levels, recurrence of disease is a doubling of Ca 125 above

the nadir (Rustin et al., 2001). Recurrence of disease can also be confirmed by CT

scans.

Tumours are considered to be sensitive if they exhibit complete clinical response to

therapy, or if relapse occurs after remission and treatment has not been administered

for more than 6 months (Ringborg et al., 1998). Resistance to cisplatin can be

intrinsic or acquired. Intrinsic is present at the time of diagnosis, and patients fail to

respond to first line chemotherapy. Laboratory studies have shown that cisplatin
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resistance is multifactorial, consisting of mechanisms such as: (1) decreased drug

accumulation (2) increased drug inactivation (3) evasion of apoptosis (4) enhanced

ability to repair DNA damage. However, because cancer cells are heterogenous,

more than one mechanism of drug resistance may be present at one time.

1.4.1 Decreased drug accumulation

This can be due to an insufficient dose, low bioavailiblity, poor drug distribution,

increased metabolism (e.g extensive first-pass metabolism) and excretion, impaired

diffusion of drug to tumour cells, high plasma protein binding, low tissue binding

and increased drug efflux. In some human ovarian cancer cell lines, decreased

cellular accumulation of platinum compounds has been found to be partly

responsible for the resistant phenotype (Jekunen et al., 1994). The adenosine

binding cassette (ABC) superfamily can confer drug resistance in vitro (Taniguchi et

al., 1996) , and are an important part of enhancing drug efflux. In other non-ovarian

cancer cell lines, two cell membrane proteins that may be involved in platinum

compound uptake and efflux have been indentified that may account for the cisplatin

phenotype (Bernal et al., 2005). However due to practical limitations, the

importance of decreased drug accumulation as a mechanism of platinum resistance

in the clinical setting remains to be established.

A major problem in the treatment of cancer patients with chemotherapy is the

development of multi-drug resistance (MDR). This is the resistance of tumour cells
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to structurally and functionally unrelated drugs such as the anthracyclines, Vinca

Alkaloids, and the epipodophyllotoxins. The multidrug resistance-associated protein

gene (MRP1) encodes a protein that is part of the ABC transporters, and is very

important in the development of chemotherapy resistance. cMOAT(MRP2), MRP3,

MRP4, and MRP5, are all homologues of MRP1. Two proteins, MDR1 gene

encoded-P-glcoprotein (P-gp), and MRP1 (MDR associated protein), are involved in

drug transport and are well known for causing MDR, usually by drug efflux. They

are both members of the ATP binding cassette transporter superfamily, that transport

diverse compounds such as metal ions, phospholipids, and nucleosides (de Jong et

al., 2001). Despite their common involvement in MDR, there are clear differences in

their function and substrate specificity of P-gp, and MRP1. Pgp binds and transports

neutral or positively charged, hydrophobic compounds, whereas MRP1 transports

conjugated organic anions such as the leukotriene C4 and GSH S-conjugates of

prostaglandin A2 and aflatoxin B1 (de Jong et al., 2001). GSH is required for the

transportation of anthracyclines by MRP1, but GSH is not necessarily conjugated to

the drug, instead GSH may be co-transported (Loe et al., 1998).

Increased drug efflux can be due to enhanced expression of drug transporter proteins

such as P-glycoprotein, and MRP (Gottesman et al., 1993). The reduction of

expression of MDR1 by RNAi has been found to sensitise cells to paclitaxel (Duan

et al., 2004), and the reduction of expression of MRP2 with ribozymes confers

sensitivity to cisplatin (Materna et al., 2005). This suggests that the ABC family of

transporters are involved with transporting cisplatin and paclitaxel out of the cancer

cells, which confers resistance. Other inhibitors of these drug efflux pumps include
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verapamil and cyclosporin A, and have been developed to reverse multidrug

resistance (Kool et al., 1999). However, P-gp and MRP have also been expressed in

normal tissues, so the inhibition of these pumps has distinct adverse effects and is

difficult to use these inhibitors in clinical therapy (Kool et al., 1999).

Furthermore, in ovarian cancer up to two thirds of tumour specimens have been

found to overexpress P-glycoprotein on immunohistochemistry. This overexpression

has been shown in some cases to correlate with poor overall survival, (Baekelandt et

al., 2000) and poor response to standard chemotherapy (Yokoyama et al., 1999). As

a result of this, inhibitors of P-glycoprotein (P-gp) have been studied in trials. One

such phase III trial compared carboplatin and paclitaxel with or without PSC-833

(Valspodar, which is an inhibitor of P-gp) for the treatment of 762 patients with

advanced ovarian cancer. The results showed that the addition of PSC-833 led to a

reduction in response rates and no difference in overall survival (Baird et al., 2001).

However it has since been shown that valspodar has unpredictable pharmacokinetic

interactions and in addition targets other transport proteins (Thomas et al., 2003),

which may contribute to the disappointing clinical results. There are other novel p-

gylcoprotein inhibitors such as tariquidar and zosuquidar that are highly specific for

p-glycoprotein (Starling et al., 1997). They are currently being tested in phase III

clinical trials to determine if they can reduce drug resistance (Starling et al., 1997).

ABCC2 is a human ABC transporter also called multidrug resistance-associated

protein (MRP2), or canalicular multiple organic anion transporter (cMOAT), and is

expressed in the apical membranes of canalicular cells in the liver (Kool et al., 1997)
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where it functions as the major exporter of organic anions from the liver into the bile

(Wada et al., 1998). In vitro experiments showed that overexpression of ABCC2

could confer resistance to platinum-based chemotherapy in ovarian cancer cell lines

by increasing cisplatin efflux (Taniguchi et al., 1996). Although xpression of

ABCC2 could be detected in clinical specimens of ovarian carcinoma, an

immunohistochemical study using frozen tissue sections of tumours could not show

any prognostic value of ABCC2 assessment for response to chemotherapy or

progression-free survival (Arts et al., 1999).

1.4.2 Increased drug inactivation

Gluthathione is a powerful antioxidant, which inhibits oxidative stress that can

damage DNA and RNA (Rothbarth et al., 2002). It is a tripeptide thiol which has an

important role in cellular detoxification of various toxins (Van der Zee et al., 1995).

Binding of drugs such as cisplatin and carboplatin by glutathione, catalysed by

glutathione-S-transferase (GST-) (Gottesman et al., 1993), inactivates them. The

resulting complex is a substrate for ABC transporter proteins in leukaemia cells,

which transport it out of the cell (Ishikawa et al., 1993), contributing to drug

resistance further.

High levels of glutathione have been found in tumour cell lines resistant to platinum

chemotherapy (Kelland et al., 1993) and melphalan (Schroder et al., 1996). In a

study by Bratasz et al. 2008, it was shown that NCX-4040, a nitric oxide-releasing
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derivative of aspirin, could resensitize drug-resistant ovarian cancer cells (ovarian

cell lines and xenograft tumours) to cisplatin, possibly by depletion of cellular thiols

(Bratasz et al., 2008)

A relationship has also been reported between high levels of GST-, worse

prognosis, and resistance to platinum chemotherapy in ovarian cancer (Green et al.,

1993). Another study has also shown high levels of GST- in platinum resistant

ovarian cancer cells (Sakamoto et al., 2001) and tumours (Green et al., 1993).

However, other studies did not support these findings and could not find any

relationship between GST- expression and survival or response to chemotherapy in

ovarian cancer (Van der Zee et al., 1995). In a large recent study by Nagle et al,

2007, the common glutathione-S-tansferase polymorphisms (GSTM1, GSTP2,

GSTT1) of 239 Australian women with primary epithelial ovarian cancer were

analysed to see if there was a relationship to survival. Reduced GST function was

associated with better survival outcomes (Nagle et al., 2007).

A platinum analogue called ZD0473 avoids binding to cytoplasmic thiols, thereby

overcoming thiol-mediated detoxification. This was tested in phase II clinical trials

in 94 patients with ovarian cancer that had been previously treated with carboplatin.

The results were disappointing and showed that ZD0473 had much poorer response

rates, median survival, and median time to progression than carboplatin (Gore et al.,

2002). This pathway therefore does not appear to be a major factor in the clinical

resistance to platinum compounds.
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1.4.3 Evasion of apoptosis

P53 is a tumour suppressor protein encoded by the TP53 gene, and has a central role

in the regulation of the cell cycle and apoptosis (Vogelstein et al., 2000). The TP53

gene is often mutated in ovarian cancer, and a number of studies have shown that

these patients have worse clinical outcomes following platinum-based

chemotherapy, (Marx et al., 1998). However, it is difficult to know if the p53 status

predicts poor response to chemotherapy, or an inherently aggressive tumour type.

The Gynecologic Oncology Group (GOG) performed a detailed analysis of p53

overexpression in previously-untreated women with early invasive or advanced

stage epithelial ovarian cancer (EOC). Women included had participated in either

the GOG-157, a randomized phae III trial of three vs six cycles of paclitaxel +

carboplatin in high risk, early stage EOC, or GOG-111, a randomized phase III trial

of cyclophosphomide + cisplatin, vs paclitaxel + cisplatin in sub-optimally resected,

advanced stage EOC (Darcy et al., 2008). P53 overexpression was assessed by DO-

7 immunostaining, and was found to be overexpressed in 51% (73/143) and 66%

(90/136) of cases on the GOG-157 and GOG-111 cohorts, respectively. P53

overexpression was not associated with any clinical characteristics or overall

survival (OS) but was associated with worse progression free survival (PFS)

(logrank test: p=0.013; unadjusted Cox modelling: p=0.015). In the GOG-111

cohort, p53 overexpression was associated with GOG performance status (p=0.018)

and grade (p=0.003), but not with age, stage, cell type, or tumour response and

disease status after primary chemotherapy, PFS, or OS. Adjusted Cox regression
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modelling demonstrated that P53 overexpression was not an independent prognostic

factor in either cohort (Darcy et al., 2008).

Experimental and clinical data seem to show that paclitaxel enhances apoptosis

through a p53 –independent pathway that probably involves the BAX gene. Whereas

patients with wild type p53 tumours have a good chance to respond to platinum,

patients with mutant p53 tumours may have a clinical need to add paclitaxel to

platinum-based chemotherapy (Gadducci et al., 2002). Therefore determining p53

status can be useful in predicting therapeutic response to specific drugs. Other

studies are being performed to assess whether wild-type p53 can be reintroduced

into tumour cells using adenovirus ADP53 to restore chemosensitivity in these cells

(Wolf et al., 2000). A large scale randomised trial is underway to assess

intraperitoneal ADP53 in combination with platinum-based chemotherapy (Vasey et

al., 2003).

Lactacystin (LC) and N-acetyl-leucyl-leucyl-norleucinal (ALLnL), which are both

proteasome inhibitors potently increase p53 levels in cell lysates and stimulated the

binding of p53 to chromatin (Mimnaugh et al., 2000). Bcl-2 and Bcl-xL inhibit

apoptosis by regulating the release of cytochrome c from the mitochondrial

membrane. Expression of Bcl-xL is associated with a shorter disease-free survival

period in patients receiving platinum-based chemotherapy for ovarian cancer

(Williams et al., 2005). In confirmation of this, ectopic expression of Bcl-xL renders

the A2780 ovarian cancer cell line more resistant to cytotoxic agents both in vitro

and in tumour models in vivo (Williams et al., 2005). Conversely, down–regulation
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of Bcl-2 (in this case in combination with antisense directed to MDR1) leads to a

significant sensitisation to doxorubicin (Pakunlu et al., 2003).

Several cytotoxic agents have been shown to induce the ligand for Fas, which

contributes to drug-induced apoptosis, since the Fas receptor is part of a death-

induced signalling complex (Pakunlu et al., 2003). FLIP (FLICE-like inhibitory

protein) inhibits apoptosis by preventing the assembly of the Fas receptor with its

signalling complex. Ectopic expression of FLIP inhibits cisplatin-induced apoptosis

and RNAi directed to FLIP sensitises cells to cisplatin (Abedini et al., 2004).

Similarly TRAIL, another ligand, which induces apoptosis, is able, in some cells to

potentiate apoptosis induced by cytotoxic agents, including carboplatin and

paclitaxel (Cuello et al., 2001). Decoy receptor 3 (DcR3) is a soluble tumour

necrosis factor receptor found in ascites of patients with ovarian cancer. Ascites

from 44 patients inhibited fas-ligand mediated apoptosis, and higher levels of DcR3

were associated with stage 4 disease, and higher incidence of platinum resistance

(Connor et al., 2008).

Another molecule that has been implicated in drug resistance through its anti-

apoptotic mechanism is the caspase inhibitor XIAP. In cell lines that are sensitive to

cisplatin, XIAP is down regulated by the drug, which leads to a corresponding

activation of the pro-apoptotic caspase 3. In contrast, drug-resistant cell lines have

shown no decrease in XIAP after exposure to an equimolar concentration of

cisplatin (Yang et al., 2004). Ectopic expression of XIAP can render cells more

resistant to cisplatin (Asselin et al., 2003) and this appears to depend on activation
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of the PI 3-kinase/Akt signalling pathway (Asselin et al., 2003). Conversely anti-

sense oligonucleotides directed to XIAP can sensitise resistant cells to cisplatin

(Yang et al., 2004). These studies suggest that by preventing apoptotis, XIAP can

potentially contribute to drug resistance.

The phosphatidylinositol 3-kinases (PI3Ks) are widely expressed lipid kinases that

phosphorylate phosphoinositides at the D-3 position of the inositol ring. These

enzymes function as signal transducers downstream of cell-surface receptors

(Reviewed in Garcia-Echeverria et al., 2008). The products of PI3K-catalzed

reactions are second messengers and have central roles in a number of cellular

processes including cell growth, differentiation and survival. In the PI3K/Akt

pathway, PI3K recruitment to tyrosine kinase receptors leads to a transient rise in

phosphatdylinositol 2,4,5-triphosphate (PIP3), which recruits PH-domain containing

proteins such as Akt (Bellacosa et al.,1998). After translocation to the plasma

membrane, Akt is activated by phosphorylation, which then activates downstream

cytosolic and nuclear effectors. In tumour cells, Akt is constitutively activated which

leads to dysregulated proliferation, increased angiogenesis, cell growth and survival

(Bellacosa et al., 1998).

PIK3CA gene encodes a catalytic subunit of PI3K. In a study by Kolasa et al,

molecular analysis on 117 ovarian carcinomas revealed PIK3CA mutations occurred

in 5/117 (4.3%) carcinomas, exclusively in the endometrioid and clear cell sub-types

(p=0.0002). PIK3CA amplification occurred in 28/117 (24%) of ovarian tumours

and strongly diminished odds of complete remission (OR=0.25, p=0.033), and
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platinum sensitive response (PS, OR=0.12, p=0.004) in the taxane-platinum patients,

suggesting that PIK3CA amplification may be a marker predicting ovarian cancer

response (Kolasa et al., 2009).

The PI 3-kinase-Akt pathway has been identified as a potential contributor to drug

resistance by preventing chemotherapeutic drugs from inducing apoptosis (Pommier

et al., 2004). The tumour suppressor PTEN catalyses the degradation of the 3-

phosphoinositides that are generated by the PI 3-kinase pathway, and thus

antagonising this pathway. Although the gene encoding Akt is amplified in only

12% of ovarian cancers (Bellacosa et al., 1995) it is reported to be

hyperphosphorylated and activated inbetween 36 and 68% of clinical samples

(Altomare et al., 2000). Activation of this survival pathway by ectopic expression of

PI 3-kinase (Lee et al., 2005), constitutively active Akt (Yuan et al., 2003) or by

RNAi directed to PTEN (Lee et al., 2002) appears to increase resistance of ovarian

cancer cells. Similarly, inhibiting this pathway by inhibition of PI 3-kinase (Hu et

al., 2002) or expression of a dominant-negative interfering variant of Akt (Yuan et

al., 2003) can increase sensitivity to cytotoxic drugs.
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1.4.4 Enhanced ability to repair DNA damage

Increased platinum-DNA adduct removal has been shown by several DNA repair

assays to be associated with cisplatin resistance in an A2780 cisplatin resistant

human ovarian cancer cell line (A2780cisR) (Ferry et al., 2000). Up-regulation of

ERCC1 mRNA in response to cisplatin exposure correlates with the development by

tumour cells of an acquired resistance to this chemotherapeutic agent (Parker et al.,

1991). The importance of this enzyme is demonstrated by the fact that cisplatin-

DNA adducts cannot be repaired without functional ERCC1 enzyme (Lee et al.,

1993), and expression of antisense ERCC1 leads to sensitisation of cells to cisplatin

both in vitro and in xenograft tumour models (Selvakumaran et al., 2003).

Proteasome inhibitors (such as LC and ALLnL) prevent the increase in ERCC1

mRNA expression that occurs in cells exposed to cisplatin (Mimnaugh et al., 2000).

Clinically in ovarian cancer, there is a direct association between mRNA levels of

ERCC1 gene and clinical resistance to platinum-based chemotherapy (Dabholkar et

al., 1994). Activator protein 1 (AP-1) is an important transcription factor for ERCC1

(Li et al., 1998), and pharmacological modulation of AP1 levels appear to impact

strongly on ERCC1 mRNA and protein expression (Li et al., 1998). AP1

transcription factor consists of either, heterodimers formed between Jun and Fos

family members of proto-oncoproteins, or homodimers of Jun proteins (Gottlicher et

al., 1997).
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There is evidence that cisplatin induces expression of proto-oncogenes c-fos/c-jun

and activates c-Jun NH2 –terminal Kinase / stress-activated protein kinase

(JNK/SAPK) in ovarian cancer cells and other tumour cells (Liu et al., 1996).

JNK/SAPK is a subfamily of MAP kinases in the Ras pathway, which is responsible

for the phosphorylation of Jun protein (Li et al., 1998). Phosphorylation of the

transcription factor c-Jun at serine residues 63 and 73 in its NH2-terminal domain

greatly enhances the transcriptional activity of the AP1 binding sites (Pulverer et al.,

1991) and AP1 regulated genes (Derijard et al., 1994). In addition, cell lines

resistant to cisplatin exhibited higher levels of c-jun and c-Fos, and down-regulation

of c-jun and c-Fos expression sensitizes the cells to cisplatin (Moorehead et al.,

2000). In support of this, a dominant-negative c-jun reduces the repair of cisplatin

adducts (Gjerset et al., 1997). Therefore it is possible that the effect of cisplatin on

ERCC1 could be through AP1 induction or c-Jun phosphorylation.

The JNK/SAPK pathway has been reported to protect against cisplatin-induced

DNA damage and that this response is required for DNA repair and survival

following cisplatin treatment (Potapova et al., 1997). This suggests that the Ras/JNK

pathway may mediate a physiological response to DNA damage such as the

induction of one or more DNA repair enzymes. Youn et al have shown in NIH3T3

mouse embryo cell lines that activation of oncogenic H-Ras increases ERCC1

promoter activity through Ap1-binding sites. This is an essential role for oncogenic

H-Ras mediated cell survival against platinum-based agents, and is important in the

development of resistance to chemotherapy and ionising radiation in tumour cells

(Youn et al., 2004).
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To try and inhibit the increase in DNA repair, ways of creating a physical barrier to

the components of the NER pathway have been tried. Proteasome inhibitors promote

deubiquitination of nucleosomal histones in chromatin, resulting in the condensation

of chromatin. When cells were pretreated with proteasome inhibitors (such as

lactacystin) and then treated with cisplatin, chromatin condensation, increased

amounts of cisplatin-DNA adducts, diminished NER-dependent repair of cisplatin-

DNA lesions were all observed, compared to control cells which were just treated

with cisplatin alone (Mimnaugh et al., 2000). Another component of the NER

pathway, XPA, is overexpressed in cells that are cisplatin resistant (Dabholkar et al.,

1994).

Ovarian cancer cell lines over-expressing BRCA1 have been shown to be cisplatin

resistant, which has been attributed to BRCA1-dependent DNA repair (Husain et al.,

1998). Also, in support of this, inhibition of BRCA1 by antisense RNAs increased

cisplatin sensitivity, and overexpression of BRCA1 in murine ovarian cancer cells

increased resistant to cisplatin (Sylvain et al., 2002). Experiments in mouse

embryonic stem cells with a mutant BRCA1 showed increased sensitivity to

alkylating agents such as mitomycin C, and cisplatin, compared with cells

expressing wild type BRCA1 (Moynahan et al., 2001). This is probably because

BRCA1 mediated DNA repair does not happen and the cell undergoes apoptosis. In

the clinical setting, it has been shown in a retrospective trial that patients with

mutations in BRCA1 or BRCA2 respond better to platinum-based chemotherapy,
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and have an overall better prognosis than those patients with sporadic disease (Cass

et al., 2003).

Cell lines deficient in the mismatch repair genes hMLH1 or hMSH2 are resistant to

cisplatin in vitro (Brown et al., 1997). A common reason for their deficiency in

these genes is hypermethylation of the hMLh1 promoter (Plumb et al., 2000). In

support of this, a clinical study found that residual ovarian tumours exhibited

microsatelite instability after platinum-based chemotherapy, which was linked to a

loss of expression of hMLH1 (Watanabe et al., 2001). In response to this 2’-deoxy-

5-azacytidine (DAC), which inhibits DNA methyltransferase activity, can be used to

re-sensitize cells to chemotherapy drugs including cisplatin (Plumb et al., 2000) by

reducing the hypermethylation of the hMLH1 promoter. DAC is now in clinical

trials in combination with carboplatin in ovarian cancer (Longley et al., 2005).

However, newer platinum-based drugs such as oxaloplatin, do not show the same

resistance caused by loss of expression of hMLH1 (Raymond et al., 2002). This is

because the MMR machinery does not recognise the DNA adducts introduced by

oxaloplatin (Raymond et al., 2002).
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1.5 Aims

The comet assay has made it possible to study levels of ICLs in individual cells. It

can also be used in the clinical setting as the number of cells it requires can easily be

obtained from patients.

The human paired A2780 and A2780cisR ovarian cancer cell line will be used as an

in vitro model to establish peak of ICL formation and repair, after treatment with

cisplatin. These time points will then be used in clinical samples. Little is known

about clinical resistance, especially ICL formation and repair and their contribution

to platinum chemotherapy resistance. Ovarian cancer cells obtained from patients

with ovarian cancer that are clinically resistant and sensitive to platinum

chemotherapy will be compared to determine the importance of ICL formation and

repair in clinical platinum resistance. It is unclear if upstream mechanisms such as

drug efflux, drug detoxification mechanisms, or decreased drug influx play an

important role in platinum resistance in the clinical setting. By measuring ICL

formation it will become apparent if upstream mechanisms significantly contribute

to platinum resistance.

Melphalan used to be used in the treatment of ovarian cancer, and also causes

interstrand crosslinking. Results from our laboratory suggest that multiple myeloma

patients resistant to melphalan may be sensitive to cisplatin, and it was hypothesised

that ovarian cancer patients resistant to platinum chemotherapy, may be sensitive to

melphalan. Again, the human paired A2780 and A2780cisR ovarian cancer cell line
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will be used as an in vitro model to establish peak of ICL formation and repair, after

treatment with melphalan. These time points will be used in clinical samples.

Microarrays have enabled as many as 30,000 genes to be analysed in a single

sample. This has enabled great advances in the understanding of gene expressions in

different cell populations. Gene expression will be investigated in platinum-resistant

and platinum-sensitive patients with ovarian cancer to look for any possible

differences in ICL formation and repair found in patient samples.
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2. MATERIALS AND METHODS

2.1 Patient Recruitment

Ethics Approval for this study was granted by the joint UCL/UCLH committees on

the ethics of Human research. Ethics reference number 04/Q0505/77 (Appendix 1 –

study protocol).

All patients being treated at University College Hospital between October 2004 and

January 2006 with known epithelial ovarian cancer were included in the study.

Patients with suspected or known epithelial ovarian cancer were approached in

clinics, and on the wards. They were given the patient information leaflet to read

(Appendix 2 – Patient information sheet), and the study was explained to them. If

patients wanted to enter the study, written consent was obtained using the patient

consent form (Appendix 3 – Patient consent form). There were two parts of the

consent form, the first signature was required for the patient to take part in the study,

and the second signature was required to store samples received from the patient for

future research. All patients needed to sign the first part to be included in the study,

but not all patients signed the second part so their samples could not be used for

future research. Only patients with proven epithelial ovarian cancer by cytology

and/or histopathology were included. There were no other exclusion criteria.
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2.2 Measurement of cisplatin cytotoxicity on human ovarian cancer cell lines

First the cells were prepared, counted, and plated up for the experiment. The SRB

(sulphorodamine Blue) assay was used.

2.2.1 Preparation of A2780 and A2780cisR human ovarian cancer cell lines

A2780 and A2780 cisplatin resistant cell lines were used. All cell lines tested

negative for mycoplasma. An aliquot of each cell line containing 1x106 cells was

taken from a stock in liquid nitrogen. The vials were quickly thawed at room

temperature, and 9mls of RPMI media containg 10% FCS and 1% glutamine was

added to each sample and pipetted into a 20ml conical tube. The tubes were spun in

a Jouan CT422 centrifuge (Thermoelectron, Basingstoke, UK) at 270g for 5

minutes. The supernatant was poured off and the pellet was re-suspended in 12mls

of RPMI media containg 10% FCS and 1% glutamine and the whole sample was

pipetted into an 80cm2 flask. The flasks were put into an incubator (37C, 5% CO2)

overnight for the cells to attach.

The cells were looked at under the microscope to assess confluency, which is seen

as cells touching each other with very little space between them. Once the cells were

reaching confluency, they were split to enable their growth and multiplication to

continue. The RPMI media containing 10% FCS and 1% glutamine was poured off,

and 3mls of trypsin (Autogen Bioclear Uk ltd. Wiltshire, UK) was pipetted into the

flask to wash the cells, and then poured off. A further 5mls of trypsin was pipetted

into the flask and left in the incubator for 5 minutes, at 37˚C and 5%CO2. After 5

minutes the trypsin was pipetted off and added to 10mls of RPMI media containing
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10% FCS and 1% glutamine in a 20ml conical tube, and spun in a centrifuge at 270g

for 5 minutes. The supernatant was poured off and the cell pellet was re-suspended

in 12mls of RPMI media containing 10%FCS and 1% glutamine. A variable amount

of the suspension, according to the size of the cell pellet, was pipetted into sterile

80cm2 flasks. If the cell pellet was approx 0.2mls then 10mls of the RPMI media

containg 10% FCS and 1% glutamine with the cells suspended in it was used. If the

cell pellet was approx 1.0mls, then only 2mls of the RPMI media containg 10% FCS

and 1% glutamine containing the cells was used.

Once the cells were reaching confluency, as viewed down an inverted microscope,

they were then split again. This was repeated, until the cells were ready to use for

the experiments below. Cells were only used if they were at the point of reaching

confluency, as this meant they were in the exponential phase of growth.

2.2.2 Determining the concentration and amount of cells present in media

1ml of RPMI media (containing 10% FCS and 1% glutamine) containing the single

cell suspension of tumour cells, was pipetted onto a haemocytometer which already

had a cover slip pushed on the slide to create a vacuum. The haemocytometer had a

grid of 9 large squares printed on it which was clearly seen under the microscope.

The cells in each large corner square were counted (4 in total) and the number

averaged to give the number of cells present. This was the number of cells present

x104 in 1ml of sample (i.e the concentration of the sample). The solution was diluted
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as appropriate to obtain the right concentration of cells to be used in each

experiment.

2.2.3 Measurement of cisplatin cytotoxicity using the SRB assay

Four 96 well plates were plated up with 100l of 0.5x104/ml of cells in each well.

Two plates had A2780 and the other two had A2780cisR cells. They were left to

adhere overnight. They were all treated with a range of cisplatin concentration:

0M, 0.03M, 0.1M, 0.3M, 1M, 3M, 10M, 30M, 100M. The cisplatin was

added to RPMI media containing only 1% glutamine and no FCS, to obtain these

concentrations, and 100l was pipetted into each well. The cisplatin was left on for

1 hour and then carefully pipetted off. 100μl of RPMI media with 1% glutamine

and 10% FCS was pipetted into each well. The plates were then left for 4 days in the

incubator (37º C, 5%CO2).

After this time, the media was removed by inverting and flicking the plates. 100l of

30% acetic acid was added to each well to fix the cells for 20 minutes at 4C in the

fridge. The acetic acid was removed by flicking the plates. The plates were then

washed with tap water 4 times. 100l of a protein stain called sulphorodamine blue

(SRB) (sigma, Poole, Dorset, UK) was then pipetted into each well, and left at room

temperature for 20 minutes. The SRB was removed by flicking the plates. Excess

SRB was removed by washing with 1% acetic acid 5 times. The plates were left to

dry overnight. 100l of 10mM trizma base (Sigma, Poole, Dorset, UK) was added to

each well to solubilise, and left for 20 minutes at room temperature. The plates were

read at 540nm.
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2.3 Measurement of ICL formation and repair in human ovarian cancer cell

lines

2.3.1 Preparation of A2780 and A2780cisR human ovarian cancer cell lines

These cell lines were prepared as above (see section 2.2.1)

2.3.2 Determining the concentration and amount of cells present in media

The cells were counted to ensure the correct concentrations of cells to be used in the

experiments (see section 2.2.2).

2.3.3 Drug Treatment

Cells were treated in vitro with varying concentrations of cisplatin to measure the

level of ICL formation in the cells at the peak of crosslinking (9 hours for cisplatin).

Other cells were treated in vitro with either 100μM cisplatin or 50μM melphalan,

and the level of ICL formation and repair measured over time using the comet assay.

2.3.3.1 Treatment in vitro with different concentrations of cisplatin

Two 6 well plates were plated up with 2mls of 5x104/ml of cells in each well. One

plate had A2780 cells and the other A2780cisR. They were left to adhere overnight.

Each well was treated with a different concentration of cisplatin: 0M, 25M,

50M, 100M, 150M, 200M. The cisplatin was added to RPMI media containing

only 1% glutamine and no FCS, to obtain these concentrations, and 1ml was added

to each well. It was then incubated with the cells for 1 hour in an incubator (37ºC,

5% CO2).
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The cisplatin was pipetted off and discarded. This was done by adding sodium

hydroxide to neutralise the drug, before pouring down the sink with plenty of water.

2mls of RPMI media containing 10% FCS and 1% glutamine was pipetted into each

well. After a further 8 hours, the cells were harvested using trypsin: The RPMI

media containing 10% FCS and 1% glutamine was pipettd off, and 1ml of trypsin

was pipetted into the appropriate well and left in the incubator at 37ºC, 5% CO2 for

5 minutes. After 5 minutes the trypsin was pipetted off and added to 5mls of RPMI

media containing 10% FCS and 1% glutamine in a 10ml conical tube, and spun in a

centrifuge at 270g for 5 minutes. The supernatant was poured off. Into each tube 1ml

of DMSO (VWR International, Leicester, UK) with 10% FCS was pipetted, and the

sample stored at -80ºC ready for the comet assay (see section 2.3). This was

repeated 4 times.

2.3.3.2 Treatment in vitro with 100μM cisplatin

Ten wells of two 6 well plates were plated up by pipetting 2mls of 5x104/ml of

A2780 cells into each well, and another ten wells of two 6 well plates were plated up

with 2mls of 5x104/ml of A2780cisR cells. They were left to adhere overnight.

Cisplatin was added to RPMI media containing only 1% glutamine and no FCS, to

obtain a concentration of 100M, and 1ml was pipetted into each well. Cisplatin was

incubated with the cells in an incubator at 37ºC, and 5%CO2 for 1 hour. After 1 hour

the cisplatin was pipetted off and replaced with 2mls of RPMI media containing

10% FCS and 1% glutamine (except the ‘0 hour’ and ‘0 hour control’ wells).



Page 71

The “0 hour” well and “0 hour control” on each plate were harvested using trypsin:

The RPMI media containing 10% FCS and 1% glutamine was pipetted off. 1ml of

trypsin was pipetted into the appropriate well incubated at 37ºC, 5% CO2 for 5

minutes. After 5 minutes the trypsin was pipetted off and added to 5mls of RPMI

media containing 10% FCS and 1% glutamine in a 10ml conical tube. It was spun in

a centrifuge at 270g for 5 minutes and the supernatant was poured off. The cell

pellet was resuspended with 1ml of DMSO (VWR International, Leicester, UK)

with 10% FCS, and the sample stored at -80ºC ready for the comet assay (see

section 2.3). After a further 3, 6, 9, 24, 24 control, 32, 48 control and 48 hours the

appropriate well on each plate was harvested, and frozen as above. The comet assay

was performed on the samples, and the results plotted. The experiment was repeated

4 times.

2.3.3.3 Treatment in vitro with 50μM Melphalan

Seventeen wells of three 6 well plates were plated up with 2mls of 5x104/ml of

A2780 cells in each well, and another seventeen wells of three 6 well plates were

plated up with 2mls of 5x104/ml of A2780cisR cells in each well. They were left to

adhere overnight. The melphalan was added to RPMI media containing only 1%

glutamine and no FCS to obtain 50M, and 1ml was added to each well. It was then

incubated with the cells for 1 hour in an incubator at 37ºC, and 5%CO2.

The melphalan was then pipetted off, and replaced with 2mls of RPMI media

containing 10% FCS and 1% glutamine. The “0 hour” well and “0 hour control” on

each plate were harvested using trypsin: The RPMI media containing 10% FCS and
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1% glutamine was pipettd off, and 1ml of trypsin was pipetted into the appropriate

well and incubated at 37ºC, 5% CO2 for 5 minutes. Then, the trypsin was pipetted

off and added to 5mls of RPMI media containing 10% FCS and 1% glutamine in a

10ml conical tube. It was spun in a centrifuge at 270g for 5 minutes. The supernatant

was poured off. Into each tube 1ml of DMSO (VWR International, Leicester, UK)

with 10% FCS was pipetted and the cell pellet was resuspended. The sample was

stored at -80ºC ready for the comet assay (see section 2.3). After a further 3, 6, 8,

11, 16, 18, 20, 24, 30, 40 and 48 hours the appropriate well on each plate was

harvested, and frozen as above. The comet assay was performed on the samples, and

the results plotted.

2.3.4 Comet assay

2.3.4.1 Background

Techniques such as flurometric alkaline elution, which measure ICL formation and

repair (Rudd et al., 1995), have been hindered in clinical practice due to the high

levels of cells required. The single cell gel electrophoresis (comet) assay uses small

numbers of cells, and is therefore a very useful tool in the clinical setting, where it is

often difficult to obtain large samples. The comet assay has been modified to

sensitively detect and quantify the levels of ICLs in patient lymphocytes and other

cells (Hartley et al., 1999). It can also measure unhooking of the ICLs, which is part

of the DNA repair pathway.

The comet assay was used to process samples received from patients, and on human

paired ovarian cancer cell lines, to detect levels of ICL formation and repair.
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2.3.4.2 Preparation of slides

Single-frosted glass microscope slides 25 x 75mm, 1mm thick (VWR International

Ltd, Leicester, UK) were pre-coated by pipetting 0.8ml of molten 1% type 1A

agarose in water, onto the centre of the slide. They were allowed to dry overnight at

room temperature.

2.3.4.3 Preparation of samples with 10x104 cells present

All procedures were carried out on ice. Samples were thawed on ice and the cell

suspension diluted with RPMI (with 10% FCS and 1% glutamine) to

2.5x104cells/ml. There was at least 4 ml in each sample. Each sample was divided

into two appropriately labelled tubes. Duplicate agarose precoated slides were

labelled and placed in a tray on ice. One of the duplicate samples was irradiated with

12Gy using an X-ray source running at 212.5Kv and 12.5mA (2.35Gy/min).

Into a 24 well multidish, 0.5ml of the appropriate sample was pipetted. 1ml of 1%

LGT agarose (sigma, Poole, Dorset, UK) was also added and mixed with the sample

by pipetting up and down. 1ml of this mixture was then pipetted onto the centre of

the appropriate slide and a coverslip was placed on top of each gel. After the gel had

set, the coverslip was removed. This was repeated for all the slides.
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2.3.4.4 Preparation of samples with 1x104 cells present

For the samples that only had 1x104 cells/ml in each well of the 6 well plates, the

comet assay was adjusted to make the gels smaller. Samples were thawed on ice and

the cell suspension diluted with RPMI (with 10%FCS and 1% glutamine), to wash

the cells, and spun in a centrifuge at 270g for 5 minutes. The supernatant was

discarded, and the cell pellet was diluted with 500μl of RPMI media containing 10%

FCS and 1% glutamine to give a concentration of 2x104cells/ml. Each sample was

divided into two appropriately labelled tubes. Duplicate agarose precoated slides

were labelled and placed in a tray on ice. One of the duplicate samples was

irradiated with 12Gy using an X-ray source running at 212.5Kv and 12.5mA

(2.35Gy/min).

A 96 well plate was used, into which 100l of the appropriate sample was pippetted.

200l of 1% LGT agarose was also added and mixed with the sample by pipetting

up and down. 300l of this mixture was then pipetted onto the centre of the

appropriate slide and a small round coverslip was placed on top of each gel. After

the gel had set, the coverslip was removed. This was repeated for all the slides.

These slides resulted in fewer cells present in the gel overall, and the gel was a lot

smaller. However, the concentration enabled adequate reading of the required 25

cells per slide.
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2.3.4.5 Lysis treatment

After all the gels had been prepared, they were then treated exactly the same,

regardless of the method used. Lysis buffer (100mM disodium EDTA, 2.5M sodium

chloride, 10mMtris-Hcl, pH to 10.5 with sodium hydroxide) containing 1% triton X-

100 (Sigma, Poole, Dorset, UK) was added, ensuring all the slides were sufficiently

covered. They were left for 1 hour on ice in the dark.

The lysis buffer (containing 1% triton X-100) was carefully removed using a

vacuum pump, and ice-cold double distilled water was added which completely

covered the slides. The gels were left for 15 minutes on ice in the dark, and then the

water was carefully removed using the vacuum pump. Ice-cold double distilled

water was added a further three times, and each time left on for 15 minutes on ice in

the dark.

2.3.4.6 Alkali treatment and electrophoresis

After the four washes, the slides were transferred to an electrophoresis tank so that

all the slides were laid lengthways in the same direction. Two litres of ice-cold alkali

buffer (50mM sodium hydroxide (Sigma, Poole, Dorset, UK), 1mM disodium

EDTA, pH 12.5) were poured into the tank completely immersing the slides, and left

for 45 minutes in the dark. The slides were then electrophoresed in the dark for 25

minutes at 18V (0.6V/cm), 250mA.

The slides were then removed from the tank and placed on a horizontal slide rack.

Each slide was flooded with 1ml neutralisation buffer (0.5M Tris-HCl, pH 7.5) and
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left for 10 minutes. The slides were then rinsed twice with 1ml phosphate buffered

saline for 10 minutes each rinse. The slides were then allowed to dry at room

temperature overnight.

2.3.4.7 Preparation of slides for analysis

The slides were rehydrated with double distilled water and left for 30 minutes. Each

slide was flooded with 1ml of 2.5g/ml propidium iodide solution which stains

DNA, and incubated for 15-20 minutes at room temperature in the dark. Propidium

iodide is toxic, and so precautions should be used when handling it. Gloves and

laboratory coats were worn at all times, hair was tied back, and eye protection worn.

The propidium iodide was rinsed off with double distilled water into the tray and

then left for 20-30 minutes. The water containing propidium iodide was disposed of

into plastic containers specific for this toxin. Once these containers were full, they

were disposed of in the correct manner. Under no circumstances was propidium

iodide flushed down the sink. The slides were then dried in the oven at 37C for 1-2

hours and stored in a slide box until image analysis.

2.3.4.8 Analysis of comets

Visualisation and analysis of comets could be done at any time after preparation of

the slides because they keep indefinitely.

A few drops of distilled water was placed onto each slide and covered with a

coverslip. A NIKON inverted epifluorescent microscope (consisting of a high power
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mercury vapour light source, a 580nm dichromic mirror, 510 to 560nm excitation

filter and 590nm barrier filter) at X20 magnification was used to visualise the

comets, which was relayed to a computer screen. The entire slide was visualied to

determine 25 representative cells on the slide. These cells were analysed using

Komet analysis software (Kinetic imaging, Liverpool, UK), by activating the

computer software programme to read each cell selected.

The tail moment for each cell was defined as the product of the percentage in the

comet tail, and the distance between the means of the head and the tail distributions.

This was described by Olive et al (1990) and recently summarized by Spanswick et

al (1999). Crosslinking was calculated as the percentage decrease in tail moment

and compares the drug treated and irradiated control to the non-drug treated

irradiated control. From both samples the comet tails from the non drug-treated

unirradiated control sample is subtracted as this represents background damage to

these cells. The background damage was always negligible in these experiments.

Percent decrease in tail moment is calculated using the formula:

% decrease in tail moment = 1- TMdi – TMpreu x100

TMprei- TMpreu

Where;

TMdi = tail moment of drug treated irradiated sample

TMpreu = tail moment of predose unirradiated control

TMprei = tail moment of predose irradiated control
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2.4 Measurement of ICL formation and repair in ovarian cancer cells obtained

from patient ascites treated ex vivo with 100μM cisplatin or 50μM melphalan

2.4.1 Preparation of ascites

Ascites was obtained from patients consented for the study. Samples were collected

from theatre and hospital wards. Ascitic fluid was collected from patients in theatre

via suction into a sterile bag once the abdominal cavity had been opened. Ascitic

fluid was also collected from patients on the ward who had had ascitic drains placed

under aseptic conditions. Ascitic fluid was collected from the sterile bags into which

the fluid was drained on the wards. A minimum of 50mls of ascitic fluid was needed

to enable enough ovarian cancer cells to be extracted for experiments. As much

ascites as possible was collected from the patients, up to 3 litres in some cases. Any

ovarian cancer cells that were not needed for experiments, were stored (see below

for protocol) for future research if the patient gave permission by signing part 2 of

the patient consent form (Appendix 3 – Patient consent form).

The ascites obtained was aliquoted into 50ml sterile tubes and spun in a centrifuge

(Megafuge 1.0, Heraeus Instruments, Thermoelectron, Basingstoke,UK) at 249g for

5 minutes. The supernatant was poured off, the cell pellet was examined, and the

cells re-suspended in 25mls RPMI media containing 10% FCS and 1% glutamine.

The cell suspension was then pipetted into one or a varying number of 175cm2

flasks according to the size of the cell pellet. The smallest cell pellet was 0.2mls, and

in this case all of the 25mls was pipetted into one flask. The largest cell pellet was
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approximately 1ml, and in this case 5mls was pipetted into 5 flasks. This was to

ensure a good concentration of cells present in each flask.

The flasks were left for 1 hour in the incubator (37C, 5%CO2) for the mesothelial

cells to attach. After 1 hour, the RPMI media containing the remaining cells (mostly

tumour cells) was pipetted off and added to another sterile 175cm2 flask and left

overnight for the tumour cells to attach. 25 mls of RPMI media containing 10% FCS

and 1% glutamine was then added to the first flask containing predominantly

mesothelial cells and left in the incubator (37C, 5%CO2) to grow. This resulted in

one flask containing predominantly tumour cells, and the other one containing

predominantly mesothelial cells. However, further separation was often necessary

(see section 2.4.2 below).

2.4.2 Separation of cell types from ascites

The morphology of mesothelial and tumour cells are different. Mesothelial cells

look like spindles and are much thinner than tumour cells. They spread out and have

thin projections from the cell. Tumour cells are much rounder than mesothelial cells

and cluster together. The morphology of the two cell types was observed down the

microscope and the levels of contamination by each type of cell, was estimated.

Mesothelial cells and tumour cells both come from ascites. Mesothelial cells become

detached quicker than tumour cells, when exposed to trypsin. Mesothelial cells also

attach to the flasks quicker than ovarian tumour cells when re-suspended in media
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and left in an incubator at 37C, and 5%CO2. These differences were utilised to

enable the separation of mesothelial cells from ovarian cancer cells.

2.4.2.1 Method to obtain mesothelial cells from ascites

The RPMI media containing 10% FCS and 1% glutamine was poured off, and 5mls

of trypsin was added to wash the cells, and then poured off. A further 7mls of

trypsin was added to the 175cm3 flask, and left in the incubator for 5 minutes. After

5 minutes the trypsin was pipetted off, and added to 10mls of RPMI media

containing 10% FCS and 1% glutamine and spun in a centrifuge at 249g for 5

minutes. The supernatant was poured off and the cell pellet was examined, and then

re-suspended in 25mls of RPMI media containing 10% FCS and 1% glutamine. The

smallest cell pellet was 0.2mls, and in this case all of the 25mls was pipetted into

one flask. The largest cell pellet was approximately 1ml, and in this case 5mls was

pipetted into 5 flasks. This was to ensure a good concentration of cells present in

each flask. The flasks were then left for 1 hour in an incubator (37C, 5%CO2) for

the mesothelial cells to attach.

After 1 hour the media containing mostly tumour cells was pipetted off and

discarded. This results in a higher percentage of mesothelial cells in the first flask.

This was repeated if necessary.
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2.4.2.2 Method to obtain ovarian cancer cells from ascites

The RPMI media containing 10% FCS and 1% glutamine was poured off, and 5mls

of trypsin was pipetted to cover the cells, and then poured off. A further 7mls of

trypsin was added and left in the incubator at 37C, and 5%CO2, for 12 minutes.

After 12 minutes the trypsin was poured off and added to 20mls of RPMI media

containing 10% FCS and 1% glutamine and spun in a centrifuge at 249g for 5

minutes. The supernatant was poured off and the cell pellet was re-suspended in 25

mls of RPMI media containing 10% FCS and 1% glutamine. Cell pellets ranged in

size from 0.2-1ml. If the cell pellet was 0.2mls, then all of the 25mls was pipetted

into one flask. If the cell pellet was approximately 1ml, then 5mls was pipetted into

5 flasks. This was to ensure a good concentration of cells present in each flask. The

flasks were then left for 1 hour in an incubator (37C, 5%CO2) for the mesothelial

cells to attach.

After 1 hour the media containing mostly tumour cells was pipetted off and pipetted

into another sterile 175cm2 flask. This resulted in a higher percentage of tumour

cells in the second flask. This was repeated if necessary.

2.4.3 Confirming presence of ovarian cancer cells using immunohistochemistry

In order to be sure of the cell type before experiments were commenced, the cells

were stained using antibody markers.
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2.4.3.1 Preparation of samples

First the cells were harvested using trypsin. The RPMI media containing 10% FCS

and 1% glutamine was poured off, and 5mls of trypsin was pipetted into the flask to

coat the cells, and then poured off. A further 7mls of trypsin was added and left in

the incubator at 37C, and 5%CO2, for 10 minutes. After 10 minutes the trypsin was

poured off and added to 20mls of RPMI media containing 10% FCS and 1%

glutamine and spun in a centrifuge at 249g for 5 minutes. The supernatant was

poured off, and the cell pellet was resuspended in 10mls of RPMI media containing

10% FCS and 1% glutamine.

The cells were counted to determine their concentration (see section 2.2b), and

diluted to obtain a concentration of 1x 104 cells/ml. Four drops were placed into a

cytofunnel (Shandon, Cheshire, UK) mounted onto filter paper with a hole in it,

which was on a slide (Vision Biosystems, Newcastle-upon-Tyne, UK). This was

then put into a Shandon Cytospin II (Shandon, Cheshire, UK) and spun at 650 rpm

for 5 minutes. The centrifugal force pushes the cells onto the slide in the gap in the

filter paper. The filter paper absorbs the remaining media. The slides were then

removed from the funnel and filter paper and left to air dry for 1 hour. They were

then placed in 100% ethanol to fix the cells.

For each sample two slides were made. One was stained with CK5 antibody (stains

mesothelial, but not epithelial cells) and the other was stained with CK7 antibody

(stains epithelial i.e ovarian cancer cells). This was done to estimate the percentage

of each cell type in the sample. Calretinin antibody (stains mesothelial, but not
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epithelial cells) was sometimes used to stain for mesothelial cells instead of CK5.

The slides were stained by the Immunocytochemistry Department at University

College London, using the staining protocol below (see section 2.4.3.2)

2.4.3.2 Immunohistochemistry protocol

The slides were transferred to an incubation tray and rinsed in 0.05% Tween® 20

(Polyoxyethylene sorbitan mono-laurate) in tris-buffered saline (TBS). The circular

area on the slide that contained cells was marked with a hydrophobic pen. The

primary antibodies (CK5, or CK7) were applied at optimal dilution for 60 minutes.

The primary antibody was rinsed off with 0.05% Tween® 20 in tris- buffered saline

(TBS) for 2-3 minutes, and Dako ChemMate peroxidase block was applied for 10

minutes. The peroxidase block was rinsed off with 0.05% Tween® 20 in tris-

buffered saline (TBS) for 2-3 minutes, and the biotinylated secondary antibody

(AB2) was applied for 30 minutes. This was rinsed off with 0.05% Tween® 20 in

tris-buffered saline (TBS) for 2-3 minutes, and peroxidase- labelled streptavidin

(HRP) was applied for 30 minutes. This was rinsed off with 0.05% Tween® 20 in

tris-buffered saline (TBS) for 2-3 minutes, and DAB solution (100l DAB + 5mls

substrate buffer) was applied for 7 minutes. The DAB was rinsed off with 0.05%

Tween® 20 in tris-buffered saline (TBS) for 2-3 minutes, and washed in running tap

water. The slide was stained with Dako ChemMate Haematoxylin for 10 seconds,

and blued in running water. It was differentiated in 1% acid alcohol and blued again

in running water. The slide was dehydrated, and mounted.
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The slides were looked at under an inverted microscope and the percentage of each

cell type was estimated. This was done by counting the total number of cells stained

with each antibody in a particular field. Four different fields were counted, and the

result averaged.

2.4.4 Determining the concentration and amount of cells present in media

See section 2.2.2. The cells were diluted to obtain a concentration of 5x104cells/ml,

and a minimum volume of 28mls (14mls each for the cisplatin and melphalan

experiments). If this was not possible the cells were diluted to obtain a concentration

of 1x104cells/ml with a minimum volume of 14mls (7mls each for the cisplatin and

melphalan experiments). If this was not possible, the drug treatment experiments

were not performed.

2.4.5 Drug Treatment

Cells were either treated with 100M cisplatin or 50M melphalan. If there were

limited numbers of cells, and only one drug treatment experiment was possible, then

100M cisplatin was used.

2.4.5.1 Treatment ex vivo with 100μM Cisplatin

Seven wells in two 6 well plates were plated up with 2mls of 5x104/ml of cells in

each well. They were left to adhere overnight.
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For some samples, there were not enough cells to use. Only 1 ml of 1x104/ml of

cells was plated into seven wells in two 6 well plates (same number of wells as

above). They were left to adhere overnight also, and then treated the same as the

higher concentration of cells (see below).

The plates were treated with 100M cisplatin. The cisplatin was added to RPMI

media containing only 1% glutamine and no FCS to obtain a concentration of

100µM, and 1ml was added to each well. It was then incubated with the cells for 1

hour. After 1 hour the cisplatin was then removed and replaced with 2mls of RPMI

media containing 10% FCS and 1% glutamine, and left for the appropriate amount

of time.

The “0 hour” well and “0 hour control” on each plate were harvested using trypsin

(see section 2.2.2), and frozen at -80C in 1ml of DMSO with 10% FCS. After a

further 9, 24, 24 control, 48 control and 48 hours the appropriate well on each plate

was harvested, and frozen as above. The comet assay was performed on the samples,

and the results plotted.

2.4.5.2 Treatment ex vivo with 50μM Melphalan

2mls of 5x104/ml of cells was pipetted into each of 4 wells in a 6 well plate. The

cells were left to adhere overnight.
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For some samples, there were not enough cells to use. Only 1 ml of 1x104/ml of

cells was pipetted into each well. They were left to adhere overnight also, and then

treated the same as the higher concentration of cells (see below).

The plates were treated with 50M melphalan. The melphalan was added to RPMI

media containing only 1% glutamine and no FCS to obtain this concentration, and

1ml was added to each well. It was then incubated with the cells for 1 hour at 37C,

and 5%CO2. After 1 hour the melphalan was removed and replaced with 2mls of

RPMI media containing 10% FCS and 1% glutamine and left for a further 16 hours.

The “16 hour” well and “16 hour control” on each plate were harvested using trypsin

(see section 2.2.2), and frozen at -80C in 1ml of DMSO with 10% FCS. After 40

hours following drug removal, the remaining wells (40 hours, 40 control) on the

plate were harvested, and frozen as above. The comet assay was performed on the

samples, and the results plotted.

2.4.6 Comet Assay

This was performed as previously described (see section 2.3.4).
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2.5 Measurement of ICL formation and repair in ovarian cancer cells obtained

from patient solid tissue

2.5.1 Preparation of tumour cells from ovarian solid tumour

Solid tumour was obtained from patients consented for the study. Samples were

collected from theatre. Solid ovarian tumour tissue was removed from the patient by

the surgeon. At this point the tissue was cut under asceptic conditions into 3mm

cubes, using a scalpel. Areas of obvious cancer were chosen. At least two pieces

were needed for experiments. As much tissue as possible, was obtained -up to 6

pieces in some cases. Any pieces of solid tumour tissue that were not needed for

experiments were stored for future research if the patient gave permission by signing

part 2 of the patient consent form (Appendix 3 – Patient Consent form). Some

pieces were put into cryotube vials (Nunc, Kamstupvej, Denmark), which

immediately went into enough liquid nitrogen to cover the tubes (within 5-10

minutes). Others were put into tubes containing 10mls of RPMI media (Autogen

Bioclear Uk ltd. Wiltshire, UK), which contained 10% FCS (Autogen Bioclear Uk

ltd. Wiltshire, UK) and 1% glutamine (Autogen Bioclear Uk ltd. Wiltshire, UK).

The samples put into media were immediately processed.

The solid ovarian tumour tissue was removed from the tubes containing 10mls of

RPMI media, and chopped repeatedly (approximately 100 times) in the same 10mls

of RPMI media (containing 10% FCS and 1% glutamine) on a sterile petri dish

using sterile scalpels to create a ‘slurry’ of material. The petri dish was carefully

tilted to 45 degrees, and the media was carefully pipetted off into a sterile 20ml
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conical tube. By tilting the petri dish, the large particulate tumour material was

avoided, whilst still obtaining a single cell suspension of tumour cells. 10mls of

RPMI media (containing 10% FCS and 1% glutamine) was added to the tumour

‘slurry’ and the process was repeated. The resulting 20mls of media containing the

cells was slowly (to ensure cells were not fragmented) pipetted approximately 20

times through a sterile 1ml sized pipette to ensure the cells were in single cell

suspension. 1ml of this 20ml sample was pipetted onto a glass slide, a cover slip

placed on top of the slide, and the slide looked at under the microscope. This was

done to ensure the sample was a single cell suspension. If not, the sample was

repeatedly pipetted approximately 20 times through a sterile 1ml sized pipette, and

rechecked by looking under the microscope. Only samples with a single cell

suspension were used in the comet assay experiments.

2.5.2 Confirming presence of ovarian cancer cells using immunohistochemistry

2.5.2.1 Preparation of samples

The cells were counted to determine their concentration (see section 2.2b), and

diluted to obtain a concentration of 1x 104/ml. Four drops of each sample were

placed into a cytofunnel (Shandon, Cheshire, UK) mounted onto filter paper with a

hole in it, which was on a slide (Vision Biosystems, Newcastle-upon-Tyne, UK).

This was then put into a Shandon Cytospin II (Shandon, Cheshire, UK) and spun at

650 rpm for 5 minutes. The slides were removed and left to air dry for 1 hour. They

were then placed in 100% ethanol to fix the cells for 30 minutes.



Page 89

2.5.2.2 Immunocytochemistry protocol

See section 2.4.3.2

2.5.3 Determining the concentration and amount of cells present in media

See section 2.2.2

2.5.4 Drug Treatment

As for the cells obtained from ascites, tumour cells from solid tissue were either

treated with 100M cisplatin or 50M melphalan. If there were limited numbers of

cells, and only one drug treatment experiment was possible, then 100M cisplatin

was used.

2.5.4.1 Treatment ex vivo with 100μM Cisplatin

The solid ovarian tumour tissue was non-adherent, so a suspension cell protocol was

used. The single cell suspension of solid ovarian tumour tissue was counted (see

section 2.2), and 2mls of a concentration of 5x104/ml was added to each of 7 conical

shaped tubes. If there were some extra cells, the experiment was run in duplicate (14

tubes in total) or even triplicate (21 tubes in total).

The tubes were spun in a centrifuge at 249g for 5 minutes, and the supernatant was

carefully discarded. Cisplatin was added to RPMI media containing only 1%

glutamine and no FCS to obtain a concentration of 100M. 1ml was added to each

tube, and pipetted up and down to mix with the cell pellet. All of the conical tubes
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were placed in the incubator for 1 hour at 37C, and 5%CO2. After 1 hour the

cisplatin was removed by spinning the tubes in the centrifuge at 249g for 5 minutes

and carefully pouring off the supernatant. 2mls of RPMI containing 10% FCS and

1% glutamine was added to each tube (except the ‘0 hour’ and ‘0 hour control’

tubes), and pipetted up and down to mix with the cell pellet.

The ‘0 hour’ and ‘0 hour control’ tubes were frozen at -80C in 1ml of DMSO with

10% FCS, which was pipetted up and down to resuspend the cell pellet. After a

further 9, 24, 24 control, 48 control and 48 hours the appropriate tube was

centrifuged at 249g for 5 minutes. The supernatant was poured off and 1ml of

DMSO with 10% FCS was added, and pipetted up and down to mix with the cell

pellet, and then frozen at -80C. The comet assay was performed on the samples,

and the results plotted.

2.5.4.2 Treatment ex vivo with 50μM Melphalan

The solid ovarian tumour tissue was not adherent, so a suspension cell protocol was

used (the same as for treatment ex vivo with 100μM cisplatin – see section 2.5b(i)).

The single cell suspension of solid ovarian tumour tissue was counted (see section

2.2b), and 2mls of a concentration of 5x104/ml was added to each of 4 conical

shaped tubes.
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The tubes were spun in a centrifuge at 249g for 5 minutes, and the supernatant was

carefully discarded. Melphalan was added to RPMI media containing only 1%

glutamine and no FCS to obtain a concentration of 50M. 1ml was added to each

tube, and pippetted up and down to mix with the cell pellet. It was then incubated

with the cells for 1 hour. After 1 hour the melphalan was then removed by spinning

the tubes in the centrifuge at 249g for 5 minutes and carefully pouring off the

supernatant. The cells were then resuspended with 2mls of RPMI media containing

10% FCS and 1% glutamine and left for 16 hours.

After 16 hours the “16 hour” and “16 hour control” tubes were centrifuged at 249g

for 5 minutes. The supernatant was poured off and 1ml of DMSO with 10% FCS

was added and frozen at -80C.

After a further 24 hours, the remaining tubes (40 control and 40hours) were

harvested as above. The comet assay was performed on the samples, and the results

plotted.

2.5.5 Comet Assay

This was performed as previously described (see section 2.3.4).
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2.6 Comparison of gene expression between A2780 and A2780cisR human

ovarian cancer cell lines using microarrays

2.6.1 Preparation of RNA

2.6.1.1 Isolation of total RNA from A2780 and A2780cisR human ovarian

cancer cell lines

The cells were grown as previously described (see section 2.2.1), and the sample

was harvested using trypsin just before the cells reached confluency. The RPMI

media containing 10% FCS and 1% glutamine was poured off, and 3mls of trypsin

was pipetted into the flask to cover the cells. The trypsin was then poured off, and a

further 5mls of trypsin was added to the flask, and left in the incubator at 37ºC, 5%

CO2 for 5 minutes. After 5 minutes the trypsin was pipetted off and added to 5mls of

RPMI media containing 10% FCS and 1% glutamine in a 10ml conical tube, and

spun in a centrifuge at 270g for 5 minutes. The supernatant was poured off. 10mls of

RPMI media containing 10% FCS and 1% glutmaine was added to the sample, and

pipetted up and down to resuspend the cell pellet.

The cells were counted (see section 2.2.2). 4x106 cells were used for total RNA

extraction, and so the correct volume of media containing this number of cells was

pipetted into a 20ml conical tube. The QIAGEN RNeasy mini kit was used and the

instructions followed in the manufacturers’ handbook:

The sample was centrifuged at 249g at 20C for 5 minutes and the supernatant

poured off. The pellet was loosened by flicking the tube, and 600l of RLT buffer
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(from the RNeasy mini kit QIAGEN) was added, and vortexed to mix. The lysate

was passed at least 5 times through a 20-gauge needle (0.9mm diameter) fitted to a

1ml RNase-free syringe, to homogenise the sample. 600l of 70% ethanol (VWR

International, Leicester, UK) was added to the homogenised lysate and mixed well

by pipetting.

Up to 700l of the sample was added to an RNeasy mini column, which was placed

in a 2 ml collection tube. The tube was closed gently and centrifuged in an

Eppendorf 5145D centrifuge for 15 seconds at 9,300g. The flow through was

discarded. Aliquots of the sample were successively loaded onto the RNeasy mini

column and centrifuged as above. The flow-through was discarded each time.

700l of Buffer RW1 was added to the RNeasy mini column, the tube closed gently,

and centrifuged for 15 seconds at 9,300g to wash the column. The flow-through and

collection tube was discarded.

The RNeasy column was transferred to a new 2ml collection tube, and 500l of RPE

buffer was pipetted into the column. The tube was centrifuged again for 15 seconds

at 9,300g to wash the column. The flow-through was discarded. Another 500l of

RPE buffer was pipetted into the RNeasy column and centrifuged, this time for 2

minutes at 9,300g, to dry the RNeasy silica-gel membrane.
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To elute, the RNeasy column was transferred to a new 1.5ml collection tube, and 30-

50l of RNase-free water was pipetted directly onto the RNeasy silica-gel

membrane. The tube was centrifuged for 1 minute at 9,300g to elute.

2.6.1.2 Determining quantity of RNA in sample

To determine the quantity of RNA extracted, the absorbance at 260nm (A260) was

measured in a spectrophotometer. Sometimes it was necessary to dilute the RNA

sample, and this was done using water, and in an RNase-free cuvette. The following

equation was used to calculate the concentration of RNA (where an absorbance of 1

unit at 260nm corresponds to 40g of RNA per ml):

Concentration of RNA sample = 40 x A260 x dilution factor

Another method for determining the quantity and purity of total RNA in the sample,

involved a nanodrop machine. Only 1.2l of sample was loaded onto the machine,

which then calculated the concentration, and purity (see below- section 2.6a(iii)) of

the sample using the formula already described.

2.6.1.3 Determining purity of RNA in sample

To determine the purity of the RNA, the ratio of the readings at 260nm and 280nm

(A260/A280) were calculated. The absorbance of the RNA was measured in dH2O.

Pure RNA has an A260/A280 ratio of 1.9-2.1 in dH2O, and samples in this range only

were used. Others not in this range were discarded.
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2.6.1.4 Determining quality of RNA in sample

To determine the quality of the total RNA, the sample was checked by gel

electrophoresis.

Tris-acetic ethylenediaminetetraacetic acid (TAE) stock buffer (x50) was initially

made, by dissolving 18.6g of ethylenediaminetetraacetic acid disodium salt

dihydrate in 500ml of distilled water. 121g of Trizma base was then added, followed

by 28.55ml of acetic acid (VWR international, Leicester, UK). 20ml of 50x TAE

buffer was added to 980ml of distilled water, to make 1xTAE buffer, and from this

100ml was taken to make the gel.

A 1% gel was made by adding 1g of electrophoresis agarose to 100ml of the 1x TAE

buffer, and heating it until the agarose had dissolved completely. Once the solution

was cooled to be touch hot, 5l of ethidium bromide was added, mixed well, and

poured into a gel holder with combe in place. The gel was allowed to solidify,

before the combe was removed and the gel placed into the gel electrophoresis tank.

The remaining 1x TAE buffer was poured into the tank, up to the fill line.

The required amount of the sample (usually 2g) was added to 3l of formamide

dye and mixed in a 50µl Eppendorf tube. The whole mixture was then pipetted into

the wells in the gel. 5L of the RNA ladder (Invitrogen life technologies, Paisley,

UK) was added to 3l of the dye and also loaded into the gel. The tank was then

turned on to a voltage of 130mV and left for one hour. The gel was read under UV
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light (to see the bands of RNA) by a computer program called Scion Pro, and the

results analysed.

2.6.2 Preparation of microarray sample

2.6.2.1 Synthesis of double-stranded cDNA from total RNA

Invitrogen Life Technologies’ protocol using the SuperScript choice system was

used. It was supplemented with instructions from Affymetrix gene chip systems:

The minimum amount of total RNA per reaction was 10g, which was the amount

used in each experiment. Each experiment produced different amounts and

concentrations of total RNA, and so the amounts of the other reagents altered also

(figure 6).
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Step Reagents in reaction Volume Final

concentration/amount

in reaction

1 DEPC-H20 (variable)

T7-(dT)24 primer (100pmol/l)

RNA

For final reaction volume of 20l

1l

variable amount (l)

100pmol

10g

2 5X First strand cDNA buffer

0.1M DTT

10mM dNTP mix

4l

2l

1l

1X

10mM DTT

500M each

3 SuperScript II RT

(variable)(200U/l)

2l 200 U to 1000U

Total

volume

20 l

Figure 6: Shows the steps, and amounts of reagents used to make cDNA

Step 1 was primer hybridisation. All the reagents listed (DEPC-H20, T7-(dT)24

primer (MWG biotech, London, UK) and RNA) were added together and incubated

at 70C for 10 minutes. They were then quickly spun and put on ice. Step 2 was

temperature adjustment. The reagents (Invitrogen life technologies, Paisley, UK)

were added to the reagents from step 1, vortexed and incubated at 42C for 2
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minutes. Step 3 was first strand synthesis. The Superscript II RT was added to the

tube, vortexed, incubated at 42C for 1 hour, and then put on ice.

The first strand reaction tube was briefly centrifuged to bring down condensation on

the sides of the tube, and the following reagents for the second strand reaction were

added (figure 7).

Component Volume Final concentration

/amount in reaction

DEPC- treated water 91l

5X second strand reaction

buffer

30l 1X

10mM dNTP mix 3l 200M each

10U/l E.coli DNA ligase 1l 10U

10U/l E.coli DNA Polymerase 4l 40U

2U/l E.coli Rnase H 1l 2U

Final volume 150l

Figure 7: Volumes of the components of the reaction

The tube was gently tapped to mix, and then briefly spun in a centrifuge to remove

condensation, and incubated at 16C for 2 hours in a cooling water bath. 2l (10U)

T4 DNA polymerase (Invitrogen life technologies, Paisley, UK) was added and

returned to 16C for 5 minutes. 10l of 0.5M EDTA (93g EDTA, and 10g sodium



Page 99

hydroxide in 500mls dH2O, pH 8) was then added and the sample stored at -20C or

the cleanup procedure for cDNA was immediately done.

2.6.2.2 Cleanup of Double-Stranded cDNA

Phase Lock Gels (PLG) (Eppendorf AG, Hamburg, Germany), were used in the

cleanup of cDNA. They form an inert, sealed barrier between the aqueous and

organic phases of phenol-chloroform extractions. The solid barrier allows more

complete recovery of the sample (aqueous phase) and minimizes interface

contamination of the sample.

The PLG was pelleted in a microcentrifuge at 16,100g for 20-30 seconds. 162l of

(25:24:1) phenol:chloroform:isoamylalcohol (saturated with 10mM Tris-Hcl pH 8.0,

1mM EDTA) was added to the final cDNA synthesis preparation (final volume

324l) and vortexed briefly. The entire cDNA-phenol/chloroform mixture was

added to the PLG tube (it was NOT vortexed), and was centrifuged at 16,100g for 2

minutes. The aqueous upper phase was added to a fresh 1.5ml tube.

0.5 volumes (of the sample) of 7.5M Ammonium acetate (Sigma, Poole, Dorset,

UK), and 2.5 volumes of absolute ethanol (VWR international, Leicester, UK), were

added, vortexed and immediately microcentrifuged at 16,100g at room temperature

for 20 minutes. The supernatant was removed, the pellet washed with 0.5ml of 80%

ethanol, and centrifuged again at 16,100g at room temperature for 5 minutes. The

80% ethanol was removed carefully, and the 80% ethanol wash was repeated once

more. The pellet was air dried and re-suspended in a 12l of RNase-free water.
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2.6.2.3 Synthesis of in vitro transcription products

Starting Material (total RNA) Volume of cDNA to use in IVT

10 to 100ng All (12l)

1.0 to 8.0g All (12l)

8.1 to 15.0g 6l

Figure 8: Relationship between starting material and volume of cDNA to use In

Vitro Transcription (IVT)

The correct amount of template cDNA was transferred to RNase-free

microcentrifuge tubes and the following reagents were added:

RNase-free water (to give final reaction volume of 40l), 10X IVT labelling buffer

(4l) (Affymetrix, Bucks, UK), IVT labelling NTP mix (12l) (Affymetrix, Bucks,

UK), IVT labelling enzyme mix (4l) (Affymetrix, Bucks, UK).

All the reagents were carefully mixed together and the mixture collected at the

bottom of the tube by brief (5 seconds) microcentrifugation. The tube was incubated

at 37C (in an oven incubator) for 16 hours. The labelled cRNA was stored at -20C,

or -70C if not quantifying and cleaning up cRNA immediately.
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2.6.2.4 Cleaning up and quantifying in vitro transcription products

This protocol comes from the Affymetrix technical manual (manufacturers’

manual). The sample was aliquoted into two halves. One half was purified first,

using the manufacturers instructions (see QIAGEN RNeasy mini handbook –

protocol for RNA cleanup):

The sample was adjusted to a volume of 100l with RNase-free water, 350l of

RLT buffer was added, and mixed thoroughly. 250l of 96-100% ethanol was added

and mixed thoroughly by pipetting. 700l of the sample was added to an RNeasy

mini column placed in a 2 ml collection tube, and centrifuged for 15 seconds at

10,000rpm. The flow-through was discarded.

The RNeasy column was transferred to a new 2ml collection tube and 500l of RPE

buffer was pipetted onto the column. The column and tube were centrifuged at

10,000rpm for 15 seconds, to wash it. The flow-through was discarded again.

Another 500l of RPE buffer was added to the RNeasy mini column and centrifuged

for 2 minutes at 10,000rpm to dry the silica-gel membrane.

The RNeasy mini column was transferred to a new 1.5ml collection tube and 30-

50l RNase-free water was pipetted onto the column. The column was centrifuged

for 1 minute at 10,000rpm to elute.
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Another method for cleaning up in vitro transcription products was used instead of

the protocol above, once it became available. This protocol is also from Affymetrix

and has been updated from the previous protocol above. It uses the Affymetrix

genechip sample cleanup module:

600l of cDNA binding buffer was added to the double-stranded cDNA (volume

162l) and mixed by vortexing for 3 seconds. The colour of the mixture was

checked to ensure that it was yellow.

500l of the sample was applied to the cDNA cleanup spin column, which sits in a

2ml collection tube. It was centrifuged at 8,000g for 1 minute, and the flow-through

was discarded. The spin column was reloaded with the remaining sample (262l),

and centrifuged at 8,000g for 1 minute. The flow-through and collection tube were

discarded and the spin column was transferred to a new 2ml collection tube. 750l

of cDNA wash buffer was pipetted onto the spin column, and centrifuged at 8,000g

for 5 minutes, and the flow-through was discarded again.The cap of the spin columN

was opened and centrifuged at 16,100g for 5 minutes to allow complete drying of

the membrane.

The spin column was transferred to a new 1.5ml collection tube, and 14l of cDNA

elution buffer was pippetted directly onto the membrane of the spin column. It was

incubated for 1 minute at room temperature, and then centrifuged at 16,100g for 1

minute to elute.



Page 103

Sometimes, the cRNA was concentrated by ethanol precipitation if it was too dilute

(minimum concentration 0.6g/l). The method for ethanol precipitation is as

follows:

0.5 volumes of 7.5M ammonium acetate and 2.5 volumes of absolute ethanol was

added to the sample and vortexed. The sample was left to precipitate at -20C for 1

hour to overnight. The sample was then centrifuged at 15,000rpm at 4C for 30

minutes. The pellet was washed twice with 0.5ml of 80% ethanol and air dried. The

pellet was resuspended in 10 to 20l of RNase-free water.

2.6.2.5 Quantifying cRNA

To quantify the cRNA (IVT product) a spectrophotometer or a nanodrop was used.

The absorbance of the sample was measured at 260nm and the equation below used:

1 absorbance unit (at 260nm) = 40g/ml RNA

However, an adjustment needed to be made to reflect carryover of unlabeled total

RNA as this was used as the starting material. The following equation was used:

Adjusted cRNA yield = RNAm – (total RNAi)(y)

RNAm = amount of cRNA measured after IVT (g)

Total RNAi = starting amount of total RNA (g)

(y) = fraction of cDNA reaction used in IVT
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The absorbance of the sample was measured at 260nm and 280nm and the ratio

calculated to determine the concentration and purity. A ratio of between 1.9 and 2.1

are acceptable.

2.6.2.6 Fragmenting the cRNA for target preparation

The cRNA was at a minimum concentration of 0.6g/l. If it was not, it was

precipitated with ethanol (see section 2.6.2.4).

2l of 5X fragmentation buffer for every 8l of RNA plus H2O was added. The

fragmentation buffer has been optimised to break down full length cRNA to 35-200

bases fragments by metal-induced hydrolysis.

The reaction mixture was incubated at 94C for 35 minutes, and then put on ice. An

aliquot of at least 1 g was saved for gel analysis. The undiluted, fragmented sample

of RNA was stored at -20C until ready to perform hybridisation.

2.6.2.7 Checking the cRNA

The unfragmented, and fragmented samples were checked by gel electrophoresis to

estimate the yield and size distribution of labelled transcripts. 1% of each sample

was analysed by gel electrophoresis on a 1% agarose gel (see previous protocol for

gel electrophoresis). The century marker and RNA ladder were used as the ladder

for the fragmanted cRNA and unfragmanted cRNA respectively.
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2.6.3 Processing the Microarray sample

2.6.3.1 Hybrdisation of the probe array

The genechip arrays used were the Human genome U133 plus 2.0 from Affymetrix.

The protocols for these procedures can be found online at www.affymetrix.com

under expression analysis technical manual, and were used by the Wolfson Institue

of Biomedical Sciences at University College London to process the samples.

A summary of the protocol is as follows: The genechip eukaryotic hybridisation

control cocktail (see figure 9 for components) was heated to 65C for 5 minutes to

completely re-suspend the cRNA before aliquotting.
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Component Hybridisation cocktail Final Concentration

Fragmented cRNA (adjusted

amount)

15g 0,05g/l

Control Oligonucleotide B2

(3nM)

5l 50pM

20X Eukaryotic Hybridisation

controls (bioB, bioC, bioD, cre)

15l 1.5, 5, 25 and

100pM respectively

Herring Sperm DNA

(10mg/ml)

3l 0.1mg/ml

Acetylated BSA

(50mg/ml)

3l 0.5mg/ml

2x Hybridisation buffer 150l 1x

dH2O To final volume 300l

Final Volume 300l

Figure 9: contents of the hybridisation cocktail

The human U133 plus 2.0 probe array was equilibrated at room temperature before

use, while the hybridisation cocktail was heated to 99C for 5 minutes in a heat

block.
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The probe array was made wet by filling it through one of the septa, with the

appropriate volume of 1x hybridisation buffer. To make 100mls of 1x hybridisation

buffer the following was added; 8.3ml of 12X MES stock, 17.7ml of 5M NaCl, 4.0

ml of 0.5M EDTA, 0.1ml of 10% Tween20, 69.9ml of water. The probe array filled

with 1x hybridisation buffer was incubated at 45C for 10 minutes.

The hybridisation cocktail was transferred to a 45C heat block for 5 minutes after it

had been heated to 99C. It was then spun in a microcentrifuge for 5 minutes to

remove any insoluble material.

The buffer solution was removed from the probe array, and replaced with 200l of

the hybridisation cocktail. It was then placed in a rotisserie box in a 45C oven,

rotating at 60rpm for 16 hours, to hybridise.

2.6.3.2 Washing, staining and scanning the probe array

After 16 hours, the probe array was washed and stained (see figure 10 below for the

steps involved).
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Post hybridisation wash 1 10 cycles of 2 mixes/cycle with non-stringent wash

Buffer (see below) at 25C

Post hybridisation wash 2 4 cycles of 15 mixes/cycle with stringent wash

Buffer (see below) at 50C

Stain Stain the probe array for 10 minutes in SAPE

solution (see below) at 25C

Post wash stain 10 cycles of 4 mixes/cycle with wash buffer A at

25C

2nd stain Stain the probe array for 10 minutes in antibody

solution (see below) at 25C

3rd stain Stain the probe array for 10 minutes in SAPE

solution at 25C

Final wash 15 cycles of 4 mixes/cycle with non-stringent wash

buffer at 30C. The holding temperature is 25C

Figure 10: Steps involved in the washing and staining of the microarray chip

See figure 11 below for the composition of the different buffers and stains involved

in the process above:
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Solution Composition

12x MES stock buffer 70.4g MES free acid monohydrate
193.3g MES sodium salt
800ml of Molecular biology grade water
pH 6.5-6.7
filter through 0.2m filter

2x MES stain buffer 41.7ml of 12x MES stock buffer
92.5ml of 5M sodium chloride
2.5ml of 10% Tween 20

112.8ml of water
filter through 0.2m filter
store at 2-8C and shield from light

Non-stringent wash buffer 300ml of 20x SSPE
1.0ml of 10% Tween 20

698ml water
filter through 0.2m filter

Stringent wash buffer 83.3ml 12x MES stock buffer
5.2ml of 5M sodium chloride
1.0ml of 10% Tween 20

910.5ml water
filter through 0.2m filter
store at 2-8C and shield from light

SAPE solution 600l of 2x MES stain buffer
48l of 50mg/ml acetylated BSA
12l of 1mg/ml Streptavidin-
Phycoerythrin (SAPE)
540l dH2O

Antibody solution mix 300l of 2x MES stain buffer
24l of 50mg/ml acetylated BSA
6.0l of 10mg/ml of normal Goat IgG
3.6l of 0.5ml/ml of biotinylated
antibody
266.4l of dH2O

Figure 11: Shows the components of each of the buffers

The probe array was scanned using Affymetrix microarray suite computer software.

The pixel value was 3m and the wavelength was 570nm.
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2.6.3.3 Analysis of microarray results

The results were analysed by Dr Stephen Henderson, of the department of Viral

Oncology, Wolfson Institute for Biomedical Research. University College London,

UK using the following protocol:

All microarrays were quantile-quantile normalised to the array with the median

average signal (see mean variance pairs (MVA-pairs). Differential expression was

analysed using the limma package, part of the Bioconductor suite of bioinformatic

packages (http://www.bioconductor.org/), for the R statistical programming

language (http://cran.r-project.org/). Briefly the limma package is a variant of simple

linear models but using a moderated empirical Bayesian estimate of the standard

deviation to calculate p-values. The empirical estimate comes from the strong mean

variance relationship of microarrays, each observed variance being adjusted towards

the population variance of genes with a similar mean expression. This is appropriate

for studies with relatively few replicates in which the standard deviation of a

population of similar genes may be a better estimate than the observed standard

deviation of a single gene (Smyth et al., 2004).

The significance of contrasts is further moderated by the use of a "false discovery

rate" (FDR) algorithm that compensates for the massive multiple testing error

inherent in microarray experiments, adjusting p-values upwards (Benjamini et al.,

1995).
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2.7 Comparison of gene expression between newly diagnosed and treated

patients using microarrays

2.7.1 Preparation of RNA

2.7.1.1 Isolation of total RNA from ovarian tumour cells obtained from patient

ascites

For the isolation of total RNA from patient ascites tumour cells the TRIzol

(Invitrogen Life technology, Paisley, UK) protocol was used. This reagent is a

mono-phasic solution of phenol and guanidine isothiocyanate.

The sample was harvested using trypsin once the cells had reached the exponential

phase of growth as viewed down a microscope. The RPMI media containing 10%

FCS and 1% glutamine was poured off, and 3mls of trypsin was pipetted into the

flask to cover the cells. The trypsin was then poured off, and a further 5mls of

trypsin was added to the flask, and left in the incubator at 37ºC, 5% CO2 for 5

minutes. After 5 minutes the trypsin was pipetted off and added to 5mls of RPMI

media containing 10% FCS and 1% glutamine in a 10ml conical tube, and spun in a

centrifuge at 270g for 5 minutes. The supernatant was poured off. 10mls of RPMI

media containing 10% FCS and 1% glutmaine was added to the sample, and

pipetted up and down to resuspend the cell pellet.

The cells were counted (see section 2.2b). 4x106 cells were used for total RNA

extraction, and the appropriate volume of RPMI media containing 10% FCS and 1%

glutamine, and the cells was pipetted into a 20ml conical shaped tube. The sample
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was spun in a centrifuge at 249g for 5 minutes, and the supernatant poured off. 1ml

of TRIzol was added to the sample on dry ice, and the sample left overnight at -

80C.

0.2ml of chlorofom-phenol solution (Sigma, Pool, Dorset,UK) was added, the caps

secured and the tube shaken vigorously by hand for 15 seconds. The sample was

then incubated at room temperature for 2-3 minutes before being centrifuged at

15,000g for 15 minutes at 2-8C. Following this, the mixture separates into a lower

red, phenol-chloroform phase, an interphase, and a colourless upper aqueous phase.

RNA remains exclusively in the aqueous phase.

The aqueous phase was carefully pippetted into a fresh eppendorf (capacity1.5ml),

and 0.5ml of isopropyl alcohol (VXR International, Leicester, UK) was added and

left at room temperature for 10 minutes to precipitate the RNA. The sample was

then centrifuged at 15,000g for 10 minutes at 2-8C. The RNA was often seen as a

gel-like pellet at the bottom of the tube. The supernatant was removed by pipetting

and 1ml of 75% ethanol was added and centrifuged at 7,500g for 5 minutes, at 2-

8C, to wash the sample. The supernatant was carefully removed, taking care not to

dislodge the RNA pellet, and the sample was air-dried. The pellet was re-suspended

in 40l of RNase-free water.

2.7.1.2 Isolation of total RNA from ovarian solid tumour tissue from patients

The sample was removed from liquid nitrogen and placed on dry ice. 1 ml of TRIzol

was pipetted into the eppendorf, and the tissue homogeniser was used for several
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minutes to break up the tissue. The sample was then left at -80C overnight. The

tissue homogeniser was cleaned meticulously between samples. This was done by

using the homogeniser in a beaker of 100% ethanol, followed by a beaker of DEPC

water, followed by spraying it with a solution to decontaminate the homogeniser

from RNAases. The protocol for extraction of total RNA using TRIzol was then

followed (see section 2.7.1).

2.7.2 Preparation of microarray sample

See section 2.6.2

2.7.3 Processing the microarray sample

See section 2.6.3

2.8 Real-time polymerase chain reaction (PCR)

Real time PCR was done using a selection of primers of genes that were

significantly up or down regulated to confirm the microarray results obtained. The

genes chosen were Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene

(used as a control), and excision repair cross-complementation group 1 (ERCC1)

gene. Only cDNA from the paired samples were used for this experiment, which

included patient 17 asc.tu, pt 17B asc.tu, pt 33 asc.tu, pt 33B asc.tu, pt 41 asc.tu, and

pt 41B asc.tu..
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cDNA was made using the protocol previously described for microarrays (see

section 2.6b(i)). Only 6l of the 12l sample of cDNA was used for microarrays,

and the remaining 6l sample was diluted with 73.97l DEPC water to produce a

concentration of cDNA of 0.0625g/l.

First experiments were done to assess the relative efficiencies of the primers used.

The relative primer efficiencies (comparing each primer to GAPDH – the control

primer) had to be less than 0.1 to ensure that one primer was not binding more

efficiently than the other, which would bias the results.

Serial dilutions of 1:2, 1:5, 1:10, 1:20, 1:50, and 1:100 of the cDNA were made

using DEPC water. A mastermix containing 250l of Taqman universal PCR

mastermix (Applied biosystems, Warrington, UK), 25l of the appropriate

primer/probe mix (Applied biosystems, Warrington, UK), and 222.5l of DEPC

water, was made and 17.5l was added to each of the 21 wells (which does not

include the wells containing only water) on the 96 well PCR detection plate

(ABgene, Surrey, UK). 2.5l of the appropriate concentration of cDNA was added

to each well. This was repeated for each primer/probe set that was being

investigated, so on one 96 well PCR detection plate 2 genes (and their respective

primers) were investigated for 1 of the patient samples. Different plates were used

for all of the 6 different samples of patient cDNA.
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The wells were checked to make sure all of the reagents were at the bottom, and a

PCR seal (Applied biosystems, Warrington, UK) was placed over the top of the

plate before being put into an ABI prism 7000 (Applied biosystems, Warrington,

UK). Initially the machine heated the plate to 50C for 2 minutes, and then 95C for

10 minutes before 40 cycles were performed as follows:

95C for 15 seconds

60C for 1 minute

Once the relative primer efficiencies were shown to be less than 0.1, the main

experiment to determine differences in gene expression was then set up in triplicate.

The RNA concentration of each patient sample that had been diluted by 50% was

used (serial dilution ½). For each patient sample 2.5µl of this ½ concentration of

RNA was added to each of three wells on the 96 well plate, followed by 17.5µl of

mastermix (see above for making the mastermix). The same cycling conditions as

the standard curve experiment were used (see above). This meant there were a total

of 18 wells used – three for each patient 17, patient 17B, patient 33, patient 33B,

patient 41, patient 41B.
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3. RESULTS

3.1 Introduction

A2780 and A2780cisR human ovarian cancer cell lines were used to establish

cisplatin cytotoxicity using the SRB assay. These same cell lines were used to

measure the peak of ICL formation and repair after exposure to cisplatin to identify

differences that could be further investigated in the clinical setting.

Human ovarian cancer cells were obtained from patients before and after

chemotherapy and the peak of ICL formation and repair were measured after

exposure to cisplatin and melphalan ex vivo to establish any differences which may

relate to clinically acquired resistance. Microarray technology was used to determine

if these differences could be explained at the gene level.

3.2 Human ovarian cancer cell lines treated in vitro with cisplatin

3.2.1 Measurement of cisplatin cytotoxicity in paired cisplatin sensitive (A2780)

and resistant (A2780cisR) human ovarian cancer cell lines

The A2780 and A2780cisR cell lines are a paired cell line produced from human

ovarian cancer cells, and were used as an in vitro model. The A2780 cisplatin

resistant (A2780cisR) cell line used in these experiments was produced by chronic
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exposure of the parent cisplatin-sensitive A2780 cell line to increasing

concentrations of cisplatin (Behrens et al., 1987). The resulting cell line was

originally called 2780CP8 where CP8 refers to this cell line’s growth in medium

containing 8M cisplatin (Behrens et al., 1987). Once the A2780cisR cell line had

been produced it was stable, and therefore remained resistant to cisplatin without the

need for continually growing it in the drug.

A2780cisR resistance to cisplatin chemotherapy was demonstrated using the

Sulphur-Rhodamine Blue (SRB) assay. The IC50 is the concentration of the drug that

inhibits growth by 50%. SRB assays to determine the cisplatin IC50 for the A2780

and A2780cisR cell lines following 1 hour exposure to cisplatin were performed

(figure 12).
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Figure 12: Inhibition of growth of A2780 and A2780cisR cell lines after treatment

with cisplatin, as measured by the SRB assay (A2780 n=2, A2780cisR n=3, standard

error bars are shown)

The cisplatin IC50 for A2780 cell line was 1.6M, and for the A2780cisR cell line

was 9.9M, which resulted in a 6.2-fold difference between their sensitivities to

cisplatin.

3.2.2 Measurement of ICL formation and repair in human ovarian cancer cell

lines treated with cisplatin using the comet assay

The single cell gel electrophoresis (comet) assay has enabled the study of strand

breaks and DNA interstrand crosslinking in clinical material due to the low number

of cells needed from patients, its sensitivity (compared with techniques such as

alkaline elution), and the reproducibility of results (Hartley et al., 1999). It has
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become an important tool in the investigation of ICL formation and repair in the

clinical setting.

The comet assay was originally developed to measure strand breaks, and has been

adapted to measure interstrand crosslinking (Hartley et al., 1999). Cells are

irradiated to produce a fixed level of random single strand breaks (which will

include some double strand breaks if two single strand breaks occur at the same

point). The shortening of the comet tails in the crosslinking drug treated and then

irradiated sample, compared to the irradiated control is a measure of the level of

ICLs present (Hartley et al., 1999). Shortening of the comet tails is due to the

decrease in electrophoretic mobility caused by the presence of interstrand crosslinks

within the DNA.

The figures below represent the DNA of individual cells, and are typical examples

of the images that are produced by the comet assay. The percent decrease in tail

moment is a measure of the amount of interstrand crosslink formation present in the

cells at a given time, and is calculated using the formula shown in methods section

2.3d(viii). Figures 13(a)-13(d) are typical images from A2780 cells of the four

components used in the formula.
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(a) (b)

(c) (d)

Figure 13: (a): non-irradiated non-drug treated cells, (b): irradiated non-drug treated cells, (c): non-

irradiated drug-treated cells, (d): irradiated drug-treated cells

In Figure 13(a), the cells have almost no comet tails. This is because their DNA is

not damaged and is of high molecular weight and therefore has low electrophoretic

mobility. This sample is a control to establish the amount of background DNA

damage present within these cells, before any drug is added. In this sample there is

very little background DNA damage.
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In figure 13(b) the cells have very large comet tails. This results from the controlled

dose of irradiation introducing a fixed number of random DNA strand breaks. As the

DNA is broken into smaller fragments its electrophoretic mobility increases

resulting in large comet tails. The amount of DNA damage in this sample is a

baseline to which other irradiated drug-treated samples are compared.

In Figure 13(c), the cells have almost no comet tails after drug treatment with

cisplatin. This is because cisplatin does not produce strand breaks and therefore the

DNA has a high molecular weight, and low electrophoretic mobility, similar to

figure 13(a). This sample is a control to show very few single or double strand

breaks are produced by cisplatin, and therefore it is the irradiation alone that

produces fixed levels of strand break DNA damage.

The cells in Figure 13(d) have received the same amount of irradiation as those in

figure 13(b), but they have smaller comet tails due to the presence of ICLs produced

by the drug. The interstrand crosslinks that are present in this sample decreases the

electrophoretic mobility in the gel due to the increased size of the DNA fragments,

compared to fragments produced by irradiation alone. This difference (percent

decrease in tail moment) is a measure of the amount of DNA interstrand crosslinks

present in this sample.

In figure 14, media containing different concentrations of cisplatin were incubated

with the cells for 1 hour and then removed. The cells were incubated for a further 9

hours in drug-free media. 9 hours was chosen because it has previously been shown
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to be the peak of ICL formation in these cells (Wynne et al., 2007). As can be seen

from figure 14, the relationship between concentrations of cisplatin and the percent

decrease in tail moment is hyperbolic. Above 100µM the amount of ICL formation

present plateaus as the concentration of cisplatin increases.

Figure 14: Relationship between the percent decrease in tail moment and

concentration of cisplatin (data used from three individual experiments, standard

error bars are shown)

In figure 14, 100M cisplatin produces approximately 50% decrease in tail moment

in both A2780 and A2780cisR cell lines, and this concentration of cisplatin was

used to investigate formation and repair of ICLs in the A2780 and A2780cisR cell
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lines. Students paired t-test was used to see if there was any statistical difference

between the % decrease in tail moment of A2780 and A2780cisR cells when treated

with 100µM cisplatin. Statistical significance was achieved if p≤0.05. This test was

used as these cell lines are paired, and only differ in their resistance to cisplatin.

Their results do not significantly differ (p< 0.40). However, it is noted that 100µM

cisplatin is a far higher concentration that the cells are exposed to, than in the

clinical setting. The dose of carboplatin that the patients are exposed to decreases

over time, but a concentration of between 5 to 7mg/ml min -1 which is the area under

the concentration curve (AUC) gives a maximal response rate (Duffull et al., 1997),

which is in the order of 10 fold lower than in these experiments. 100M cisplatin

was also used to investigate formation and repair of ICLs in clinical samples taken

from newly diagnosed and treated patients. As 100μM cisplatin produces

approximately 50% of interstrand crosslink formation, this concentration was

arbitarly chosen as it provided a level from which formation and repair could be

measured over time. Therefore small changes in either ICL formation or repair could

be detected.

In figure 15, 100μM cisplatin was incubated with A2780 and A2780cisR human

ovarian cancer cell lines for 1 hour and then removed. The cells were then incubated

in drug-free media for 0, 3, 6, 9, 24, 30 and 48 hours, and then harvested, and the

level of ICL formation present at each time point was measured using the comet

assay.
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Figure 15: Time course over 48 hours to show the relationship between the percent

decrease in tail moment in A2780 and A2780cisR cell lines when incubated in vitro

with 100M cisplatin for 1 hour (data used from three individual experiments,

standard error bars are shown).

The percent decrease in tail moment after treatment with 100M cisplatin at 9 hours

for the A2780 and A2780cisR cell lines are similar at 70%6 and 73%10

respectively (figure 15). Using students paired t-test there is no significant difference

in the peak of crosslinking (p<0.40). This is the maximum decrease in tail moment

over a 48-hour period, corresponding to the peak of ICL formation.
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The levels of crosslinks remain at a high level over a 48 hour period in the A2780

cell line. In contrast there is a rapid decrease in the % decrease in tail moment by 24

hours in the A2780cisR cell line as a result of repair (unhooking) of the crosslinks.

At 24 hours there is a significant difference of the %decrease in tail moment

between the A2780 and A2780cisR (p<0.025, using students paired t-test). This

significant difference in % decrease in tail moment continues at 48hours (p<0.05,

using students paired t-test). This repair of ICLs is likely to be an important

mechanism in the resistance to cisplatin seen in the A2780cisR cell line when

compared to the parent A2780 cell line.

3.2.3 Discussion

The results from the SRB assay found the A2780cisR human cancer cell line had a

6.2-fold increase in resistance to cisplatin compared to the A2780 human cancer cell

line. Behrens et al (1987) found that the A2780cisR (or 2780CP8) resistant cell line

was 7.3-fold resistant to cisplatin compared to the A2780 cell line (Behrens et al.,

1987). Another group found this A2780cisR cell line was 7.7-fold resistant to

cisplatin (Schmidt et al., 1993). Therefore, the results obtained are of a similar

magnitude to those found in the literature.

As the concentration of cisplatin increases, so too does the formation of ICLs, in a

hyperbolic relationship up to 100μM cisplatin, demonstrating similar amounts of

ICLs are present in both A2780 and A2780cisR human ovarian cancer cell lines.
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This is supported by Masuda H et al (1990) who showed that binding of platinum to

DNA as measured by flameless atomic absorption spectrophotometry, of either

A2780 or A2780cisR cell line was a linear function of concentration ranging from

20-80M cisplatin (Masuda et al., 1990). This implies that similar concentrations of

cisplatin interact within the DNA of these cells to produce ICLs, suggesting that

mechanisms upstream of DNA damage such as increased efflux, or reduced influx

of cisplatin, or drug detoxifying mechanisms are not different between the two cell

lines. However, in contrast, Schmidt et al (1993) have shown decreased

accumulation of cisplatin in the A2780cisR cell line as measured by atomic

absorption spectrometry, resulting in less formation of platinum-DNA adducts,

including ICLs, compared to the parent cell line, which they suggested contributes to

cisplatin resistance (Schmidt et al., 1993).

Importantly, other cells such as lymphocytes show similar properties when treated

with other crosslinking agents. Hartley et al (1999) demonstrated a linear

relationship between decrease in tail moment as measured by the comet assay and

the level of ICL formation in lymphocytes treated ex vivo with increasing

concentrations of chlorambucil (Hartley et al., 1999).

The increase in repair of ICLs found in the A2780cisR cell line as compared to the

A2780 cell line is supported by Masuda H et al (1990). They suggested that the

mechanism of resistance in the A2780cisR (or A2780/CP8) cell line was due to their

increased ability to remove platinum-DNA adducts (mostly intrastrand crosslinks

were measured), and not to a difference in initial binding of cisplatin, as measured
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by flameless absorption atomic spectophotometry (Masuda et al., 1990). There is

further evidence using a 3H-thymidine incorporation assay that showed a two-fold

increase in the repair ability of the A2780cisR cell line (Masuda et al., 1988).

Further studies have also showed increase in repair of the A2780cisR cell line as a

mechanism of cisplatin resistance (Scmidt et al., 1993) (Zhen et al., 1992).

Parker et al. 1991, and Masuda et al. 1990 found the A2780/CP8 cell line to have

similar levels of DNA damage, including ICL formation when treated with 100µM

cisplatin compared to the parental A2780 cell line. Masuda et al. also found the

A2780/CP8 resistant cell line to be two-fold more efficient at repairing DNA

damage, including ICLs and intrastrand crosslinks, compared to the parent A2780

cell line (Masuda et al., 1990). This shows that these resistant cell lines behave very

similarly to the ones used in the experiments, and supports the data from our

experiments.

3.3 Clinical ovarian cancer tissue treated ex vivo with cisplatin

3.3.1 Obtaining ovarian cancer cells from patient samples

A total of 48 patients were included in this study, who were all suspected to have

epithelial ovarian cancer. Informed consent was obtained from all of them. From six

of these patients a sample was collected before they received any chemotherapy, and

also, after they had received platinum-based chemotherapy. These are the six

‘paired’ patients. Three of the 48 patients did not have ovarian cancer when the
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histopathology was examined, and so were excluded from the study. There were cell

culture problems with a further five patients, which meant they were not included in

the study as experiments were unable to be carried out. Overall cells from 40

patients with epithelial ovarian cancer were analysed in the study, including the six

paired patient samples. Patients who had not yet received chemotherapy and are

newly diagnosed are called ‘pre-chemotherapy’ patients, and those that had received

platinum-based chemotherapy are called ‘post-chemotherapy’ patients.

3.3.2 Patient characteristics

Table 1 and 2 show the individual patient characteristics in both newly diagnosed

(pre-chemotherapy) and treated (post-chemotherapy) patient groups. The average

age in the pre-chemotherapy group is 66  11, and in the post-chemotherapy group

is 66  10.

The Platinum-free interval (PFI) is the time taken from when the patient had their

last dose of chemotherapy (before the sample was taken), until they had evidence of

disease relapse (around the time the sample was taken), such as a doubling of their

Ca-125, or evidence on CT scan. Therefore, only post-chemotherapy patients have a

PFI. The PFI is used to guide future chemotherapy treatment, as it describes the

likelihood of responding to future platinum-based chemotherapy. A PFI of 6 months

or less suggests the patient is clinically resistant to platinum, and their next

chemotherapy should be changed to second-line chemotherapy. A PFI of 7 months
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or more suggests the patient may still respond to platinum based chemotherapy, and

therefore their next course of chemotherapy should include platinum.

The progression-free survival (PFS) is the time from the patients first dose of

chemotherapy (usually around the time the sample was taken) until the patient

clinically relapses. Doubling of Ca-125 levels from the upper limit of normal has

been shown to predict progression (Rustin et al., 2001). Persistently elevated levels,

or doubling of Ca-125 from its nadir level has now also been shown to accurately

define progression (Rustin et al., 2001) with a false positive rate of less than 2%

(Rustin et al., 2003). Clinical relapse is also defined as evidence of disease on CT

scan (Rustin et al., 2003).

Interval debulking surgery (IDS) patients are in the post-chemotherapy group of

patients as they have already received three doses of chemotherapy. They then

undergo an operation to remove as much of the tumour as possible. However, these

patients will not have received a full course of platinum-based chemotherapy as

three doses are half the six doses required for a full course.



Page 130

Patient
number

Age Treatment FIGO
stage

PFS Outcome Sample and hitological type

1 63 Carboplatin/
paclitaxel

4 11 Ca125 36 to 67, with
symptoms

ascites/solid tumour,
serous papillary adenocarcinoma

2 68 Carboplatin/
paclitaxel

2c >13 NED(no evidence of
disease)

solid tumour,
endometrioid adenocarcinoma

3 91 none Not
known

No treatment given ascites/solid tumour,
endometrioid adenocarcinoma

4 72 Carboplatin/
paclitaxel

3c >10 NED solid tumour,
serous papillary adenocarcinoma

5 65 Carboplatin/
paclitaxel

3c >4 NED solid tumour,
peritoneal serous adenocarcinoma

8 74 Carboplatin/
paclitaxel

3c 10 Doubled Ca125 ascites/solid tumour,
serous papillary adenocarcinoma

10 51 Carboplatin/
paclitaxel

3c >8 NED ascites/solid tumour,
serous papillary adenocarcinoma

12 63 Carboplatin/
paclitaxel

3c 7 Doubled Ca125 ascites/solid tumour,
serous papillary adenocarcinoma

15 50 Carboplatin/
paclitaxel

2c >4 NED solid tumour,
serous papillary adenocarcinoma

16 63 Carboplatin/
paclitaxel

3c >4 NED solid tumour,
not known

17 54 Carboplatin/
paclitaxel

3c 0 Progressive disease on
chemo

Ascites,
serous papillary adenocarcinoma

18 62 Carboplatin 1c >6 NED ascites/solid tumour,
serous papillary adenocarcinoma

19 45 Carboplatin/
paclitaxel

3a >8 NED solid tumour

22 77 Carboplatin 2b >6 NED solid tumour
24 62 Carboplatin 2b >7 NED solid tumour
26 73 Carboplatin/

paclitaxel
3c >7 NED Ascites,

serous papillary adenocarcinoma
27 70 Carboplatin/

paclitaxel
3c 9 Doubled Ca125, R

inguinal lump
Ascites,
serous papillary adenocarcinoma

29 61 Carboplatin 1a >4 NED solid tumour
30 54 None (too

unwell)
3c N/A Died Aug 05 ascites

32 64 Carboplatin/
paclitaxel

3 3 Doubled Ca125,CT-
abdo disease

ascites

33 58 Carboplatin/
paclitaxel

4 0 Disease progression on
chemo

ascites

34 63 Carboplatin/
paclitaxel

3c 5 CT-progressive
disease, symptoms

ascites

36 87 Carboplatin 3c >6 NED solid tumour
38 80 Carboplatin 3c >6 NED ascites
39 76 Carboplatin 3c >4 NED ascites/solid tumour
40 78 None (too

unwell)
3c N/A Died ascites

41 77 Carboplatin
(intraperitoneal)

3c 0 Disease progression on
chemo

ascites

43 66 Carboplatin/paclit
axel

4 >3 NED ascites

45 56 Info not available 3c Info not available ascites
46 66 Carboplatin/paclit

axel
3c >4 NED ascites

48 63 Carboplatin 3c 19 NED ascites

NED is no evidence of disease, PFS Progression free survival

Table 1: Newly diagnosed patient characteristics



Patient
number

Age Treatment FIGO
stage

category PFI PFS outcome Sample and histological type

1B 63 Carboplatin/paclitaxel 4 IDS N/A 11 Ca125 36 to 67, with symptoms solid tumour,
serous papillary adenocarcinoma

27B 70 Carboplatin/paclitaxel 3c IDS N/A 9 Doubled Ca125, R inguinal lump Ascites,
serous papillary adenocarcinoma

28 53 Etoposide 4 IDS N/A 11 Doubled Ca125, CT-lymph node solid tumour,
serous papillary adenocarcinoma

37 69 Cisplatin/etoposide 3c IDS N/A 0 Disease progression, died jan 06 Ascites/solid tumour,
Clear cell carcinoma

38B 80 Carboplatin 3c IDS N/A >6 NED ascites
44 82 Carboplatin 3c IDS N/A >8 NED solid tumour
6 69 Carboplatin 4 <6months 0 0 Died, unable to assess Ascites,

serous papillary adenocarcinoma
7 66 None 3c <6months 3 0 Died, unable to assess Ascites,

serous papillary adenocarcinoma
17B 54 None 3c <6months 0 0 Disease progression Ascites,

serous papillary adenocarcinoma
21 49 Carboplatin/paclitaxel 3c <6months 4 0 Died Ascites,

Clear cell carcinoma
33B 58 Cisplatin/etoposide 4 <6months 0 >6 Responding to treatment ascites
35 63 Carboplatin 4 <6months 4 0 Doubled Ca125, symptoms. Died Dec 05 ascites
41B 77 none 3c <6months 0 N/A Unwell with severe COPD ascites
47 68 Gemcitabine/

Carboplatin
3c >6months 16 >6 NED ascites

NED is no evidence of disease
PFI Platinum free interval
PFS progression free survival

Table 2: Post-chemotherapy patient characteristics



Ovarian tumour cells were obtained from ascites by separating them from the

mesothelial cells using cell culture techniques (see methods section 2.4c(i)). The

samples were observed under the microscope (see figure 16), and stained to confirm

presence of specific cell types.

Figure 16: Phase contrast images taken down a microscope of primary culture of

ovarian tumour cells isolated from ascites (Wynne, 2006).

Figure 16 illustrates the morphology characteristic of ovarian tumour cells. They are

more rounded, tend to cluster together, and have abnormal nuclei. This is in contrast

to mesothelial cells (figure 17).
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Figure 17: Phase contrast images taken down a microscope of primary culture of

mesothelial cells isolated from ascites (Wynne, 2006).

Figure 17 illustrates the morphology characteristic of mesothelial cells. They are

more spindle-shaped compared to ovarian tumour cells. Once the sample had been

separated into mesothelial cells and ovarian tumour cells, the samples were stained

to confirm the percentage of mesothelial and ovarian tumour cells.



Page 134

Figure 18: Ovarian tumour cells from ascites stained using CK7 from a typical

patient sample

Cytokeratin 7 (CK7) stains epithelial cells, and therefore stains ovarian tumour cells

as they are of epithelial origin. CK7 does not stain mesothelial cells (Plaza et al.,

2004). In the tumour cell sample shown in figure 18, there is almost 95% positive

staining for CK7, indicating the presence of epithelial cells. This is representative of

all the separated tumour cell samples that were stained.
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Figure 19: Ovarian tumour cells from ascites stained with CK5 from a typical

patient sample

Cytokeratin 5 (CK5) stains mesothelial cells (Plaza et al., 2004), and not epithelial

cells. In figure 19, the same tumour cell sample as in figure 18 was used. There is

almost no staining present, as there are very few mesothelial cells present. Figure 19

and figure 18 confirms the presence of approximately 95% epithelial cells present in

this sample. As ascites is mainly a mixture of ovarian tumour cells and mesothelial

cells, the epithelial cells confirmed in this sample are ovarian tumour cells.
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Figure 20: Mesothelial cells from ascites stained with CK5 from a typical patient

sample.

Figure 20 shows the staining with CK5 of a typical mesothelial cell sample isolated

from ascites. There is positive staining for mesothelial cells using the CK5 antibody

marker, confirming the presence of mesothelial cells in this sample.
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Figure 21: Mesothelial cells stained with CK7 from a typical patient sample.

Figure 21 shows the same sample as figure 20, but stained with CK7. There is no

staining, which means there are no epithelial cells present. These two figures

confirm the presence of approximately 80% mesothelial cells in this sample. Only

samples with >80% ovarian tumour cells or mesothelial cells were used in further

experiments. The majority of ovarian tumour cell samples stained >95% positive

with the CK7 marker. Other techniques such as fluorescent active cell sorting

(FACS) or magnetic bead sorting could have been used to further purify the cells,

but because the vast majority of cells were 95% pure, it was deemed an unnecessary

expense.
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Solid tumour cell samples obtained from patients with ovarian cancer were also

stained to confirm the presence of ovarian cancer cells. They were stained with CK7

and were all shown to be strongly positive (>95% ovarian cancer cells).

3.3.3 Measurement of ICL formation and repair in ovarian cancer cells

obtained from patient ascites and solid tumour when treated with cisplatin

ICL formation and repair were measured in ovarian cancer cells obtained from

patients. 100M cisplatin was used as this has been shown to produce a significant

level of ICL formation in the A2780 and A2780cisR cell lines.

Figure 22 shows an individual crosslink response curve for patient 37. This patient

had not received any chemotherapy before a sample was taken. The peak of ICL

formation at 9 hours is maintained over 48 hours in these cells. No repair or

unhooking of ICLs has occurred in this patient. It is thought that the inability to

repair platinum ICLs confers sensitivity to the drug and a clinical response.

However, this patient had progressive disease and died soon after diagnosis.

Histopathology showed clear cell ovarian carcinoma which is known to be a very

aggressive form of the disease. This may have contributed to the progressive nature

of her disease despite chemotherapy.
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Figure 22: Time course over 48 hours illustrating ICL formation and persistence in

ovarian cancer cells isolated from ascites in patient number 37 before chemotherapy.

There were limited cells obtained from some patient samples, and so only two time

points were chosen to measure ICL formation and repair. These were 9 hours, as this

is the peak of ICL formation (as already demonstrated), and 24 hours.

In a number of patients it was possible to repeat the comet assay two or three times

depending on the amount of cells obtained. Patient numbers 1, 1B, 3, 4 and 8 had

duplicate comet assay results, patient numbers 2, 5, 6 and 10 had triplicate comet

assay results, and the other patients had one result from the comet assay. Where
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duplicate or triplicate samples were processed successfully, error bars are present on

the relevant figures.

Some of the values of percent repair at 24 hours are ‘negative’. This means that the

percent decrease in tail moment, and therefore the level of crosslinks, increased from

9 hours to 24 hours. All the patient data for the peak of ICL formation at 9 hours are

shown in figure 23.



Figure 23: Peak of ICL formation in patients before and after chemotherapy (some standard error bars are shown on this figure for

the patients that had duplicate or triplicate results)
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Figure 24: Peak of ICL formation in pre and post-chemotherapy samples. Horizontal

line shows mean of each group. Dots show distribution of results.

Figures 23 and 24 both show data for the peak of ICL formation in pre- and post-

chemotherapy samples. The results are clearly similar for the two groups of patients.

There is no statistically significant difference between the two groups, using

students paired t-test (p<0.75), and this is especially noticeable in the scatter plot of

figure 24 which shows the distribution of the data clustered together. Figure 23

illustrates the results obtained for each patient. Students paired t-test was used as the

two groups of patients are paired as some samples are taken before chemotherapy,

and others are taken after chemotherapy. Statistical significance was achieved if

p≤0.05.
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In total there are 34 pre-chemotherapy (newly diagnosed) patient samples, and 14

post-chemotherapy (treated) patient samples. Overall, the level of ICL formation as

measured by the % decrease in tail moment ranged from 41-80 (see figure 24). The

mean level of crosslinking in all samples was 60% ±10, while it was 61% 9 in the

pre-chemotherapy group of patients (newly diagnosed), and 58% 10 in the post-

chemotherapy patients (treated patients). There was no significant difference in

these values using students paired t-test (p<0.40). This suggests that similar amounts

of cisplatin interact with the DNA of both groups of patient cells, to cause similar

amounts of ICL formation within the DNA. These results also suggest that upstream

mechanisms such as drug efflux, and detoxification mechanisms are not contributing

to reducing the levels of cisplatin entering and reaching the DNA of these cells.

In five patients it was possible to obtain mesothelial and ovarian cancer cells from

ascites in pre- and post-chemotherapy patients. The peak of ICL formation was

measured in these two cell populations to determine if their cellular metabolism of

cisplatin was similar. These cells were treated with 100M cisplatin for 1 hour, and

then the drug was removed. The cells were left for 9 hours and the level of ICL

formation at 9 hours was measured using the comet assay (figure 25).
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Figure 25: Percent decrease in tail moment at 9 hours in ascites and mesothelial cells

from the same patient before and after chemotherapy.

Figure 25 shows similar levels of ICL formation in both tumour (i.e ovarian cancer),

and non-tumour (i.e mesothelial) cells. The average level of ICL formation as

measured by percent decrease in tail moment at 9 hours in the mesothelial cells from

pre-chemotherapy patients was 5811, and for the corresponding ovarian cancer

cells was 6111 (figure 25). There was no significant difference in these values

using students paired t-test (p<0.40). The percent decrease in tail moment at 9 hours
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in the mesothelial cells from one post-chemotherapy patient was 56, and for the

corresponding ovarian tumour cells it was 60.

Ovarian cancer cells obtained from ascites and solid tumour samples were

investigated to determine if these cells had similar levels of ICL formation at 9

hours, or if ovarian tumour cells obtained from different tissues behaved differently.

Figure 26: percent decrease in tail moment at 9 hours in ascites and solid tumour

patient samples taken before and after chemotherapy.
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In eight patients it was possible to obtain both ascites and solid tumour samples.

Figure 26 shows similar levels of ICL formation in both ascites and solid tumour

samples taken from the same patient, suggesting these cell types do not differ

significantly in their cellular uptake or metabolism of cisplatin which has enabled

similar levels of DNA damage to occur. The level of ICL formation as measured by

the average % decrease in tail moment at 9 hours was 5910and 6516 for ascites

and solid tumour cells, respectively, taken before chemotherapy. There was no

significant difference in these values using students paired t-test (p<0.40) The one

patient sample collected after chemotherapy showed comparable levels of percent

decrease in tail moment at 9 hours for ascites (59), and solid tumour (62). Patient 13

has benign ovarian disease, and was included to illustrate the similarity of ICL

formation present after treatment with cisplatin, in mesothelial cells and benign

ovarian cells before receiving any chemotherapy in the clinical setting.

Levels of ICL formation were measured at 9 hours and 24 hours after the samples

were incubated ex vivo with 100M cisplatin, and then the percent repair at 24 hours

calculated. The percent repair (at 24 hours) is the difference between the peak of

ICL formation at 9 hours and 24 hours. The data are shown in figure 27 for the

individual patients and figure 28 as a scatter plot to show the distribution of the data.



Figure 27: Percent repair at 24 hours in patients before and after chemotherapy (standard error bars are shown on the patient samples

that have been done in duplicate or triplicate).
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Figure 28: Percent repair in patient samples taken before and after chemotherapy.

Horizontal lines indicate the mean of each group.

From figures 27 and 28, there appears to be a much more heterogeneous response between

the patient samples, with values for repair at 24 hours ranging from no repair to almost

100% repair. Some patients demonstrated ‘negative’ repair, in which the levels of ICLs

present actually increased between 9 and 24 hours. There is a clear difference between the

patient groups. In the pre-chemotherapy patient group, the average percent repair after 24

hours was 4%19, but it was 45%43 in the post-chemotherapy group (figure 28). This

was statistically significant using students paired t-test (p<0.001). In the pre-chemotherapy

patient population only four patients had >20% ICL repair, while the remaining 30 patients

had <20% repair. In contrast only four patients had <20% ICL repair in the post-

chemotherapy group, while 1 patient had 28% repair, and the remaining nine patients had

>50% repair.



Page 149

In six patients a sample was collected before the patient had received any chemotherapy,

and again after the same patient had received platinum-based chemotherapy. Each sample

was incubated with 100M cisplatin for 1 hour, and then analysed after 9 hours and 24

hours. The levels of ICL formation and repair were measured using the comet assay (figure

29).

Figure 29: percent repair at 24 hours in six patients treated with cisplatin before and after

they had received platinum-based chemotherapy. B denotes the sample taken after

chemotherapy.
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Although similar levels of ICL formation are present in the two patient populations, the

percent repair after 24 hours was very different. The ovarian tumour cells taken before

chemotherapy show very little unhooking of crosslinks ranging from -8% to 26%, but in contrast

the ovarian tumour cells taken after chemotherapy show extensive unhooking with % repair

ranging from 28% - 95%. Average % ICL repair in the pre-chemotherapy patient samples

was low at 7%13 but was much higher at 70%23 in the post-chemotherapy samples

from the same patient, respectively (figure 29). This was statistically significant using

students paired t-test (p<0.002). Patients 1B, 27B, and 38B all had samples taken at

interval debulking surgery (IDS), which means they had only had 3 doses of carboplatin

before the sample was taken. These data clearly demonstrate that increase in ICL repair at

24 hours plays a role in resistance to platinum chemotherapy after as little as three doses of

carboplatin. What is also clear is that nearly all patients who are treated with platinum

chemotherapy will show some level of repair of ICLs, but not all of them will relapse.

Therefore not all ICL repair will be clinically relevant.

In six patients it was possible to obtain mesothelial and ovarian cancer cells from ascites in

pre- and post-chemotherapy patients. The repair of ICLs was measured in these two cell

populations to determine if their response to treatment with cisplatin were similar.
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Figure 30: Percent repair (or unhooking) of ICLs in ovarian cancer cells and mesothelial

cells before and after chemotherapy

In the ovarian cancer and mesothelial cells obtained from patients before chemotherapy,

there does not appear to be any difference in the levels of ICL repair at 24 hours, as they all

have <10% repair. There was no significant difference in these values using students paired

t-test (p<0.40). This suggests that these cells have similar metabolic pathways when

incubated with cisplatin ex vivo, and that the ovarian cancer cells have not yet acquired the

resistance mechanism of ICL repair

.

In the post-chemotherapy patient there is an obvious difference between the percent repair

(at 24 hours) of ICLs in the ovarian cancer cells and the lack of repair at 24 hours in the

mesothelial cells (72 and -14%, repectively). Although these data are from only one treated
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patient, it does seem that the ovarian cancer cells obtained from the ascites of patient 6

have acquired this mechanism of increased ICL repair. The mesothelial cells are also

obtained from ascites, but do not seem to have acquired this same mechanism of resistance,

suggesting that this acquired resistance is unique to the cancer cells. Cancer cells are

genetically unstable, and are therefore more likely to acquire mutations within the DNA.

However, the time interval is much too short for this to occur. A more likely mechanism is

that ovarian cancer cells that repair ICLs have been selected out by treatment with

carboplatin.

3.3.4 Discussion

The similarity in levels of ICL formation at 9 hours between pre-chemotherapy, and post-

chemotherapy patients resembles the results from the A2780 platinum sensitive and A2780

cisplatin resistant human ovarian cancer cell lines (figure 15). Data from ICL formation

and repair in clinical ovarian cancer samples has not been published before now.

The initial levels of ICL formation in ovarian cancer cells obtained before and after

chemotherapy are very similar (figure 23). Many studies have shown that the level of

platinum-DNA adducts correlates with patient response to platinum-based chemotherapy

(Altaha et al., 2004), which implies that drug influx and efflux mechanisms that influence

the level of drug available to reach the DNA play an important role in response to platinum

chemotherapy.

The clinical response of patients to platinum chemotherapy was investigated to see if data

from the level of ICL formation at 9 hours obtained from the laboratory could be used to

predict which patients would not respond to platinum-based chemotherapy.
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Patient 17, 33, and 41 had intrinsic (or primary) platinum resistance as their disease

actually progressed whilst on carboplatin chemotherapy. As the levels of ICL formation in

these patients are similar to the average for the newly diagnosed patients, it seems that drug

influx/efflux or other upstream mechanisms such as detoxification do not play an important

role in inherent (or primary) platinum resistance in these patients. This is also true for the

other patients that developed acquired resistance to platinum chemotherapy (patients 37, 6,

7, 17B, 21, 33B, 35, 41B) as they have similar levels of ICL formation at 9 hours. Since

ICLs are critical cytotoxic lesions, similar levels of cell death within these cancer cells

might be expected to occur. The similar level of ICL formation is also striking in the six

paired patient samples taken before and after each patient had received platinum

chemotherapy. From these data it seems that the level of ICL formation at 9 hours in

ovarian cancer cells obtained from newly diagnosed patients (pre-chemotherapy), and

treated patients (post-chemotherapy) cannot be used to predict their response to platinum

based chemotherapy.

There are a number of patients that have very different values of percent repair at 24 hours

compared to the mean. In the pre-chemotherapy group, patient 19, 33, 40, and 46 have

percent repairs at 24 hours of 25%, 26%, 29%, and 57%, respectively. This is in

comparison to the mean for this pre-chemotherapy group of 4%. The clinical data for some

of these patients was compared to see if the data for repair of ICLs can be supported with

clinical evidence of resistance.

Looking at their clinical data patient 33 has a PFS of 0, and patient 40 was not given any

chemotherapy, as she was not fit enough, therefore PFS cannot be calculated (she died

soon after diagnosis). A PFS of 0 means that not only is patient 33 clinically resistant, but
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this patient actually progressed whilst on carboplatin chemotherapy. Progression whilst on

chemotherapy is very significant and is strong clinical evidence of an intrinsic resistance

mechanism within the tumour cells. This intrinsic quality may be due to the higher than

average levels of ICL repair. However, resistance is multi-factorial and it is always

difficult to assign clinical outcome to only one resistance mechanism.

Clinical details of newly diagnosed patients, was compared to the levels of ICL repair to

see if there are any correlations. Patient 17 and 41 have a PFS of 0, patient 32 has a PFS of

3, and patient 35 has a PFS of 5. This means these patients had disease recurrences soon

after starting platinum chemotherapy. For further support of the theory that high levels of

ICL repair correlate with inherent clinical resistance to carboplatin chemotherapy, we

would expect these patients to have high levels of ICL repair. Patient 17 had 13% repair,

patient 32 had 3% repair, patient 34 had -13% repair and patient 41 had 4.7% repair, so

overall these patients had low levels of ICL repair. There is little correlation with clinical

outcome and levels of ICL repair. This does not support the theory that high levels of ICL

repair are a major mechanism of inherent clinical resistance to platinum chemotherapy.

However, ICL repair could still play a role in acquired resistance to platinum.

The other newly diagnosed patients that have not previously been discussed have low

levels of ICL repair suggesting platinum sensitivity, which seems to be consistent with

their PFS. As can be seen from table 1, most patients do not have a specific number for

PFS. This is because these patients have not yet had a recurrence of their disease, and so

the exact PFS cannot be calculated. Most of the patients with no exact PFS have only 1 or

2 months more before they are considered to be platinum sensitive, and is this is such a

short time interval, it is unlikely they will relapse within this time. However, it must be
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pointed out that there are 6 patients with a PFS of >3, or >4, and so they have 5-6 months

in which to relapse to be considered platinum resistant. So this means no firm conclusions

can be drawn from these 6 patients. However, overall it seems as though there is a good

correlation between low levels of ICL repair and sensitivity to platinum based

chemotherapy in newly diagnosed patients with ovarian cancer.

Another important practical aspect of deciding which patient is put into either platinum

sensitive or resistant groups, is the timing of particular blood tests and scans e.g. if a

patient has been free of recurrent disease for 6 months since starting chemotherapy

(PFS>6), and they are reviewed in clinic in a further 3 months at which time recurrence is

detected, their PFS is 9. This means they are in the platinum sensitive group (only just), but

their disease recurrence may have been apparent before this if the patient came to the clinic

sooner and reported symptoms, and/or blood tests had been done sooner, which would

have put them into the platinum resistant group.

It may be that if a newly diagnosed patient has high levels of ICL repair (above 20%) this

could be used to predict inherent resistance to carboplatin chemotherapy. However there

would still be a few patients that would not be identified as platinum resistant using this

method. Measuring ICL repair could be used in conjunction with other methods currently

being developed to determine outcome to platinum chemotherapy e.g. microarray

profiling. If outcome to platinum chemotherapy can be pre-determined, it would prevent

unnecessary treatment and serious side effects for some patients.

In the post-chemotherapy group patient 35, 37, 44, and 47 have low percent repairs at 24

hours of -4%, 6%, -28%, and -35% respectively. This is in comparison to the mean for this
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group of 45%. The clinical data for these patients will now be compared to see if there are

any correlations. Patient 44 has a PFS >8 which means that this patient has no evidence of

disease recurrence at this time, and is therefore likely to fit into the platinum sensitive

group. This is consistent with this patients’ low levels of ICL repair. Patient 47 has a PFI

of 16 months, and a PFS >6 months which means that this patient is in the platinum

sensitive group (their PFI is 16 and therefore >6 months). This is also consistent with low

levels of ICL repair in the ovarian cancer cells.

Of the remaining ten treated patients, the majority of them have a high level of repair

which is consistent with their PFI of <6, as they are clinically resistant to platinum

chemotherapy. There are four patients (1B, 27B, 28, 38B), who all have high PFS, which

correlates with clinical sensitivity to platinum chemotherapy, but have all got high levels of

ICL repair. However, on closer inspection, two of these patients (patients 27B and 28)

have levels of ICL repair less than 50%. This could mean that the cut-off for the prediction

of resistance to platinum chemotherapy could be an ICL repair level above 50% at 24

hours.

Overall what is striking is the marked difference in ICL repair in the six paired patient

samples taken before and after chemotherapy (figure 29). Initially all six patients have very

little capacity for repair of ICLs, but after undergoing chemotherapy the cells were able to

repair ICLs. Some of these samples (patients 1, 27, and 38) taken after chemotherapy were

after as little as three doses as they were taken at interval debulking surgery. One possible

explanation is that these tumour cells aquired this ability within a short time, but a more

plausible explanation is that platinm-based chemotherapy killed the sensitive cells, and so

those that were left behind were resistant. When ovarian cancer cells were taken at interval
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debulking surgery these resistant populations of cells were taken and shown to be resistant

at the cellular level by repair of ICLs. There are probably other mechanisms present within

these cells that also confer resistance as resistance is likely to be multifactorial.
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3.4 Human ovarian cancer cell lines treated in vitro with melphalan

3.4.1 Measurement of ICL formation and repair in paired human ovarian cancer cell

lines treated with melphalan using the comet assay

Having established the formation and repair of ICLs produced by cisplatin chemotherapy

in resistant patients with ovarian cancer, other crosslinking agents were investigated for

cross-resistance, to see if increased repair of ICLs was relevant to other crosslinking

agents, such as melphalan. The A2780 and A2780cisR paired human ovarian cancer cell

line was used initially as the in vitro model.

A2780cisR resistance to melphalan chemotherapy was demonstrated using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The IC50 is the

concentration of the drug that causes 50% cell death. MTT assays to determine the

cisplatin IC50 for the A2780 and A2780cisR cell lines following 1 hour exposure to

melphalan were performed (figure 30a).
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Figure 30a: Percentage cell survival of A2780 and A2780cisR cell lines after treatment

with melphalan, as measured by the MTT assay (A2780 n=2, A2780cisR n=3, standard

deviation bars are shown) (unpublished data H.Lowe 2006).

The melphalan IC50 for A2780 cell line was 26M, and for the A2780cisR cell line was

100M, which resulted in a 4-fold difference between their sensitivities to melphalan.

Melphalan is another chemotherapy agent that causes formation of ICLs. There is very

little known about the formation and repair of melphalan induced crosslinks in ovarian

cancer cells obtained from patients.

A2780 and A2780cisR ovarian cancer cells were incubated with melphalan for 1 hour

(similar to cisplatin), and the cells analysed after varying amounts of time to establish the

peak of ICL formation. The peak of ICL formation was found to be at 16 hours post

melphalan incubation. Therefore the time points used in this experiment were 16 hours,
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and 40 hours which is 24 hours after the peak of ICL formation to investigate the level of

ICL repair.

The concentration of melphalan that gave 50% decrease in tail moment at the peak of ICL

formation was also investigated. Too high a concentration would kill the cells, and too low

a concentration of melphalan would result in not enough ICL formatio to enable

measurement. The optimum concentration of melphalan was found to be 50µM.

Figure 31: A time course over 40 hours to show the change in percent decrease in tail

moment over time in A2780 and A2780cisR cell lines after treatment with melphalan (n=3,

standard error bars are shown)
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The level of ICL formation as measured by the percent decrease in tail moment at 16 hours

for the A2780 and A2780cisR cell lines are similar at 40%1 and 46%0, respectively

(figure 31). There was no significant difference in these values using students paired t-test

(p<0.40). The peak of ICL formation is very similar in both cell lines, suggesting similar

amounts of melphalan reaches the DNA in both cell lines, to produce similar levels of

DNA damage in the form of ICLs.

After 24 hours the percent decrease in tail moment in the A2780cisR cell line decreases to

10%18, while the A2780 cell line maintains a level of 42%7. This was not significantly

different using students paired t-test p<0.10, because significance is usually taken if

p<0.05. The lack of statistical significance was probably because the sample size was too

small. This illustrates the persistence of ICLs in the A2780 cell line, and the unhooking (or

repair) of ICLs in the A2780cisR cell line over 40 hours.

3.5 Clinical ovarian cancer tissue treated ex vivo with melphalan

3.5.1 Measurement of ICL formation and repair in ovarian cancer cells obtained

from patient ascites and solid tumour when treated with melphalan ex vivo.

As the peak of ICL formation was confirmed to be 16 hours in A2780 and A2780cisR cell

lines, this time point was used in the clinical samples. ICL formation and repair were

measured in clinical samples at 16 hours and 40 hours following a 1 hour treatment of

50µM of melphalan.
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Figure 32: Percent decrease in tail moment at 16 hours in pre- and post-chemotherapy
patients treated ex vivo with 50M melphalan.

In 12 pre-chemotherapy patients the average percent decrease in tail moment at 16 hours

was 49% 12, and for 7 post-chemotherapy patients was 45% 8 (figure 32 and figure 33).

These values are statistically similar, using students paired t-test (p<0.65), which suggests

there is no difference in the level of ICL formation at 16 hours in these two groups of cells.
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Figure 33: Percent decrease in tail moment at 16 hours in pre- and post-chemotherapy

patients treated ex vivo with 50M melphalan. Horizontal bars indicate mean of each

group.

In the pre-chemotherapy patient group, samples ranged from 30-64% decrease in tail

moment, with the majority between 44-64% decrease in tail moment. The post

chemotherapy group of patients had a similarly narrow range of results between 38-58%

decrease in tail moment (figure 33). There was no significant difference in these values

using students paired t-test (p<0.40). The similar levels of ICL formation present in both

these patient groups illustrates that similar amounts of melphalan reaches the DNA of the

cells to produce similar levels of ICLs.
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After the peak of ICL formation had been established, the percent repair was measured at

40 hours (figure 34 and 35).

Figure 34: Percent repair at 40 hours in pre- and post-chemotherapy patients treated with

melphalan.

Figure 34 and 35 show the percent repair at 40 hours in both patient populations. In

general, both pre- and post-chemotherapy patients have low levels of melphalan ICL

repair. The mean was 4% 28 and 3% 26 for the pre- and post-chemotherapy patients

respectively, which is very similar. There was no significant difference in these values

using students paired t-test (p<0.40)
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Figure 35: percent repair at 40 hours in pre- and post-chemotherapy patients treated with

melphalan. Horizontal lines indicate mean of each group.

In some pre-chemotherapy patients the number of ICLs present actually increased at 40

hours, which is why the percent repair figure is negative. This occurred in twelve patient

samples, both before and after chemotherapy. Overall both groups of patients show very

little repair of the ICLs at 40 hours. There are, however exceptions to this in both groups,

which can be seen from the distribution in figure 35. Patient 39, and 45, who are from the

pre-chemotherapy group, repair 60% and 33% of the ICLs that are present, respectively,

whilst the mean for this group is -4%. Patients 27B and 47 from the post-chemotherapy

group, repair 22% and 54% of their ICLs respectively, whilst the mean for this group is

3%.
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Interestingly, patients 39 and 45 have high levels of melphalan ICL repair – 60% and 33%,

respectively (figure 34), but they have very low levels of cisplatin ICL repair – 4% and

6%, respectively (figure 27). This supports the theory that differect mechanisms of ICL

repair exist.

There are two patients in which, a sample was obtained before and after they had received

platinum-based chemotherapy from the data set in fugure 23 and 24. These patients are

numbers 38 (and 38B) and 41 (and 41B). Their percent decrease in tail moment at 16 hours

is 55% and 64% for patients 38 and 41, respectively, and their percent repair at 40 hours is

-16% and 4%, respectively. Both these samples from pateints post-chemotherapy show

very little repair of the ICLs after 40 hours.

Melphalan is not currently given to patients with ovarian cancer. As melphalan and

cisplatin both cause ICLs (which is their main cytotoxic lesion), it was hypothesised that

patients that are clinically sensitive to platinum chemotherapy (and therefore do not repair

cisplatin induced ICLs), would also be clinically sensitive to melphalan if the drug was

given to them, and therefore not repair the ICLs induced by melphalan. It is also

hypothesised that the reverse would also be true, i.e. those patients that are clinically

resistant to platinum chemotherapy, would also be clinically resistant to melphalan, and

therefore repair ICLs induced by either cisplatin or melphalan. However, our data suggest

that this hypothesis is wrong (figure 34 and 35).
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Figure 36: Percent repair in post-chemotherapy patients after treatment ex vivo with either

cisplatin or melphalan

Post-chemotherapy patient ascites samples have been treated ex vivo with either 100M

cisplatin, or 50M melphalan, and the percent repair has been measured at 24 hours for

cisplatin, and 40 hours for melphalan (figure 36). There are high levels of repair in the cells

treated ex vivo with cisplatin ranging from 28% to 77% repair with a mean of 55%±25.

However, ICL repair in the same cells after treatment ex vivo with melphalan is much

lower (mean 2 18). This is statistically significant using students paired t-test (p<0.05).

This means that not only is the ICL repair mechanism different in cells treated ex vivo with

cisplatin or melphalan, but that these cells may be sensitive to melphalan chemotherapy.
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This has implications for the clinical setting and suggests that melphalan could be used to

treat these patients.

3.5.2 Discussion

The results from the MTT assay found the A2780cisR human cancer cell line had a 4-fold

increase in resistance to melphalan compared to the A2780 human cancer cell line (figure

30a). This demonstrates that there is cross resistance of the A2780cisR cell line to

melphalan as well as cisplatin.

In figure 31 the A2780 and A2780cisR cell lines have a very similar percent decrease in

tail moment at 16 hours after incubation with melphalan, indicating they have similar

levels of ICL formation. However at 40 hours (24 hours after the peak of ICL formation),

the A2780 cell lines show little evidence of repair, while the A2780cisR cell lines repair

(unhook) the ICLs, indicating resistance to melphalan. This has not been shown before.

Roy et al (2000) used A2780 and A2780 (100) human ovarian cancer cells that were

selected by exposure to high levels of the nitrogen mustard chlorambucil. They

demonstrated a 5 to 10-fold increase in resistance to nitrogen mustards with A2780(100)

compared to A2780 ovarian cancer cell lines. However Roy et al showed that there was no

difference in the level of DNA repair proteins found in these cells, but instead, the

increased resistance of the A2780(100) cell line was due to the 4 to 8-fold increase of anti-

apoptotic proteins such as Bcl-XL and Mcl-1 (Roy et al., 2000). This mechanism of

resistance appears to be different to the increase in ICL repair which was demonstrated in

the A2780cisR cell line in figure 31. However, the cell lines that were used in their
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experiments were different as the resistant lines had been selected using chlorambucil

instead of cisplatin.

The results found in the A2780 and A2780cisR cell lines after incubation with melphalan,

are very similar to that obtained when the same cell lines were incubated with cisplatin. It

appears the A2780cisR cell line repairs the crosslinks produced by both cisplatin and

melphalan, suggesting there is cross-resistance between the two drugs. However, resistant

mechanisms to melphalan in vitro can differ from cisplatin e.g drug transport, drug efflux,

or detoxification mechanisms using glutathione (Ozols et al., 1992).

Ovarian cancer cells obtained before and after chemotherapy, and then incubated with

melphalan show similar levels of ICL formation (figure 32). This implies that cellular

metabolism of melphalan, influx/efflux, and other ‘upstream’ mechanisms do not play

important roles in the potential resistance to melphalan in the clinical setting. This suggests

that the same concentration of melphalan interacts with the DNA as the same levels of ICL

formation are produced. It also shows that melphalan, like cisplatin, can cause ICL

formation in these cells.

Overall, newly diagnosed, and treated patients show very little repair of melphalan induced

ICLs (figure 34). This implies that these cells are not resistant to melphalan through an

increase in ICL repair. The levels of ICLs that are produced by melphalan appear to be

maintained in the cells over 40 hours, and as these are the main cytotoxic lesions, it follows

that these cells should be sensitive to melphalan. These data also imply that most of the

ovarian cancer cells obtained from newly diagnosed patients are not intrinsically resistant

to melphalan chemotherapy.
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Ovarian cancer cells from post-chemotherapy patients had very different levels of ICL

repair following melphalan or cisplatin exposure. Those cells incubated ex vivo with

melphalan demonstrated very little repair, while those incubated ex vivo with cisplatin had

high levels of repair. This suggests that ovarian cancer cells obtained from post-

chemotherapy patients should be resistant to cisplatin, but sensitive to melphalan

chemotherapy, which could have implications in clinical practice.

There are a few patients that do not fit the overall trend of low levels of ICL repair after

treatment ex vivo with melphalan, as they actually show high levels of ICL repair at 40

hours. These are newly diagnosed patients 39 and 45, and treated patients 27B and 47.

Patients 27B and 47 both have high levels of melphalan induced ICL repair, but have low

levels of repair of cisplatin-induced ICLs (compared to their treated patient group) which

supports the possibility of two distinct mechanisms to repair (unhook) cisplatin and

melphalan induced ICLs. As for patient 39, patient 45 can repair ICLs induced by

melphalan, but not ICLs induced by cisplatin. Both these patients again support the

hypothesis that the repair (or unhooking) of ICLs differs depending on the drug that caused

their formation. However there are lots of other possible resistance mechanisms, and the

comet assay just looks at one aspect, which is repair of ICLs. So it is still possible these

patients could be resistant to melphalan, but via a different mechanism(s). These

mechanisms (if they exist) are unlikely to include drug influx/efflux or other drug

detoxification mechanisms because there are the same levels of ICLs present at 16 hours in

newly diagnosed and treated patients, suggesting that the same concentration of melphalan

encounters the DNA to produce ICLs.
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There are also conflicting reports of patients’ response to melphalan in the clinical trial

setting. There have been two trials, one by Magagnoli et al., (2004), and the other by

Hasan et al., (2003) that have given melphalan to platinum resistant patients with

advanced disease (FIGO stages III-IV). Magagnoli et al., (2004) gave double intermediate-

dose melphalan (100mg/m2) supported by autologous stem cells in 14 patients with

refractory ovarian cancer and poor performance status, and Hasan et al., (2003) gave 10mg

of oral melphalan once a day for 5 days every 6 weeks for 6 cycles in patients with

platinum-resistant relapsed ovarian cancer. These studies report conflicting data. The

regimen by Magagnoli et al., (2004) was well tolerated, and converted one patient from

partial remission (PR) to complete remission (CR). Another four patients had disease

stabilisation, while nine patients with progressive disease (PD) showed a partial response.

Interestingly all patients had a marked improvement in their performance status. The

retrospective study by Hasan et al (2003) showed melphalan was well tolerated, but there

were no responses in these 22 patients. Melphalan had no impact on progression-free

survival or overall survival.

In the analysis undertaken by Hasan et al (2003), it is unclear why nearly all of the patients

did not continue the treatment. This may have a major impact on the poor responses that

were seen. Also, each trial had a different dosage regimen of melphalan, which could have

a major impact on patient response. It appears from the trial by Magagnoli et al (2004),

that high dose melphalan could be used in the clinical setting once it has undergone further

evaluation. This is supported by data in figure 36 in which clinically platinum resistant

patients that repair their ICLs after treatment ex vivo with cisplatin, do not appear to repair

the ICLs caused by treating ovarian cancer cells from the same patient with ex vivo

melphalan.
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3.6 Gene expression Studies

3.6.1 Comparison of gene expression between newly diagnosed and treated patients,

and between A2780 and A2780cisR human ovarian cancer cell lines, using

microarrays

It has been demonstrated that most ovarian cancer cells obtained from post-chemotherapy

patients repaired cisplatin-induced ICLs, more efficiently than the ovarian cancer cells

from pre-chemotherapy patients. The gene expression profiles for each patient population

were investigated to determine if specific differences in gene expression could account for

this difference in their phenotypes. It is also evident that A2780cisR cells repair cisplatin-

induced ICLs which may play an important role in their resistance to platinum

chemotherapy, whereas A2780 cells do not repair cisplatin-induced ICLs. Gene expression

profiles were also investigated in the A2780 and A2780cisR paired human ovarian cancer

cell line to determine if differences in gene expression could account for their difference in

ICL repair.

The Microarray technology used oligonucleotide arrays to analyse 30,000 genes (from the

human genome) from a single sample, and was used to compare gene expression between

pre- and post-chemotherapy patients. A single microarray chip contains thousands of

single-stranded oligonucleotide sequences that are complementary to target sequences,

which are bound onto a glass support about the size of a microscope slide. Fluorescent

dyes were used to label the mRNAs from the cell sample to be analysed, and hybridised

with the oligonucleotide array. The array was then washed to remove any non-specific
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hybrids. A laser then excites the attached fluorescent dyes to produce light which is

detected by a (confocal) scanner which generates a digital image. The digital image is

further processed by specialized software to transform the image of each spot to a

numerical reading. This process is performed, first, finding the specific location and shape

of each spot, followed by the integration (summation) of intensities inside the defined spot,

and, finally, estimating the surrounding background noise. Background noise generally is

subtracted from the integrated signal. This final reading is an integer value assumed to be

proportional to the concentration of the target sequence in the sample to which the probe in

the spot is directed (Trevino et al., 2007). A statistical test is used to assess each gene to

determine whether the expression is statistically different between the two groups of

samples.

The microarray data was analysed by Stephen Henderson at the Wolfson Institute for

biomedical research, University College London using the following protocol:

Data analysis was carried out using the R statistical environment and programming

language (Venables et al., 2002) and packages from the Bioconductor open source

bioinformatics project (Gentleman et al., 2004). The affymetrix package and specifically

the 'rma' algorithm for pre-processing (background correction), normalisation and

calculation of expression values were used (Irizarry et al., 2003). To determine differential

expression between groups of genes in pre-chemotherapy and post-chemotherapy patient

samples, the ‘limma’ package was used. This method is a simple extension of standard

linear models that uses a moderated estimate of the standard deviation modeled on the

overall mean-variance characteristics of the data (Smyth et al., 2004). In essence a

moderated t-test for paired data was used.
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The first step to produce a sample for microarray analysis is to extract good quality total

RNA from ovarian cancer cells from patient samples. It was very difficult to establish an

effective protocol to extract good quality total RNA in the clinical setting. It was found

that ovarian solid tumour tissue needed to be frozen in liquid nitrogen within 5 minutes of

being removed from the patient otherwise all the RNA would degrade and become

unusable. This meant that a flask of liquid nitrogen was taken into the theatre at the start of

the operation, in readiness for the surgeon to remove the ovarian tissue. However, this

meant that patients 1, 1B, and 2 had no usable total RNA extracted from the solid tumour

samples, as it was unknown at this stage how important it was to freeze the samples in

liquid nitrogen within 5 minutes. It was easier to extract total RNA from ovarian cancer

cells from ascites, as it was less likely the RNA would degrade, because the cells were

cultured and grown in the laboratory.

Altogether 17 patients had good quality total RNA extracted from samples as determined

by gel electrophoresis (figure 37), and by analysis of nucleic acid content using the

nanodrop machine where only samples with a ratio of 1.8-2.05 were used. Of these 17

patient samples, 4 patients had paired samples (taken before and after chemotherapy), and

1 patient had both ascites and solid tumour microarray samples.



Page 175

Pt 33 pt 37 pt 41

Figure 37: A typical gel produced after gel electrophoresis on total RNA extracted from 3

patients. All these samples are extracted from ascites.

Microarray experiments were conducted using patients numbered 21, 24, 25, and 26 but

the quality of these results were very poor, because the fragmented cRNA had degraded.

Therefore these results are not included. In total there are 12 samples from patients before

chemotherapy, 6 from patients after chemotherapy. Of these samples 4 patients had a

sample taken before and after chemotherapy (paired samples).

Heat map 1 (figure 38) shows the difference in gene expression in pre- and post-

chemotherapy samples taken from the same patient, in 4 patients. The gene expression in

samples from post-chemotherapy patients, are used as a baseline to which gene expression

from pre-chemotherapy patients are compared. This subset of patients is shown separately,
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as within this group of patients are statistically significant different levels of gene

expression. The red colour denotes an increase in gene expression and blue denotes a

decrease in gene expression. White means there is not a decrease or an increase in gene

expression. The letter B indicates a post-chemotherapy sample, and 1 or 2 denotes repeated

microarray experiment using the same sample, but processed independently. Figure 39 and

40 show the names of the differentially expressed genes found, and the statistical analysis.
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Figure 38: Heat map 1 shows the difference in gene expression in 4 paired patient ascites

samples. Gene abbreviations are shown down the right hand side, and patient sample

numbers are across the top (asc. is ascites, pt is patient)
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Genes upregulated in post-chemotherapy samples:

symbol Gene name M
value

A value t value p value

TRAF3IP1 TNF receptor-associated
factor 3 interacting protein
1

-0.3219 3.7635 -4.0572 0.0017491

PTAR1 Protein prenyltransferase
alpha subunit repeat
containing 1

-0.4798 3.4530 -4.2153 0.0013298

AT4G28910 N/A -0.9991 3.6493 -4.4545 0.0008833
STK38L Serine/threonine kinase like -1.0745 6.6846 -4.6433 0.0006430
NDUFS5 NADH dehydrogenase

(ubiquinone) Fe-S protein 5
-0.4683 11.0169 -3.9615 0.0020678

DNAJB4 DnaJ (heat shock protein 4)
homolog, subfamily B,
member 4

-1.0322 6.4489 -4.8552 0.0004529

SGEF Src homology 3 domain-
containing guanine
nucleotide exchange factor

-0.8252 3.903 -5.966 0.0000798

GSPT1 G1 to S phase transition 1 -0.5990 3.0582 -4.3073 0.0011351
CDK6 Cyclin dependent kinase 6 -0.7719 8.3511 -4.7224 0.0005636
MRPS22 Mitochondrial ribosomal

protein s22
-0.5480 4.8587 -3.8699 0.0024293

PGK1 Phosphoglycerate kinase -0.6810 3.4497 -4.4319 0.0009180
LOC440900 N/A -0.4331 3.4623 -4.3742 0.0010126
SCAMP1 Secretory carrier membrane

protein 1
-0.5792 6.6094 -4.7199 0.0005661

LOC492311 N/A -1.0677 4.7226 -4.1283 0.0015457
ARHGAP5 Rho GTPase activating

protein 5
-0.9813 4.521 -5.976 0.0000787

TRIM62 Tripartite motif-containing
62

0.4888 5.5970 -4.2370 0.0012810

GUCY1B3 Guanylate cyclase 1,
soluble, beta 3

-0.3951 3.2064 -4.3878 0.0009893

KPNB1 Karyopherin (importin)
beta 1

-0.5415 7.7464 -4.3336 0.0010853

MICAL3 Microtubule associated
monoxygenase, calponin
and LIM domain containing
3

-0.4041 3.8238 -4.0189 0.0018701

Figure 39: Statistical analysis of the genes shown in heat map 1 (figure 38), that are

upregulated in post-chemotherapy samples. M is the log difference between the two

groups. A is the average expression. A t value an estimation of a coefficient, the t-statistic

for that coefficient is the ratio of the coefficient to its standard error. That can be tested
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against a t distribution to determine how probable it is that the true value of the coefficient

is really zero.
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Genes down-regulated in post-chemotherapy samples:

symbol Gene name M
value

A value t value p value

ILKAP Integrin –linked kinase-
associated serine-threonine
phosphatase 2C

0.2912 2.7734 3.9893 0.0019694

TMEM5 Transmembrane protein 5 0.8255 9.1113 4.3747 0.0010118
LACTB2 Lactamase beta 2 0.9287 7.2117 4.0665 0.0017212
SSU72 RNA polymerase II CTD

phosphatase homolog
(yeast)

0.4407 4.4793 3.8891 0.0023485

SAP30 Sin-3-associated
polypeptide, 30kDa

1.1544 6.9173 4.2875 0.0011745

CTBP2 C-terminal binding protein
2

0.4470 9.4976 4.4742 0.0008544

PLSCR1 Phospholipid scramblase 1 0.6761 8.1481 4.6702 0.0006149
RNF135 Ring finger protein 135 0.6891 7.9558 3.9057 0.0022807
RPS6KA5 Ribosomal protein s6

kinase
0.5550 3.7897 3.9339 0.0021704

RP11 Retinitis pigmentosa 11 0.5101 6.8815 5.161 0.0002758
C17orf76 Chromosome 17 open

reading frame 45
0.5128 3.7123 3.8603 0.0024709

RPL4 Mitogen-activated protein
kinase 13/ ribosomal
protein 4

0.8080 9.127 5.638 0.0001308

TOMM22 Translocase of outer
mitochondrial membrane
22 homolog (yeast)

0.6196 6.3192 3.9544 0.0020937

KIAA1026 Kazrin 0.6559 7.7342 3.9396 0.0021490
CDV3 CDV3 homolog (mouse) 0.8663 9.2605 4.1380 0.0015200
UBE3C Ubiquitin protein ligase

E3C
0.2892 2.6860 4.0613 0.0017368

Figure 40: Statistical analysis of the genes shown in heat map 1 (figure 38), that are

downregulated in post-chemotherapy samples. M is the log difference between the two

groups. A is the average expression. T-value is an estimation of a coefficient, the t-statistic

for that coefficient is the ratio of the coefficient to its standard error. That can be tested

against a t distribution to determine how probable it is that the true value of the coefficient

is really zero.
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Heat map 1 is divided into two with the top half indicating genes that are overexpressed in

post-chemotherapy samples, and the bottom half indicates genes that are underexpressed in

post-chemotherapy samples.

Genes that are most upregulated in the post-chemotherapy samples (i.e show a more

negative M value in figure 39, and show a darker red colur in the heat map) include

STK38L (Serine/threonine kinase like), DNAJB4 (DnaJ (heat shock protein 4) homolog,

subfamily B, member 4), SGEF (Src homology 3 domain-containing guanine nucleotide

exchange factor), CDK6 (cyclin-dependent kinase 6), and ARHGAP5 (Rho GTPase

activating protein 5). The probe sites for these genes are blue/white for low expression in

the pre-chemotherapy samples and red for over expression in the post chemotherapy

samples (the darker the colours, the greater the difference in gene expression). The colours

alternate from blue/white to red as the heat map is read from left to right as the pre-

chemotherapy sample is next to its corresponding post-chemotherapy sample taken from

the same patient. These genes are clearly consistently expressed at a higher level in the

post-chemotherapy samples as the colours on the heatmap demonstrate.

Genes that are most down regulated in post-chemotherapy samples (i.e show a more +ve M

value in figure 40, and a darker blue colour on the heatmap) include LACTB2 (Lactamase

beta 2), SAP30 (Sin-3-associated polypeptide, 30kDa), and RNF135 (Ring finger protein

135). The probe sites for these genes are red/white for high expression in the pre-

chemotherapy samples, and blue for low expression in the post-chemotherapy samples.

These genes are clearly consistently expressed at a lower level in the post-chemotherapy

samples as the colours on the heatmap demonstrate. However, it should be noted that
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patient 33 ascites tumour (pt 33 asc.tu), and its corresponding post-chemotherapy sample

(pt 33 asc.tu b) have overall lighter colours on heatmap 1. This means the genes are not as

highly or lowly expressed compared to other patient samples e,g patient 41. However, the

results still fit into the overall pattern of gene expression.

Comparing gene expression levels between all pre- and post-chemotherapy patient samples

yielded results that were not statistically significant, and could have occurred by chance.

Instead, the panel of differentially expressed genes that were identified in the paired patient

data set were looked at, to see if the same genes were up- or down regulated in these

samples also. The gene expression profiles in ovarian cancer cells from post-chemotherapy

patients were used as a baseline (samples; pt 06 asc. tu., pt 37 asc. tu., pt 33B asc. tu, pt

17B asc. tu., pt 27B asc.tu, pt 41B asc. tu.) to which the gene expression of pre-

chemotherapy patients, were compared (figure 41). The red colour denotes an increase in

gene expression and blue denotes a decrease in gene expression. White means there is not a

decrease or an increase in gene expression.
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Figure 41: heat map 2 shows the gene expression profiles of cell lines, and all patient samples. Gene

abbreviations are shown down the right hand side, and patient sample numbers are across the top (asc.tu is a

sample from ascites, s.tu is a sample from solid tumour)
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Heat map 2 (figure 41) shows the difference in gene expression in 14 patient samples.

There are 6 patients that have post-chemotherapy samples, and they are numbers 6 and 37,

as well as patients 17, 27, 33, and 41 that have paired samples (taken before and after

chemotherapy). All the others are pre-chemotherapy samples (patient numbers 1, 3, 4, 10,

12, 16, 18 as well as patients 17, 27, 33 and 41 that have paired samples taken before and

after chemotherapy). Most these samples are from ascites, but patient 3, 4, 12, and 16 are

all from pre-chemotherapy solid ovarian tumour.

In heatmap 2 there are only 2 post-chemotherapy samples (patient 6 ascites tumour, and

patient 37 ascites tumour), apart from the paired patient samples. This makes it difficult to

make comparisons between the two groups of samples. Also some of the samples contain

solid tumour as well as ascites, which can have an impact on the levels of gene expression

because variations occur between tissue types.

The top part of heatmap 2 from gene SSU72 down to TRIM62 demonstrate lower gene

expression levels of these genes in the post-chemotherapy paired patient samples (on the

left hand side). This is demonstrated by the darker blue colour in these probe sites. It would

be expected, therefore that pre-chemotherapy patient samples would have slightly higher

levels of these genes expressed. The right hand side contain mainly pre-chemotherapy

samples, and these probe sites are mainly red indicating that genes SSU72 to TRIM62 are

indeed expressed at a higher level in these samples.

The bottom part of heatmap 2 from gene CDK6 downwards demonstrate higher gene

expression levels of these genes in the post-chemotherapy paired patient samples (on the

left hand side). This is demonstrated by the darker red colour in these probe sites. It would



Page 185

be expected, therefore that pre-chemotherapy patient samples would have slightly lower

levels of expression of these genes. This is demonstrated by the mainly blue colours of the

pre-chemotherapy sample probe sites on the right hand side.

The two post-chemotherapy samples (pt 6 asc.tu, and pt 37 asc.tu) that are within the pre-

chemotherapy samples on the right hand side do not appear to stand out according to their

levels of gene expression. Patient 37 overall has very low levels of gene expression, and

only a few genes from the gene expression profile of patient 6 appear to fit the pattern.

These include genes GUCY1B3, and KIAA1026 which are down regulated, and gene

MRPS22 (Mitochondrial ribosomal protein s22) which is up-regulated in the post-

chemotherapy patient 6 sample, and appears to fit with the pattern. However, although the

trend of gene expression seems consistent in these data set compared to the paired patient

data set, the results are not statistically significant.

3.6.2 Relative levels of gene expression in ovarian cancer cells from newly diagnosed

and treated patients using real-time polymerase chain reaction

ERCC1 and GAPDH (internal control) were investigated using real time PCR. ERCC1 was

used because this gene is known to be involved in repair of cisplatin damage and in ICL

repair. An increase in ERCC1 gene expression in post chemotherapy patients could

therefore contribute to their increase in ICL repair. The primers for ERCC1 had already

been optimised, but further experiments were carried out to ensure the primers had very

similar relative binding efficiencies compared to the internal control primer (GAPDH).

This meant that both primers bound their respective sequences of DNA at the same rate.
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Therefore if differences in gene expression were detected, it would not be due to a higer

efficiciency of one primer set.

The experiment was set up according to the template for the standard curve (see method).

This meant that RT-PCR with each primer set was performed on serial dilutions of cDNA.

Once the experiment was complete, the cycle threshold (Ct) values were arbitrarily set by

hand in the region of exponential flouresence on the amplification plot (for both GAPDH

and ERCC1), and the results were analysed at this given Ct value. The Ct values for the

primer (ERCC1) being investigated had to be the same as GAPDH to make it a direct

comparison. Flouresence values for GAPDH and ERCC1 were read at the given Ct value

and the results subtracted from one another. Results were then plotted and the slope of the

figure was calculated to give the relative primer efficiencies over a given cDNA starting

amount.
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Figure 42: shows the relative efficiency for ERCC1 primer compared to GAPDH.

The relative primer efficiency for ERCC1 compared to GAPDH is 0.0316, which is the

slope of the line in figure 42. This means this primer is optimised as the relative efficiency

is less than 0.1.

The Ct value for ERCC1 and GAPDH was 0.597. The experiment was then set up in

triplicate using the same cycling conditions as the standard curve experiment. The same Ct

value was used to analyse the data. The fluorescence of GAPDH was taken away from the

ERCC1 value and the results averaged for each patient sample.
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Figure 43: Relative gene expression levels of ERCC1 in pre- and post-chemotherapy

patient samples, using the pre-chemotherapy samples normalised to 1.

As can be seen from figure 43 there is an increase in ERCC1 gene expression in the post-

chemotherapy samples. The average increase is 14.4% +/-0.8%. This apparent difference

in gene expression may contribute to the increase in ICL repair seen in the post-

chemotherapy patient samples. Results obtained from microarray samples also showed a

small increase in ERCC1 expression in post-chemotherapy samples, but this was not

statistically significant, using students paired t-test (p<0.40).
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3.6.3 Discussion

The samples used to investigate gene expression using microarray analysis were taken

straight from the patient and either processed immediately (such as solid tumour samples),

or cultured in the lab (such as ovarian cancer cells extracted from ascites). The gene

expression levels measured are basal levels. The discussion relates to the different basal

levels of gene expression found between the two groups. In the comet assay, the data are

derived following cisplatin treatment. No attempt to measure changes in gene expression

following cisplatin treatment was made in this study.

Interestingly, none of the differentially expressed genes identified included apoptotic

regulators, ATP binding cassette transporters, metallothionein, and DNA repair

components, which have all been implicated in cisplatin resistance in cell model systems.

This was similar to a study by Hartmann et al (2002) where microarray analysis was

performed on solid ovarian cancers obtained from patients to predict early relapse after

treatment with carboplatin-paclitaxel. In a different study Hartmann et al showed genes

involved in inhibiting BRCA1, and other genes involved in activating nuclear factor κB 

were up-regulated (Hartmann et al., 2005). But there were other genes identified in our

experiments that were up or down regulated in pre-chemotherapy patients when compared

to post-chemotherapy patients.

Genes that are most upregulated in the post-chemotherapy samples (i.e show a –ve M

value) include unknown genes such as LOC492311, and AT4G28910. Other genes highly

upregulated in post-chemotherapy samples encode proteins involved in cell-cycling such as

ARHGAP5 (Rho GTPase activating protein 5), CDK6 (cyclin-dependent kinase 6), and
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GSTP1 (G1 to S phase transition 1). GUCY1B3 (Guanylate cyclase 1, soluble, beta 3) is

involved in cell signalling, and is also upregulated.

Rho GTPase activating protein 5 is part of the family of Rho GAPs (Rho GTPases

activating protein) that are key protein regulators of the various and numerous small

GTPases. Rho GAPs mediate a variety of receptor-transduced signals, and appear to play

an essential role in growth factor dependent GTPase regulation (Bernards et al., 2005).

Rho GAPs are also involved in cell-cycle progression (Settleman et al., 1992), but there

are no known link to DNA repair, and it is unclear whether its role in cell-cycle

progression could have an effect on resistance to chemotherapy as shown in cells from

post-chemotherapy patients.

CDK4/6 on binding to cyclin D begins the phosphorylation of retinoblastoma protein

(pRb) complexed to E2F/DP (transcription factor E2F with dimerisation partner).

Following pRb phosphorylation, cyclin E activates CDK2 (cyclin-dependent kinase 2) to

effect further phosphorylation of pRb, thereby enabling the cells to cross the G1 restriction

point (Sridhar et al., 2006). CDK6 is important in promoting cell gowth and division, and

therefore has oncogenic properties. Its upregulation in post-chemotherapy samples

indicates it may have a role in the cells resistance to chemotherapy by overcoming the cell

cycle checkpoints, and by promoting cell growth and division. This is a different

mechanism of resistnace to the increase in ICL repair seen in these cells. However, cellular

chemotherapy resistance is likely to be multifactorial.

Guanylyl cyclases are a family of enzymes that catalyze the conversion of GTP to cGMP.

Accumulation of cGMP regulates complex signaling cascades through immediate
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downstream effectors, including cGMP-dependent protein kinases, cGMP-regulated

phosphodiesterases, and cyclic nucleotide-gated ion channels (Lucas et al., 2000).

Guanylyl cyclases are regulated by peptide hormones, bacterial toxins, and free radicals, as

well as intracellular molecules, such as calcium and adenine nucleotides. It is unclear why

Guanylate cyclase 1 is upregulated in post-chemotherapy samples, and what relevance this

has to increase in ICL repair shown in these cells. However their involvement in diverse

signalling pathways could play a role in cellular communication of yet unknown relevance.

Genes that are most down-regulated in post-chemotherapy samples (i.e show a +ve value)

include ring finger protein 135, and SAP30 (Sin-3-associated polypeptide, 30kDa). SAP30

interacts with parts of the Sin3A corepressor complex which recruits histone deacetylases

and in many cases represses transcription (Viiri et al., 2006). The down-regulation of this

gene repressor could potentially result in the over-expression of other genes, such as those

involved in promoting chemotherapy resistance.

The protein encoded by Ring finger protein 135 (RNF 135) contains a RING finger domain

that is known to be involved in protein-protein, and protein-DNA interactions. This gene is

located in a chromosomal region known to be frequently deleted in patients with

neurofibromatosis (Douglas et al., 2007). It is thought that mutations within RNF135 can

promote human growth, as well as give rise to dysmorphic features, and learning disability

which is characteristic of this syndrome (Douglas et al., 2007). It is unclear what

involvement in the promotion of growth this protein has, and future developements are

awaited.
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This type of microarray analysis is used to determine levels of gene expression, by

measurement of mRNA levels. However post-transcriptional and post-translational

modifications of mRNA and proteins are not accounted for and therefore different

techniques need to be used to investigate these modifications. These modifications can

have a profound impact on the functions of the cell, as a small increase in gene expression

may have a greatly amplified affect caused by post-transcriptional and post-translational

modifications. The reverse is also true that a large increase in gene expression may have

only limited affects on the cell due to these modifications to mRNA and proteins. This

could contribute to why there are no clear differences in DNA repair gene expression in the

post-chemotherapy patients. It is therefore appropriate to investigate differences in gene

expression at the protein level.

It is also unclear what impact treatment of patient samples with cisplatin ex vivo would

have on the relative levels of gene expression in pre and post-chemotherapy patients. This

may have had a profound impact on the results obtained from microarray analysis, and will

be the subject of future research.
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4. DISCUSSION

The results presented demonstrate that ICL repair may play an important role in the

resistance of both the A2780cisR cell lines and in 14 treated patients to cisplatin

chemotherapy. Interestingly this was demonstrated in both primary ovarian solid tumour,

and ovarian cancer cells obtained from ascites, suggesting they have similar cellular

pathways that process cisplatin and its adducts.

However, it should be noted that measurement of % decrease in tail moment is really a

measurement of ‘unhooking’ of one arm of the ICL that releases the linkage of the two

DNA strands. Unhooking is the first step in the repair of ICLs, and is also thought to be the

rate limiting step of this complex process (McHugh et al., 2001). The comet assay

measures unhooking, but does not provide information on the completion of repair and the

resulting restoration of integrity of both DNA strands of the double helix.

Although ovarian cancer cells from treated patients (post-chemotherapy) are not

necessarily the same as resistant patients, they behave similarly to the A2780cisR ovarian

cancer cells as they both repair ICLs after treatment with cisplatin. However, this does not

appear to be true when the cells are treated with melphalan, another crosslinking agent.

The A2780cisR cell line appears to repair the crosslinks produced by melphalan, but the

post-chemotherapy patients do not appear to repair the ICLs after exposure to melphalan ex

vivo. This means caution should be used when examining the responses of this cell line as

it may not correspond completely to the clinical situation. However, cell lines are still a

valuable tool, because obtaining good quality ovarian cancer cells from patients is both
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time consuming and difficult, and cell lines may help to guide experimentation in the

clinical setting.

4.1 Cisplatin-induced ICL repair in human ovarian cancer cell lines

A possible mechanism of enhanced ability to repair ICLs by the A2780cisR cell line

involves ERCC1 (excision repair cross-complementation group 1), part of the nucleotide

excision repair (NER) pathway (Yan et al., 2006) which is one of the major repair

pathways and also part of the mechanism of repair of ICLs. ERCC1-XPF plays a role in

DNA damage recognition and makes the initial cut in the DNA strand 5’ (Sancar et al.,

1996), which is termed unhooking of the ICL, and is thought to be the rate limiting step

(Mu et al., 1995). In support of this, cells defective in ERCC1 are very sensitive to ICL

agents, such as nitrogen mustards (De Silva et al., 2000), and cisplatin (De Silva et al.,

2002). It is thought that NER, as well as homologous rembination (HR) are involved in the

repair of cisplatin ICLs, although the role of ERCC1 is thought to be mainly unhooking of

ICLs and not part of the recombinational components of cross-link repair (De Silva et al.,

2000).

The importance of ERCC1 is demonstrated by Li et al who demonstrated a six-fold

increase in the mRNA levels of ERCC1 in A2780/CP70 cells after treatment with cisplatin.

The A2780cisR cell lines that were used in our experiments were A2780/CP8, and

therefore are different to the A2780/CP70 cell lines mentioned here. The A280/CP70 cell

lines were made resistant to cisplatin by exposure to higher concentrations of cisplatin.

However, there are still similarities in their behaviour. In in vitro studies, over-expression
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of ERCC1 is associated with a platinum-resistant phenotype in ovarian cancer cells (Parker

et al., 1991). Cisplatin hypersensitive, repair deficient cells have 30- to 50-fold lower

levels of ERCC1 compared to inherently resistant cells (Lee et al., 1993). Furthermore,

Interleukin (IL)-1α has been shown to increase cisplatin cytotoxicity in vitro in the

A2780/CP70 cell line by reduction of ERCC1 mRNA levels (Li et al., 1998). This has led

to a reduction in repair of ICLs, and further supports the role of ERCC1 in resistance of

A2780/CP70 cells to cisplatin (Li et al., 1998). XPA (xeroderma pigmentosum A) is also

important in NER and down-regulation of gene expression by antisense RNA transfection

can reduce DNA repair, and therefore reduce resistance of tumour cells to cisplatin (Wu et

al., 2003).

The MCAS cell line and the A2780/CP70 cell line are equally resistant to cisplatin,

although the MCAS cell line differs by an ERCC1 polymorphism at codon 118, which

markedly reduces induction of ERCC1 mRNA levels compared to A2780/CP70 cells (Yu

et al., 2000). The A2780/CP70 cell line repaired 50% more cisplatin-DNA adducts present

compared to the MCAS cell line, although these cells have less cisplatin-DNA adduct

formation present due to their increased cytosolic inactivation of the drug (Yu et al., 2000).

This mechanism may be a compensatory cellular response to the decreased ability to repair

the ICLs (Yu et al., 2000). Antisense ERCC1 RNA was used to sensitize the resistant

OVCAR10 human ovarian cancer cells to cisplatin in an ovarian cancer xenograft model

(Selvakumaran et al., 2003). These results suggest the importance of ERCC1 in cisplatin-

DNA adduct repair in A2780 cell lines as well as other human ovarian cancer cell lines.

ERCC1 appears to be regulated by genes such as AP-1 (activator protein 1) and MZF1

(myeloid zinc finger gene 1) (Li et al., 1998) located approx 410bp upstream from the
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ERCC1 gene (Yan et al., 2006). AP-1 is bound by c-fos and c-jun transcription factors,

which have a 4-fold increase in mRNA levels, and a 14-fold increase in c-jun

phosphorylation, in response to a 1-hour incubation with cisplatin in A2780/CP70 cells (Li

et al., 1998). This corresponds to increased binding of the AP-1 site (Li et al., 1998).

MZF1 encodes a transcription factor that functions as a transcription repressor of ERCC1,

as well as a repressor of the promoter of ERCC1 (AP-1) (Yan et al., 2006). Studies have

shown that cisplatin reverses this repression of ERCC1 by MZF1 in A2780/CP70 cells,

which could explain the mechanism of cisplatin resistance in these cells (Yan et al., 2006).

Inhibition of DNA repair by reduction of ERCC1 mRNA levels could potentially be used

in the clinical setting to combat resistance to cisplatin, if a suitable inhibitor was found.

Lactacystin is a selective inhibitor of the proteasome that can inhibit the ubiquitin pathway,

and was used at concentrations that do not appear harmful, to increase cisplatin

cytotoxicity in three resistant human ovarian carcinoma cell lines via inhibition of ERCC1

transcription (Li et al., 2001). Lactacystin also significantly enhanced DNA platination (Li

et al., 2001).

Ets-1 is a transcription factor which has been found to be important in resistance of a

human ovarian cancer cell line called C13 to cisplatin (Bergoglio et al., 2001). Ets-1 was

up-regulated in cisplatin-resistant C13 cells as compared with the sensitive 2008 cell line

and over-expression of this protein in 2008 cells led to a seven fold increase in resistance

(Wilson et al., 2004). There is also evidence that Ets-1 transcriptionally activates genes

whose products are well described in cisplatin resistance such as DNA repair enzymes

(Wilson et al., 2004). The association of Ets-1 to cisplatin resistance may have therapeutic

significance, but this remains to be established.



Page 197

Other possible mechanisms to up-regulate NER in mammalian cells have been found.

Wang et al have shown that selective post-translational modification of histones on

platinated nucleosomes may provide a general strategy for recruiting NER factors more

efficiently and thus help to overcome the nucleosome barrier to excision repair (Wang et

al., 2003). This may lead to cellular resistance to platinum compounds. The comet assay

measures unhooking of interstrand crosslinks, and it is clear from the results (figure 15)

that there is increased repair in the A2780 cisplatin resistant cell line, which could partly be

due to histone modifications.

It has also been shown that binding of the MMR complex to DNA adducts appears to

increase the cytotoxicity of cisplatin in tumour cells (Papouli et al., 2004). This may occur

by activating downstream signalling pathways that lead to apoptosis or by causing ‘futile

cycling’ during translesion synthesis past DNA adducts of cisplatin (Vaisman et al., 1998).

Both hMSH2 and MutS proteins (Fourrier et al., 2003), as components of the MMR

complex have been shown to bind to cisplatin adducts. Defects in MMR in human kidney

cells may result in resistance or tolerance of cancer cells to cisplatin (Papouli et al., 2004).

This may contribute to the resistance found in the A2780cisR cell line to cisplatin.

P53 is a tumour suppressor involved in DNA repair, cell cycle, and apoptosis, and its levels

increase upon exposure to genotoxic compounds due to several post-transcriptional

mechanisms (Brabec et al., 2005). Interestingly, cisplatin-induced stabilisation of p53

protein in A2780 cell line (platinum sensitive) is markedly less pronounced then in the

A2780cisR cell line (Yazlovitskava et al., 2001). This is consistent with the observation

that inactivation of wild-type p53 function in A2780 cells by transfection with HPV-16 E6
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(a protein that binds p53 and targets it for degradation) increases cisplatin sensitivity and

decreases cisplatin-DNA adduct repair (Pestell et al., 2000).

There is clearly evidence that A2780cisR resistance to platinum based chemotherapy is

characterised by up-regulation of DNA repair mechanisms, and increase in ICL unhooking

in cell lines. The literature suggests this could include up-regulation of ERCC1. Little is

known about the occurrence of this in the clinical setting. The comet assay has not been

used before to measure ICL unhooking in ovarian cancer cells direct from patients. This

was investigated to determine if increased ICL repair was involved in the development of

platinum resistance in the clinical setting.

4.2 Cisplatin-induced ICL repair in ovarian cancer cells obtained from patient

samples

There is evidence that there is a difference in the levels of DNA repair in cells obtained

from patients at different ages. This was clearly demonstrated in a study by Rudd et al

(1995) where peripheral blood mononuclear cells were taken from patients of varying age.

It was found that peripheral blood mononuclear cells from older patients treated with

cisplatin, had markedly reduced levels of ICL repair as measured by alkaline elution,

compared to peripheral blood mononuclear cells obtained from younger patients (Rudd et

al., 1995). This is also thought to be true in other cell types. In this study there were no

significant differences in the ages of newly diagnosed and treated patients (mean age

newly diagnosed patients 66 +/- 11, and mean age treated patients 66 +/- 10). This means
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that this variable should have equal affect on each patient group, and therefore should not

bias the results.

In figure 27 (results chapter) there is a clear increase in ICL repair in ovarian cancer cells

from patients after they have received platinum chemotherapy. This suggests that the

increase in ICL repair is not likely to be intrinsic to these ovarian cancer cells, but they

acquire this mechanis. It could also be that by treating these cells with chemotherapy, the

cells that survive are selected for for their ability to repair DNA. It is possible that this

increase in ICL repair is mediated by an increase in the levels of ERCC1, which is an

important protein involved in the rate limiting step of the ICL repair process. AP-1 is an

important transcription factor of ERCC1, and can induce the levels of ERCC1 mRNA and

protein expression in A2780 human ovarian cancer cell lines when they are incubated in

vitro with cisplatin (Li et al., 1998). There is some evidence, that cisplatin can induce

expression of proto-oncogenes c-fos/c-jun and activate c-Jun NH2 –terminal Kinase /

stress-activated protein kinase (JNK/SAPK – a subfamily of the MAP kinases involved in

the Ras pathway) in ovarian cancer cells and other tumour cells (Liu et al., 1996).

JNK/SAPK phosphorylates transcription factor c-jun protein which greatly increases the

transcriptional activity of AP-1, and AP-1 related genes (Derijard et al., 1994). These

observations of induction of ERCC1 expression have been seen in cancer cell lines, rather

than in clinical samples obtained from patients. However, it is still possible that cisplatin

can induce ERCC1 protein expression, through activation of the transcription factor AP-1,

that accounts for the acquired mechanism of increased ICL repair in these patients.

To support this theory, high levels of ERCC1 mRNA and protein in patient samples have

been associated with clinical resistance to platinum chemotherapy (Altaha et al., 2004).
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Furthermore, drugs that decrease expression of ERCC1 cause the reversal of platinum

resistance when given to cancer cell lines in vitro prior to platinum-based chemotherapy

(Altaha et al., 2004). Also, in patients with completely resected non-small-cell lung

cancers that are ERCC1 negative benefit from adjuvant cisplatin chemotherapy, whereas

those that are ERCC1 positive do not benefit (Olaussen et al., 2006). Interestingly, cells

defective in ERCC1 are much more sensitive to cisplatin than cells defective in other

components of the NER pathway (e.g XPB, XPD, XPG mutants), even though all these

cells are equally defective in the unhooking step of ICL repair (De Silva et al., 2002). This

suggests that ERCC1 is involved in other repair processes as well as NER that are

important in ICL repair such as homologous recombination. In support of this, XRCC2 and

XRCC3 mutants are extremely sensitive to cisplatin and, as these proteins are involved in

HR, this suggests that HR is necessary for the repair of cisplatin adducts (Caldecott et al.,

1991). It has also been shown in human tissues from patients with ovarian cancer, a

possible molecular basis for co-ordinate mRNA expression of genes involved in NER,

suggesting that NER is important in human cancers (Zhong et al., 2000).

Results from qPCR indicate that there is a small up-regulation of basal ERCC1 mRNA

levels in the post-chemotherapy samples from patients 17B, 33B, and 41B, as compared to

their pre-chemotherapy samples (figure 43). However, these results are not statistically

significant. This is probably because there are only three samples, and so further

experiments should be undertaken. An increase in ERCC1 mRNA levels may be more

following cisplatin treatment. This was not studied, but could be in the future.

These results are supported by microarray analysis, as the trend is towards a small

upregulation of ERCC1 in post-chemotherapy patients (results not shown). However, these
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results are not statistically significant either. This could be because there has to be a large

fold increase in gene expression to be able to be detected using microarray analysis. As

was previously discussed, only small increases in mRNA may be necessary to have an

effect due to post-transcriptional, and post-translational modifications. Results from both

microarray analysis, and qPCR are supported by the literature as discussed above.

Other methods to validate qRT-PCR and microarray experiments at the protein level could

have been used, such as western blots that use fluoresecent antibodies to measure protein

levels. Other types of functional assays, other than those used, could also have been

employed, as well as candidate-based approaches to identify genes involved in

chemotherapy resistance.

4.3 Melphalan-induced ICL repair in A2780 and A2780cisR human ovarian cancer

cell lines, and patient samples

It is also apparent that treated patients resistant to cisplatin chemotherapy, repair cisplatin-

induced ICLs, but do not appear to repair melphalan-induced ICLs. Interestingly, in the

A2780, and A2780cisR paired human ovarian cancer cell line the resistant cells repair both

cisplatin-induced ICLs and melphalan-induced ICLs, which is in contrast to the clinical

samples. This suggests that the ovarian cancer cells obtained from treated patients behave

differently to the A2780cisR ovarian cancer cell line model, and if so, the cell line would

be of limited use to study melphalan induced ICL repair in vitro.
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The difference between melphalan-induced ICL repair and cisplatin-induced ICL repair in

treated patients with ovarian cancer suggests the possibility that melphalan could be used

to treat these patients. Also these results suggest that melphalan-induced ICLs and

cisplatin-induced ICLs are repaired differently. Previous clinical trials using melphalan to

treat platinum-resistant patients with ovarian cancer as already discussed have been very

small, and therefore larger trials are needed.

Interestingly, Spanswick et al demonstrated that multiple myeloma patients that were

clinically resistant to melphalan chemotherapy had between 42-100% ICL repair, even

though they had similar levels of ICL formation at the peak of crosslinking compared to

melphalan-sensitive patients with multiple myeloma who did not repair the ICLs

(Spanswick et al., 2000). Work carried out in our laboratory suggests that patients with

multiple myeloma that are resistant to melphalan chemotherapy may be sensitive to

cisplatin chemotherapy. Lymphocytes from patients with multiple myeloma demonstrated

low levels of cisplatin-induced ICL repair compared to high levels of melphalan-induced

ICL repair (unpublished data H. Lowe). Not only does this suggest that cisplatin

chemotherapy could be used to treat these patients, but also is more evidence that

melphalan-induced ICLs and cisplatin-induced ICLs are repaired differently.
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4.4 Comparison of gene expression between A2780 and A2780cisR human ovarian

cancer cell lines, and between newly diagnosed and treated patients using

microarrays

The gene expression profiles obtained from patients before and after chemotherapy did not

show any statistical difference in expression of known genes involved in DNA repair, even

though there was a clear phenotypical difference between these cells. However there were

other genes involved in cell cycle and cell signalling that showed up- or down-regulation in

ovarian cancer cells from post-chemotherapy patient samples, but the significance, and

their involvement in DNA repair is as yet unknown. Cells used to extract total RNA for use

in microarray experiments were not treated ex vivo with cisplatin or melphalan, although

cells used in the comet assay were treated ex vivo with these drugs. It may be that treatment

ex vivo with either cisplatin or melphalan is necessary to induce differential changes of

gene expression within these cells. In support of this, it has been shown that there is an

increase in c-fos and c-jun transcription factors that bind Ap-1 (a gene that regulates

ERCC1) in A2780/CP70 cells after a 1 hour exposure to cisplatin (Li et al., 1998),

although it is unclear if the same changes are seen in ovarian cancer cells obtained from

clinical samples.

Microarray is a relatively new and powerful technique, but does have limitations that may

have influenced the difficulties of obtaining statistically significant results for differences

in gene expression of DNA repair genes between pre- and post-chemotherapy patients.

According to the Goldie-Coldman hypothesis, acquired chemotherapy resistance is driven
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by clonal selection of cells that have acquired a genetic mutation that has conferred an

advantage (Goldie et al., 1979). This means that in primary tumours only a small

percentage of cells will possess a chemo resistant phenotype with the associated molecular

change, resulting in a ‘dilution’ of any changes in gene expression in this population

(Goldie et al., 1979). This may mean that there are other genes associated with

chemotherapy resistance (e.g DNA repair genes) that are not apparent from this kind of

microarray analysis.

Within solid tumours there are blood vessels and connective tissue as well as ovarian

cancer cells. This mixture of cells influences the gene expression profiles for each patient

sample, and also adds to the dilution of any changes in gene expression. To minimise this

problem, all samples were stained with antibodies to assess the percentage of ovarian

cancer cells present, and only those with >80% of ovarian cancer cells present were used.

The ‘dilution’ effect can be problematic because microarray experiments accurately detect

differences in gene expression of 2 fold or more. This means that subtle differences in gene

expression will not be detected. This was evident in the RT-PCR experiments which

showed an increase in ERCC1 gene expression levels by 15% in ovarian cancer cells

obtained from patients that had received platinum-based chemotherapy. However,

differences in ERCC1 gene expression levels were not detected using microarray

techniques on all samples of ovarian cancer cells from the same patient. Some patients did

show a small increase in ERCC1 expression in post-chemotherapy samples using

microarray analysis. Analysis of microarrays may also add to this dilutional affect. The

primary expression data are in the form of logarithmic intensity ratios. Secondary data such

as average gene expression levels of genes within a group, are derived by calculating the
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geometric rather than the arithmetic means of logarithmic intensity ratios, resulting in

smaller values, and smaller apparent differences (Jazaeri et al., 2005).

It is important to point out that the microarray technology used only determines levels of

mRNA of specific genes, but does not provide any information about the post-translational

and post-trancriptional modifications of mRNA. These modifications may have dramatic

effects on the overall function of the proteins that are produced by these genes. Many

genes involved in chemotherapy resistance have been identified through microarray

analysis, and as is often the case there is no genetic overlap between results obtained from

different research groups. Differences in gene expression signatures between two groups of

investigators may be due to the end point of interest (eg, chemoresistance v natural history

such as tumour growth rate and metastatic potential), the algorithms used to define gene

expression thresholds, the bioinformatics used to define expression clusters, as well as

more subtle differences between the patient populations under study. Many different gene

expression signatures may be identified over the next few years, each containing different

genes, but each converging on an equally powerful and valid prognostic end point

(Spentzos et al., 2005).

4.5 Clinical Relevance and Future Work

It may be possible to use the comet assay to predict which patients will respond to

platinum based chemotherapy. This may be used along with microarray technology, that

use gene profiling to try and predict a patient’s response to chemotherapy. These

techniques should be evaluated in a clinical trial, because if they are successful, it would
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prevent patients suffering from side effects of chemotherapy drugs with very little benefit

in terms of disease response.

The comet assay may also be used to determine which patients may respond to melphalan

chemotherapy. Although as the two clinical trials already discussed from Magagnoli et al

(2004) and Hasan et al (2003) demonstrate, more clinical trials need to be done in this area

to establish whether melphalan chemotherapy is effective (Magnoli et al., 2004), (Hassan

et al., 2003), and also to clarify the dosing regimen. The clinical trial by Maganoli et al

(2004) and data obtained from our experiments support the possibilty of melphalan usage

in some patients with clinically platinum resistant ovarian cancer (Maganoli et al., 2004).

With the emergence of microarray technology, it is hoped that, along with other

techniques, it can be used to tailor chemotherapy to each patient. Although this has wide

cost implications, it has the potential to improve patient response, maintain disease

stabilisation, and perhaps improve the cure rates for ovarian cancer.
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TITLE : The Mechanism of Resistance to Chemotherapy Drugs in Ovarian Cancer

Aims:
It is thought that patients who are resistant to chemotherapy agents (particularly platinum-based),
repair the DNA interstrand crosslinking that is caused by these agents.
The objective of the study is to look at the gene expression in the chemotherapy resistant cells that
repair their DNA, and the chemotherapy sensitive cells, to see if there are any differences in gene
expression.
This will be done by splitting patients into two groups based on clinical findings. The amount of
DNA interstrand crosslinking will be looked at in each patient, to confirm or refute their resistance
to chemotherapy. Then gene expression will be measured.

Selection of patients
Patients with ovarian cancer are included in the study, there are no exclusions. Patients will be
approached in clinics, and on wards. They will be given study information sheets and told about the
study. They will be given time to think about whether or not they want to be included. Written
signed consent will be taken from the patients wanting to participate. Their samples will be held up
to 5 years if they have given consent specifically for this, and then destroyed. If they have not
consented for storage for 5 years, the samples will be destroyed after this study.

1. Collection of tumour, and mesothelial cells
Tumour and mesothelial cells will be separated from ascitic, or pleural effusion samples, received
from patients at the time of drainage, or operation. Separation will involve splitting them by
trypsinisation. Mesothelial cells attach and detach from the flasks quicker than tumour cells.
Therefore timing of removing cells still suspended in media is essential.
Gross phenotypical differences between the two cell types exist, which will make it easy to visibly
gauge the level of contamination between the two cell types. Immunocytochemistry will be
performed to confirm the predominance of each cell type.
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2. Collection of solid tumour cells
Primary tumour tissue will be finely chopped in sterile conditions, and suspended in media.

3. Collection of blood samples
Lymphocytes will be isolated from patients’ blood as a source of germ line DNA.

4. Ovarian cell lines
Ovarian Cell lines will also be used in this study.

5. Experiments involving Ovarian cell lines
Initially these cell lines will be used to ascertain the cisplatin IC50. This is the dose of
cisplatin that will cause 50% of the cells to die. The ovarian cell lines will be incubated
with cisplatin for 1 hour, and the cells incubated in media for 6 days following this. The
SRB (sulphorhodamine B) assay will be used in this experiment
Different doses of cisplatin will be incubated for 1 hour in these cell lines. The amount of
DNA interstrand crosslinking present in the two cell lines will be investigated using the
Comet Assay.
The IC50 dose will be used in a timed drug response experiment. The two Ovarian cell
lines will be incubated with cisplatin for 1 hour, and the level of DNA interstrand
crosslinking measured (using the Comet Assay) at different times e.g 0,6,9,24,30,48,72
hours.
DNA microarrays will be used on these cell lines to investigate the up-regulation, or down-
regulation of genes involved in DNA repair mechanisms.

6. Experiments involving Tumour, Mesothelial, and solid Tumour cells
The timed drug response experiment using cisplatin, and possibly other chemotherapeutic
agents will be repeated in these cells.
DNA microarrays will also be repeated in the same cells.
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Invitation Paragraph
You are being invited to take part in a research study. Before you decide it is important for you to

understand why the research is being done and what it will involve. Please take time to read the
following information carefully and discuss it with others if you wish. Ask us if there is anything
that is not clear or if you would like more information. Take time to decide whether or not you
wish to take part.

What is the purpose of the study?
Some patients with Ovarian Cancer become resistant to some forms of chemotherapy.
Chemotherapy drugs cause damage to the tumour cell which kills it. It is thought that the tumour
cells acquire mechanisms to repair this damage, thus making them resistant. The purpose of this
study is to investigate the tumour cell repair mechanisms involved in this process. This will involve
looking at expression of different proteins and genes involved in these repair mechanisms, within
the cells.
It is hoped that this research will help the design and development of newer drugs for treating
Ovarian Cancer. Patients involvement will only be brief, as all we require are small samples of
tissue taken at the same time as any necessary procedures.

Why have I been Chosen?
All patients with ovarian cancer are eligible for this study. We will be treating samples of patients
tissue, which have been removed, with chemotherapy agents and monitoring them. This means it
does not matter if you have had chemotherapy or not.

Do I have to take part?
It is up to you to decide whether or not to take part. If you do decide to take part you will be given
this information sheet to keep and be asked to sign a consent form. If you decide to take part you
are still free to withdraw at any time and without giving a reason. A decision to withdraw at any
time, or a decision not to take part, will not affect your future medical care.
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What will happen to me if I take part?
As part of your treatment for ovarian cancer, you may undergo surgery, or other procedures such as
draining some fluid from your abdomen or chest. At this time, samples of tumour or fluid will be
taken as part of your treatment. They will be examined, and then thrown away. You are invited to
allow these samples to be used in this study. They will still be examined in the proper way. No
extra tissue or fluid will be taken from these procedures.
During your treatment you will have several blood tests to monitor your general condition. We
would like 20mls of your blood (1 tube) which would normally be taken at the same time as your
other blood tests.
This means that you are only in the study for less than one day, while we collect the samples during
your procedures.
If you were to return for additional procedures, then we would also collect tissue or fluid samples
from these, unless you wanted to withdraw your participation from the study.
Tissue samples taken may be retained for future research. We will hold your samples for a
maximum of 5 years, and then they will be destroyed. Your name and personal details will be
separate from your samples. Any new research will be reviewed and passed by a research ethics
committee before the research starts. However, we will not contact you in the future to obtain
consent.
Some insurance companies ask whether you have had gene studies to see if you suffer from a
hereditary disease. This research does not involve looking at genes which cause ovarian cancer, we
are investigating genes which could become involved in treating ovarian cancer. There will be no
link between your DNA and your name or your notes.
Please note that volunteers give up their legal title to their samples when they sign the consent
form.

What do I have to do?
No extra procedures are needed for this study apart from a single blood test.

What are known risks of the study or the side effects of any treatment received?
There are no added risks or side effects if you take part in this study. There are also no
disadvantages.

What are the possible benefits of taking part?
The study will not affect your treatment directly. However, if the study is successful it may lead to
further studies to develop new treatments for cancer that could benefit patients in the future.

Will my taking part in the study be kept confidential?
Access to your medical records is necessary to find out details about your treatment and your
general condition. Personal details including initials of first and last name, date of birth and
hospital number will be taken and stored securely on a computer at UCL. Only the local
investigator will have access to this information. However, sometimes, representatives from the
ethics board at UCLH may be allowed to see your records to check on the study. These details will
be kept for a limited period of time and then destroyed.
Your GP will not be informed of your participation because it will not affect your treatment in any
way. It will also not affect your participation in any other studies, should you wish to join.

UCL Hospitals is an NHS Trust incorporating the Eastman Dental Hospital, Elizabeth Garrett
Anderson & Obstetric Hospital, The Heart Hospital, Hospital for Tropical Diseases, The

Middlesex Hospital, National Hospital for Neurology & Neurosurgery, The Royal London
Homoeopathic Hospital and University College Hospital.



Your clinical record will be kept separate from the laboratory result. No individual identities will
be used in any reports or publications resulting from the study.
All data will be used and stored according to the Data Protection Act.

What will happen to the results of the research study?
Your clinical record will be kept separate from the laboratory result. No individual identities will
be used in any reports or publications resulting from the study.
The results are likely to be published in approximately 2 years. Any patients wanting to obtain a
copy of the results can write to us at the above address.

Who is organising and funding the research?
The trustees of the Elizabeth Garrett Anderson Hospital are funding the research, as well as Cancer
research UK, and the department of Oncology, UCL.

Who has reviewed the study?
All proposals for research using human subjects are reviewed by an ethics committee before they
can proceed. This proposal was reviewed by the joint UCL/UCLH Committees on the ethics of
human research.

Contact for further information
If you have any questions after reading this information, please ask Dr Claire Newton (0207 679
9319), Dr Jonathan Ledermann (020 7679 8040), or the Gynaecological Cancer Research Nurse,
Elga Atkins (020 7387 9300 x3133) for further information.

Thank you for taking time to read this information and for considering participation in this research
study. You will be given a copy of this information to keep, and a copy of the consent form if you
decide to join this study.
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APPENDIX 3 – Patient consent form

Department Of Oncology
The Middlesex Hospital

Mortimer Street
London, W1T 3AA

Telephone: 020 7387 9300

UCLH project number: 04/Q0505/77
Form version and date: version 2, 7th October

Patient identification number for this study:
Name of principal investigator: Dr. Ledermann

CONSENT FORM

TITLE : The Mechanism of Resistance to Chemotherapy Drugs in Ovarian Cancer
Please initial box

1. I confirm that I have read and understood the information sheet

dated 7th October, version 2 for the above study and have had the 
opportunity to ask questions

2. I confirm that I have had sufficient time to consider whether or 
not I want to be included in the study

3. I understand that my participation is voluntary and that I am free

to withdraw at any time, without giving a reason, without my 
medical care or legal rights being affected

4. I understand that sections of any of my medical notes may be

looked at by responsible individuals from UCLH or from regulatory 
authorities where it is relevant to my taking part in research. I give
permission for these individuals to have access to my records

5. I agree to take part in the above study 
1 form for patient
1 to be kept as part of study documentation
1 to be kept with hospital notes page 1 of 3
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Version. 2 7th October 2004
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UCLH project number: 04/Q0505/77
Form version and date: version 2, 7thOctober

Patient identification number for this study:
Name of principal investigator: Dr. Ledermann

CONSENT FORM

TITLE : The Mechanism of Resistance to Chemotherapy Drugs in Ovarian Cancer

___________________________ ____________________
______________________
Name of patient Date Signature

___________________________ ____________________
_____________________
Name of Person taking consent Date Signature

Part B: initial
box

I agree to my samples retained for up to 5 years, and then destroyed. I

understand that my consent will not be sought if they are used for future
research. I understand that any future research must be approved by the

UCL/UCLH ethics committee on human research. 

___________________________ ____________________
______________________
Name of patient Date Signature

Page 2 of 3
UCL Hospitals is an NHS Trust incorporating the Eastman Dental Hospital, Elizabeth Garrett
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___________________________ ____________________
_____________________
Name of Person taking consent Date Signature

Researcher (to be contacted if any problems): Dr Claire Newton, tel. 020 7679 9319
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Appendix 4 - NAMES AND ADDRESSES OF SUPPLIERS

ABgene
ABgene house
Blenheim road
Epsom
Surrey
KT19 9AP

Applied Biosystems
Lingley House
120 Birchwood Boulevard
Warrington
WA3 7QH

Affymetrix
Voyager Mercury Park
Wycombe Lane
Woburn Green
High Wycombe
Bucks
HP10OHH

Autogen Bioclear
Holly Ditch Farm
Mile Elm
Calne
Wiltshire
SN11OPY

Eppendorf AG
22331 Hamburg
Germany

Invitrogen Life technology
3 Fountain Drive
Paisley
PA49RF

Kendro Laboratory Products
Stortford Hall Park
Bishop’s Stortford
Hertfordshire
CM235GZ

MWG Biotech
90 Longacre
Covent Garden



London
WC2E9RZ

Nunc
Kamstupvej 90
PO BOX 280
Denmark

Shandon
93-96 Chadwick Road
Astmoor
Runcorn
Cheshire
WA71PR

Sigma
Fancy Road
Poole
Dorset
BH177NH

Thermoelectron Corporation
Unit 5
The Ringway centre
Eddison Roaad
Basingstoke
Hampshire
R6216YH

Vision Biosystems
Balliol Business Park West
Benton Lane
Newcastle-upon-tyne
NE128EW

VWR International
Hunter Boulevard
Lutterworth
Leicester
LE174XN


