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Abstract

The re-alignment of series of medical images in which theeenaultiple contrast variations is difficult.
The reason for this is that the popular measures of imagdssitypiused to drive the alignment procedure
do not separate the influence of intensity variation due tagenfeature motion and intensity variation
due to feature enhancement. In particular, the appearaneevwo structure poses problems when it
has no representation in the original image. The acquisibbmany images over time, such as in
dynamic contrast enhanced MRI, requires that many imagtsdifferent contrast be registered to the
same coordinate system, compounding the problem. Thissthdgresses these issues, beginning by
presenting conditions under which conventional registrefails and proposing a solution in the form of
a 'progressive principal component registration’. Theoaillpm uses a statistical analysis of a series of
contrast varying images in order to reduce the influence ofrast-enhancement that would otherwise
distort the calculation of the image similarity measuresdum image registration. The algorithm is
shown to be versatile in that it may be applied to series ofjesan which contrast variation is due to
either temporal contrast enhancement changes, as in dyrcamiast-enhanced MRI or intrinsically in

the image selection procedure as in diffusion weighted MRI.
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Chapter 1

Introduction

1.1 Introduction

This thesis addresses the problem of the registration aj@maontaining local contrast changes. In par-
ticular it outlines the problems of using conventional ségition techniques in the presence of contrast
enhancement. The thesis develops a solution to the proHdi#ime correction of motion artefacts when
local contrast-change is occurring.

The desire for accurate quantification of diagnosis andifherelated to widespread diseases such
as cancer has led to the formation of many new imaging tecksiqllowing opportunities to explore
advances in treatment monitoring. The increased sopéiitit of these new imaging modalities has
brought additional challenges to the area of image regigiraThe use of contrast agents to alter image
contrastin areas of interest and the use of diffusion we)MRI to assess dominant diffusion directions
are two examples of imaging techniques that have seen pexlagse in recent years. The length of the
imaging procedure in both these cases leads to the formatiomages that may contain both intra and
inter image artefacts due to motion of the subject. Thisish@8l focus on the second kind of artefact,
those due to motion between images.

The use of image registration is important when seeking taekinformation from multiple im-
ages. The images must be in good feature alignment so thataéent imaging pixels represent the
same structures and may be compared or combined. Non-ngide registration procedures seek to
maximise the image similarity as defined by a particular measThe deformation of one image so that
it more closely matches another (as defined by the imageasityiilmeasure) becomes an optimisation
procedure; the deformation field of the image is iterativefjned toward a maximum of image similar-
ity. The re-alignment of a series of medical images that dacoultiple contrast variations as a result of
either exogenous contrast agents or intrinsic temporarectibnal contrast change is difficult. Popular
measures of image similarity used to drive the alignmentimigation procedure do not separate the
influence of intensity variation due to image feature motmil intensity variation due to feature en-
hancement. This is true of many cost-functions includirfgrimation based image similarity measures
such as mutual information. The appearance of new struotasepose problems for image registration
when it has no representation in the original image. Chatgt® intensity of some parts of an image

relative to others are also problematic since this violttesone-to-one intensity matching assumed by
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many cost-functions.

The acquisition of many images over time, such as in dynaonitrast enhanced MR, requires that
many images with different contrast be registered to theesemordinate system. Since these images are
acquired over a time scale of many minutes, patient motidike$y to be a problem, requiring image
registration before further analysis can be carried outhéncase of dynamic contrast enhanced MRI,
regions of interest are likely to be areas that are enhandihg correct registration of these regions is
crucial when extracting pharmacokinetic information.

This thesis addresses these issues, beginning by pressotime conditions under which conven-
tional registration fails and proposing a solution in theriamf a progressive principal component regis-
tration (Melbourne et al., 2007b). The thesis proposes thdification of conventional registration algo-
rithms when considering the registration of large groupsarftrast enhanced images. This is distinctly
different from some of the previous methods of registratiothis area. The algorithm uses a statistical
analysis of a series of contrast varying images in orderdace the influence of contrast-enhancement
that would otherwise distort the calculation of the imageilksirity measures used in image registration.
The algorithm is shown to be versatile in that it may be appieea series of images in which contrast
variation is due to either temporal contrast enhancemeaarigés, as in dynamic contrast-enhanced MRI
(Melbourne et al., 2007a) or intrinsically in the image séten procedure as in diffusion weighted MRI

(Melbourne et al., 2008b).

1.2 Chapter Summary

Chapter Two: Literature Review

This chapter introduces the development of image registratigorithms. The focus is particularly on
non-rigid, intensity-based methods such as b-spline aidiribgistration algorithms incorporating infor-
mation theoretic image similarity measures. A history d@itlapplication to medical images and their
eventual application to dynamic contrast enhanced imagdiscussed. The failure of current registra-
tion methods to properly accommodate contrast-variatiositlined, alongside some recent efforts to
address this problem. The chapter also discusses the gavet of MRI and the importance of dynamic
contrast enhanced MRI in oncology, presenting some of tlalleriges associated with the technique.
The development of diffusion weighted MRI is also discussledgside the analogous problems impact-

ing image registration due to local gradient-influencediast variation.

Chapter Three: Creation of Simulated Dynamic Contrast Bob@ MRI Data

This chapter discusses the development of fully simulat€&DIRI. The chapter includes three main
areas: the development of a global elastic force model afthieg deformation, incorporating a modi-
fication to allow certain regions to deform rigidly; the dea@ment of a model of contrast-enhancement
processes of both major organs and of pathology using reeet on hepatic contrast enhancement;
the importance of the influence of contrast-agent dose andilgifal generation parameters. Part of this

work was presented at MICCAI 2008 in (Melbourne et al., 2Q08a
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Chapter Four: Cost-Functions and Contrast Enhancement

This chapter presents a discussion of current cost-fumetend their limitations when contrast-
enhancement is present; motivating the need for eitherastaénhancement invariant cost-functions
or a method to allow conventional cost-functions to be ustde novel Cost-Function Matrix Mean
(CCFM) method for analysing registration performance faups of images is introduced alongside a
method of visualising the potential minimisation space obat-function under particular conditions of

contrast-enhancement.

Chapter Five: Progressive Principal Component Registidi?PCR)

The use of principal components analysis with medical isagediscussed, alongside the difficulty
of extracting physiological information from principal mponents. The use of principal components
analysis during an iterative registration procedure isettigyed, resulting in the Progressive Principal
Component Registration algorithm published in (Melboughal., 2007b) (patented: see Image Regis-
tration Method PCT/GB2008/001520, Filed on 2 May 2008). Theditions under which PPCR will
provide an advantage are also discussed in this chapter.sifthdated abdominal dynamic contrast
enhanced MRI developed in Chapter 3 and the PPCR algoriteousied are used to investigate the
performance of image registration under varying motionamgancement characteristics. Inspection of
the changes to joint-entropy as a function of motion artediad contrast enhancement are used to infer
registration performance. It is shown that for contrastaerded data, PPCR provides an advantage by
allowing conventional cost-functions to be minimised (@imised) in cases where minimisation is not
necessarily possible using conventional post-enhancetm@ne-enhancement image registration. Part
of this work is the basis of a presentation at MICCAI 2008, [derrne et al., 2008a).

Chapter Six: Registration of Breath-hold Dynamic Conteastanced MRI

The Progressive Principal Component Registration algorieveloped in Chapter Four is now applied
to real data. The algorithm is applied to both 2D and 3D dywcasoihtrast enhanced MRI datasets ac-
quired under repeated end-exhale breath-hold. The peafuzenof the 2D registration is analysed by
expert visual assessment, by intensity-time curve fittouplished as part of (Melbourne et al., 2007b)
and at ISMRM 2007 (Melbourne et al., 2007a)) and by the Costekon Matrix Mean. The 3D data are

analysed using software developed by the Institute of GaResearch (MRI Workbench (d’Arcy et al.,

2006)) for the extraction of pharmacokinetic parametens.aésessment of pharmacokinetic model-fit
residuals both before and after registration reveals amdwgment using PPCR compared to conven-

tional image registration (submitted to ISMRM 2009).

Chapter Seven: Registration of Diffusion Weighted MRI

The Progressive Principal Component Registration algaritleveloped in Chapter 4 is now applied
to a different application. Analogous to dynamic contragtanced MRI, diffusion weighted MRI ac-

quires many images analysing diffusion along differergclions. The registration of contrast variations
between diffusion directions presents the same problerogrieentional registration as found in DCE-

MRI. Local contrast changes due to diffusion gradient diogcinvalidate the assumptions of registration
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cost-functions. The PPCR algorithm provides a way of inooafing the direction dependent contrast-
variations and allowing improved registration performarithe method is applied to 3D datasets and the
improvementin registration is analysed using visual iniagpection, inspection of fractional anisotropy
variability under a leave-one-out analysis and inspeatibtensor fit residuals. Part of this work was
presented at ISMRM 2008 (Melbourne et al., 2008b). Prelamyjirmwork on the registration of diffusion-
weighted MRI under varying-value of the liver is also presented (submitted to ISMRM200

Chapter Eight: Kullbach Leibler Assisted Image Matching &atching (KLAMP)

This chapter discusses the development of a novel methoidestigt influencing the formation of cost-
function gradients during image registration in order tduee artefacts due to contrast-enhancement.
Analysis of the Kullback-Leibler divergence between joimiage histograms in which both contain
motion, but only one contains contrast-enhancement, alkbn removal of contrast-enhancement by
image matching and patching. The method is embedded intaadgistration algorithm. The resulting
deformations can be analysed using simulated data, agalf/pre and post registration segmentation

and cost-function gradient analysis (Part of this work heenbsubmitted to ISMRM 2009).
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1.3 Magnetic Resonance Data used in this Thesis

This section briefly describes the data used in this thesissisting of both 2D and 3D liver DCE-MRI

studies and diffusion weighted studies of both the brainlaed

Institute of Cancer Researtlivdt Study

This study consists of multiple abdominal (liver) dynamantrast enhanced MRI scans for use in a
clinical study. Seven patients are considered and repaassre made after a given period of time as
shown in Table 1.1. The majority of datasets are a coronahtation. Each dataset consists of three
spatially separated slices anterior-posterior and hereeemy consider these data to be 2D in further
analysis. Data are acquired witilar of 11ms, T E of 4.7ms with a flip angle ofa = 3°. Images are
acquired i3 x 2s with a7s breathing interval. Approximately 40 frames were acqufoeeach dataset.
The Gadolinium based contrast agent, Magnevist, is injeafter the 5th image acquisition@atmis—?.
Scans take approximately 9 minutes to perform; misalignirbetween scans represents a measure of
the consistency of the depth of the breath-holds with anytiatdl motion due to the abdominal walls
and nearby organs. The length of time between image adguisiineans that it is unlikely that there

will be any periodic motion in the sequence.

Table 1.1: DCE-MRI Patient 2D Scan Data

Patient Number Follow Up Follow Up Follow Up Follow Up View
of Scans (Days) (Days) (Days) (Days)
1 4 +2 +7 +36 coronal
2 4 +2 +9 +44 sagittal-oblique
3 4 +54 +89 +112 coronal
4 3 +7 +33 coronal
5 2 +2 coronal
6 4 +2 +16 +44 +72 coronal
7 4 +2 +9 +37 coronal

Institute of Cancer Researtteuro-endocrinétudy

This study consists of six patients with full 3D abdominaldt) datasets with either 20 or 40 timepoints.
This data was acquired by the Institute of Cancer Research $iemen’s Avanto 1.5T MRI scanner.
These datasets are at a temporal resolution of 12s cowsidtan6s held-breath volume acquisition and
a further 6s breathing interval. The acquisitib® is 4ms with a flip angle ofa. = 24°, a further low

flip angle image ¢ = 2°) is also acquired for use 'l estimation. Again these data are taken under
repeated breath-hold and particularly evident in thesasaés is timing of the acquisition to show the
bolus arrival in the heart (Table 1.2). For Patients 5 andi€) encluded are the results of the MRI

scanner manufacturer’s in-built proprietary registnatdgorithm.
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Table 1.2: DCE-MRI Patient 3D Scan Data

Patient Number Volume Timepoints  View
of Scans
1 1 256x256x20 20 coronal
2 1 256x256x20 20 coronal
3 1 256x256x20 20 coronal
4 1 256x256x12 40 coronal
5 1 256x256x12 40 coronal
6 1 256x256x12 40 coronal

IXI Brain Data

This series of data consists of 12 volunteer studies ovengeraf ages. Each volunteer dataset contains
15 diffusion directions acquired with diffusidrvalue 0f1000s.mm~2 and a b0 volume, with volumes
of 128 x 128 x 64 pixels from an axial perspective. The datasets are paredtiger IXI dataset which

as of writing, is still available here: fantail.doc.ic.ak. The fifteen normalised gradient directions are

shown in Table 1.3.

Table 1.3: Body Diffusion Patient Data (3D Axial)

T Y z

1 0 0

0 1 0

0 0 -1
-0.18 -0.11 0.98
-0.06 0.38 0.92
0.71 0.05 0.70
0.62 -0.44 0.65
0.24 0.78 0.57
-0.26 -0.62 0.74
-0.82 0.17 0.55
-0.84 053 0.11
-0.26 096 0.14

0 0.97 -0.25
0.75 0.67 -0.02
097 0.23 -0.02

Institute of Cancer Research Body DWI Data

These data consist of two datasets of three orthogonakitffidirections for use in abdominal (liver)

oncology taken at multiple b-values includifig 50, 100, 150, 250, 500, 750]s.mm~2 (three each for
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each orthogonal direction), see Table 1.4.

Table 1.4: Body Diffusion Patient Data (3D Axial)

Patient Size Number  b-Values
of Images x3) (x3) (x3) (x3) (x3)
1 128x128x18 16 0 50 100 250 500 750

2 256x256x12 7 0 150 500

27



Chapter 2

Literature Review

2.1 Images

Within this thesis we consider purely medical images, anghirticular those produced using Magnetic
Resonance Imaging. Particular features in an MRI image earrthanced by intrinsically altering
scanner parameters or by adding exogenous contrast emhanicer highlighting the freedom of the
water to diffuse along a particular direction (as used ifudibn Weighted MRI).

If we take two images, we often expect there to be changesaeetithem. For example, if two
images are taken of a subject breathing in and then breathitygrgans such as the heart and the liver
are in different places. If images are taken at differenemwe might also expect things to change:
tumours growing or shrinking; the heart in systole or dikstthe brain changing in Alzheimer’s. The
process of finding the spatial alignment between two imagjlesown asmage registratiorand describes
how well we can write one image in the co-ordinate system afc@sd (in this case the images are said
to beregistered. More simply, it describes the changes you have to make &image to produce
a second. Image registration can be defined between two grafghe same type (mono-modal) or
between images of different types (multi-modal) such agdiggstration of an MR image to an X-ray
CT image. Image registration is, in general, a mathem#fidéldefined problem. The algorithms
we shall see in the subsequent sections are, despite thésiematical complexity, quite simple in the
behaviour they can describe: they are remarkably good whetmages contain the same features, but
if objects between images appear, disappear or changsitytehey often struggle to find an alignment;
if registration is defined as describing the features in ona&gie in terms of another, if features have
moved out of the image, the registration will not be well-defl. Throughout this thesis we consider
the registration of multiple images (inter-image registna), assuming there has been little or no motion
during the acquisition of the individual image. Intra-ineagnotion can also be corrected using image

registration methods but these processes are beyond #a siiope of this thesis.

2.2 Image Registration

This section will introduce a development of image regt&irg particularly the cost-functions and the
deformation techniques used to maximise those cost fumgtiresented in a pedagogical fashion. The

use of the wordegistrationin this thesis should briefly be discussed as it will be irttargeably pre-
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sented as a verlq registe)) to describe the process of aligning two images and as dbuaite adjective
describing the state of two images irrespective of any infageessingtp be in registratiof. For in-
stance, we improve the registration of two images by usinggistration tool and the word for this
process is also (image) registration. This phrasing is dedli since it is purely context dependent.
Throughout, we will consider the registration of two imadefich may be considered volumes if re-
quired). We seek to deform one image, which we will callflbatimage (sometimes written as a source
image in the literature) so that it resembles as closely asiple (depending on our requirements of sim-
ilarity) ananchorimage (sometimes written as a targetimage in the literat@enceptually, the anchor
image isfixedand the float image deforms until it matches the anchor. Fantishnd and in equations we
represent thdoat image byF and its individual pixel values bly;; (for two dimensions) and thenchor
image byA and its individual pixel values bg;;. The fundamental registration equation is provided
in Equation 2.1 where we maximise (or more generally extsejnain image similarity measurenét)

betweeranchorandfloatimage subject to deforming the float image in spabg a deformatiory'(r).

max[cost(A(r), F(T(r)))] (2.1)

2.2.1 Cost Functions

The choice of cost function is of importance to the final regison result, selection of a suitable cost-
function is crucial to the success of the registration atgor. It is important to choose a similarity
measure that is best-suited to the images that are beirgjesg. For this reason a pedagogical devel-
opment of cost functions is presented here. An example nufvilifferent cost-function values with

(translational) displacement is included on the suppleergrCD (see Appendix E).

Mono-Modal Images

Often the most basic cost function presented is the Sum oc&rgduDifferences between anchor and
float image intensities. This is appropriate when consiggimages whose intensity profiles differ by
Gaussian noise only; the intensities in the anchor imagexrected to be identical in the float image,
with the exception of Gaussian noise. Its use in MRl is oftemtéd by fluctuating contrast variations
between different MRI images as a result of the large numbtmable parameters. The cost function,
C, can clearly be seen to arise from the standard Gaussiaibdiign for mean: and standard deviation
o (Equation 2.2 for each aV datapointse;) where the product of the different intensity distribuson
can be written as the minimisation of a sum of the exponentéiqgn 2.3 and 2.4). The method is often

used in the testing of new algorithms ((Christensen et 886}, (Cabhill et al., 2007Db)).

N 1 (1 — 1)?
=11 meorl g (2.2)
=1
1 1 ,
C= GromynzPly,z Zl(x =) (2.3)

N

SSD = (x; — p)? (2.4)

i=1
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Multi-Modal Images
The assumption of images differing only by Gaussian noiseno€annot be made. It may then be
appropriate to consider that the intensities differ in @dinway; that the intensities in the float image
can be described by a global scalar multiplication of intéassin the anchor image. If we consider our
float F and anchoA images as vectors of lengthx m, our image similarity measure is simply (with
the proviso that our images have the mean intensity subtfathe angle between these two vectors
(Equation 2.5).

A-F

CrossCorrelation = ————— (2.5)
[IAIIF]

For perfectly aligned images, all pixels will have the sarakigs in both images and therefore the
value of the Cross Correlation (CC) will He If the float image was the photo-negative of the anchor
image, the value of the Cross Correlation would-be Work by Hermosillo provides details on the

implementation of cross-correlation and information tte¢ic cost functions (Hermosillo, 2002).

Information Theory Based Cost Functions
More generally we might suppose that there is a relationsaéigveen pixel intensities that is not reliant
on any presumed intensity function. Since it is particyldiustrative, first we will derive the Joint
Entropy cost function (JE),as first proposed by Hill (Hilladt, 1994). If we take a given intensity in
the float image, we then look at how many times it correspoadsl tother available intensities in the
anchor image (for this reason we consider intensity diszdtimages, for example with 256 possible
intensities). Itis possible to imagine that some of the ltesuill represent a true alignment of pixels and
some the result of unregistered, misaligned pixels. By gitiis for every intensity value in the float
image, we build up a joint image histogram. We now proposttti@histogram counts represent the
probability of a particular pixel combination occurringeWan now see that for a good alignment there
will be very high numbers of pixels corresponding to a on@#e relationship in the joint histogram,
meaning that a given pixel intensity in the float imaghighly likelyto correspond to one pixel intensity
in the anchor image. Poor alignment would see a one-to-mamaad of a particular intensity value in
the float image to values in the anchor image (an importadeasind limitation of this method, is that
local intensity changes other than those due to motion kedylto lead to a valid spread in the joint
histogram counts). The extent of this dispersion can be sansed by theentropyof the joint image
histogram (Equation 2.6) for the distributions of probdieib p;; in the histogram. The entropy of the
joint image histogram for anchor and float images will be ded@/ 4. As discussed, a smaller value
of joint entropy should correspond to better image aligntmen
JointEntropy = — Z Zpij log ps; (2.6)
i

The probability distribution used above for the joint higtam may also be applied to a single image
histogram, where the histogram counts represent the nuoflbeecurrences of a particular intensity
within a given image (either the anchor or the float). As abaxgecan convert these histogram counts to
probabilities and find the entropy of a particular image @&épn 2.7). These entropies are often referred

to asmarginal entropiesand will be denoted a#l 4, for the marginal anchor entropy atdl-, for the
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marginal float entropy. Images having equal numbers of piaekach intensity will contain the most

information.

Marginal Entropy = — Z pilog p; (2.7)

3

A further potential cost function is the Kullbach Leiblerdbance (KLD). This is a measure of the
'distance’ between one probability distribution, whicimdae written ag;, and another, written ag
(the KLD value will be zero fop; = ¢;Vi). For images these distributions are calculated as disduss

previously. The distance between the probability distidns of an anchor and a float can be written as

Equation 2.8.
K LDivergence = Zpi log% (2.8)
JSDivergence = %KLD(PHM)Jr%KLD(QHM) (2.9)
M = é(m@) (2.10)

What is important with regards to image registration ishistwas used as an image similarity
measure, that it is not symmetric. The Kullbach-Leibnet®ise between the anchor and the float is
not the samas the distance between the float and the anchor. For thisr@ais not a distance and
should be referred to asdivergence Also we have no reason to suppose that the forward distance i
more appropriate for aligning images than the backwardamiie. Some authors seek to symmetrise the
measure by considering both the forward and backward distaas in the case of the Jensen-Shannon
Divergence (Equations 2.9 and 2.10). Chiang (Chiang e2@08) uses the symmetrised KL-Divergence
in the registration of Diffusion Tensor MRI to re-orienté¢esors according to the Gaussian Probability
Density Functions (PDF) of the diffusion tensors. In thiseethe measure is applied between two images
with the same expected PDFs, hence the measure may be cedsighpropriate.

The Mutual Information Cost Function (MI) combines inforioa from both the entropy of the
joint image histogrami 4, and the individual entropies (marginal entropiés and H ) of the sep-
arate images (Equation 2.11) ((Viola & Wells, 1997), (Pletral., 2000), (Pluim et al., 2003)). The
advantage over joint entropy is the inclusion of the margnéropies. Not only do we seek to minimise
the joint entropy, we seek to maintain the amount of entrapp(mation) in the individual anchor and
float images. This has the effect of counteracting a sitnatibere the joint entropy falls by tending
toward a situation which reduces the spread in the indivisht@nsity distributions. This would reduce
the joint entropy and could be caused if the image overlapisdg decrease, causing a large number of

pixels to align to a background intensity value.
MI=Hs+ Hp — Har (2.12)

A related formulation of mutual information is to divide tekem of marginal entropies by the joint
entropy (Equation 2.11) to give the Symmetric Uncertaintefiicient, otherwise known as Normalised
Mutual Information (NMI) (Studholme et al., 1999). Mutuafbrmation does not completely solve the

overlap problem. This modification further removes the peobof images being driven away from one
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another by normalising to the amount of information in thimjagmage histogram and the amount of
overlap (Hill et al., 2001). The value of NMI is normalisedtire sense that the maximum and minimum
MI values are dependent on the number of intensity bins aedlistribution of the image intensities.
Although NMI was not developed in this way by Studholgtel, the expression for NMI is equivalent
to the Symmetric Uncertainty Coefficient (the average of @il A can be used to prediét and vice
versa). The expression must be made symmetric becausedégainty coefficients themselves are not:
U(A|F) # U(F|A), so one possible symmetry is to weight by the marginal ergsofEquation 2.13)
giving Equation 2.14.

Ha+ Hp — Har

AlF) = 2.12
U(A|F) - (2.12)
HA HF

SUC=—""U(A|lF)+ ———U(F|A 2.13
T UAIR) + = U(F14) 213)

Har
SUC =2(1 — ————— 2.14
- ) (2.14)
NM]:M (2.15)

Har

2.2.2 Transformation Models

In addition to an appropriate measure of image similaritgcted from the previous section, in order to
maximise the cost-function we need to deform our image inlaadedined way so that the information in
the image is not degraded. Methods for maintaining congtafthe deformed image are now outlined
in this section.

Before an in-depth discussion of non-rigid deformation eledit is appropriate to mention trans-
formation models with much lower degrees of freedom. A riggshsformation is described by only three
translations and three rotations, one along each axis, rendritire coordinate system of the image is
transformed accordingly. Extending the rigid transfotiorato include scaling and shearing we include
6 further degrees of freedom and the transformation is néimeaflmage transformations using an affine
model keep parallel lines parallel. Further degrees ofdivee may be added by including projective

transformations or by allowing the transformation to bectibgd as a polynomial function.

Optical Flow Registration

An early image matching algorithm was proposed by Horn ardiBck (Horn & Schunck, 1981). Due
to the ease of coding and the simple conceptual nature oethéty the method is still to be found in
many publications ((Hayton et al., 1997), (Alvarez, 20q@8)artel et al., 2007)) and is the basis for a
further registration method known as the Daemons Algori¢fifinirion, 1998)) and subsequent work.
The algorithm is based on the assumption of moving pointseérirhage having constantimage intensity,
hence the cost function in this case is implicit to the transftion model, and therefore, for points in
an imageJF , we have Equation 2.16 and Equation 2.17. Equation 2.17 s@heut because we are
following the trajectory of garticular pieceof intensity, not considering the intensity change at a fixed

point, as per the assumption.
dF

— = 2.16
=0 (2.16)
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It can be seen from Equation 2.17 that we have a linear systéme icomponent velocitie% etc.).

It is not possible to determine a velocity along a brightrezsstour so we must include a smoothness
constraint of the formy2v, wherev is representative of the velocities present in Equatiof.2riclud-

ing this constraint allows us to produce a smooth deformatiat will restore intensity discrepancies
due to motion. The complexity of the required algorithm iatigely low, particularly if the smooth-
ness constraint is approximated using the difference ofiat o the velocity field from its adjacent
neighbours and included directly in finding the solution wuBtion 2.17, also making the algorithm
fast. For this reason, optical flow algorithms are often wsken testing modifications to the registration
paradigm, such as in Hayton (Hayton et al., 1997) who apjliedptical flow algorithm to registration
of DCE-MRI (using a model-fitting cost function), and Mar{®llartel et al., 2007) who applied the
optical flow algorithm to Dynamic Contrast Enhanced MRI Dataluding a piecewise linear intensity
change constraint due to Gennert (Gennert & Negahdarid®&7). Vercauteren (Vercauteren et al.,
2007) used Efficient Second-Order Minimisation to analyseatical flow algorithm in the forms of a
daemons algorithm as preliminary work towards includinglifications to the algorithm to ensure dif-
feomorphic transformations. A diffeomorphic transforioatis one that is invertible - or more strictly
that the inverted deformation is also differentiable. Thisy be preferable since the registration solution
is ill-posed, we at least have a solution that has workabkbhemaatical properties.

An extension of the optical flow method was proposed by Thiitp1998 (Thirion, 1998) and has
been used several times since ((Pennec et al., 1999),{8seiaet al., 2004), (Vercauteren et al., 2007)).
The claim is that the image matching is done with a ratherdasw@analogy to Maxwell's demon [sic].
This is perhaps an unexpected consequence of thermodyaathgtatistical physics.

Two uses of Thirion’s daemonic effectors are presented lniridnh, 1998): the author first applies
effectors to an object boundary in the anchor image (forrfath-rigid registration: effectors would be
placed on a regular grid throughout the anchor image) andlthigy of a corresponding float object to
diffusively pass through this effector boundary accordmgome measure of increasing image similar-
ity; the second considers the effectors amake-likecontour on an object in the float image that can
then be deformed to match a structure in the anchor imagereutting method is extremely versatile

but both these applications may require some object segi@min both the anchor and float images.

IMaxwell’s demon was a concept devised to break the Seconcf @lermodynamics, stating that entropy always increases.
For two adjacent boxes: one with some particles in and ther @npty, the entropy (which can be imagined as disordefef t
system is quite low. If the partition between the boxes isaesd, the particles will spread between the two boxes, there
increasing the entropy. However, if a demon (and we will 8h@ee it is ademon was to try to separate the particles by using
the partition to only let particles into one side of the bomg aever out, we would have a violation of the Second Law ofrThe
modynamics. The solution to this problem is along the litneg the demon is part of the system and he must receive infiima
and do work on this information in order to separate the gagj hence for thotal system the entropy must increase. In this
sense, Maxwell’s demon is certainly of the malevolent Megli®ariety, seeking to disturb the laws of nature (and feately not
succeeding). The demons of Thirion are not in the same sertbese of Maxwell, they are mosedfectorsin the Classical sense,
and act for neither good nor evil. In modern terminology #eparation between Classical and Medieval has led to timstiar a

malevolentdemonand an effectinglaemonhence Thirion employs daemons, unrelated to Maxwell'sgrpent.
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The method relies on a suitable definition of the daemons lagid &pplication. In this sense, simple
brightness change could be used and the result is essgmtimbptical flow algorithm (Pennec et al.,
1999).

B-Spline Registration

A different approach was proposed by Rueckert (Rueckelt,et¥99). Using a grid of regularly spaced
control pointsacross the float image, it is possible to move the controltpand calculate the inter-
mediate deformations according to a fitted spline. Basimepl(b-splines) are chosen which allow any
deformation to be locally contained (mathematically thayenlimited support), this makes them very
efficient to calculate as we need to consider only the fewestareighbours to a control point. This
method is also amenable to a hierarchical multi-resolutgyistration from coarse-to-fine scales.

The application of splines applied to biomechanical systevas first suggested by Bookstein
(Bookstein, 1989), but Bookstein used them to produce smdeformation fields under an applied
force. The local deformation in the fieldat a pointz,y,z is given by Equation 2.18, relative to the near-
est associated control point&ti, j, k) and with respect to the distance of that point from that @intr
pointwu,v,w. The appropriate spline is built up from a combination oficuiasis functions as shown in
Equation 2.19. Additional regularisation is required toosiih the b-spline deformation and a bending
energy regularisation in the spirit of the spline deformmais often applied.

3

3
T(z,y,2) =Y _ > > Bi(u)Bm()Bu(w)®(i+1,j+m,k+n) (2.18)

=0 m=0n=0

1 1 1
By = 6(1 —u), By = = (3u® — 6u® +4), By = 6(_SU3 +3u®4+3u+1),Bs = 6u3 (2.19)
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The method has been widely used and the algorithm is oftelieajp the analysis of organ motion
and deformation. McLeish applied the method to correct fotiom of the heart during respiration, de-
termining the extent of motion along each biological axic{dish et al., 2002). Tanner (Tanner et al.,
2000), (Tanner et al., 2002) used the method in the redgistraf contrast-enhanced breast MRI. Po-
tential mis-registration of enhancing features motivateglinclusion of a volume preserving constraint.
Work on the validation of the B-spline method has also beeriexhout by analysing the B-spline
registration results against a gold standard deformatererated from a biomechanical breast model
(Schnabel et al., 2003). Similar work was carried out by Rigl(Rohlfing et al., 2003), analysing the
Jacobian determinant of the deformation field and prevgraity unrealistic volume change. Rohlfing
also applied the B-spline method to analyse liver motionirduthe respiratory cycle (Rohlfing et al.,
2004).

Fluid Registration

The modelling of image deformation as a fluid was first progdsg Christensen (Christensen et al.,
1996). This method allows a more sophisticated reguléoiséhan that used by a simple optical flow
algorithm by coupling the component directions of the defation field. For completeness, the full
fluid equation is described in Equation 2.20 for a given pres$, density,p, in a potentialy), with

viscosity parameterg and\. The velocity of the flowy, is used to update the image transformation
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over a given time-step. A well explained derivation can benfibin the Feynman Lectures (Feynman
etal., 1998) and is also included for the interested readappendix A. Here we must add a force term
associated with the similarity between our float and anaimagesF 5 (A.F). The range of phenomena
described by the fluid equation is vast, hence a fluid is chtbs#is isotropic, slow moving and viscous;
physically this corresponds to a low Reynolds number (thralmer which represents the ratio of inertial
to viscous forces). Since our viscous forces dominate amdneutial terms (those containing are
correspondingly small (and we do not expect there to be presariations across the image), our
equation reduces to Equation 2.21 for an isotropic mediwmaFdriving force calculated from our float
image,F, and anchor imagé, our fluid will flow with velocity, v, dragging the image it represents with
it, which in turn alters the driving force. If we iterate foand in time, recalculating the new driving force
after each time step, we hope to reach a situation in whiclfigieestops flowing, corresponding to an

image match: hence the force is zero and therefore the wefield is zero.? 3

p[(v-V)V] = =VP — oVt + uV>V + (up+ NV (V - V) — Fp(A,F) (2.20)

uVA+ (1 + NV(V V) = Fp(A,F) (2.21)

The solution of Equation 2.21 is a time consuming step. @&mien (Christensen et al., 1996) finds
the solution using Successive Over Relaxation. By impldingrthe Successive Over Relaxation in a
multi-grid solution, Crum (Crum et al., 2005) was succelhgfable to solve the fluid equation rapidly
by propagating the solution at different resolutions betmvecales. This technique is well described in
Numerical Recipes (Press et al., 2007). The solution maylmgound using Fourier methods and this
has been demonstrated by Cabhill ((Cahill et al., 2007b)hi{lCat al., 2007a)) by carefully re-writing the
fluid equation as a product of itself and its adjoint and rexsigg that the resulting solution & v can
be expressed as a Sine, Cosine or Fourier Transform (depeoirequired boundary conditions) of the
required velocity field. This solution is particularly desile, since it is not only fast (requiring only a
few Fast Fourier Transforms) but can be coded succincthfoktimately Cahillet al do not provide a
comparison of the the speed benefits of this solution witkiiptes work on different size images, perhaps
because of the difficulty of obtaining equivalent code.

Fluid registration has found greatest application in tharbrCrum (Crum et al., 2001) applied fluid
registration to monitor hippocampal volume change in Alategs patients, suggesting the automated
(and therefore labour saving) method was more accuratentlaaial-segmentation b9%. d’Agostino
(D’Agostino et al., 2003) applied the method for the anaysfi multi-modal brain image registration
using the Mutual Information cost function. Hecke (Heckalet2007) used fluid registration to align

Diffusion Tensor images of the brain, finding the alignmerderior to affine image registration.

2When the velocity fields in Equation 2.21 is substituted for the displacement fieltd becomes the solution of the linear
elastic equation (it is also the most general solution ofretion with only second-order derivatives). Registratiming a linear
elastic regularisation has been attempted ((Bajcsy & Kioyd®89), (Alexander et al., 1999) ), but is limited since thverall
displacement penalty term will grow with increasing disglaent, putting a limit on registration success, which istecessarily

the case with a fluid deformation.
3When the viscosity coefficients have the conditior= — ) the coupling term is removed and the equation becomes dyjpure

diffusion equation, a generalisation of the daemon-baseidtration algorithm.
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2.2.3 Recent Developments in Image Registration

A large number of articles have recently been published eanieg developments in image registration.
In particular there is a desire for diffeomorphic registraf deformation fields that can be inverted and
therefore must provide a one-to-one mapping of one imagedthar (or from one space to another). In
some circumstances, diffeomorphic registration is regglifrom a biomechanical perspective, but it can
only be true if the entirety of one object in one coordinat&cspis present in the second space. For mon-
itoring the appearance of new features and possible chandiedd-of-view the requirement provides
little advantage. However, the desirability of an invedibolution from a mathematical perspective may
be useful and this should be the predominant reason for useiffeomorphic transformation.

Recent developments have also investigated the inclugibiomechanical models as transforma-
tion models in image registration. These might require asspondence between the driving force and
the deformation that is not really achievable using infaioratheoretic cost-functions. Driving forces
are likely to require optimisation over known motion modgiat describe biomechanically plausible
deformations. Currently this type of image alignment is patationally expensive, but a growing inter-
est in the use of graphical processing units for image pedegss beginning to make implementation

possible.

2.3 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) was developed through 87®s and 80s from existing Nuclear
Magnetic Resonance (NMR) chemical analysis into a full m@dimaging technology (McRobbie et al.,
2006).

The explanation of MRI is intriguing since it can only be exipkd theoretically using quantum
mechanics, but for all practical purposes the descriptaontze done in the classical sense. The reason
for this is that we are dealing with large numbers of quantineas which can then be considered
classically. In MRI it is common to only look for a particulpe of nucleus and the signals are very
small. A large percentage of the body is made up of hydrogiémerebound as water or bound into
compounds such as fat. Therefore the hydrogen atoms in ar@argood choice for magnetic resonance.
Hydrogen atoms consist of a proton orbited by a single alactthe proton nucleon has a directional
intrinsic spin of+% and therefore can be aligned (parallel or anti-parallethwimagnetic field (as can
any nucleus with odd numbers of protons or neutrons). Atlabsaero, a sample of hydrogen would
align all its spins parallel with that field. Unfortunately laody temperatur810K the difference in
number of spins parallel to those anti-parallel is abbut10°, however it is still possible to record a
signal®.

Putting a hydrogen sample into a magnetic field splits théembetween two states by an energy

hryB, wherey is thegyromagnetigatio of a particle’s charge to it's mass- which can be classically
P

4This number can be calculated from the (classical) Boltanfistribution having found the difference in energy betaepin

. . Naui ,
up and spin down states relative to body temperaﬂlrg\,‘”lﬂ =exp| gehB

notaligned 2mpkpT
proton mass}; Plancks constant divided k3, k5 the Boltzmann constani3 the field strength ang is the 'g-factor’ calculated

| wheree is the electron chargen,, the

from quantum chromodynamics and having a value close to 2.
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imagined as the relative strength of an orbiting partioddétromagnetic attraction to its desire to move

in a straight line due to having mass. This should be modifiigthtty to account for small quantum

effects using the g-factor mentioned in the footnete; anep.

Despite the small net number of atoms split by the magnetit, fieere are sufficiently many that
we can use a classical description of the net magnetisatiemall regions. The most obvious feature of
a MRI scanner is a large static magnetic field, in many systaissvill be 1.5T or 3T, and in some cases
more depending on application (for comparison, the Eartfdgnetic field is between 30-60). This
field runs parallel to a bore in the centre, in which the patiess, hence the net magnetisation vector
of the body is aligned along the bore. It is possible to alterdirection of the magnetisation vector by
introducing electromagnetic radiation (in this case raddoes) at a particular frequency. This frequency
is chosen so that it matches the natural frequency of thémgtspin of a particular substance in the body
(here hydrogen) and is given lfy= - BHz which for hydrogen is approximately= 42.58 x 10°BHz
(a radio-wave) depending on how the hydrogen is bound tait®sndings this is known as chemical-
shift. Adding radio-waves at this frequency allows us temhe direction of the spin, this is a resonance

effect, where we match our external force to the intrinségjtrency of a body proportional tg-.
P

For a resonant frequency ¢f= 42.58 x 10°B with a single value of magnetic fiel&, throughout
the scanner, we can alter the direction of the net body mesgiein by using a radio-wave frequency
that matches the resonant frequency of hydrogen nucleie Mwre to turn off the radio-waves, the net
magnetisation vector would relax back to the direction efltige static B-field. The resonance matching
frequency is dependent on the strength of the magnetic fielace if we were to vary the B-field across
the image, perturbing it with additional magnetic fields, eaild apply a spectrum of radio-waves to
match the resonance across the image. If we were to swit¢hisfpectrum, the resulting signal would
tell us the strength of the magnetisation at different mointthe body, this would be an image. In
practice, a large gradient is applied to the B-field so that arslice of the body can be made to resonate
using radio-waves close to a certain frequency (slice #elgc A further gradient is applied along a
second direction (often the largest body dimension in tleaelof the image), so that a spectrum of
radio-waves can be detected (frequency encoding). In ihe divection we record each signal using
another magnetic field to de-phase equivalent frequengies gmall amount (phase encoding). The
signal acquisition relies on the intrinsic properties of tihhagnetised substance whose signal decays
with rate constant§y, 75, 75. In turn these describéf’ (longitudinal relaxation time); the decay of
magnetisation of the spins with the 'lattice’, or the sumrding environment, representing the loss of
spin precession at the Larmor frequency due to spin-latétzxation;T» (transverse relaxation time);
the decay of net magnetisation (by dephasing) of the spitis @dch other due to local spin-related
magnetic field changes afi§} ; the observed®, decay of magnetisation of the spins including the effects

of local field inhomogeneities.

The formation of the MR signal and the subsequent detecéiquires that the data be acquired in
spatial frequency space (denoted k-space). The encodisygptial position in the frequency and phase

of the MRI signal requires that the complete signal map bk bpiin k-space before conversion to image
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space. Collection of the signal in k-space may be done inrajgctory subject to hardware limitations;
the ease at which the phase and frequency encoding gradi@mtbe altered. Different acquisition
schemes can be chosen to traverse k-space in a simple sefaghion from maximum to minimum
phase and frequency encoding, with a radial line-wise grafilin a more complex fashion if there are
advantages to the order of line acquisition. The conveifs@mn spatial frequency to image space may be
done by Fourier transform on completion of the acquisitids.a result the collection of the signal and
the method of traversing k-space is an important factor imgenspeed and resolution. Motion artefacts
may corrupt the acquisition of separate parts (or shotsjapfdce leading to artefacts such as ghosting. A
large body of work has been developed focusing on the cdoreof these intra-image motion artefacts.
If motion occurs during acquisition of a single magnetiorence image artefacts such as ghosting will
occur. A method to autofocus individual images by correrfor phase-shifts due to simple motions
was developed by Atkinsoet al (Atkinson et al., 1997) and generalised by Batcheloal (Batchelor
et al., 2005) so that motion between imaging shots can bected arbitrarily. This method was adapted
in order to correct for intra-image breathing motion by Vetét al (White et al., 2008) subject to the
formation of a patient-specific breathing motion model. Theection of intra-image motion artefacts
is not addressed in this thesis, we assume that intra-imatjemartefacts are negligible.

From McRobbie (McRobbie et al., 2006), Equation 2.22 désxihe signal strength for a partic-
ular tissue with intrinsid; andT; in a spoiled gradient echo sequence with short echo tifie and
flip angle,a and can be calculated from the Bloch equations (which descriagnetisation changes
with time). Gradient echo sequences are typically used kw&ihhted Gd-DTPA imaging as will be
discussed in Section 2.3.1. The timing diagram for a spgjtadient echo sequence is shown in Figure
2.1(top) the gradient strengths@f,. andG. are stepped to allow both phase and frequency encoding;
the sequence length can be shortened if we include spoieliegts which increase spin dephasing,
reducing the transverse magnetisation, as in Figure 2tbfnd Equation 2.23 represents the expected
signal from a spin echo sequence and Equation 2.24 the edpsignal from an inversion recovery
sequence which could be used for determining intrifigicelaxation times (these equations typically
assume that the echo time (TE) is much shorter than the tiepetime (TR)); Figure 2.2 shows a typical
spin echo timing diagram. In all cases the valu&gfs used to absorb the effects of the signal detection

apparatus and any additional tissue pathology effectgiaddl to the intrinsicly, 7> and7y values.

S _ 2.22
SGE 1 — cos(a)e™ ™ ( )
So = S0 HE (1) 223)

S180-90 _ g (1 — 27T 4 e TT) (2.24)

2.3.1 Dynamic Contrast Enhanced MRI
Exogenous contrast agents such as gadolinium-DTPA (GdAD@Rdolinium bound in a non-toxic
chelate) increase the MRI signal by interacting with wateshorten its7; (and 75 at large doses

> 1mmolkg™!). Water molecules passing close to the Gd-DTPA moleculeaigect to a local field
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Gradient Echo Timing Diagram
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Figure 2.1: lllustrative example timing diagram for a GexttiEcho sequencdop, Standard gradient
echo protocolBottom Spoiled Gradient Echo including a spoiler gradient for ntaqed acquisition, as

used in Gd-DTPA contrast-enhancement imaging.

inhomogeneity and are more likely to move away from the Larfmeguency, contributing to the ob-
servedT; shortening (McRobbie et al., 2006).; shortening is also due to increased dephasing due
to water molecule interaction with Gd-DTPA. The modificatiof 77 assumes a linear modification to
the relaxatiorrate and is shown in Equation 2.25 for a given concentratidnscaled by a substance
specific relaxivityr (the method for the observed alteratioriitofollows equivalent steps). The effect of
shortenindl is seen to boost the signal for a give® and flip anglex. This is shown in Equation 2.26
where thel; term from Equation 2.22 is incorporated irfig since the effect of the contrast agentBin
may be ignored. The reason for this inclusion is that in hutissueT?, is always far less thah; (Table
3.1), hence the effect of the linear correctior%ois normally very small (compare with Equation 2.25)

subject to a relatively lon@ F.

T\@t) = (= +rC@t) " (2.25)
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Spin Echo Timing Diagram
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Figure 2.2: lllustrative example timing diagram for a SpirthB acquisition sequence.

S(1) = 5, 22— 6_%” (2.26)
(1 —cos(a)e” Ti)

Early work on the effects of Gadolinium as a contrast agefausd in (Weinmann et al., 1984)
discussing the biological stability of the Gd-DTPA chelatel its effects off;, 7> at a range of doses.
Donahue (Donahue et al., 1994) provide analysis of the iretgof Gd-DTPA, applying Equation 2.25
to find theT; relaxivities of blood plasma and cardiac tissue in a carpime anural models. Work by
Rinck (Rinck & Muller, 1999) analyses the magnetic field strh dependence of bofhh and7s.

In the case of MRI contrast agents it is the effects of thereshigent that we observe, rather than
the contrast agent itself. This is important when considgthat although, with a molecular mass of
500 nucleons, Gd-DTPA is able to leave capillaries and patesthe extracellular-extravascular space,
it cannot find its way inside cells. However, the water molesiit interacts with may cross the cell wall
which might influence the observ&d values. Iron-oxides (coated in a carbohydrate shell, eedéx)
are also used but since the magnetic field inhomogeneity ehriarger than with Gd-DTPA, strongly
reducel, T, andT’; over a large area even for small doses.

Endogenous contrast enhancement in tumours is also peskiblinstance by the BOLD effect
(Jiang et al., 2004), measuring blood oxygenation levalsad in functional MRI. This has been demon-
strated usings measurements by both (Baudelet & Gallez, 2002) and (Taylak €2001). The work
by Taylor monitored tumour response on breathing carbog&h@ 5%CO-), concluding that it may
be used to identify patients suitable for carbogen radisiisation pre-treatment. Contrast enhancement
data may consist of only pre and post enhancement images aihddhen subtracted to show enhancing
areas or it may be dynamic. Dynamic Contrast Enhancemenitonsthe progress and distribution of
contrast agent through a particular organ by acquiring niarages as a function of time. Dynamic
information allows much more information to be obtainedrrthe enhancement process as we will see

below.
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The Physiological Basis of Contrast Enhancement

Contrast agents provide a way of assessing treatments sagttisangiogenic or anti-vascular therapies
in oncology. Growing tumours require a blood-supply, andabieve this, stimulate the growth of neo-
vasculature in their surroundings. This is thought to odnuproduction of growth factors regulating
Vascular Growth (Vascular Endothelial Growth Factor - VB@Rd Vascular Permeability (Vascular
Permeability Factor - VPF) (Passe et al., 1997). A tumownrsminding area will then consist of many
tortuous, new and permeable blood vessels. Contrast aggretiing this area will transfer rapidly from
blood plasma to extacellular-extravascular space, ernhgtiee MRI signal in the tumour boundary with
a ring-shaped’ enhancement. The relationship of DCE-MRhistology has been made by many au-
thors ((Buckley et al., 1999), (Knopp et al., 1999), (Haegtal., 2004), (Patankar et al., 2005), (Cuenod
etal., 2006)). Knoppet alanalyse differences in enhancement due to tissue type byarmg enhance-
ment with histology. They find there are significantly (withtatistical p-value< 0.001) faster exchange
rates of contrast agent between vascular space and eMtilGextra-vascular space in malignant tis-
sue compared to benign tissue. The authors suggest thaasbemhancement variations are mainly due
to differences in vascular permeability manifest as a higtression of VEGF in histology. The suc-
cessful application of DCE-MRI is discussed by Choyke ((deogt al., 2003), providing an overview
of practical DCE-MRI and its application in renal, cardiamlabsteosarcoma applications. A report by
Leachet al (Leach et al., 2005) provides recommendations on the reguutcomes of DCE-MRI for

the analysis of antiangiogenic and antivascular therapies

Enhancement Curve Modelling

Early work on modelling the enhancement process of DCE-M&4 applied in the brain by Tofts and
Kermode (Tofts & Kermode, 1991). They consider a two compartt model of contrast agent transfer-

ring between a vascular compartment and an Extracelluttnazascular compartment (EES).

Distribution of contrast agent between the two compartsiengoverned by Equation 2.27 where
the rate of change of contrast agent concentration in tha-eeflular extra-vascular space (EES),
given the fractional volume of the leakage spacejs given by the difference between influx governed
by the rate constanf{!"*"¢ as a function of the local permeability and surface area éetwcompart-
ments and the arterial input bolus, (further discussed in the next section); and subsequenkéditim
the EES leakage space. The integral solution of Equationi2.given by Equation 2.28 which may be
re-written as the convolution in Equation 2.29. Up to thignpave have considered our tissue to consist
purely of EES, a better representation is to consider tleatiatal contrast agent contribution comes from
a mixture of compartments with relative volumes representhe EESv., the blood pool, and the
intra-cellular space;, henceC; = v.C. + v,C, + v;C; (Tofts, 1997). We assume that contrast agent
(or the effects of the contrast agent) to not enter the io#thtar space, henog; = 0. If we include
the contribution of the intra-vascular space the resuttéssixtended Kety model in Equation 2.30 which

may be more appropriate for highly vascular regions of eger

dC,
Ve
dt

= K"(C, — C) (2.27)
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ot trans
C, = K'rons / Cp(t') exp[— (t —t")]dt’ (2.28)
0 Ve
Cr = KMms(Cy(t) @ e STt (2.29)
Ceatended 4 O (1) + KT (Cy(t) @ e~ e t) (2.30)

Tofts (Tofts, 1997) assesses the inter-compatibility dfeotmodels ((Brix et al., 1990), (Larsson
etal., 1990), (Buckley et al., 1994) and in the extensivéabolration of Toftst al (Tofts et al., 1999) an
effort is made to standardise the use of model parameterthairdneaning under different conditions.
The authors derive cases for both high permeability, in tvemntrast agent moves rapidly into the EES
from the blood plasma, and low permeability models in whichtcast agent transfer to the EES is slow
and the model is dominated by vascular processes (the [eighgability model is known as the Kety
model). Work on standardisation of parameters was alsoggerpby Armitage (Armitage et al., 2005),
including a model by Hayton (Hayton et al., 1997) that is désed further in Section 2.3.2. An important
contribution by Armitage is the description of the non-hneelationship between contrast-enhancement
and MR signal. Work by Buckley (Buckley, 2002) considers timeertainty in parameter estimation,
finding in particular thaf*"*"¢ is systematically over estimated on model data. The sugdestisons
are: ignoring the vascular contribution to the signal (e&imations of up to 54%), or non-uniqueness
of the model fit. A good estimate df*"2"* requires a good arterial input function and if this is to be

obtained from the data, temporal resolution will need to igé lenough to capture the signal.

Arterial Input Functions

Central to the pharmacokinetic model fitting process is thterfal Input Function (AIF)(C;,(¢) which is
important in determinind<t"%"*. In its most basic form the AIF can be calculated as a dual eeptal
decay from considerations of Equation 2.27 (Tofts & Kermdi#91) where the parameter values are
determined empirically but often taken from analysis by Mdgann (Weinmann et al., 1984} (=
3.99kgl~t, B = 4.78kgl™!, a = 0.144min~', b = 0.111min~! and D is the injected dose), shown in
Equation 2.31. The exponential decay is associated witialimiixing of contrast agent with tissue (and
hence its loss from the blood pool) and alterations to thesdshape through interaction with a 'body
transfer function’ (Orton et al., 2008). A further exporiahtould be used to relate the contrast agent
removal by the kidneys with a biological half-life of Gd-DAPThis is found to be aboWw0min under
normal kidney function (Weinmann et al., 1984) and hencectiveribution of this exponential decay is
often ignored.

C,(t) = D[Ae— + Be ] (2.31)

Although regularly discussed, the AIF used in Equation 2s34eldom used and the AIF is cal-
culated directly from the acquired data. One early methaud@ksen et al., 1996) injected a dose of
99mTe — DTPA in order to find the AIF by scintillation counting, assumirge tequivalence of Gd-
DTPA and Tc-DTPA pathways. Later, work by Port (Port et aQQ2) and Buckley (Buckley, 2002)
discussed the importance of AlF estimation. The work by Pwestigates differences in AIF between
patients, finding not only that peak enhancement and timenthé 10min curve vary by factors of 2.5

and 3.7 but that washout was more rapid with increased bodg.nising an AlF sampled directly from
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the data has been used in work by Duhamel (Duhamel et al.,)2B06erts (Roberts et al., 2006b) and
Parker (Parker et al., 2006).

Work by Orton (Orton et al., 2007) presents examples of dicalyarterial input functions built from
exponential C(t) = age™#5"), gamma 'z (t) = apte™*5*) and cosine initial bolus shape functions
(Cgs(t) = ap(1 — cos(upt))) with a view to computationally efficient calculation of tkenvolution
in Equation 2.29. The resulting blood plasma contrast-agencentratiorC,(t) for the cosine bolus
modelCg(t) as it passes through the body, arriving at titpeis given by Equations 2.32 to 2.34 where
it is convolved with a 'body transfer function’ of the form;e#<t. The terms fopz andu correspond
to the rate constants associated with contrast agent miitihgthe blood pool and whole body tissue
respectively, with amplitude termss (in kgl~!) andag (in min—!) describing the size of the bolus
and the strength of its interaction with the body. The usénefdosine bolus function is empirical and
presented in (Woolrich et al., 2004).

Cp(t) = ap(l—cos(upt)) @ age s’ (2.32)
1- t)) + t, 0<t<t
C,(t) = ap(l —cos(upt)) +apacf(t,uc) for B (2.33)
apag f(ts, uc)ef“c(tﬂfB) for t>1tp
1 _ . _
ftp) = ;(1 —e M)~ m(MCOS(uBt) + pp sin(upt) — pe” ) (2.34)

2.3.2 Registration of DCE-MRI

The increasing use of Dynamic Contrast-Enhanced MRI (DOBINN the assessment of therapy is
discussed by Leach (Leach et al., 2005). However, the atiqniand further analysis of DCE-MRI is
confounded by subject motion, due to the length of time néédacquire a scan. Early results in func-
tional SPECT showed that mis-registration by only 1/8 ofxaepcan lead to count errors of 5%-10%,
making the following pharmacokinetic analysis (Sychralet®94) difficult. Similarly, pharmacoki-
netic analysis is subject to motion artefact errors in DCRIMEarly work by Zuo (Zuo et al., 1996)
rigidly registered DCE-MRI volume pairs using a ratio-arce minimisation scheme, but the work was
proposed as a method to automate manual registration of M&&B+MRI volumes and made no al-
teration for contrast-enhancement intensity profiles. ségbent work can be divided loosely into two
categoriesenhancement-cautio@pproaches in which contrast-enhancement induced miistnagipn
artefacts are discarded as unrealistic motion behavioarder to use a conventional registration; and
enhancement-driveapproaches in which enhancement profiles are used as addiitformation to
guide the registration.

Early work on finding a cost-function for the registration@EE datasets was produced by Acton
(Acton et al., 1997). The work of Actoet alfocuses on using principal components analysis to devise a
cost-function that is robust to contrast-enhancemenngity changes. The work is applied to phantom
cranial SPECT images of Dopamine receptors, in which imagesorrupted from a gold-standard initial
image by rigid body transformations. Contrast enhanceisenbdeled using patient data and corrupted
by Poisson noise. Three cost-functions are compared: a{cdifference algorithm, a correlation

algorithm, and the novel cost function which minimises thiect order moment of the PCA eigenvalue
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distribution. With the new cost function, the authors sezknaximise the variance that is contained
in the early principal components, since it is assumed thatam-corruption leads to variance being
shifted to the later, 'noisier’ components. Effects of stgition differences were measured using the
x? fit of the data with a bi-compartment kinetic analysis. TheAP&st-function was significantly
better (with a p-value ok 0.001) at translational registration, but with no difference fotational
registration (it is suggested that the PCA method is seediti the interpolation method). The authors
state that it is conceivable that the PCA-based cost fumetit fail in datasets in which the eigenvalue
distribution represents the dynamic enhancement ratlaer ttie registration error, and this is likely to
be the case for datasets with multiple enhancement patfEhescost-function minimises the number of
compartmental model fits by maximising the variance in thiyemmponents, therefore minimising the

possible distribution of pixels.

An early attempt at enhancement-driven registration of EMI& was made by Hayton (Hayton
et al., 1997). The authors proposed a new model of contrdsireeement uptake to allow the flexible
monitoring of the effect of bolus injection. However, chasgo the the bolus injection function led
to only slight changes in contrast enhancement, a resulighm longer considered accurate (Roberts
etal., 2006a). The registration operates on the assumptioif the images were perfectly registered, the
residual of the model fits would be minimised: therefore astegtion scheme (in this case optical flow
adapted for brightness changes (Horn & Schunck, 1981)) eatrilzen by a cost-function that reduces
the model-fit error. The work was tested on imposed tramsiatin segmented 2D breast images. The
method is unlikely to provide useful information for ared$nsignificant enhancement where intensity

noise dominates and the choice of model-fitting is inappat@r

An enhancement-cautious approach was developed by Tararerdr et al., 2000). Since the regis-
tration of contrast-enhancing features often results nealistic volume change (for instance, enhancing
regions may be seen to shrink over the time-scale of the sitigni), the authors combined local rigid
body constraints with a standard deformation to preserapestand volume. A non-rigid registration
algorithm (Rueckert et al., 1999) was used to parametriseléfiormation, driven by an unaltered nor-
malised mutual information cost-function (Studholme et 4099). It was suggested that this would
be more appropriate since it does not require a linear oglshiip between intensities (although it does
require that there is a consistent relationship). Howeaf¢he cost-function, and therefore the defor-
mation, were truly appropriate, we might not expect any ysptal volume changes. Tannetral also
investigated volume changes by inspecting the volume ahafig mask region and also investigated
the use of multiple grid-point spacings. Coupling of grioifgs within a free-form deformation were
used to move local regions rigidly. Finer grids were demet to result in larger volume change and
the authors concluded that significant volume changes edtiuout correction (between -17% and 33%
volume change). With correction by coupled control poittig, volume change can be prevented. An
attempt at validation was made by the same authors (Tanrar, &@02), again in contrast-enhanced
breast MRI. Biomechanical breast models were used to dgfatiant data selected with very little mo-

tion (introducing a whole breast volume change of 0.6%). éaccurate registration was found over
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the whole breast in the case of volume-preserving methogb(ate volume change of 5.1%) than the
comparison case of the standard unconstrained method#bsolume change of 17.6%). This was an
important validation step for the non-rigid registratidrcontrast-enhanced MR, although the applica-
tion of a biomechanical model is not an ideal gold-standaadticularly since the model deformations

are not dissimilar to the returning registration deformasi.

Further work on enhancement-cautious registration wapgs®d by Rohlfing (Rohlfing et al.,
2003). The authors analysed the log of the Jacobian detanmnéturing the progress of the registration
and penalised any deformations from unity. Since the Jaocatkéscribes the volume change associated
with the change of co-ordinate system, a deviation grehter tinity is an expansion and less than unity
a contraction. As in Tanner (Tanner et al., 2000), a B-spleggstration was used with a normalised
mutual information cost-function. The authors comparedabian-based volume change penalty term
and a bending energy smoothness term in combination witst#melard normalised mutual information
cost function term. The results demonstrated significaiurme decreases of between -1.3% to -78%
for the standard registration method. The volume-changghtiag factor proved robust and monotonic
against volume change over a range of weightings, whereasntioothness term did not. However, for
both constraints there was a trade-off between volume puatsen and motion correction, although less
so in the case of the volume-preserving constraint. Theoasiduggested adaptively weighting the three
cost-function factors as the registration proceeds. Thefisonstraining terms in non-rigid registration
has shown success, however the methods do not suggest asingst-enhancement information in the

registration, which may provide much more information attba success of the registration.

Work by Hayton (Hayton et al., 1997) was extended by XiaolXiadhua et al., 2005) to allow
combined image registration and segmentation of DCE-MREerap of the parameters from differ-
ent tissue types in the model used by Hayton leads the autharse a simple tissue attribute vector,
consisting of the initial change in intensity after the i of contrast agent and the slope of the late
post-enhancement curve. Non-fat tissue is segmentedlirgée lasses and a Markov random field
model is used to regularise and reduce noise. Optimum sdgtimmnis given by the maximisation of the
probability of pixels belonging to one tissue type. The agstion is made that optimum segmentation
corresponds to optimum registration, since aligned pixal® less noisy model-fits and therefore can be
better segmented. This is put into an iterative scheme aplitdgo DCE breast images. Segmentation
results are improved after registration, but given thaftteeess must be computationally intensive, and
that there is no comparison with other registration methtiastrue success of this process is question-

able. It would be good to see the results of fitting differdmmacokinetic models.

Work on registration of myocardial perfusion images usiciiva appearance models was proposed
by Stegmann (Stegmann et al., 2005). The method uses agaiet, that can be computed off-line, from
analysis of the variance of data from previous perfusiodyspatients. Image registration of new data
can then proceed using perfusion specific shape models. Ettwthworks well under enhancement

and despite the computationally intense model-buildiag, register rapidly.

Another enhancement-driven registration method was @@gby Buonaccorsi (Buonaccorsietal.,
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2006). The authors realise that conventional cost-funstiequire that source and target image intensi-
ties maintain the same relationship and it is this relatigm#/hich is violated with contrast enhancement
in DCE-MRI. In order to use conventional cost-functionsyyahould provide target images that resem-
ble the intensity profile of the source. This is done by getregaarget images from model-fits of the
unregistered data. The standard and extended Kety mo@etsiapared, using an arterial input function
from the literature (Tofts & Kermode, 1991). This process tizen be iterated, registering the original
sources to the model target images and then re-fitting theehtodhe registered data and repeating the
process. Unfortunately this process is limited by the appateness of model choice, so may only be
done over a small region of interest. The size of the regioimtefrest is also limited by the compu-
tational time of the pixel-wise model fitting procedure. Thethod is applied to abdominal tumours,
which are considered rigid, and only translations are aw@rsid. The model parameter estimates vary
as the registration proceeds, generally increa&ifig™* andwv,, which may be expected as pixels come
into better alignment relative to their pre-registratiasipions. The results of the model-fitting regis-
tration algorithm are compared to results produced by negisn to the time-series mean: registration
to the mean image reveals significant distortion to the syleset model-fitting parameters. Residual
model-fit errors are reduced after registration by the fieganodel-fitting method, suggesting improved
final model-fitting and therefore a more successful redistna Although results for the extended Kety
model are considered more appropriate for the data usedsisttidy, the success of the method relies
on the choice of a good model which is difficult to determindneTprocess is currently only applied
on small regions of interest, but if extended, would reqthreconsideration of a non-rigid registration
algorithm. An increased region of interest would requireLaiate controls on the model-fitting to ensure
fitting of the correct model to different enhancing featurBEse increased computational time might also

be prohibitive.

A combination of the work by Buonaccorsi (Buonaccorsi et 2006) and Hayton (Hayton et al.,
1997) was proposed by Adluru (Adluru et al., 2006) for usedrd@c perfusion imaging. The authors
use the extended Kety model applied in a form that is comjmually efficient to fit. The data is
registered by generating synthetic target images from idfitd#ata, and the registration is driven using
the residual model-fit error as a cost-function (althoughimgall motion is assumed to be described
by translations only). The results show an improvementénes$timation of kinetic parameters of 83%
using the iterative registration scheme when compared \&8h registration to a single image in the
dataset. However, these results are calculated using fbeekend after model-fitting from the model
used in the registration. Again, this work relies on the aapion of an appropriate model and it would

be interesting to see it validated with a gold-standard kition.

Work on the registration of DCE-MRI has also been proposehfiitigs et al (Milles et al., 2008).
The method can be compared to the work described in Chaptdebhgdurne et al., 2007b) but here
an Independent Component Analysis (ICA) is substitutedafBrincipal Components Analysis (PCA).
Milles et al find three independent components from dynamic contrastvased cardiac MRI and opti-

mise the 2D translation parameters between the origina@mand images generated by a combination
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of the independent components. This work is currently Behib translation; non-rigid registration using
this method would be an interesting extension. Using ICA dgect substitution for the PCA in the

work of Chapter 5 is limited by the independent componenisigeno preferred order, PCA contains an
implicit ordering of the principal components so that imagan be generated consistently with principal

components with higher variance being used earlier.

Work by Martel (Martel et al., 2007) applied work by BarberafBer & Hose, 2005) who adapted
the optical flow image transformation method of Horn (Horn 8h8nck, 1981) to allow for contrast
enhancement. DCE-MRI was simulated from patient data usiadirst two components of a principal
component analysis to simulate enhancement profiles ammhaelchanical finite element model to gen-
erate deformations, giving a gold standard. The optical flteethod was compared with the results of an
affine registration and a registration using a B-spline diigom (Rueckert et al., 1999). The optical flow
method, applied over a control-point distribution to regltlee degrees of freedom, was found to perform
poorly at full resolution, but implementing a multi-resttbn approach led to reduction in registration
error. Control point spacing was required to be less thanmM@morder for successful registration. The
optical flow method outperforms the affine registration amal tesults are comparable to the B-spline
registration; however, the algorithm is only compared ® Baspline algorithm at 16mm control point
spacing, so comparing results to the optical flow algorittira finer control-point spacing may be in-
appropriate. The optical flow algorithm is extremely fastawmtcompared to the B-spline registration,
but implicitly struggles in areas in which contrast enhaneat is more significant than motion changes

because by implication it assumes that intensity changedws to motion.

There is a growing body of work concerning the registratibiDG€E-MRI. Many methods have
been applied to the problem of registration although norérawidespread use. It is clear that conven-
tional, general registration methods cannot be used withhmdification, either to the cost function or
to the transformation method. Many recent methods requilitegaative registration scheme in which a
standard registration is used multiple times to allow fa tipdating of an external measure of success.
The extraction of reliable and reproducible pharmacokingtrameters may be improved using these
image registration methods, this thesis presents workntiigitt enable further improvements to phar-

macokinetic parameter extraction, allowing improved accligate diagnosis and assessment of therapy.

2.3.3 Diffusion Weighted MRI

The recent development and use of Diffusion Weighted MRhferistructure by analysing restrictions
to isotropic diffusion has yielded a large body of researarkw The concept was devised with the
addition, by Stejskal and Tanner, of extra diffusion sesisigj gradients to the spin echo acquisition

sequence (Stejskal & Tanner, 1965) as illustrated in Figue

Diffusion Weighted MRI can be used to analyse the strengtbsificted diffusion in a particular di-
rection, under the diffusion imaging equation shown in Eiue2.35 representing the signal for a given
b-value (in units ofs.mm=2). The b-value is the imaging parameter used to weight tHasiin signal

and encompasses the effects of the gradient ampligudeadient duratiod and temporal separation
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Spin Echo Diffusion Weighted Timing Diagram
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Figure 2.3: Example schematic timing diagram for a Diffuas\eighted Spin Echo acquisition se-
quence. Diffusion gradients (along any desired directimri,shown here along',,) are added either
side of thel80° RF pulse, causing spin phase shifts that are refocusseadepieon the position and
motion of the spins. For acquisition time reasons, the @atdblock is likely to consist of an EPI

sequence.

between the twin gradient echoAsused for diffusion imaging (Equation 2.36).

S(g = SpeP9"DY (2.35)
b

V262g2(A — %5) (2.36)

By observing the diffusion in multiple directions by vargithe gradient directiog, it is possible to
calculate a second-order diffusion tenBoas demonstrated by Basstral (Basser et al., 1994) (Basser
& Pierpaoli, 1996)) and also discussed by Batchelor (Bdtchet al., 2003). In three dimensions we
have a 3x3 Tensor but it is symmetric (iB,, = D,.), hence we need a minimum of 6 gradient direc-
tions to determine the tensor, plus a bO map (the image withiezgalue); however it is common to use
many more gradient directions. Finding the eigenvectoth@fiffusion tensor allows the inference of
the dominant diffusion directions, which, in the brain, denused to represent nerve-fibre orientation.
Following dominant nerve-fibre bundle orientation betwpels has resulted in many groups publish-
ing work on DT-MRI tractography using different methods (Nem et al., 2002), (Bammer et al., 2003),
(Behrens et al., 2003), (Parker & Alexander, 2003).
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2.3.4 Registration of Diffusion Weighted MRI

The length of the acquisition of a diffusion weighted MR aks#t exposes it to motion artefacts. Strong,
long-duration diffusion gradients induce eddy currentaich the EPI read-out is sensitive, leading to
image distortions. Patient movement may produce diffusieighted images along different gradient
directions that are misaligned. For further analysis ordjemsor estimation, these images may need to
be realigned. Attempts have been made to register scattidin images ((Leemans et al., 2005), (Tao
& Miller, 2006) and more similar to the method presented ira@tier 7 that of Bai and Alexander (Bai
& Alexander, 2008)) or to remove the influence of outliershe tensor estimation procedure (Chang
et al., 2005). More commonly, registration is done on theqaoglysis diffusion tensor images and a
large amount of work has been produced ((Alexander et 801 RQGuimond et al., 2002), (Hecke et al.,
2007) and (Chiang et al., 2008)). Registration of the conepodirection images is made difficult by
the varying local contrast as a function of fibre directiohisTlocal contrast variation may invalidate the
assumptions of the registration similarity measures dised in Section 2.2.1. This is analogous to the
problems of registration of DCE-MRI and again, the problsraddressed in this thesis by developing a

full field-of-view non-rigid registration method.



Chapter 3

Creation of Simulated Dynamic Contrast
Enhanced MRI Data

3.1 Introduction

In this chapter we develop a model to simulate abdominal alynaontrast enhanced MRI (DCE-MRI)
data. The chapter will discuss the development of simulatetbminal data incorporating both a de-
formation and an enhancement model for use later in thesh@sie model is developed primarily to
provide an extensive basis for the testing of novel redistmaalgorithms. With regards to the deforma-
tion model, an elastic deformation is used that will allowcherent non-rigid deformation combined
with a volume preservation modification to model stiff tissegions. The simulated data includes an
enhancement model to allow estimation of the recovery cdipater values after motion corruption.

A simulated deformation model of a breathing liver in an indiial who is free breathing is de-
veloped in order to evaluate registration success wheringirgotion and enhancement parameters in
DCE-MRI. We use this method to better understand the canditof success for different registration
methods and to better understand where they fail and to gsight on the reasons for this failure. This
will enable us to design better algorithms for these appiica. A DCE-MRI scan often takes minutes
in order that the contrast-agent washout can be obsenam@ftine the patient must breath and organs of
interest such as the liver will move over time. Image registn can be used to re-align organs within
the images, allowing further analysis for use in diagnosdtherapy evaluation. However, conventional
registration methods require that images being registeasd the same information and structure, but
this requirement is not met in DCE-MRI, since the enhancédrmtroduces new information into the
images.

The liver is subject to motion due to subject breathing mmttbe adjacency of the superior liver
to the lungs and diaphragm exposes the organ to large swjigigoior deformations with the breathing
cycle. To an extent the superior liver is protected by theage and therefore may be expected to
move predictably with the breathing cycle. This is unlikédybe the case for the inferior liver which
is physically closer, and influenced, by the orientation aadtractions of both gastro-intestinal and
automotive abdominal muscles. The connection of the liyefive ligaments to the moving diaphragm

and abdominal walls (Gray, 1918) exposes the organ to mpd-gieformations and complicated forms
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of motion not dealt with by current image registration metho Motion such as a relative movement
of the liver sliding over fixed abdominal walls is particuiaproblematic and not dealt with by current
registration algorithms. Deformation of the superior fiveill be dominated by breathing type and
depth. Breathing type is controlled by both the autonomit @nscious nervous system and may be
affected by positioning of the subject, so to some extentigffermation may be trained or restricted.
Breathing motion is likely to impart a cyclic deformation time liver, causing a repetitive superior-
inferior displacement according to lung filling. Dependomgposition, this motion may have important
anterior-posterior and, to a lesser extent, medial-latenaponents (Rohlfing et al., 2004). The motion
itself is unlikely to be regular due to the competing influen€ a large-tolerance feedback system trying
to achieve blood-gas homeostasis (or at least clearanaectfdlting carbon dioxide levels) and irregular
additional commands from the central nervous system. Aatdit intra-cycle variability arises due to
the physics of breathing; it is more difficult to breath inthaut because of the pressure gradients: i.e.
the relaxed state of the respiratory system is gentle exralebreathing air into the lungs requires the
subject to do work. As a result, modelling of the breathingleyis difficult and is compounded by
unpredictable variations in phase and depth over both singrtong-term periods.

The use of a comprehensiiresilica simulation of DCE-MRI data allows complete control of the
deformation and enhancement parameters. The creationalflastandard allows an assessment of the
comparative success of image processing algorithms dubjéow well the model represents the real

situation it is approximating.

3.1.1 Finding an intrinsic T1 map
The intrinsic imaging parameter in DCE-MRI is the T1 valuetisfue. As previously discussed, the
effect of the popular Gadolinium based contrast agents iedoce the observed T1 of a particular
region. The influence of Gadolinium contrast agents on theale is assumed to be negligible in the
following analysis. Using a spoiled gradient echo sequetheeobserved signal for a given T1 value is
given by Equation 3.1 for flip angle and repetition tim& R. The influence off'E and other scanner
parameters are included By. The change in T1 under the presence of contrast agent wilistessed
shortly. Hence we can find a T1 map of intrinsic relaxatioretirby comparing the signal under varying
flip angles. Equation 3.2 shows how to find the observed T1 fremimages of different flip angle.
Using multiple flip angle values allows a better estimatibthe T1 value, for instance, by least-squares
fitting.

sin(a)(1 — e~ 1)

(1- cos(a)e_TT_? )

S = S (3.1)

For two different flip anglesy; andas, the T1 map can be found using Equation 3.2. For a spoiled

gradient echo sequence, typical parameters might;be 2°, as = 24° with a TR of4dms.

Seamn(02) cos(on) — cos(an)
T1=TR[ln Sisin(az) _ q | 7
Sa sin(ay)

Some typical T1 values for different organs are present@dlme 3.1 recorded from (de Bazelaire
etal., 2004) for 1.5T and 3T.
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Table 3.1: Typical T1 values for organs at 1.5T and 3T fromBdeelaire et al., 2004). All values ms
Organ 1.5T 3T

T1T +£ T2 + T1 + T2 4+
Liver 586 39 46 6 809 71 34 4

Kidney Cortex 966 58 87 4 1142 154 76 7
Kidney Medulla 1412 58 85 11 1545 142 81 8
Spleen 1057 42 79 15 1328 31 61 9
Pancreas 584 14 46 6 725 71 43 7
ParavertebralMuscle 856 61 27 8 898 33 29 4
Subcutaneous Fat 343 37 58 4 382 13 68 4

Prostate 1317 85 88 - 1597 42 74 9

For the neuro-endocrine DCE-MRI data used in this thesesutiderlying T1 maps can be calcu-
lated from two different flip angle images. Flip angleéfand24° were acquired with a repetition time
TR of 4ms. Via Equation 3.2 it is possible to calculate T1 values. Hlso possible to produce a truly
synthetic T1 map from Table 3.1, but this makes the generatigealistic images considerably more
difficult and is left as future work. For the synthetic datageted in this chapter, we estimate T1 values

from individual input images using Equation 3.1.

3.2 Developing A Liver Model
3.2.1 Liver Deformation

We aim to generate a deformation model of the liver that Witlva it to appear to deform realistically
and reversibly. Breathing motion is cyclic and undergoegsdretic motion, although the cycle may
not be closed and its end point may drift over time (Blackidlle 2006). Approximately 70% of motion
is in the superior-inferior direction, with motion of a si@alextent in both the anterior-posterior (24%)
and medial-lateral (7%) directions (Rohlfing et al., 2004)e model our image as an isotropic elastic
medium, this is a reasonable approximation for non-rigigcis which resist an applied force and return
to their intial configuration on removal of the force (an amipic modification is discussed below). The
method will not be appropriate near objects such as bondiallnésults are shown for 2D motion,
neglecting small medial-lateral deformations. To ensumeodel that is both general and that has good
deformation properties, we model a global image deformatiowhich organ specific motion is induced
by careful placement of forces. Deforming forces are plaonestder to mimic breathing motion; they
are strongest, resulting in largest displacement, in t@neof the diaphragm and weighted toward a
deformation in the superior-inferior direction. Forcesymtso be placed in the lower abdomen to mimic
peristalsis. We require our forces to be time-varying \aithgy the generation of a cyclic model meeting
the properties discussed above. Random variation of tlve foagnitude allows us to simulate repeated

breath-hold imaging conditions.

The forces in each direction are described here as Gaugsiatfqrces. A location is chosen at a
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point|[xo, yo] and a force applied symmetrically around this point fofall], the force has time-varying

magnitudeA(t), and spatial exterit (Equation 3.3).

F(IE, y,t) _ b’i‘/(% exp 7((5170 - z);bi (yO - y)2) (33)

The breathing model applies many forces of the above stgtanttance, superior-inferior forces
located in the lung region will drive the dominant breathingtion, greatest in magnitude in the di-
aphragm region. Additional anterior-posterior or medéétal forces will impart perturbations to the
breathing cycle. Modulating the forces in magnitude anéation with a sine-waveX,(t) = sin(t),
A..(t) = 0) or a spline-based model will generate images across thetting cycle. The solution of
this force-field on the image is found by the solution of thatrigpic linear elastic equation (Equation
3.4), allowing a displacement field to be calculated acrossmage.

An example is shown in Figure 3.1 for three superior-infefimce centres selected using a graph-
ical user interface. This model allows more advanced forodets to that described above. Each force
point can have its magnitude modulated by a raised sinusdigle@ar ramp over a period of time in order
to model breathing or other types of force (see (George £2@05)). A raised sinusoid is often used,
but it does not address the fundamental issue that a singdHing cycle is not symmetric - breathing
in is more difficult than breathing out due to the pressuréedihces. More advanced work has been
produced by McClelland (McClelland et al., 2006), modejlia single breathing cycle with a spline.
The incorporation of a spline model is a desirable stepjqaatly when incorporating a more natural
model of variations in breathing phase and depth. An examiplesing the spline model to describe
breathing variation is shown in Figure 3.2 for six conse@bireath-holds. We define an initial spline
(red), shown here as slightly saw-tooth (breathing in td&eger) and with a magnitude that will cor-
relate with breath-depth. The spline nodes (green/yelinw)allowed to vary from these locations in
subsequent breaths with a Gaussian distribution.

The solution for the displacement induced by the map of fE® described above is given by
Equation 3.4. The solution of the displacemarftom the forceF (the parameters fgr and \ are set
to 1 and 0 respectively as the elastic medium is both isatrapd we have no information to guide the
choice for these parameters) is found here using a methadaged by Cahill (Cabhill et al., 2007b) for
fixed boundary conditions. By writing Equation 3.4 as thedut of itself with its adjoint (Equations
3.5-3.7), we can then consider the eigenvalue&dfto find an analytical solution using a few fast
Fourier transforms (if the boundary conditions are notqma (i.e. Neumann or Direchlet) we may use

an equivalent fast sine or fast cosine transform).

uV2u+ (p+NV(V-u) = F (3.4)
Lu) = F (3.5)
L'L(u) = L'F (3.6)

X+ 2p)Viu L'F (3.7)

Here we choose a zero boundary condition, requiring thesfast transform to be used. This is
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Figure 3.1: Example force seeds added to an underlying bazge (left) and resulting deformation
field (right). The green points represent centres of supénferior driving force from which the image
displacementis calculated using an elastic equation ®agoorresponding deformation field (right hand

image). Breathing is modelled by varying the magnitude efftirce centres by a raised sinusoid.

done to prevent objects moving from the field of view, if we wéarge displacements, the field of
view can be made larger). Writing the discrete sine tramsfas¥ (in 3 dimensions with sizes in each
dimension denoted by/, N, P), it can be shown that the solution offor a given force is found by
Equation 3.8 where the division by is an element-wise divide - corrected for the undefined patint
Booo- Formulations for the sine-transform and fdare shown in Equations 3.9-3.10. In this case the
inverse of the sine transform is the same as the forward samsform¥W¥(u) = w. The fast sine
transform is coded using the method described in Numerieaiges (Press et al., 2007) based on a

single fast fourier transform in each dimension.

V(L'F
o = w2 (3:8)
8 A= Tmi ™mj mpk
where, ¥(U;j,) = VNP 2. 22 Usjk sm(M — 1)sm(N - 1)SIH(P — 1) (3.9)
S i Tj 7wk a2
Bije = 8u()\+2u)(cos(M_ 1)+COS(N_1)+COS(P_ 1) 3) (3.10)
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Breathing Cycle Model

Magnitude

Time

Figure 3.2: Using a spline model to describe breathing tiaridor six consecutive breath-holds. An
initial spline (red) (shown slightly saw-tooth so that kréag in takes longer) is defined. The initial
spline nodes (green/yellow) are allowed to vary from thefiirted locations in subsequent breaths with

a Gaussian distribution in both time and magnitude.
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3.2.2 A Contrast Enhancement Model

We now add a contrast enhancement model; for this we requeegmentation, different organs have
different overall enhancement characteristics dependimglood requirements and vascular distance
from the heart. Figure 3.3 demonstrates a hand segment#tigmoss abdominal features overlaid on
anatomical reference images. Each image is one of twemtgsstif a contiguous abdominal volume of
pixel size1.37 x 1.37 x 5mm?, segmented by hand into liver, kidney, aorta & vasculanfiest, heart
(left & right side). Pathology may also be marked but addiigpathology will be included as discussed
below. The enhancement process in each of these can be pbdeltording to observed physical
properties. Vascular features including blood vesseldamdur boundary angiogenesis enhance rapidly.
Enhancement also fades rapidly from these regions. Thdyhgiscular bulk liver enhances brightly,
whilst the bulk tumour will have delayed enhancement, ddpenon the tissue status of its interior. A
physiological description of this process and the totatiast agentC;(t), at a given time is described
by the widely-used Kety model (see Section 2.3.1). The patarak' "¢, v, v. correspond to the
volume transfer coefficient of contrast agent between bpdasima and extracellular-extravascular space
(EES), and the fractional volumes of blood plasma and EEpedively. C,(t) is the 'Arterial Input
Function’ describing the injection of contrast agent ittite drgan of interest. Equation 3.11 describes the
total tissue concentration of contrast agent using thenebete Kety model (see Equation 2.30). Since the
liver has a dual blood supply we include a model of the coutiiim of both the contrast agent arriving via
the hepatic arterg# el (1) (Equation 3.11) and portal ve(##*"** (t) (Equation 3.12). The weighting
of each contribution is given byrepresenting the hepatic perfusion index (HPI) descrittiegobserved
ratio of arterial to total liver perfusion, for instance ttentribution of the hepatic blood supply is about
25% from the aorta and 75% from the gastro-intestinal (fjosisstem, hence for Equation 3.13,~

0.25. However, this number will vary between individuals and ttlupathology.

t __Ktrans
Cézrterial (t) — ,Upcgrterial (t) 4 Kt7-ans / Cgrterial (t) exp [T(t _ ﬁl)]dﬁl (311)
0 e
ot 7Ktrans
Ctportal (t) —_ UpCIZ;OTml(t) + Ktrans/ ng))ortal(t) exp [7(15 . t/)]dt/ (312)
0 Ve
C;fotal(ﬁ) — /ycé“-terial(t) + (1 _ V)Cg)ortal(t) (313)

A correct Arterial Input Function (AIF) is often difficult tdetermine, so an empirical model may
be used or may be determined from the data (Buonaccorsi, &0l6) (e.g. by tracking contrast en-
hancement in a segmented region of the aorta). Here we usd angut model based on a cosine input
function as developed by Woolrich (Woolrich et al., 20043l aliscussed by Orton (Orton et al., 2008)
given by Equations 2.33 and 2.34. Separate cosine artepiat models are applied withkﬁgT'te"ml (t)
anngO’“t“l(t) with values given in Table 3.2. The function coefficient \eddory s andu correspond
to the rate constants associated with the cosinusoidalasirggent bolus arrival and its temporal shape
modulation under recirculation by a 'body transfer funatigiven by age=#<t (amplitudes are often
expressed aBgl~! and rate constants imin '), hence this 'body transfer function’ is given different
coefficients for the arterial and portal input functions. iAgée input system such as the aorta can be

modelled with a value of = 1.
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Table 3.2: Modelled Arterial Input Function ParametersBoal Cosine Input Model (see (Orton et al.,
2008) and (Parker et al., 2006) for source.)

ap KB ag HG to

mM  min~! mM min~! min
C’g”e”“l(t) 4.90 22.8 1.36 0.171 0
C’g"”“l(t) 1.69 11.8 2.33 0.145 0.1

Table 3.3: Modelled Pharmacokinetic Parameters for givgars from consideration of vascular prop-

erties (see text for description) (Parker et al., 2006)
Organ Ktrans v,  HPI Onset

(min=1) (min—1)

Right Heart - 1 0 1 0
Aorta - 08 O 1 0.12
Kidney 0.33 02 0.2 1 0.2

Liver (A) 027 0 025 03 0.23
Liver (P) 027 0 025 03 0.33

A further important factor when considering contrast erdesment of multiple organs with multi-
ple blood supplies is the bolus onset time. In the case ofitke Wwe alter the relative onset times of
Corterial (1) and CP° ' (¢) by adjusting the bolus arrival time. We alter the paramek&s™s, v,, v,
and H PI to give enhancement profiles with the behaviour we wish eaglon to display. Model pa-
rameters are shown in Table 3.3 for comparison with liteeatalues (Parker et al., 2006). We currently
use hepatic values of, = 0 for simplicity, hence the enhancement curve modelling cdamtsiecessarily
correspond to the vivo biological situation. For the purposes of registrationitggsin this thesis it is
the contrast variation that is important, however, the rhatey be refined in future. As illustrated by
Parkeret al (Parker et al., 2006), the range of pharmacokinetic parmmatues is quite variable, so the
relative values chosen are important. In the liver, theydettween the arterial and portal enhancements
is shown and thed PI is given a value of 0.3 (Totman et al., 2005). The kidney i®gia largev,
to represent a large blood supply and corresponding lat@ga fraction. Large blood volumes are
modelled withv,, for the heart and aorta. It would be possible to mimic sompsetision to the bolus in
the left ventricle and aorta by using a largé"*"* to model the disruption to the bolus passing between

cardiac chambers, although this result would be difficuibterpret biologically.
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Figure 3.3: Example of 3D Gross Abdominal Segmentationlaiceon anatomical reference images.

Segmented by hand into liver (white), kidney (green), a&rtaascular features (yellow), heart (left &

right side (red & blue respectively)). Pathology may alsartsgked (magenta).
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3.2.3 A Tumour Model

In addition to the gross organ segmentation described atibieeuseful to add particular pathology.
This will be particularly important for future work invegtting the success of registration in areas of
complex enhancement. The model in this region is a crucgligion in the development of simulated
DCE-MRI since it is the pathology that motivates the acdiasiof DCE-MRI data. Here we introduce
models of tumours with different enhancement artefactsfferént locations. After selecting a tumour
location, a roughly circular (in 3D, spherical) boundarydimwn around this point. This is done by
setting two parameters, one governing the radius and oowialj the radius to deviate away from a
circle. The radius is defined at a set of spoke locations in &amd may be allowed to vary with a
Gaussian distribution. The gaps between the spokes ampatated with a cubic-spline to ensure a
smooth boundary. The circle is filled to a given radius to gifferent pharmacokinetic properties
between the boundary and tumour core (see Figure 3.4).

Pharmacokinetic parameters are chosen to mimic partitypas of tumour: 1) isotropic tumour
enhancement; 2) filling tumours where the rim enhances guéid later the tumour core enhances; 3)
necrotic core tumour where the rim enhances quickly and ¢he does not enhance; 4) poorly defined
tumours with amosaicappearance of different enhancement characteristicsllidstration of the ap-
plication of this tumour model is shown in Figure 3.5. Morasmalar areas such as angiogenic regions
are given larger values for the transfer const&t*"* and blood volumes,. The HPI may also be

increased to reflect increased arterial vascularity (Tatetal., 2005).
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Figure 3.4: 2D pathology constructiora Circular boundary.b distorted boundary, smoothed with
splines. ¢ boundary thickness definitiord labelling pharmacokinetic features (colour coding irgeri

and exterior).

Parameters for varying pathology are shown in Table 3.4.dkurimteriors are given lower values
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Figure 3.5: Example tumours added to underlying (pre-ecdaent) image. Segmentation colours cor-
respond to different pharmacokinetic parameters for turriouand tumour core. For tumour generation

process see text.

Table 3.4: Modelled Pharmacokinetic Parameters for SitadIRathology (see text for description and
compare with Table 3.3). We increase thié *"* of the tumour boundary to mimic the expected rate-

constantincrease due to angiogenesis and add some dél@inget of enhancementin a filling region.

Organ Ktrans Up ve HPI  Onset
(min=1) (min=1)
Tumour Boundary 0.33 025 0.2 1 0.23
Filling Region 0.17 0 0.18 0 1.3
Necrotic Region - 0 0 0 0
Normal Liver 0.27 0 025 0.3 0.23

for K" a necrotic region would not enhance. Valuesdprare increased to represent increased
vascularity in angiogenic regions and are kept at zero ierategions, for comparison with Table 3.3.
Figure 3.6 shows the corresponding parameters for thress typtumour corresponding to the first
three types discussed above. The colour segmentation ¥&ited into contrast-enhancement uptake
curves via table 3.4, which are then converted to signal Miaspoiled gradient echo equation as in
Equation 2.26. Figure 3.6 presents an example showingasirgnhancement as a function of time for
ten time-points. Figure 3.7 demonstrates the intensitgtimrves generated for a specific flip angle, T1
and TR for different organs, two sub-figures are shown detnativsg signal intensity curves for both
gross organ segmentation and for pathology with valuestititied in Table 3.4. Intrinsic T1 values are

drawn from Table 3.1.
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time S

Figure 3.6: 2D pathology examples over an approximately Butei time period for top) peripheral
tumour enhancement; middle) filling tumours where the rimasrtes quickly and later the tumour core

enhances; bottom) necrotic core tumour where the rim ergsaogickly and the core does not enhance.
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Figure 3.7: Example intensity-time curves used to simulageuptake profile of major organs (left) and
curves used in Section 3.2.3 to model pathology. Signaliegaed for = 24°, TR = 4ms and for
intrinsic tissuel’'1 found from Table 3.1. Note that these curves have an untiealig rapid wash-out
due to an implementation error that should be resolved poi@dditional work regarding biological

pharmacokinetic parameter extraction. See text for patemshoice and further clarification.
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3.2.4 Proposed Volume Preservation Modification

Our deformation model is intrinsically isotropic, a sitieat which is implausible where tissues have
different stiffness. As an example, in the breast, tumasug is found to be up to 15 times stiffer
than normal breast tissue (Sarvazyan et al., 1994). A fatfudision of the character of the liver, one
that would be useful for further development of a biomecbalninodel, is given by (Liu & Bilston,
2000). To accommodate stiffness variation, we modify odoxteation fields retrospectively to ensure
that tumours move rigidly. The elastic equation in Equatiof is isotropic, the parameters relating
resistance to shear forcas)@nd resistance to internal expansion and compressioadd¢xy are fixed
throughout the medium. If we wish to vary them locally, we mespand Equation 3.4 to Equation
3.16 (see (Lester et al., 1998) and (Little et al., 1997))e Wotivation for Equation 3.16 is given by
Equations 3.14 and 3.15 describing the force as a functitimeo$tress (see also Appendix A).

ou; 6Uj

oij = M[(;xj + 5$Z] + Adi; (V -u) (3.14)
L
Fvisc — (315)
P (Sl‘j
j=1
Fuise = pV2U+ (u+N)V(V-u)+ (Vul + (Vu) )V + (V-u)Va (3.16)

The use of Equation 3.16 may be appropriate for non-rigidjienagistration if we wish to prevent
the deformation of objects we know to be well-registered.sdme extent this is incorporated into the
paper by Lester (Lester et al., 1998). An explicit altenafinthe case of DCE-MRI would be to monitor
the success of the model-fitting. If pixels are well-fittedgEf they have relatively low residuals) then
the viscosity may be locally increased. The success of thistration can then be governed by the
fraction of pixels considered to be well-fitted. This contdepeft as future work.

It is also possible to ensure rigidity if we segment the turs@nd give every pixel in the tumour
values corresponding to an approximation of the best<jittin 4 affine matrix. This can be calculated in
a least-squares fashion to obtain parameters for rotasoates and shears. Depending on the properties
of the desired resultant deformation, we can remove theanfla of particular parameters (for instance
the scaling). This process does not remove the problem afrimg the deformations together. This can
be done as by using a smoothing filter at the region bounddsy asing a spline to interpolate from the
affine block into the fluid deformation field. Alternative foulations of locally rigid (or locally affine)
registrations have been developed by Narayanan (Naragaahn2005) and Commowick (Commowick
et al., 2008).

Figure 3.8 demonstrates the requirement for the generafiangood intermediate deformation
field. For more complex objects, the definition of the defdioraacross the boundary is crucial to avoid
discontinuities in the image. Figure 3.9 demonstratesriherporation of a spline-based interpolation
of the deformation fields between the affine and elastic dedition blocks. The correction algorithm is
described in Table 3.5. In practice and in the results géa@iia Chapter 5 we implement a Gaussian

filter at the boundary to smooth the non-rigid and affine defitions together.



3.2. Developing A Liver Model 63

Figure 3.8: Maintaining rigid object shape in an elasticdefation:a Original Squareb Square moved
downwards using elastic deformationUnmodified elastic deformatiord affine deformation patched

into elastic deformation, note the unacceptable defoonatiscontinuity at the boundary.

Table 3.5: Algorithm for patching affine transformationare global elastic deformation (see text for

discussion)
For each affine object:

1) Segment non-rigid part of elastic deformation field thiltle made rigid.

2) Approximate segmentation as affine using least-squatiegfi

3) Re-insert affine deformation into elastic deformation.

4) For each point on the boundary of the affine deformation:

i) find the B-spline that extends a dept2xDinto both the elastic and affine deformations.

i) replace pixels withintD by the interpolated value.
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Figure 3.9: Maintaining rigid object shape in an elasticdefation:a Original Squareb Square moved
downwards using elastic deformationUnmodified elastic deformatiord affine deformation patched
into elastic deformation, now interpolated between affing @lastic deformations for comparison with

Figure 3.8 using the method described in Table 3.5
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3.3 Motion Model Examples

Figure 3.10 demonstrates images subject to the motion naedelibed in Section 3.2.1. A force model
is used to deform the liver in a superior-inferior directieith sinusoidal (breathing-like) amplitude with
a period of 10 images. The green overlay outlines the livsitjpm in the firstimage. An example movie

is included on the supplementary CD (See Appendix E).

Figure 3.10: Example deformation for superior-infetimeathing motiorwith 10 image cycle length

with additional random medial-lateral deformations.

Figure 3.11 shows the (normalised) difference images dfi éaene in Figure 3.10 with the first

image.
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Figure 3.11: Example difference images (with original wiedmed image) for superior-inferibreath-

ing motionwith 10 image cycle length for comparison with 3.10.
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3.4 Enhancement Model Examples

Figure 3.12 demonstrate the contrast enhancement modadsi the segmentation illustrated in Figure
3.3. Early enhancement of the heart and aorta is followechbgecement of the liver and an embedded
tumour. In this example, enhancement occurs over a shaddpef time and wash-out is unrealistically
rapid. Figure 3.3 shows a further example of the enhancemedel from a sagittal perspective. In this
case the enhancing kidney is shown and two large hepaticemase modelled. Example movies are

included on the supplementary CD (See Appendix E).

Figure 3.12: Example contrast enhancement time coursefonal images.
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Figure 3.13: Example contrast enhancement time courseépital images.

68



3.5. Conclusion 69

3.5 Conclusion

The model presented above has been developed to providéssier basis for the testing of novel reg-
istration algorithms. With regards to the deformation mpthe elastic deformation allows a coherent
non-rigid deformation to be used. The deformation is oné shauld be correctable by a registration
algorithm, provided the choice of cost-function is apprate. The deformation is appropriate for algo-
rithm testing. However, the global elastic deformatiorkkathe realism required for inferring registration
success in real-world applications.

The inclusion of an organ specific contrast-enhancemenehi®dn important step. If registration
accuracy was to be tested by software designed for pharnmeatimkmodel-fitting, the simulated data
has included a well-developed enhancement model that @tlold an estimation of real-world param-
eter extraction accuracy. The importance of testing reggien algorithms on known pharmacokinetic
parameters is required for validation purposes: registiahay be visually accurate but the acid test
remains the ability to extract accurate pharmacokinetiperties from the entire DCE-MRI dataset.
The parameter curves shown in Figure 3.7 do not appeartieagliaving a rapid wash-out phase in all
cases. This is due to an error in the implementation of Eqoat8.11 and 3.12. Although this makes
the generated enhancement curves unrepresentative iof ¥ situation, they may still be used for
registration validation within the scope of this thesis.

The inclusion of organ specific deformations, perhaps uBiitg-element methods, would be a
necessary development if the model was to be used outsids plifpose of testing the success of
registration algorithms. If realistic biological defortimns were used, the method may be used to gen-
erate synthetic data to match an existing dataset, predibtbth accurate biological deformations and
enhancement parameters.

As the model stands, it may be used for analysing registraticcess and in particular the failure
of registration under contrast enhancement due to inapjateprost-function selection. The choice of

registration cost-function is discussed in the next chapte



Chapter 4

Cost Functions and Contrast Enhancement

4.1 Introduction

Registration of Dynamic Contrast-Enhanced Magnetic Rasoa Images (DCE-MRI) of soft tissue is
difficult. Conventional registration cost-functions tlipend on information content are compromised
by the changing intensity profile, leading to mis-registmat This chapter will outline the requirement
for a registration method that accommodates contrast @enaent by discussing the failures of common
cost-functions. A method is also introduced to enable tsesmsment of the registration status of a group
of images to one another. This method is then used to proeithe issessment of registration accuracy

when attempting to determine the best choice of anchor imattpn a group of images.

4.2 Conventional Cost-Functions

Image registration cost functions do not distinguish betwdifferences due to motion artefacts and
differences due to contrast enhancement, therefore wHeulatng forces that minimise a cost func-
tion, contrast enhancement can induce mis-registratidrs dften leads to distortion at enhancement
boundaries, compromising registration success. Figureldmonstrates enhancement of features seen
in a dynamic contrast enhancement sequence. Figure 4.1lpresenhancement image. Figures 4.1b
and 4.1c are images acquired during the passage of the bwtugyh the heart from right side to left
side and into the aorta. This is an extreme case of the chamgeages under enhancement. The rapid
enhancement of the heart and the transitional appearanvesaidlar features (such as those seen in the
liver) combine to confound registration cost-functionheTeason for this failure is now discussed. The

derivation of the force gradients for each cost-functianiacluded in Appendix B.

4.2.1 Method

For the cost-functions discussed in Chapter 2 we will dis¢be formation of image registration force
gradients when registering a float imageo an anchor imagé. The images that will be analysed
are the real images in Figure 4.1 where we register the twogrdsancement imagels,andc, to the
pre-enhancement image, These are images from the central slice of patient threeabiel1.2 and
contain both small amounts of motion and contrast enhaneeriée dense force gradient images are

suitable for implementation directly into a fluid or diffesi based registration algorithm. Analysis of
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Figure 4.1: Example real contrast-enhanced imagasdc and pre-enhancementimagdemonstrating
passage of bolus through right and left sides of the hearband. Difference images fdr-a andc-a

are also shown to illustrate differences in position of ahit@al wall and superior liver.

the gradient images for bothandy force directions will be presented as evidence for failuréhe
cost-function under contrast-enhancing features. Arrtatspof the resulting deformations after five
iterations of a fluid based registration algorithm are shawmadditional evidence on the fourth row of

Figure 4.2 to 4.6 (see Appendix C).

4.2.2 Results

Statistical Alignment

A simple least squares alignment is given by Equation 4.Joasd in (Christensen et al., 1996). Its
derivation is found in Appendix B. Differences in intensiigtween images are penalised and the force
reduces to zero fod = F. Figure 4.2 demonstrates the dominance of contrast enhremteon the
cost-function gradient images that would then be used ini@ élub-spline registration algorithm. This
dominance reduces the chances of correct registratioreasarutside the dominant areas. Since gradi-
ents are largely the result of contrast-enhancement, wetexpect (and do not achieve, when used) a
correct registration. The gradients in Figure 4.2 will tegushrinking of the enhanced heart and aorta

as implied by the deformation field arrow plots.

%S = (A-F)VF (4.1)

An alternative is the cross-correlation force (or its vatsausing different normalisations), found

by considering the change to the overall cross-correlatidme for individual pixel displacements. The
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gradient of this (unnormalised) cost-function is représdrby Equation 4.2. If we were to properly
normalise this measure we would have to include additi@rats that are derived in Appendix B. This
mediates against displacement fields dominated by a fewnmsgif large force values such as those found
using least-squares. However, the fact that there is oftém hinear relationship between pixels (due
to one-to-many intensity relationships between anchorflaad) theoretically limits the cost-function’s
applicability. The gradient images in Figure 4.3 show deiat visible in Figure 4.2 and there are
correcting gradients in the medial-lateral direction oa #iodominal walls. Gradients in the enhancing
heart and aorta are less well-defined, but the increased ndght result in unpredictable registration
results that introduce distortions in the resulting defation field.

aCC _ ivr (4.2)
dx

Information-Based Alignment
Starting with joint entropy, the calculation of forces peeds by analysing the change to the total entropy
by moving one pixel between two intensity bins. The derivatis found in Appendix B, but for large
numbers of pixels in each intensity bin, the change in jomttapy is given by Equation 4.3 (Crum
et al., 2005) where”(F;;, A;_1;) is the joint histogram entry for the intensity values at kima:;j in
the anchoA and floatF images (V is the total number of pixels). Figure 4.4 uses 64 bins to gigeod
bin population. Superficially the gradients do not seem taadisrupt the enhancing features, however,
as discussed in Chapter 2, joint entropy on its own is not @ gost-function to minimise theoretically.
Chapter 5 (see Figure 5.8) will also show some evidence fi¢dlifies in finding a smooth minimisation
of joint entropy.

dE 1 P(Fy,Ai_yj)

e
d N P(Fy, Aryy)

Similarly for Mutual Information, we make adjustment to e the effect of pixel movement on the

(4.3)

marginal entropy (Appendix B) to achieve Equation 4.4 wheeednclude the entry from the respective
single (marginal) image histogram for the intensity valtéaationij in the floatF image (V is the
total number of pixels). The resulting gradient images d@a in Figure 4.5. The correction of
the abdominal wall displacement is visible, but there remaome evidence of mis-correction in the
enhancing heart and hepatic artery. This structure agginsipection of the gradient images, will result
in shrinking of enhancing regions.

dMl 1 P(Fiy, Aicy) P(Figy)

M
dx N %8 P(Fy, Arr)) P(Ficyj)

(4.4)

Gradients for Normalised Mutual Information can be devebtbpy considering the two previous
results for joint entropy K 4r) and mutual information{ 4 + Hr — Har)(Crum et al., 2005). The
resulting gradient images are shown in Figure 4.6. Althotingtoretically the result is a general image
similarity measure (as discussed in Chapter 2), gradieatsesen that will shrink enhancing features.

Ha+Hrp  MI+JE
NMI = = 4.5
Harp JE (4.5)
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dNMI 1 dMI dJE
= S &= 4.6
dx JE?2 7 dx dx ) (4.6)

4.2.3 Conclusion

In this section we have demonstrated that both statistiélisformation based cost-function gradients
are affected by contrast-enhancement. The extent of eeh@erd shown here is likely to be unrepresen-
tative of an entire dataset since the examples show the éisstage of contrast agent through the heart.
However, over the course of a dynamic series, the effectwstadove will be manifest at different
levels. One solution is to separate the motion artefacta frontrast-enhancement artefacts. In the ab-
sence of a cost-function that implicitly does this, it is @esary to focus on the formation of images that
are contrast-matched; where some effort is made to matcineirig features between float and anchor
images. Therefore the effect of contrast-enhancement earroved from the resulting cost func-
tion gradients. The discussion in the next chapter of thgfssive Principal Component Registration

method discusses one such way in which contrast-enhantemagrhed images can be generated.
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Figure 4.2: Derived image-similarity local gradient imader Least Squares Cost Functiofop row
pre-enhancement image and two post-enhancement im&gesind rowcorresponding (normalised)

force gradients irx-direction Third row corresponding (normalised) force gradientsyidirection

Bottom row corresponding displacement vector fields.
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Figure 4.3: As Figure 4.2 but for Cross-Correlation Costd¥iam.
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Figure 4.4: As Figure 4.2 but for Joint Entropy Cost Function
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Figure 4.5:

4.2. Conventional Cost-Functions

As Figure 4.2 but for Mutual Information Cost Etian.
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Figure 4.6:

4.2. Conventional Cost-Functions

As Figure 4.2 but for Normalised Mutual InforinatCost Function.
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4.3 Cost Function Minimisation

We can test the suitability of different cost-functions affiedent types of image by progressively apply-
ing a known force with the simulation discussed in Chaptem@@mparing the original and deformed
images. In this way we can assess the ability of a given eaosgttion to retrieve the true deformation

parameters which in this case will be a force with a magnitut®(2D) direction. If the cost-function is

appropriate and therefore produces a monotonically dsitcrgpath towards the true solution, we would
expect to be able to take any (gradient-descent) trajetiooygh the cost-function space to find the pa-
rameters that were used to produce the second image fronigfieabimage. The method is discussed

in this section as a prelude to further use in Chapter 5.

4.3.1 Method

The experiment proceeds as follows. Two images (which shbalin good feature alignment) are
considered, for instance two identical images. One imageserved as the anchor whilst the other
image, the float image, is deformed by a known force. In the shswn here a known force is applied
to the centre of the image (Figure 4.7). The force is variethagnitude and direction to deform the
float image. The deformation of the float image is found by isghthe linear elastic equation for the
displacement from the force as discussed in Chapter 3. Tstefwoction value between anchor image
and deformed float image is recorded and plotted in a spacespanmding to force magnitude in each
direction. The intensity in the images of Figure 4.8 and 4djfresent the cost function value for a
given value of force magnitude and direction correspondinthe x and y axes. The centre of each
cost-function space corresponds to zero force, which fmtidal images corresponds to a perfectimage
alignment. If we were to use the cost-function space infdionan a registration algorithm, we would

follow the gradient of the cost-function to its minimum ahetefore register the images.

The cost-function spaces provide evidence for how wellstegfion would proceed. If the cost-
function space has a well defined minimum (or maximum) we dexipect an appropriate registration
algorithm (in this case perhaps an elastic registratioorélgn) to deform the image to achieve this
minimum. On the other hand, if the cost-function space hadesr minimum, the registration might be

expected to proceed poorly.

In the cases shown here, the images are deformed with a imgéecausing an elastic deformation
in the centre of the image. An elastic registration alganitith this prior knowledge could apply a
single force to the centre of the image and optimise the vabgerdingly. However, in realistic image
registration examples we do not know the type of deformatti@t brought about the changes to the
image, nor do we expect the deformation to have a simple farengan only assume that using a fluid
or b-spline registration (or a good regularisation) wikué in finding a good approximation to the true

deformation parameters.
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4.3.2 Results

Two identical images

Figure 4.8 demonstrates the minimisation space of the cégpecost-functions for varying the mag-
nitude and direction of a force applied to an image. For twantital images (Figure 4.7), the search
space is particularly well-defined for all cost-functiofer ease of visualisation the negative log values
for mutual information, normalised mutual information ardss-correlation are shown, hence the best
value for the cost function is bright in all images. It appetinat all cost-functions may be used in this

case, with the exception of differences in the speed at whieare optimised under gradient-descent.

Contrast-enhanced images

If we inspect the cost-function space of a pre and a postastrenhanced image (e.g. one in which there
are valid one-to-many pixel relationships between anchdrfpat images (Figure 4.9)), we get a much
less well-defined minimisation (Figure 4.10). Again, foseaf visualisation the negative log values for

mutual information, normalised mutual information andss-@orrelation are shown.

4.3.3 Conclusion

The results in this section provide the groundwork for S#ch.4. The results presented here use a
particularly simple form of deformation, applying a sinftece to the centre of the image. Figure 4.10
provides evidence that registration using sum-of-squditierences or cross-correlation will lead to
erroneous registration when enhancement is present sicdise a compression of the enhancing region
(this is due to the compression optimising the cost-fumdbip removing enhancing pixels). For the very
simple deformation model described in this section, therimftion based cost-function minimisation
spaces appear to suggest that they are able to correct threnited) displacement. However, with regards
to full non-rigid registration, the cost-function forceffi is calculated locally across the entire image and
we may not expect registration to minimise so well. The glédwan of the deformation is perhaps over-
simplistic when compared to the inverse registration prblNon-rigid image registration algorithms
are local in application, so local changes are likely to inggi on registration success using information-

theoretic cost-functions, resulting in the effects seefigures 4.4 to 4.6.
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Figure 4.7: Two identical imagesandb, float image is deformed by a known force and then the cost-
function value is found between deformed float and anchodifference image betweemandb. d:

difference image betweemnandb at maximum deformation.
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Normalised Mutual Mutual Joint Entropy
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Cross SsD SAD
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Figure 4.8: Cost-function minimisation space for labekgdilarity measure for images corresponding
to Figure 4.7, identical images where the float is deformed kgpown force of varying magnitude and
direction. Distance from centre on X and Y axes represemt&fstrength in that direction (zero force at

centre).



4.3. Cost Function Minimisation

82

Figure 4.9: Pre and Post Contrast Enhancement imagesib, float image is deformed by a known

force and then the cost-function value is found betweenrdefd float and anchorc: difference im-

age betweeia andb with no deformation (there is small existing misalignmenmt) difference image

betweera andb at maximum deformation.
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Figure 4.10: Cost-function minimisation space for labedidilarity measure for images corresponding

to Figure 4.9, pre and post enhancement images where thésfibefbrmed by a known force of varying

magnitude and direction. Distance from centre on X and Y eagesents force strength in that direction

(zero force at centre).
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4.4 The Cost Function Matrix Mean (CFMM)

Assessment of the performance of the registration can be ctimparatively between two images before
and after registration. This is also true when registeriroyps of images. When registering a group of
images we desire that they are all registered to the samdioate system, but we not only need to assess
how well they are registered to one image, but how well theyragistered to every other image in the
group. Therefore, we need to assess the relative improvasharcost-function matrixof cost-function
values of each image in a group to every other. The formulatfothe mean value of this matrix is
shown in Equation 4.7 for a symmetric similarity measureffamages (this fills half the matrix; a non-
symmetric cost-function would fill every entry in the majtiAn explicit example is shown in Equation

4.8, again fofl' images for the Normalised Mutual Information cost-funotio

g - A 4.7

g T+1 ;;cos( F(7) (4.7)
= Haw) + Hry

NMI = 4.8

T+1 ZZ Hagyri) (48)

(4.9)

If our group of images is well-registered relative to an gistered set of images, we would expect an
improvement throughout the cost-function matrix sincergwmage should be better aligned to every
other. Therefore we might expect the total gain in imagelanity from the image registration can be
analysed by assessing the mean of the cost-function matnix ¢ost-function matrix mean (CFMM)).
This method also allows a comparison of the relative mefitdiféerent registration algorithms. Other
measures of the change to the cost-function matrix aftegémagistration might also be proposed but

for this work, we consider the mean value of the matrix eletsenly.

4.4.1 Using Simulated DCE-MRI to investigate the CFMM

The behaviour of the Cost-Function Matrix Mean (CFMM) undarying influence of motion and con-
trast enhancement may be investigated with simulated DEG&-8&ta produced from the method in
Chapter 3. By setting a standard deformation and segmentate may then vary the force magnitude
and contrast-agent 'dose’ parameters used in this stamfidodmation and investigate the stability of
the CFMM. We take one image and generate a dataset of 20 imathegarying motion strength and
contrast agent dose parameters. Motion strength is vari@gteps from zero motion to an average pixel
displacement of 1.13 pixels and a corresponding maximuplatisment of 33.6 pixels. Enhancement
strength is also varied in 9 steps from zero enhancementitcceanse of 150% in the region of greatest
enhancement. Simulated deformation and enhancementiechw a coronal liver image; a dominant
force direction moves the liver in a superior-inferior ditien with a sinusoidal motion. Datasets are gen-
erated, each of twenty images, varying the motion and em@meant parameters in nine steps between
zero displacement (and enhancement) and twice the staddatdcement (or contrast agent dose). The
NMI-CFMM is then calculated for each of the 81 (9 motigr® enhancement steps) datasets.

Figure 4.11 shows the results of the NMI-CFMM for each of theermotion and nine enhancement

levels described above. The influence of motion level dotesthe curve position and the influence of
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contrast-enhancement introduces a small dose-depeneldntigation to each motion-level curve, seen
as a decrease in the similarity measure with increasing. ddle top curve representing zero-motion
contains the effects of contrast-agent only and hence dseseslowly from the maximum value of 2

with increasing enhancement level.

Motion Level 1

{zere motion)
1.8+
2
146 -
1.44 K
142+ Motion Level 2

NMI-CF b
8 =
[

05 1 14 2 25 3 35 4
Enhancement Level

Figure 4.11: Plot of NMI-CFMM values for varying sinusoieiabtion magnitude in linear steps be-
tween minimum and maximum force strength and and contrasttagose’ varied in linear steps before

conversion to signal by the spoiled gradient echo equakgudtion 2.26).

The results above suggest that the CFMM measure is a suiteddsure for determining the per-
formance of registration on groups of images, dependenherappropriateness of the measure used
on each pair of images. The value of the NMI-CFMM is deterrdipeedominantly by the motion pa-
rameter, causing the large jumps between curves of NMI-CRrMe for varying enhancement, with
additional perturbations due to contrast-enhancement riethod may provide some robustness to
contrast-enhancement, particularly when large numbeimafjes are in the wash-out phase. When
comparing the alignment of separate groups of images, cast me taken when using NMI, since the
measure is non-linear between NMI value and probabilisige similarity as seen in Figure 4.11. The
cost-function matrix may also be analysed by the standar@tien of its values. In this sense, a re-
duction in variability of the matrix values corresponds tmd overall registration. In future work, this
statistic could be used to reveal cases where the costidarroatrix mean is biased by a few very good

or bad registrations.
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4.5 Choice of Anchor Image in Conventional Registration

An important consideration in conventional registratidrD&CE-MRI is the choice of anchor image.
This provides the co-ordinate system for all images. The ftostion matrix mean (CFMM) assess-
ment discussed in Section 4.4 allows a comparison of thédtsesfiselecting different anchor images in
conventional registration. It represents a measure afiateegistration consistency - perfect registration
of identical images would result in a maximum (or minimumjueaof the cost-function matrix mean.
Figure 4.12 shows the final NMI-CFMM for real datasets frorbl€al.1 registered using each image in
turn as the anchor: a higher value of the NMI-CFMM represatistter registration of all images within
the dataset to one another. Results are shown for indivigiggdtrations using both cross-correlation
and NMI as the registration cost-function. An interestiragnp for each entry in this graph, is that for
individual registrations using NMI as the image similaritgasure, the final NMI-CFMM is lower than
(not as good as) that found using cross-correlation for idévidual registrations. Visual inspection
of the individual registered images reveals that crossetation is more likely to give a better result,
improving the overlap of image features such as the diaphradpis result is used as a justification for
using cross-correlation in later work.

As a further note, it is also possible to register all imagethe mean image. However, the reduc-
tion in image resolution by the summation of the original gaantensities may result in either under-
registration, due to features being aligned to the saméipoén the mean-image, or mis-registration of
features. Under-registration is likely due to the formatid the cost function image forces: the loss of
definition in the pixel intensity mappings may cause theidgvorces to be weaker; hence it should be
preferable to register to real features in a carefully settanchor image.

The results of Figure 4.12 demonstrate the difficulty of ctihg the best anchor image from the
dataset. In three cases, the anchor image resulting in giesti (best) NMI matrix mean is one of the
pre-enhancement images. However, selection of this optipre-enhancement anchor image requires
proceeding with the registrations for all other anchor iemgror this reason, subsequent conventional
registrations presented here use the first image in thegaries as the anchor image. Outlier values of
the NMI-CFMM plots are likely due to registrations carrieat doward an anchor image that is itself an

outlier (i.e. contains large motion deformation relatioette other images in the dataset).
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Figure 4.12: Assessment of registration result of vanetio target image selection using Cost Function

Matrix Mean (see Section 4.4). For four separate datasets Trable 1.1, fluid registration proceeds

using thenth image as the anchor image. The NMI Matrix Mean is shown foréiselt of registration

using Cross-Correlation (blue) and Normalised Mutual tnfation (red). Also shown is the original

NMI Matrix Mean before registration (magenta).
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4.6 Conclusion

This chapter has provided examples and discussed the sfsgumoor image registration of contrast-
enhanced images. The reason for poor image registratibe isoist-function; each of the cost-functions
demonstrated here prefer a one-to-one relationship batieage intensities in order to operate suc-
cessfully. The effect of contrast-enhancement, partiuthe large intensity changes induced by bolus
arrival, on image registration force-gradients is likedyceuse mis-registration as demonstrated by the
compression of the enhancing features in Figures 4.2 to 4.6.

Section 4.3 investigated the disruption to the cost-fuimcthinimisation space for a range of cost-
functions brought about by contrast-enhancement. Deapiéatively simple elastic deformation being
used, the effect on the cost-function space is shown totafiegotential for good minimisation.

The formation of the cost-function matrix mean (CFMM) is ggated as a method of inspecting
the overall registration status of a group of images. Degpi¢ problems of image registration in the
presence of contrast enhancement, the use of this measagoss-registration measure of registration
success is still possible. Providing the images have begsteeed by an algorithm robust to contrast-
enhancement intensity changes, it is possible to cauyidgslen the relationship of the cost-function
to the actual image deformation) compare results of the CHMMveen registration methods and this
analysis will be used in future chapters. The method is feetlun Section 4.5 to investigate the choice
of an optimal anchor image for the registration of a groupnadiges. The results show no preference
for anchor choice, although registration to any anchor ienadikely to provide some benefit over the
unregistered data. In future chapters, when testing agalgsrithms robust to contrast-enhancement,
unmodified direct fluid registration will always proceedngsicross-correlation to align each image to

the firstimage in the dataset.



Chapter 5

Progressive Principal Component Registration

(PPCR)

In this chapter we present the development of a progreseirrgyoral principal-component based reg-
istration algorithm (PPCR). The model developed in Chaptierused to explore the interplay between
motion type, the extent of organ motion and contrast-enévarent on PPCR performance. Further test-
ing is carried out to evaluate the performance of the PPC&igdihgn on real Dynamic Contrast Enhanced
MRI data (DCE-MRI). The model of DCE MRI of the liver from Chigp 3, incorporates an isotropic
elastic non-rigid deformation to simulate both breathind breath-hold data, a volume-preserving mod-
ification for tumour regions is also included. Contrast erd®ment is simulated by applying a pharma-
cokinetic model. In this chapter, for each simulated datasdirect fluid registration of each image to
the first in the dataset is compared to the contrast-enhasrtegnided Progressive Principal Compo-
nent Registration (PPCR). Analysis of the correction todefrmation fields, tumour volume change
and dispersion of joint image histograms are used to showrthertance of motion type on PPCR per-
formance and of enhancement level on direct fluid registngtierformance. For breathing motion, we
will see that PPCR registers groups of images in differeasph of the breathing cycle to separate final
positions, but maintains enhancing tumour volume. Thisoisthe case for direct registration where
volume changes of up to 7% are observed. For cases in whighatient holds their breath at different
levels of expiration, PPCR out-performs direct registmatiparticularly for large enhancement levels.
Analysis of the jointimage histograms suggests that theigeion of target images using PPCR reduces
histogram dispersion due to contrast enhancement. Siigdigitinction is not made using direct regis-
tration, it is unable to register images when large enhaecésrare present. On the other hand, under
cyclic breathing motion, PPCR target images are ill-definadreasing dispersion in the joint image
histograms, leading to failure or separation of the imag#sdlusters driven by breathing phase. Also
analysed are the effect of more careful choice of anchor éirmgonventional image registration and an
investigation of the progress of PPCR with each iteratiomalgsis of the formation of images in the first
PPCR iteration is also carried out on real DCE-MRI data fraut®n 1.3 using the method developed

in Section 4.3.
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5.1 Principal Components Analysis

Principal Component Analysis (PCA) is a method of reprdsgrdata in a coordinate system so that
the maximum data variance occurs along the first axis andgbensl variance component along the
second axis and so on. The ordering of variance allows coegsrthat represent a large fraction of
the variance of the data to be considered separately froaetthat contain little variance. This makes
it useful both for eliciting trends from data and in compiegsiata. Both approaches may be useful for
the registration of DCE-MRI but it is the data compressigple&d in the time domain, that is used here.

To calculate principal components we must reinterpret @ta do that every pixel in an image is
described by a function detailing its change in intensitptigh the dynamic sequence. We define the
dataset a#\, each individual time-frame must have the mean pixel vafubat time-frame subtracted
from it, as required by the PCA. An individual pixel-funatitbcated at spatial indekj is denoted?;;
and since it consists df time points, is a vector of dimensidh x 1. We now compare all pixels in the
dataset, obtaining a covariance matrix of sizex T' encapsulating information from every pixel in the
dataset. Finding the eigenvectors of this matrix and ondettiem by eigenvalue magnitude, we obtain
the PCA result.

Calculating the Principal Components Analysis of a DCE-MRtaset in the manner described
above can be used to generate registration anchor imagesréheontrast-matched to their respective
float images. Crudely, the first principal component willeeble the general intensity profile of the
images with respect to one another. Hence, all pixels candighted with how much of this principal
component they contain. Differences due to organ motiopditicular organ motion due to inconsistent
breath-hold depth) are not strongly represented in thefitatipal component because this motion is
represented by local intensity fluctuations in relatively fixels; the variance that this motion represents
is likely to be small and hence is likely to appear in latenpipal components. Hence the large scale
intensity changes are dominant in the generated anchoesnéite anchor images are contrast-matched
to their float images and so registration by conventionatfrsctions becomes feasible. In subsequent
iterations, previous registrations have hopefully rentdbseme of the organ motion, and so principal
components increasingly contain information about chag@itensity profile in preference to residual

motion artefacts.

5.1.1 PCA for Functional Analysis

It is often claimed that combinations of Principal Compadseran be used to represent physical or
biological information within a dataset. Principal Compaois Analysis is often used in statistical shape
analysis to describe the principal axis along which shapeg v for instance in our laboratory, the
femur’s principal direction of variation is along its lehgtith subsequent important variations in femoral
head size and axial twist (Chan et al., 2004). Extensive warktatistical shape models incorporating
principal components analysis has also been produced bie€¢(0ootes et al., 2008).

Figure 5.1 shows the first four principal component eigetorsacalculated from a Dynamic Con-
trast Enhanced MRI dataset of the abdomen. As describeaabagh pixel is treated as a data entry for

the principal components calculation. In this case we h&8mrepoints and so we have 40 principal
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component eigenvectors each of 40 timepoints in lengtHjrtefour of which are shown here. The first
principal component corresponds to the most represeatpikel intensity fluctuations (most variance
will be contained in a principal component that represemésdverall increase in intensity with bolus
arrival and dispersion) around which further fluctuatiores modulated by later principal components.
To try to extract physiological parameters relating to casitt uptake and to try to infek*"2"¢, v, or

vp would be extremely difficult due to the averaging of pixekimsity information through the covari-
ance matrix; the principal components are also orthogohateas any physical parameters may not be.
The PCA provides an efficient re-parameterisation of tha,dait there is no immediate reason for this

parameterisation to be better at yielding pharmacokipatiameters.

First Four Principal Component Eigenvectors for DCE-MRI Dataset
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Figure 5.1: First four normalised principal componentddQE-MRI dataset. PC1 is a general enhance-
ment profile incorporating the mean intensity change ovéna-scale of a few minutes. PC2 appears
to act to correct those pixels that are not enhancing. PC3P&+appear to enhance PC1 in areas of
rapid initial enhancement, further describing differembetween pixels in the wash out phase. Extract-
ing pharmacokinetic parameters from these componenieiy lio be difficult despite the fact that these

four components contain 97% of the dataset variance.

5.1.2 PCA Used for Data Compression

Principal Components Analysis can be used for lossy datgoession, instead of transmitting an entire
DCE-MRI dataset we could in principle transmit only a fewlgarincipal components and their weight-
ings. Figure 5.2 illustrates the resulting data-compmsraages. Slices are shown for pre-enhancement,
bolus arrival in the left heart, bolus arrival in the liverdblate post-enhancement. The top row contains
the original images and subsequent rows contain the imagpesitrfrom 1,2,3,4 principal components
respectively (see Figure 5.1) . Itis clear that in this cémea relatively small number of time-points
(20), that the early principal components are dominatedplaéning the early enhancement of the heart

and aorta. As a result the pre-enhancement heart is notepektsented until four principal components
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are used.

Pre-Enhancement Bolus Arrival Post-Enhancement 1 Post-Enhancement 2

Original
Images

1
Principal
Component
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Components
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Principal
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Principal
Components

Figure 5.2:Top row: Images from a DCE-MRI dataset for pre-enhancement, batisahin the left
heart, bolus arrival in the liver and late post-enhancenfaumbsequent Rowsimages rebuilt using, on

each row, 1,2,3,4 components respectively.

5.1.3 Formation of the Covariance Matrix

The covariance matrix from which principal components aiewdated is governed by the strength of
temporal relationships between pixels. The mean intemsitgss the image will vary, but this will not
contribute to the covariance values since it is subtracRefjions that enhance will contribute, due to
changes in pixel variance. Random noise is not influencedrm®point and will appear uniformly over

the covariance matrix, but time-dependent pixel trends tfia covariance matrix. This bias influences
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the resulting eigenvectors and eigenvalues of the cowsiaratrix. As a result, strong pixel time-point
trends result in large eigenvalues combined with an eiggoveeflecting this trend. Ordering the eigen-
vectors by eigenvalue magnitude sifts long-temporal pixeids from short-temporal random noise. If
motion appears random and of similar magnitude throughra#-points, it is conceivable that image
motion artefacts will appear in principal components wittel magnitude eigenvalues. Conversely, pix-
els undergoing different enhancement profiles will havesé¢hprofiles encapsulated in combinations of

the first few principal components although we do not expebttable to differentiate between different

underlying physiological profiles.
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5.2 The PPCR Algorithm

This section develops the Progressive Principal CompadRegistration (PPCR) process. The method
applies registration repeatedly to an artificial time-s&iof target images generated using the principal
components of the current best-registered time-series déte aim is to produce a dataset that has had
random motion artefacts removed but long-term contras&eoement implicitly preserved. The method
requires neither segmentation nor a pharmacokinetic eptaddel and can allow successful registration
in the presence of contrast-enhancement.

The PCA produce¥ eigenvectord),,, eachT’ x 1 in size wheren = [1,2,...,T]. We can write
our data in terms of these eigenvectors. Each pixel has anrmt@; ,,, of eigenvectol,,,. C; p, is the
dot product ofU,,, and the original pixeA,;. Hence the original pixel;;, located at index, j can be

re-built as in equations (5.1) and (5.2).

T
A = Y CijmUn (5.1)

m=1

M=

Ay, = (Up - Aij) U (5.2)

1

3
I

Our assumption is that most signal associated with enhastieisicontained in the earlier eigenvectors
of the PCA. Hence we can approximate a pixel’s intensity @shj;; by leaving out the less significant

eigenvectors.
n<T

m=1

PCA extracts trends from the time-series data in order afifiignce. As a result long-term contrast-
agent uptake trends should appear in the earlier princgraponent eigenvectors, whereas any short-
term random motion would be represented in later principatgonents. If data are rebuilt from only
the first few eigenvectors, we should be able to registergergmlly motion-free data. Having done this
we are free to repeat the process. The initial syntheticséata given by (5.4), where the star-superscript
represents PCA generated data and we include a numericaissuipt to denote iteration number: we
write Aij = A;j, since this will be our first iteration. Eigenvectors areoajssen a superscript denoting
the iteration in which they were calculated (el;, for iterationn).

Al = (Up-Aj)U] (5.4)

A2

Al — A (5.5)

We register each image in the original daAd, to its corresponding image in the PCA generated, data,
A'* (see (5.5) where- represents image registration), using a suitable regjmtralgorithm. This will
result in a dataset for the second iteratidt, that is coarsely registered. Repeating these steps we
can re-calculate the PCA on this coarse-registered Aatagiving us a new set of principal component
eigenvectors)? (where the superscript denotes that this is the secondidteya Data are rebuilt from
both the first and second eigenvectors from the new PCA (8/6)are free to do this because the coarse

registered data has less motion than the original data, smmartefacts should appear even later in
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the principal component eigenvectors. We now register oarsely registered data?, to the dataset
produced by (5.6)A%*, to findA® (5.7).

AY = (UT-A7)UT+ (U3 - AZ)U3 (5.6)

A3 = AZ A% (5.7)

By repeating this process from= [1,2,...,T — 1] we aim to achieve well-registered data (5.8). The
registration forn = T would be a registration of the registered dataset to itsslfin (5.2), and so is
omitted. This whole process we term Progressive Principah@nent Registration (PPCR).

n<T
AL =AY - Y (U - AU, (5.8)
m=1

At each iteration, image registrations may be implementgdry method that permits quantitative
analysis of the intensity values on the images. Here, itdgrdnsformation embedded in the registration
algorithm which determines the preservation of intensityer than the PPCR algorithm and implicit
PCA. Due to the approach used here where the covariancelexiuhole image data, we are free to use
a large region of interest. A non-rigid registration mettatldws the accommodation of differences in
type and extent of motion.

With each PPCR iteration it is also in principle possible aoythe number and choice of principal
components. The PPCR algorithm throughout this thesisegae by starting with the inclusion of a
single principal component and adding that with the nexheg variance at each iteration. If methods
were developed for the inspection of principal componenésaah iteration, it may be possible to adap-
tively select groups of principal components in order tadreguide the image registration procedure.
An adaptive technique might also allow computational bémneRegistration to the time-series mean as
compared in the work of Buonaccorsi (Buonaccorsi et al.52@@ay be imagined as a nullth PPCR prior
to the addition of principal components. The PPCR algoritithalways skip this step, beginning with
the inclusion of the first principal component. This steprisc@l as it allows the first level of contrast
enhancement matching between the current set of float afaimiages, preventing mis-registration
that might otherwise occur due to contrast enhancement.

Figure 5.3 is an illustration of the PPCR algorithm appliedite images (for conciseness). The
PCA is applied as described above to produce five eigeneatat five principal component weighting
maps representing the amount of each principal componeuteteto recreate each pixel. In the first
iteration only the first principal component and weightingprare used to generate the first set of anchor
images (denoted with an asterisk). After the first set ofstegiions, the PCA is recalculated and a new
set of anchor images produced this time including both tis d&ind second principal components and

their respective weighting maps.
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Input Images —p | A1 A2 A3 Ad A5 [ PCA |#| C1 cz c3 c4 cs

1 ¥ ¥ 1 1
A1 | | A2°| | A3*| | A4*| | AB* 4—'

; _PC1  PC2 PC3 PC4 PC5

REG || A1 A2 A3 Ad A5 || PCA || C1 c2 c3 c4 (o]
7 7 7 T 7 | |
A1*| | A2°| | A3*| | A4*| | AS*| -

; PC1  PC2 PC3 PC4 PC5

REG |4 A1 A2 A3 A4 A5 || PCA || C1 c2 c3 c4 c5
7 7 T I 7 | | |
A1 | | AZ | | A3 | | A4 | | AS*| -

; _Pc1  PC2 PC3  PC4  PC5_

REG |4 A1 A2 A3 Ad A5 4| PCA |#| C1 c2 c3 c4 c5
7 T 7 7 7 | | | |

¢— A1 || A2*| | A3| | A4 | | AS'| -

REG |4 A1 A2 A3 Ad A5 | —p Output Images

Figure 5.3: lllustration of the PPCR Algorithm for a datagéth five images. Principal Components
Analysis of 5 images produces 5 Principal Components andightieg Maps. The algorithm incre-
ments the number of Principal Components used to genergtd tmages at each iteration, recalculating
the PCA after each iteration. The last (fifth) Principal Cament is not used as this will result in five

anchor images that are identical to their float images.
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5.3 Registration of Simulated Data using PPCR

This section investigates the performance of PPCR wherneajipl simulated data over a range of motion
types and contrast-enhancement levels. The correctidreaf¢formation fields applied using the model
in Chapter 3 are assessed alongside discussion and iratestigf the formation of the joint image

histograms used in registration using information theéoginilarity measures.

5.3.1 Method

Data Generation

DCE-MRI datasets are simulated for a range of motions andregments. Two types of motion are
considered, cyclic motion due to breathing-like motion &meath-hold depth inconsistency in which
liver position is determined by a Gaussian distributionuaie zero displacement (this simulation is
consistent with the data presented in (Melbourne et al.7BJ)O A dataset is chosen with a sagittal-
oblique perspective. Motion is added as a large superferior force positioned in the superior liver
combined with a smaller anterior-posterior force in theesigy-posterior liver. This combination of
deformation produces a force that changes with an elliptiatiern. Different motion levels 1-4 (level
4 corresponds to a maximum of 20 pixels (35mm) displacenset)considered. Different levels of
enhancement are included, with scaling levels 0-3 (witkll&worresponding to a maximum increase of
50% pixel intensity). Two registration types are compatie first is a direct (fluid) registration of each

image in the simulated dataset to the first image in the dathsesecond is the PPCR algorithm.

Registration Methods

Direct Image Registrationimage registration proceeds by registering every imag&enQCE-MRI
dataset to the first (pre-enhancement) image in the datsahamarised by Equation 5.9. A Normalised
Mutual Information based cost-function may be supposeé tmbst able to cope with changing intensity

patterns and so is used here.

A(t) = A(t) — Alto) (5.9)

We choose three different analysis criteria: the residuation in the deformation fields, this is
found by taking the gold-standard deforming transfornratind adding to it the correcting registration
displacement field. Also the tumour volume, both to assess/thume preserving constraint imple-
mented in Chapter 3 and to observe any additional tumounwelchanges due to the registration pro-
cess. Finally, the jointimage histograms of the unregéstend the first PPCR target images to analyse

dispersion due to contrast enhancement and motion.

PPCRThe registration method is shown in Equation 5.10 whereghalt at the next iteratiom, + 1, is
given by the registration of the best registered dAtarom the previous step, registered to artificial
images generated from a temporal principal componentygsisalf the registered data from the previous
stepn, rebuilt usingn principal components. Registration of source images fiticat target images

uses a fluid registration algorithm (Crum et al., 2005) witlr@ss-correlation cost function, appropriate
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for the images being registered.

n<T
n+1 __ n n n n
AT = AT ST (U AT, (5.10)
m=1
5.3.2 Results
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Figure 5.4: Graphs of absolute image residual displacemihttime for varying motion (levels 1-4
corresponding t®mm, 18mm, 26mm, 35mm maximum displacementsa-d Cyclic breathing motion
for contrast-enhancement level 3 (step-like curve for PP€EiRws separation of final registration posi-
tion between two locationsee texte-h Breath-hold depth inconsistency for contrast-enhancéleesi

3 showing artefacts for direct fluid registration under @asing enhancement.

Figures 5.4a-d show the residual deformation after registn, demonstrating PPCR registration
errors increasing with the amplitude of periodic motion.eTgrofile of the unregistered deformation
is a consequence of elliptical motion, taking differentigatiuring inhale and exhale. Registration by
PPCR for large periodic motion separates the final imagesdhisters at two locations. This is due
to the periodic motion influencing early principal compotsemeducing the variance in early principal
components and generating target images that are ill-defiffigure 5.5b), containing a spread of image
positions. Images in different phases of breathing areessieely driven towards separate locations
during subsequent iterations, since these are reinforcttisecond calculation of the PCA, producing
clusters of well-registered images.

If the final PPCR clusters are distinct, it may be possible émually correct this effect by finding

the transform between clusters, thus bringing the PPCRttesan equivalent correction to direct reg-
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Figure 5.5:a) Source image from dataset with motion level 4 (up to 35mmldizement) and enhance-
ment level 3b) PPCR generated target image from first iteration for modil ey clic breathing motion
for comparison withc) PPCR generated target image from first iteration for mod#i wreath-hold
depth inconsistency. The ill-defined naturebofesults in separation of final registration positieee

text

istration. This is left as future work but it is possible tisatce images within the separate locations are
well registered to one another, we require only a single medtion between clusters. The transforma-
tion might be determined by the registration between imaghsr side of the first jump between clusters

and applied to all images within the cluster. This corratshould be implemented in the first iteration

of the PPCR method; inspecting the inter-image residualrdedtion allows clusters to be determined

and then removed as above.

Figures 5.4e-h demonstrate the difference in registratimtess for varying breath-hold consis-
tency level and fixed contrast enhancement. With no enhasagrnoth fluid and PPCR demonstrate
successful registration, illustrated by a reduction inrggdual motion. With increasing enhancement,
fluid registration begins to mis-register enhancing regjguarticularly visible in the images as distor-
tions to the rigid tumours. This effect is shown as a failarestduce the residual deformation level. For
level 3 enhancement, the fluid registration is actively registering a large proportion of the images.
The eventual success of the PPCR method is implied in thetdiget image shown in Figure 5.5¢ in
which features are given a well-defined average position.

Figure 5.6a plots fluctuations in tumour size. It is cleat tha tumour volume-preserving modifi-
cation in Chapter 3 is not entirely successful, compresiagumour up to 1% with increasing motion
levels (see the NoReg data in Figure 5.6a). The failure ofrthdification is less important when con-
sidering volume change due to the direct fluid registratidolume change is visually correlated with
the strength of contrast enhancement and volume changesofid are observed, visible in the actual
images. Tumour volume change is never more than 1% usingRB&Rnethod. Since tumours are the
very objects we are likely to be interested in, the successgétration in this region is crucial. This is
particularly true when monitoring the response to therajtly lengitudinal scans.

The joint image histograms between pre and post enhancamages contain dispersion from
both motion and contrast enhancement processes. PPCRitssthiese processes but is more effective
between inconsistent breath-hold depth than in cyclicthieg motion. Histogram dispersion is a result

of one-to-one pixel intensity relationships becoming ¢m@nany due to spatially dependent intensity



5.3. Registration of Simulated Data using PPCR 99
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Figure 5.6: Graphs plotting statistics for variationsajntumour volume change for breathing-motion
extent and enhancement level, note the trend for decre&singur size in the gold standard) av-
erage joint entropy of target and source images per sinouldtr direct registration (to pre-contrast
image) and to first set of target images generated by PPCRdathing motionc for breath-hold depth

inconsistency. Note increasing joint entropy with motsord enhancement.

variations. Crudely, this is seen as lobe-like arms in Fégur for a real DCE-MRI dataset. Information
based cost-functions aim to minimise this dispersion butatodistinguish between the two sources of
dispersion. For PPCR generated target images, the coatraghcement level is more closely matched
since gross intensity changes are encoded in the earlyipairmomponents, therefore dispersion due to
contrast enhancement is reduced and the remaining dispessanore strongly associated with motion.
This can be seen in Figure 5.6¢ as an enhancement dependedtioa in the joint entropy between
source images and PPCR generated target images at eacin heggb If the PPCR generated target
images contain ambiguous boundaries or poor contrastreeh@&nt matching relative to the source im-
ages, then there may be an increase in joint image histogigpardion. Poor target representation in
the breathing motion case can be compared to the breathcasédin Figures 5.6b and 5.6c; improved
target representation in the breath-hold case allows atiafun joint entropy with reduced dependence
on enhancement level than in the breathing motion case.tidddi dispersion in the joint histograms is
always likely to occur under PPCR (this is best shown in Fédui? Row 1). This is because PPCR gen-
erates target images in early iterations that contain gegraepresentations of enhancement, but if the
reduction in dispersion due to contrast enhancement igegréean this additional blurring, registration

by PPCR may proceed.
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Figure 5.7: Effect of PCA on joint image histogram formatfoom a real dataset of 20 2D imag&3ol-
umn 1 original (real) dataset (images 1-1@plumn 2 firstimage in datase€olumns 3-5images 1-10
rebuilt using 1-3 principal component€olumn 6 joint image histograms (x-axis float, y-axis anchor
image intensities) of images in column 1 with those in col@n@olumns 7-9joint image histograms
of Column 1 with Columns 3-5. Dispersion in Column 6 is theuiesf both motion and contrast en-
hancement, using PCA allows some removal of enhancemd@-(ilke) dispersion, although the effect
is reversed for the pre-enhancement images in Column 7udiwei of further principal components in

Columns 8-9 removes.
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5.3.3 Conclusion

We have shown the applicability of two image registratiorthmes under different levels of motion
and enhancement. Under cyclic breathing motion, PPCR findifficult to generate a representative
set of target images (Figure 5.4a-d), but this type of mogimyduces a predictable result, requiring a
modification or diagnosis that could be included in the dtgar. Such a method could inspect early
principal components or resulting anchor images in ordesuggest or predict the performance of the
PPCR algorithm. The clustering shown in Figure 5.5 is noeoled in any real data, and subsequent
anchor image formation, later in the thesis. The PPCR meithattle to preserve the volume of en-
hancing regions unlike direct registration which begingaibunder increasing contrast enhancement.
This is a failure of the cost-function to account for the agoa@ce of new structure. Using information
based cost-functions, there will be an increase in joinbhigm dispersion which is not distinguished
from mis-alignment dispersion, making the cost functicappipropriate. By encapsulating intensity vari-
ations in early principal components, PPCR generates eehant matched target images, reducing
dispersion in the joint histogram due to contrast enhanoéniéhis allows registration to proceed, but
only in cases where target images are well-matched to thaice images, which is not the case under
cyclic breathing motion. In this case, reductions in costtenhancement dispersion are offset by an
increase in dispersion due to poor target matching and PRCBreak down. Future work will develop
the breathing-model to allow for more realistic unpredidity in breathing-depth and phase, improve
the enhancement model to make it organ specific, extend thetavéull 3D and include medial-lateral

deformations.
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5.4 The Effect of PPCR on Cost-Function Minimisation Space

We inspect the effect of PPCR on the formation of cost-funmctipace as presented in Section 4.3. By
applying an elastic deformation to the centre of our image warying magnitude and direction, we can
compute the cost-function space associated with minimisatf a particular cost-function (see Section
4.3). The centre of the following cost-function spaces espnts the value of the cost-function between

these image pairs.

5.4.1 Results

Figure 5.8 demonstrates the effect of contrast enhanceamenbst-function optimisation. The first
column represents the anchor image(s), which in this cgsstishe first pre-enhancement image from
the first 10 images of a DCE-MRI dataset. The second columtagonall ten images and we inspect
the result of calculating different cost-functions betwélge image-pairs.

The cost-function spaces of Figure 5.8 reveal a large anafuntormation about the image align-
ment process. Inspection of the pre-enhancementimageasisdhat we should expect to be able to align
the float image if it is deformed as described above for all-fsctions. Discrepancies in the shape of
the cost-function value are largely the result of the cdioamf minor mis-alignment due to breath-hold
depth consistency in these real images: for instance a mirg@rior—inferior displacement of the liver
is partially corrected by an inferiessuperior force of the type described above. The appeardrome
trast enhancement in the heart and aorta disturbs the wostidn space, particularly for the statistical
cost-functions: cross-correlation, sum of squared difiees and sum of absolute differences. In the
case of the fifth image pair, the cost-function spaces shawittis preferable to distort the images using
an inferior—superior force. This would have the effect of compressimgethhancing heart, removing
the intensity discrepancy and therefore maximising thegensimilarity. Similarly for the sixth image
pair with enhancement of the aorta, both cross-correlaimhsum of squared difference cost-functions
suggest that a positive medialateral force will improve the image similarity. This can een to be
the case, since the aorta will begin to overlap the briglggions adjacent to the dark pre-enhancement
aorta. After the first passage of the bolus the cost functidremum, in all cases, becomes disperse
suggesting that finding the correct image alignment by tegien will become difficult. In particular,
when enhancement is present Figure 5.8 suggests thataros$ation and sum of squared differences
should not be used. Minimisation of the joint entropy casidtion also suggests that there might be
some problems finding a smooth gradient descent throughastefunction space. The effect of the
first anchor images generated by the PPCR algorithm on thduwuogion minimisation space is shown
in Figure 5.9. The first column represents the anchor imaggserated from a PCA of the ten float
images using the PPCR method. The second column contates &hages and we inspect the result of
different cost-functions between the image-pairs. Thise/@orresponds to the centre of the following
cost-function spaces in which the float image is not defornveéel now apply a deforming force to the
centre of the image and solve the linear elastic equatiomtbtfie resulting deformation over the im-
age. By varying this force (in two-dimensions: medial-tateind superior-inferior) and looking at the

resulting cost-function value between the anchor imagdtadeformed float image, we can investigate
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how easily we would expect to be able to recover the defoomdiy registration using that particular
cost-function.

The cost-function spaces of Figure 5.9 reveal the effecheffirst PPCR iteration on the cost-
function minimisation space. Inspection of the pre-enkament images reveals that we should expect
to be able to align the float image if it is deformed as desdrég@ove for all cost-functions. However,
the minimisation does not appear to be as well-defined agirethistration to the first image case. This
is due to information about other structures being preseihe anchor images for each image pair.
As before, discrepancies in the shape of the cost-functadmey asymmetry around the centre of the
cost-function minimisation space, are largely the resiuthe correction of minor mis-alignment due to
breath-hold depth consistency in these real images. Thesagpce of contrast enhancement in the heart
and aorta still disturbs the cost-function space despityuURBPCR, particularly for the sum of squared
differences. In the case of the sixth image pair with enharerd of the aorta, the problems seen in the
corresponding image pair for Figure 5.8 are no longer ptesenmay expect the cost-function to be
suitable for minimisation. The advantage of the PPCR methodost obvious in the use of statistical
cost-functions post-enhancement, all cost functions ngmear reasonable and we would expect to be
able to align each image pair. Figure 5.9 suggests that welcthe able to use any cost-function in
image registration using PPCR. A further advantage of tHeRPRethod is that it is iterative, we should
be able to find a reasonable alignment in the first iteratioshasvn here, but further iterations should

refine this alignment further.

5.4.2 Conclusion

The results of this section demonstrate the potential eoefcost-function minimisation of PPCR
when registering contrast enhanced images. In the casessliar very simple displacements, the
PPCR algorithm may be used to allow registration of imagésgusost-functions that do not cope with
contrast-enhancement. For the type of deformation appbee, it appears that we might achieve a good
registration using information theoretic cost-functiphewever for more complex displacements this
cannot be guaranteed. The PPCR algorithm is also iterativelibsequent deformations are refined and
we do not stop by simply registering to the first set of targetges generated by PCA, this is important

from the perspective that we wish to register a large numhierages into a common coordinate system.
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Figure 5.8: Direct registration cost-function minimisatispaces for the first ten images from a DCE-
MRI dataset. For ease of presentation, the negative-laggdbr MI, NMI and CC are shown; here light

corresponds to good image alignment and dark to poor. Thésearresponds to a large medial-lateral
force applied negative through positive from left to rigthte y-axis is the equivalent for the superior-
inferior force. The cost function comparison is taken b&mvéhe corresponding image on the far left,

and the float in the neighbouring column subject to the givefornation ee text for clarification
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Figure 5.9: PPCR cost-function minimisation spaces foffitlse ten images from a DCE-MRI dataset.
For ease of presentation, the negative-log values for MI) Bl CC are shown; here light corresponds
to good image alignment and dark to poor. The x-axis cornedpto a large medial-lateral force applied
negative through positive from left to right, the y-axis e tequivalent for the superior-inferior force.
The cost function comparison is taken between the correpgimage on the far left and its neighbour,

subject to the given deformatiosde text for clarification
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5.5 Choice of Anchor Image in Conventional Registration - Reis-

ited

This section briefly revisits Section 4.5 to include the Géshction Matrix Mean (CFMM) PPCR result
concerning the choice of anchor image in the conventiorgstation of DCE-MRI. In comparison,
the choice of anchor image in direct image registration jges the co-ordinate system for all images.
When using PPCR for image registration it may be necessargruert between co-ordinate systems
when analysing the result of PPCR with reference to eithemotiiginal images or those produced by a
different registration method. This is because regisiratiy PPCR is to a coordinate frame formed in
the process of the registration algorithm, which is likelyoe different from the coordinate frame of any
of the individual images.

The results of Figure 5.10 now include NMI-CFMM values aftegistration by PPCR. It is seen
that PPCR allows a higher value of NMI-CFMM than any choicaméhor image in conventional regis-
tration. This provides some evidence that registration BER to an iterated coordinate system allows
improved registration of groups of DCE-MR images when corag@do registration to the coordinate

system of a single image.
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Figure 5.10: Assessment of registration result of vanetio target image selection using Cost Function

Matrix Mean (see Section 4.4). For four separate datasets Trable 1.1, fluid registration proceeds

using thenth image as the anchor image. The NMI Matrix Mean is shown foréiselt of registration

using Cross-Correlation (blue) and Normalised Mutual infation (red). Also shown are the original

NMI Matrix Mean before registration (magenta) and aftelisggtion using PPCR (green).
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5.6 Analysis of the PPCR Algorithm Progress

5.6.1 Changing the number of Principal Components

The iterative nature of PPCR makes the process slow. Forasetawithn images, instead of running
(n — 1) registrations to a single anchor image chosen from the elatsswith direct registration, the
number of registrations becomeg: — 1). However, since the later principal components do not éonta
much variance and therefore may not contribute noticeablige final anchor image intensities, it may
be beneficial to terminate the PPCR process once the toiahearof the original dataset contained in
the new anchor images reaches a threshold value. This iséatiestigates the use of such a stopping
criteria and the potential CPU-time benefit.

In addition to the stopping criteria discussed above, tieegemore general way of monitoring the
progress of each PPCR iteration. Analogous to the contimudéting of the fluid registration deforma-
tion, we can track the deformation field as it changes. Thisisnecessarily a good way of finding a
stopping criteria since the size of the displacements ircthieent deformation field do not necessarily
predict the size of displacements in the following defoiiorafield. The reason is that the inclusion of a
later principal component may produce larger changes itettget images than the previous component
whilst still containing a smaller amount of dataset varenthis is likely to be the case where one im-
age in the dataset has quite different intensity variatfoors the other images (as seen in bolus arrival

images).

Results

Figure 5.11 shows the progress of the deformation towarml§ial deformation field with each PPCR
iteration for four datasets from Table 1.1. The total absotesidual over all images is calculated and
divided by the total number of pixels. The result for eachtaf four datasets demonstrates a steady
decrease in total absolute residual towards the final posifihe curves are slightly convex, suggesting
that later iterations contribute slightly less towardsfthal deformation field. However, it is not obvious

that the PPCR process should be terminated before the fnafidn.

Conclusion

The results of Figure 5.11 do not suggest that there is a bhéodie gained from terminating the PPCR
algorithm at an early iteration. Early termination may newthe registration reaching the true final de-
formation field that is only achieved once all principal campnts are included. The final deformation
field should be considered preferable because of the inclwdilater principal components which allow

the continued refinement of the registration deformatidd fi€he following section (Section 5.6.2) dis-

cusses an alternative stopping criteria more suited todhera of the PPCR algorithm and deformation

field progression.
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Fall in Residual Deformation Field with PPCR Iteration
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Figure 5.11: Example curves showing the approach of the P&&&mation field towards the final
deformation. Graphs show the per-pixel residual and thecgu of the residual towards the final
deformation position for four separate 2D DCE-MRI dataget Table 1.1.
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5.6.2 Changing the number of Registration Iterations

As discussed in the previous section, for a datasetiofages there are a maximumafn — 1) registra-
tions when using the PPCR algorithm. However, the progressiture of PPCR suggests that since the
early registrations are crude, we need not run them for mateynrial iterations. For instance if a single
registration takes 400 fluid-equation iterations, then ae lomit linearly the number of internal itera-
tions in the registration so that they only do, for instari@ nternal iterations before the next PPCR
iteration. This section investigates the effect on acourdaltering the internal registration iteration

number.

We vary the maximum number of intrinsic registrations betw@-400. The final deformations
are analysed and the sum of squared differences found betiveestandard 400 iteration maximum

displacement field and the reduced-iteration displaceffieddt

Results

Table 5.1 shows the total residual deformation when usirgwanumber of internal registration itera-
tions. The default maximum number of iterations used in thernal fluid registration algorithm is 400,
hence the residual difference of the final deformation fiedarf this result is shown. Equivalent graphs
for the two DCE-MRI datasets (see Section 1.3) are shownh®mapproach of the deformation to the

maximum iteration case with increasing iteration number.

Table 5.1: PPCR Registration for varying maximum numbentgrnal registration iterations
Internal Registrations Time SSD between 400i result  SShrdxt 400i result

(Livdt-04b) (Livdt-07b)
0 0 2.374 2.049
10 10n(n-1) 0.223 0.121
20 20n(n-1) 0.118 0.091
40 40n(n-1) 0.054 0.059
60 60n(n-1) 0.034 0.025
80 80n(n-1) 0.024 0.024
100 100n(n-1) 0.024 0.028
120 120n(n-1) 0.026 0.025
140 140n(n-1) 0.021 0
160 160n(n-1) 0.018 0
180 180n(n-1) 0.027 0
200 200n(n-1) 0.023 0
300 300n(n-1) 0 0
400 400n(n-1) 0 0
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Residual Deformation field using low number of Internal Registration Iterations
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Figure 5.12: Example curves showing the approach of the REE&Rmation field towards the maximum
deformation found when varying the number of internal regifon iterations up to a maximum of 400
iterations in the component fluid registration algorithnraghs show the absolute residual (divided by
total number of pixels) and the approach of the residual tdsithe maximum deformation position for
two DCE-MRI datasets from Table 1.1.

Conclusion

The results shown in Figure 5.12 present a strong resuke#at for the two cases tested) for shortening
the total CPU runtime by reducing the maximum number of mdéregistration iterations. This should
be contrasted with the result of the previous section (8e&i6.1). The results suggest that it may be
feasible to reduce the number of registration iterationa kybstantial amount, whilst retaining a good
approximation of the final result. Although the number ofatens is fixed throughout the algorithm, it
may be preferable to adjust the number of iterations dynaligior to increase the number of iterations

as image detail is added with increasing numbers of pritcipaponents.
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5.7 Future Adjustment for large variations in Contrast Enhance-

ment

As seen in Figure 5.2, extreme enhancement features aresfiaepresented in the first principal com-

ponents. Therefore in this case the PPCR method is unabldiyaorfatch the contrast variation and the
cost-function gradients may include forces that may resuitis-registration of enhancing features. This
will only occur in the situation that a few images that contagry different features or contrast from the
other images of the dataset. This section discusses onibleofss for this disturbance by adding the

effect of extra components to particular images within taedet.

The target images are checked for suitability using theo¥athg algorithm: 1. find the Sum of
Squared Differences cost-function between each float aodacarpair; 2. Find the mean and standard
deviation of this spread of cost-function values; 3. If tlestefunction of individual float-anchor pairs
is more than one standard deviation from the mean, then addditional principal component in the
formation ofonly this image; 4. Iterate this process until all float-anchomSyf Squared Differences
are within one original standard deviation. Although thieefmay be to cause under-registration of the

affected images, the modification should help prevent theeregistration that may otherwise occur.
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Figure 5.13: Illustration of the PPCR adjustment proce$terahe formulation of principal components

and weighting maps in the first iteration, we form target iesfyom the first principal componer8tep

1 we find the mean (and standard deviation) sum-of-squarésteiifces (SSD) between all float-anchor
pairs. Step 2if any of the float-anchor pairs have an SSD value outside efstandard deviation from
the mean SSD, we add further principal components until 82 &f that float-anchor pair is below one

standard deviation from the mean float-anchor SSD.
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5.8 Conclusion

This chapter has discussed some of the expected benefits BRGR algorithm and modifications that
might be made to improve performance. The use of the modehapt@r 3 has been used to show that
certain types of motion are not well suited to the PPCR allgori One of the assumptions of the PPCR
algorithm s that early principal components are dominaieenhancement characteristics and later ones
by motion. In the case of smoothly periodic motion, earlypipal components contain representations
of the pixel intensity fluctuations associated with objeutsving into and out of that pixel. However,
the requirements for this type of corruption to occur unde€R require motion to be periodic. The
results of the DCE-MRI simulations suggest that PPCR iséffe for repeated breath-hold data. When
comparing the PPCR algorithm to direct registration of iegtp a single anchor image, revisiting the
choice of anchor image data from Chapter 4 suggests thatikitemere possible to choose the best
target imagea priori, the resulting registration performance is exceeded hygusie PPCR algorithm
(Figure 5.10).

With regard to the long PPCR run-time, some performancefiierian be produced. Although
terminating the number of principal component iteratioadyedoes not seem to confer a benefit, setting
the number of iterations in each fluid registration can beluseachieve a time-saving with less of
an effect on the final outcome. This may make the algorithmsiralele addition to a conventional
registration algorithm when registering groups of imagéh little time penalty.

Section 5.4 shows the effect of PPCR on the cost-functiorimigation space. For the simple
deformations shown, PPCR produces a cost-function spateésthetter-defined for minimisation by all
cost-functions (Figure 5.9). The use of a fluid or b-splinghnd should not influence the performance
of the PPCR algorithm; as discussed in Chapter 4 it is the dtion of the cost-function space that is
important when registering contrast-enhanced imagestahsformation model is used to regularise the
cost-function minimisation to generate a desirable (eiffea@morphic or smoothed) deformation. A low
degree-of-freedom model such as an affine parametrisatigratso be implemented but restrictions on

the allowed deformations prevent the effect of the benefRER in local regions of contrast variation.



Chapter 6

Registration of Breath-hold Dynamic Contrast

Enhanced MRI

The following chapter will analyse the results of applyihg PPCR algorithm to real DCE-MRI data.
The algorithm s first applied to a study of twenty-seven 2Eadats from seven patients each with at least
one follow up scan (Table 1.1). Section 6.1 will compare #wmults of registration by direct registration
to the firstimage in the dataset and registration by PPCRid®eg8.2 will analyse six full 3D DCE-MRI

datasets using pharmacokinetic analysis to determinaitteess of differentimage registration methods.
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6.1 Registration of 2D DCE-MRI Using PPCR

6.1.1 Introduction

The PPCR algorithm is now further discussed by comparingtihbse cases where conventional regis-
tration causes artefactual misalignment of contrastsecddimages. By inspection of images by blinded
observers and through basic pharmacokinetic model fittirgggan evaluate some of the benefits of the
PPCR method. The PPCR method outlined in Chapter 5 is cowhpaeesimple, single registration to
the firstimage in each dataset, also registered with the &aneeian fluid registration process.

The liver is analysed by implementing non-rigid registatmethods based on a fluid equation.
The use of a fluid-equation based registration over othesteamation models is of little importance
at this stage. As discussed in previous chapters, failummage registration in the case of DCE-MRI
is due to the cost-function not the transformation modele $ame fluid registration algorithm is used
for direct fluid registration and within the PPCR algorithithe fluid-equation is balanced using image
derived forces calculated from an image similarity measiméehis case cross correlation, a measure
normally considered suitable for same-modality image® Us$e of cross-correlation is due to empirical
observation rather than theoretical considerations siraggears to perform a better registration in those
cases in which the registration is correct. This was disibsiefly in Chapter 5. An implementation of
this approach as developed by Crum (Crum et al., 2005) ishessed on original work from Christensen
(Christensen et al., 1997). The images are analysed usingdgistration schemes, the direct fluid
registration and the PPCR scheme (Melbourne et al., 20&R&g)istration in the case of 2D data might be
affected by through plane motion: in the case of objects ngpfriom the field of view, this information
is likely to be encapsulated in the principal componentslitgto the algorithm generating anchor
images maintaining an absence or presence of these feaf\ppbcation of the subsequent 2D image

registration will be less likely to result in mis-regisiat.
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Other Registration Methods
Some other possible registration methods may confer améalya in the case of DCE-MRI data and
they are discussed here.

Registration to Mean Imagelf the mean image is used as the anchor, we may proceed by regis
tering all images to this mean-image as used for comparis@ubnaccorset al (Buonaccorsi et al.,
2006). It is possible to imagine an iterative scheme by wiiehmean-image is updated after a few
registration steps. However, the reduction in image régoliby the summation of the original image
intensities may result in either under-registration, duéettures being aligned to their position in the
mean-image, or mis-registration of features. Mis-regtgin could result from the formation of the
joint-image histogram using the mean-image. Dispersidherjoint image histogram will be increased,
the loss of definition in the pixel intensity mappings will sath the bin contents so we might expect
weaker force-gradients in the resulting registration. Asfly discussed in Section 5.2, registration to
the mean image may be considered a nullth PPCR prior to thesioa of any principal components and
therefore generating anchor images without contrast najch

Grouped Fluid Registration A further method can be devised that attempts to mediateémspur
registrations by assuming that an average of the equivadgigtration paths betwedioat to anchor
andfloat to neighbouring time-point to anchwiill provide a more robust registration. For images in a
datasef at timepointt, we might expect the registratiof(t) — A(0) = A(t) — A(t — 1) — A(0) =
A(t) — A(t + 1) — A(0). The reasoning is that mis-registration artefacts areueiq each float
image, so taking an average, via the registration of itsestaemporal neighbours will reduce spurious
misalignment since these will not be present in the remginagistration paths. Using this method,
contrast-enhancement induced misalignment will be redlbgesuppression of registration artefacts as-
sociated with the individual registration paths, this icantrast to the PPCR algorithm, where ideally,
misalignment due to contrast enhancement should not oowe we are contrast-enhancement match-
ing.

Registration to Mean PositionAn alternative algorithm to registration to the mean imageegis-
tration to the mean position. As discussed, registratidhéamean image may result in a redefining of
image intensities and mis-registration to averaged bauesland features. By careful formulation of the
force gradients (see Chapter 4) it is possible to add infaomdrom multiple images. For information
based cost-functions, histograms may be formed from aljesan the dataset; histogram bin incremen-
tation would preserve information from image intensityued since no intensity averaging is required.
The result can be imagined as an averaging of the image foezbents as opposed to the averaging
of the images followed by the calculation of force gradieagtsn registration to the mean. The process
may be iterated, updating the force gradients from eachérpagodically. This concept is not explored

further in this thesis.
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6.1.2 Method

An analysis of the success of registration is developed byaliinspection of the similarity of image
features using image intensity difference images and iaddit blind evaluation. Pixel time-intensity
curves are inspected for residual motion artefacts anasitieconsistency. The Cost Function Matrix
Mean evaluation criteria developed in Section 4.4 is alsedtig analyse the results of image registration.
An indirect validation of the registration method can beadiined using a model-fitting algorithm.
Significant work has been done using the extended Kety Masil by Buonaccorsi (Buonaccorsi et al.,
2006). The standardisation and interpretation of the patars is covered by Tofts (Tofts et al., 1999)
and problems with uncertainty in the model fitting are diseasby Buckley (Buckley, 2002). In order
to assess the registration, without needing to determiratanial input function, the slow variation in
the wash-out phase can be fitted to a function such as (6.1ghwea de-parametrised interpretation of
the post-enhancement Kety model. This model does not attenfipp to the bolus arrival, the shape of
which is useful in determining’®"*"¢, and therefore does no assess the impact of reduction inlffibde

error on determination of this parameter.
Aij(t) = Bije bt (6.1)

For each pixelA;;, the parameter®;; andb;; can be estimated using a non-linear, least-squares fit-
ting routine. The result will only be used to gauge regisrasuccess. We expect pixels that are
well-registered, post-enhancement, to exhibit a monataaiiation in intensity with no rapid intensity
fluctuations. This is due to redistribution of contrast@igeound the body after a finite bolus injection.
In the case of poor registration, artificial artefacts capigel-wise intensity fluctuations that do not fit
this model and the sum-of-squared-differences (SSD) ketveeiginal pixel and fitted curve provides
an indication of registration error (6.2) (Hayton et al.9T} If the registration is successful, the curve-
fitting will be improved, the intensity profile will be smoahand the SSD will be reduced (Hayton
etal., 1997), (Buonaccorsi et al., 2005).

SSDZ] = (AU (t) - Bijeibijt) . (AU (t) — Bijeibijt) (62)
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6.1.3 Results

Figure 6.1 presents registration results from two situretion the top row, registration by simple fluid and
PPCR both correct for motion. In the bottom row, an examplieffailure of simple fluid registration

is presented. Evidence for mis-registration in the casesfnple fluid registration is found in Figure
6.1g, a subtraction of two images registered to the first @riaghis dataset. In the liver, Figure 6.1g
shows evidence of artefactual fluctuations in tumour pasiti the upper lateral portion of the liver. The
figure presents only the difference of two time points, beteffect repeats throughout the dataset and
this would pose a serious problem for successful analysis.

Registration by Progressive Principal Component Redistrf PPCR) in Figure 6.1h shows re-
moval of the liver registration artefacts in Figure 6.1gpfesented by less difference signal in the high-
lighted region). Comparison with the no-registration caiseFigure 6.1b shows that motion artefacts
throughout the image are also reduced or removed. Thisdeerge that PPCR allows successful regis-
tration of DCE-MRI datasets. A comparison in the presenamation is represented in Figures 6.1a to
6.1d. The registration to the first image in the sequence shemoval of much of the superior-inferior

displacement artefact in the liver.

Anatomical No Registration Fluid Registration PPCR

Figure 6.1: Absolute-difference images demonstratingstegfion failure for fluid registration to first
image in dataset and correct PPCR, of two post-contrastémabinages ande, anatomical images
for reference. The drawn region is the same across a row avitlps a visual guide. Imagésandf,

no registration for comparison. Imagesndg, registration to first image in dataset,correct gross-
registration of the liver and artefactual tumour motion. Imageésandh, registration by PPCR with

improved motion correction and reduced artefacts.

The effect of registration on motion and artefact producttodemonstrated in Figure 6.2 for four
different patient datasets. In the first example, registnadf the large tumour in the superior-lateral

portion of the liver proved difficult for the basic fluid regiation to first image in the dataset (Figures
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6.2a and 6.2b), resulting in increased intensity fluctunatioPPCR registers the tumour correctly as
shown. For Figures 6.2c and 6.2d the PPCR correctly regigiher motion to the same extent as the
simple registration, removing the real motion artefacts #rerefore resembles the case of registration
to the first image in the dataset. Figure 6.2c shows bothtratjen methods working correctly for a
moving bright region (associated with vasculature). Fegdi2d demonstrates the correct registration of
the diaphragm position by both methods at timepoint 26. feig6.2e and 6.2f show correct registration
of motion by both methods with the exception of one intengiint that is mis-registered by the simple
fluid registration scheme (timepoint 25). Figures 6.2g ai2th @re sagittal images from a further patient.
Figure 6.2g shows correct registration by both methodsfeRifices between methods in Figure 6.2h
are due to mis-registration by the simple fluid registrasoheme near an enhancing tumour boundary.
In the majority of pixels, the smoothness of the intensityfie appears smoother, reflecting reduced

motion-induced discontinuities.

Results from 22 datasets were compared using a blind-di@iuprocess (Table 6.1). Each of
four operators were presented two movies side-by-side &selection of three movies of a particular
dataset (the unregistered images, registration-toifiragge-in-dataset and registration by PPCR). The
operator chose which movie they preferred or recorded nfepmece. A preference is characterised
by reduced motion and reduced evidence of artefacts, phatig in the liver region. A group of four
operators familiar with the process of image registratadtiough unfamiliar with DCE-MRI of the liver,
evaluated 89 movie-pairs. The results of Table 6.1 showfaece for the PPCR method over both the
unregistered datasets and the registration to the firstarimeifpe dataset. It should be noted that these are
the preferences of image registration specialists and riffgy fom those of radiologists or clinicians.
Three example datasets are included on the supplementafggeDAppendix E). All movie files have
the same format from left to right. The left-most movie is tr@inal, unregistered DCE-MRI dataset.
The second is registration using direct fluid registratisimg cross-correlation to the first (unenhanced)
image in the dataset. The third is the result of registratising the PPCR algorithm. The fiteovie-3-
01.avidemonstrates the correction of liver position betweenthrbalding using direct fluid registration
and PPCRmovie-3-02.avilemonstrates the correction of the position and shape ota mé#he inferior
liver by PPCR (third movie from left) and the second movienirthe left inmovie-3-03.avihows failure

of direct fluid registration in a contrast-enhancing magk@superior liver.

The sum of squared differences (SSD) between time-depéddepixels and model time-series of
equation 6.1 are expressed as a percentage of the SSD Jahiver® the unregistered case (Figure 6.3).
The PPCR almost always outperforms the simple registratidinst image in the dataset. The apparent
success of the registration methods appears to be patipabdent, patient 2 appears well-registered by
both methods. For patient 6, PPCR provides a significantradga. This is due to problems with the
fluid registration, which can visibly distort tumour boumids. The reason for the anomalous results of
patient H and patient 4 is notimmediately clear. Patiedtd visually well-registered by both methods.
Patient 4 appears registered to the same level of succedR®R Bs with registration to the first image

in the dataset. Visual inspection of movies of all the regtin results reveals that PPCR has failed to
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Figure 6.2: Plots of pixel intensity with time for pixels seted from anatomical images (left-hand
column). The unregistered cases (NoReg) are shown for adsopa Artefactual oscillations in fluid
timecourse for a) tumour artefacts due to nearby boundatiomé& b) tumour artefacts due to tumour
mis-registration (see Figure 6.1g). c) corrected motiobright region within liver & d) corrected di-
aphragm position with large inferior displacement at timiep26. In this case both registration methods
(Fluid & PPCR) identified the large displacement. Again fiifedent patients, e) a correctly registered
bright region and f) correct registration by both methodsndéérior liver motion. Sagittal images, Q)
correct registration by both methods and h) correct regfistn by PPCR and mis-registration close to a

tumour boundary by the simple fluid registration scheme.
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Table 6.1: Blind-evaluation of different registration etls. Each row contains scores comparing two
registration types, representing the number of cases egg$tnation was preferred over the other, and
the number of cases in which there was no preference. Paiongare between either the unregistered
case (NoReg), registration to first image in the datasetdjand to PPCR (PPCR).

Registration Instances Preferred Registration InstaRoeferred No Preference

NoReg 0 Fluid 28 5
Fluid 0 PPCR 25 5
PPCR 25 NoReg 0 1

correctly register a small number of images in this datagat was not detected by the blind-evaluation
process because the randomly picked pairs did not includeettample. This may be because the
principal component analysis has not completely separataibn artefacts from contrast-enhancement
intensity changes and so the generated targetimages amatitety motion-free. Again for patient3he
SSD values are very similar. Visual inspection reveals gggstrations are also very similar, although
a comparison of PPCR with fluid registration did not occurlie blind-evaluation. In the majority
of cases, PPCR effectively de-couples motion induced sitiyerchanges from contrast-enhancement
induced changes, allowing a registration unencumberedhyrast-enhancement intensity variations.
Registration by PPCR allows improved curve-fitting, whiohprinciple allows superior model-fitting

and physiological parameter extraction.
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Figure 6.3: Results of fluid registration to the first imageha data set or PPCR. The comparison uses
the sum of squared differences (SSD) between the imagegataland the decaying exponential model
of the post-enhancement phase. Results are shown as peresnff the respective SSD in the case of

no registration.



6.1. Registration of 2D DCE-MRI Using PPCR 123

Analysis of Registration Success using Cost-Function iMaiean

The cost-function matrix mean (CFMM) analysis measureudised in Section 4.4 may be used to eval-
uate registration success. Here we will continue to use alised mutual information (NMI) as the
evaluation method by which we will compare the differentisggtion methods. Although the formu-
lation of NMI is extremely general, care must be taken whangaring values due to the non-linearity
between NMI value and probabilisticimage similarity. Siribe normalised mutual information by itself
may only be used to provide a relative measure of image giityilthe CFMM must also be used in this
way. Figure 6.4 shows the percentage change in CFMM valuedohn patient dataset shown in Table
1.1 after registration to the first image in the dataset atet 8PCR for all iterations (PPCR-end). Also
shown is the maximum CFMM value if the PPCR algorithm was teated at the iteration with the
highest CFMM value (PPCR-best). In all cases the CFMM vadugdher for PPCR than for a simple,
single fluid registration. This is a result of the formulatiof the measure, which rewards circumstances
in which all images are similar to one another, rather thibeihg similar to a single image. The PPCR
algorithm may be expected to give higher values since commtorgistrations proceed to anchor images

that contain information from the entire time-series.
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Figure 6.4: Corresponding percentage change to the Costtibn Matrix Mean (CFMM) values for
Unregistered Data, Registration by direct-fluid registratand by PPCR. Also shown for PPCR is the
highest CFMM found during the iterations.

6.1.4 Conclusion

The advantage of the PPCR method over conventional reiijistria that it allows the use of informa-

tion from the entire dataset to guide the image-wide deftioma. In the case of DCE-MRI data, the
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early registrations are guided by the simplest uptake pofthe early eigenvectors explain the biggest
changes in intensity) that explain the data. This allowsgasteation process to take place which is
refined with each iteration. The early, simple uptake prefdee expected to be relatively noise free
because early principal components describe the majag;term trends in the data. These components
provide little information about the true pharmacokinetitake profiles of individual pixels. Although

it is difficult to extract useful pharmacokinetic informai from the principal components in this form,
they represent a suitable way to generate intermediateddaiteg a refining, iterative registration. Prin-
cipal component sets calculated from the partially regestedata are successively less likely to have
random motion noise in later components and this is theficestion for the use of higher components
in later registrations.

The method relies on being able to separate motion and atv@ndancement artefacts in order to
proceed successfully. If the registration cannot sucoéigsfo so, it may fail. Conventional registration
of DCE-MRI is complicated by the changing intensity struetaf the images and simple image-to-image
registration methods may fail, producing artefacts, duthéodifficulty of selecting appropriate target
images. Progressive Principal Component Registratiomallmage-by-image registration to a partially
compressed dataset in which motion artefacts are supprésseseries of target images generated to
resemble the original dynamic data. The use of principalpaments analysis circumvents the use of a
pharmacokinetic model not only avoiding the problems oluaate model-fitting but permitting the use
of much larger target areas of the dataset. Therefore, PBR@Riiccessful method for the model-free

registration of large region-of-interest DCE-MRI dataset
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6.2 Registration of 3D DCE-MRI Using PPCR

6.2.1 Introduction

This section continues analysis of the PPCR algorithm ugiagix 3D DCE-MRI datasets from Table
1.2. These datasets are at a temporal resolution of 12sstiogsdf a 6s held-breath volume acquisition
and a further 6s breathing interval. The slice profile in thisiwle slices is particularly poor, and although
included in subsequent registrations we will not analyssehregions further. The passage of the contrast
agent bolus is particularly well defined in these datasetsggure 6.5), demonstrating the bolus passage
through the heart with two defined periods of hepatic enhaece. Since these images are acquired at
breath-hold, motion between subsequent timepoints dueeti-hold depth inconsistency remains a

problem, and will impact on pharmacokinetic analysis.

Figure 6.5: Example Contrast Enhanced Images of the Abdofexrenhancement imageor com-
parison with image showing passage of bolus through leand subsequent portal enhancement of the

liver c.

6.2.2 Method

Because the PPCR algorithm uses no information about pgiegid location, only the number of pixels,
the extension of the PPCR method to 3D is trivial, no modificeis needed other than those considering
memory management which are not fundamental to the algoritks such, the intermediate fluid reg-
istrations are extended to full 3D and run-times are kepthgvimplementing the algorithm in parallel
form for use on a computer cluster; the datasets may be eegistvithin a few hours (i.e. overnight).

The datasets used here are of both higher spatial and telnggohution than those used previously,
and we can apply a full pharmacokinetic analysis to the in@rder to extract pharmacokinetic param-
eters. Analysis of these parameters, and the error on tlagaenpters, before and after registration will
indicate the performance of registration by PPCR. The DOR}-vhage analysis package is the MRIW
software provided by the Institute of Cancer Research (@At al., 2006), (Parker et al., 1998))

The MRIW software will be applied over a manually segmengsgion of the liver from the central
slice of both the pre and post-registration images, an imthdit registration of a low-flip angle image to
the first pre-enhancementimage is also includedfoestimation. A pharmacokinetic model is applied
to each pixel to find parameter maps for valueskgf*"*, v, and the hepatic perfusion index (HPI),

for each registration method. The pharmacokinetic modkindorporate a hepatic dual cosine arterial
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input function composed of an hepatic arterial term and gapterm (Equation 3.11 to 3.13 discussed
in Chapter 3 (Woolrich et al., 2004), (Orton et al., 2008)eTdual blood supply to the liver is fitted by

finding the HPI and the constants of the dual-cosine artinpalt function are shown in Table 3.2.

6.2.3 Analysis by MRIW

For direct fluid registration and PPCR (and where availabgogrietary registration algorithm), the
MRIW software is used to calculate parameter mapsiéi“™s, v., and the hepatic perfusion index,
H PI and the pixel residual. These are displayed in the follovigugres.

Figure 6.6 shows the results for Patient 2. Registration BER demonstrates improved model-
fitting by way of a reduction in the pixel-residual maps.

Figure 6.7 for Patient 5 contains parameter maps calcufated a dataset with a relatively large
amount of motion. Motion artefacts present themselveseérrttages as discrepancies at the boundaries
of features such as the large hepatic masses and the diaph&gne residual motion remains at the
superior boundary of the liver. Due to the residual diffeesin liver position between some frames, the
model-fitting routine is unable to successfully fit to thessaa when they occur inside the blue boundary.
Also included in this Figure is the result of a proprietarftsare non-rigid registration provided with the
MRI scanner used to acquire the results. Unfortunatelyautltetails of the algorithm it is difficult to
tell why the registration is performing poorly, as seen ia plixel-residual maps which introduce model-
fitting errors for the inferior liver and the diaphragm. Qitémage registration confers no obvious
improvement to the parameter maps. There are also addiagegaisition related artefacts due to the
inclusion of an obsolete scanner software patch designedijtest zero-filled data in k-space. These
artefacts are also present in Figure 6.8.

Figure 6.8 is a further dataset in which the in-built scamegistration method is used. For the
pixel-residual maps of this patient we see a minor improwvgmeing the PPCR algorithm but for the
in-built registration method we see a large increase in rAfittieg errors. The reason for the poor pixel-
fitting of the in-built algorithm is clear when the images argpected: the centre of the liver is actively
mis-registered between images and so in this case thegsbuoltild not be used.

The total reduction in model fit residual for each datasetmrmarised by Table 6.2. The results for
each dataset summarise the visible changes to the modesifiuals in the segmented hepatic regions
of Figures 6.6 to 6.8. Direct fluid registration often aclegVittle improvement in residual model-fit.
This is in contrast to the PPCR method which is often abledace the model-fit residuals by over 10%
across the liver.

Three example datasets are included on the supplementafggeDAppendix E). All movie files
have the same format from left to right. The left-most mogiehie original, unregistered DCE-MRI
dataset. The second is registration using direct fluid tedien using cross-correlation to the first (un-
enhanced) image in the dataset. The third is the result édtrajon using the PPCR algorithm. If a
fourth movie exists, this is the result of a scanner-baseh@registration algorithm. Since the data
from Table 1.2 is 3D, only the central slice is shown. The fiilevie-3-04.avilemonstrates minor im-

provements to the correction of liver position between thrdelding (compare with Figure 6.6). The
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Table 6.2: Change in total model fitting residual error faztedataset in Table 1.2 after each registration

method for the segmented regions in Figures 6.6 to 6.8.

Dataset Unregistered Direct Fluid PPCR  Proprietary

Registration Registration
1 100% -2% -19%
2 100% -6% -16%
3 100% -3% -8%
4 100% 0% -13%
5 100% +1% -19% -4%
6 100% +2% -17% +10%

files movie-3-05.avand movie-3-06.avinclude the results of erroneous registration by the intlald
gorithm (fourth movie from the left) and minor improvemeitgegistration are seen for PPCR (third
movie from the left). Mis-registration of the central regiof the liver in both these examples leads to
an increase in model-fit residual seen in Figure 6.7 and 8@ectively.

It is also possible to inspect for some indication of whatedldnce registration makes to the esti-
mates of DCE parameters such/&§"s. By selecting small regions of interest it is possible tolgsa
changes to parameter statistics before and after registralhe heterogeneity of regions of interest,
particularly pathology, makes the interpretation of chesip cursory statistics difficult. Because of this,
we inspect histograms of thig?"*"* parameter to reveal changes over the region of interestiré&ig, 9
shows the selection of three hepatic regions of intere$iinvdtataset 6 to be analysed further (see Figure
6.8 for comparison). Each region displays a weakly enhanoime and a rapidly enhancing boundary,
characteristic of tumour tissue. Figure 6.10 plots histagstatistics fork?"%"* for each of the three
regions. For each region prior to registration there is @miial distribution of theK ‘" 2" parameter
reflecting low values in the centre of the region of interest@unded by higher values. Registration by
direct fluid registration and PPCR maintain this distribatiMedianK*"*"¢ values are observed to de-
crease slightly by 3-4% after registration by PPCR, this iveaglue to a reduction of intermedigtgrems
values between tumour core and tumour rim brought about pydaed alignment. Model fit residuals
in these regions are reduced by approximageiy each case using PPCR. The scanner based algorithm
performs poorly and resolution of the binomigf "¢ distribution is lost in the three cases; the median
K'rans yalue is increased by 20% for region 3 suggesting mis-negish has lead to over-estimation
of this parameter. This is visible as a loss of contrast betwegion centre and region periphery in the

associated<**"s image in Figure 6.8.
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Unregistered Direct Registration PPCR

Figure 6.6: Patient 2: Model fitting results using dual-oesarterial input function showing parameter
maps for fows): K" (min~1) (range 0-3)w. (range 0-1),H PI (range 0-1) and Pixel Residual
(range 0-8). Each column represents registratiorCbjumn 1. Unregistered Data2: Direct Fluid
Registration an@®: PPCR.
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Unregistered Direct Registration PPCR Scanner Registration

Figure 6.7: Patient 5: Model fitting results using dual-oesarterial input function showing parameter
maps for fows): K" (min~1) (range 0-1)w. (range 0-1),H PI (range 0-1) and Pixel Residual
(range 0-0.5). Each column represents registratio€blmn 1: Unregistered Data?: Direct Fluid

Registration3: PPCR angk Automatic registration on scanner using unknown algatith
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Unregistered Direct Registration PPCR Scanner Registration

Figure 6.8: Patient 6: Model fitting results using dual-oesarterial input function showing parameter
maps for fows): K'rems(min~—!) (range 0-1)w. (range 0-1),H PI (range 0-1) and Pixel Residual
(range 0-0.8). Each column represents registratio€blgmn 1. Unregistered Data?: Direct Fluid

Registration3: PPCR and}k Automatic registration on scanner using unknown algatith

Figure 6.9: Selection of local regions of interest for asalyof changes to pharmacokinetic parameters

before and after registration. See Figure 6.8 for stasisiieer the whole liver.
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6.2.4 Analysis by Cost-Function Matrix Mean

The normalised mutual information cost-function matrixanéNMI-CFMM) can also be used to assess
the performance of 3D registration by PPCR. Each of the tegisn methods analysed above has a
CFMM value calculated. The differences between registnathethods are shown in Table 6.3 as ab-
solute NMI-CFMM values and with the percentage change coetpt the unregistered case shown in
brackets. These results are broadly in line with the commhssfrom the parameter maps of the previous
section. Direct registration often produces a small imprognt to the CFMM value. Registration by
PPCR will allow double the improvement. The registratiothaf two datasets using the in-built scanner
registration algorithm does not provide an improvemente@aust be taken with these results, since as

discussed before, maximisation of NMI does not necessesilsespond to correct image registration.

Table 6.3: DCE-MRI Patient 3D Scan Data. NMI Cost functiortrimanean values after registration by

each method (the percentage improvement relative to thegistered case is shown in brackets).

Patient Un-registered Fluid PPCR Siemens
1 1.211 1.229(+1.5%) 1.255(+3.6%)
2 1.194 1.218(+2%) 1.242(+4%)
3 1.187 1.205(+1.5%) 1.228(+3.5%)
4 1.183 1.206(+2%) 1.227(+3.7%)
5 1.20 1.20(+0%) 1.22(+1.7%) 1.21(+0.1%)
6 1.18 1.18(+0%) 1.20(+1.7%)  1.18(+0%)

6.2.5 Conclusion

Results of this section suggest that PPCR may be applied wa3® The datasets used in this section
are at higher temporal resolution and images are acquiteetath-hold. The time penalty of the PPCR
algorithm has been offset by using a computing cluster tostiegistrations in parallel at each principal
component iteration. Full PPCR registrations take appnaxély 4hours (for datasets of 20 images) and
as a result the time penalty is not prohibitive. Use of the etditting algorithm in the MRIW software
has allowed an estimation of the improvement made by regjistr (and its effect on the model-fitting).
The PPCR algorithm has been shown to allow improved modglgfiby reduction in the model-fit

residuals. The PPCR algorithm gives a quantifiable benedit other registration methods.



Chapter 7

Registration of Diffusion Weighted MRI

The acquisition of Diffusion Weighted MR images may be camfded by both patient motion and
machine eddy currents. In the brain, the resulting imagesfien corrected using an affine registration,
which is often thought appropriate in the brain due to thenrgaof the artefacts. Here, two non-rigid
registration schemes are compared to the result of affiristratjons: a single fluid registration of the
individual diffusion directions; and a Progressive PrpadiComponent Registration. All registrations
are full 3D. Twelve DW-MRI datasets consisting of 128x128x®lumes from 15 diffusion directions
are registered by each method (see Section 1.3) and theediffeesults combined to produce fractional
anisotropy maps. These maps are then inspected for impfeatde appearance and artefact reduction.
The affine registration demonstrates a modest improvemettiei twelve cases. Image alignment by
single fluid registration causes lateral brain featureppear sharper at the expense of poor deformations
of the medial brain. Registration by PPCR demonstrates ingpihhoved demarcation of lateral brain
features and preservation of medial features such as tpaegoallosum. Figure 7.1 shows the b0 image

and 15 diffusion directions (labelled) for a slice from ori¢le® pre-registration datasets.

7.1 Introduction

Diffusion Weighted MRI is an important tool for brain contigity imaging and is increasingly being
applied to other organs of interest. However, due to thetlenfa scan and eddy currents, diffusion
weighted images often become spatially misaligned. Suls@canalysis of the images, such as their
combination into a fractional anisotropy map or principdfusion direction image is then compro-
mised. Within the brain, eddy current distortion is regarde being geometrical and can be countered
by an affine registration of each diffusion direction imag®wia common coordinate system. Since
scanner eddy current induced distortion artefacts shauldaause relative scaling, shifts and shearing
between images (and only in two dimensions) and the patemibaly move their head with approx-
imately rigid translations and rotations, we would expdtina registration to be appropriate. If we
were to use non-rigid registration we are likely to find thate features such as fibre tracts appear in
multiple diffusion images with different contrast (depentlon the gradient of the diffusion direction),
that local registration of these regions would be difficlhis is analogous to the contrast changes due

to contrast-agent concentration in DCE-MRI disturbingdlssumptions of dispersion in the joint image
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Figure 7.1: Example DWI Slice, comprised of a BO Image anddifit diffusion direction images (with

gradient direction labelled)
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histogram. Whether the registration scheme is affine ornmid; registration will often be applied to
images containing the same features with different contvagh may be a confounding factor. Resis-
tance of the registration to artefacts will be improved gsin affine registration, this may be one of the
reasons it is used in preference to non-rigid registragarce an affine transformation permits no local
changes. However, minimisation of the cost-function in fiim@registration still leaves a susceptibility
to contrast-change induced mis-registration. Since itablematic to register different diffusion direc-
tion images to each other (and therefore assign prominenagarticular direction), we must register
them to a common target image, often the b0 image which oftéenahbetter signal-to-noise ratio but
itself contains different contrast and information to th#udion direction images. Attempts have been
made to register individual gradient direction images éfioans et al., 2005), (Tao & Miller, 2006)) and
there is also a large amount of work on the reorientation nédes after their calculation ((Alexander
etal., 2001), (Guimond et al., 2002), (Hecke et al., 2007)).

The fundamental diffusion imaging equation is given by Haum7.1 where the signal for a given
b-value (in units ofs.mm™2) is given by this relationship given the non-weighted slgfigand gradient
directiong. The diffusion tensor for a given regio, can be found by varying the gradient orientations.
In three dimensions we have a 3x3 Tensor but since reflectuiegt directions are redundant (i.e.
D,y = D,,), we need a minimum of 6 gradient values to determine theotemdus a bO map. In
practice, many more gradient directions are often includ&stforming an eigenvector analysis on the
diffusion tensor produces a principal vector represerttiegdominant diffusion direction, which can be

used to infer nerve-fibre orientation.

S(g) = Spe~9"DY (7.1)

The work in this Chapter applies the Progressive Principah@onent Registration (PPCR) scheme
(Melbourne et al., 2007b), a method that uses a principapoorants analysis to generate target images
from a set of images containing the same information withngfreg contrast. In the case of DW-MRI, the
method makes use of the overlapping image information fridferdnt gradient orientations to perform
registration. The method applies a non-rigid fluid registraat each step as used in previous chapters
(see (Crum et al., 2005)), which allows the potential forrgggstration of inter-subject cranial Diffusion
Weighted MR, registration to an atlas or extra-craniafifon Weighted MRI. It is possible that the
registration of the images may require the re-orientatibtihe gradient direction associated with each
image; this can be done in a straightforward manner whergusfiime registration. For the non-rigid
case, a change in direction can be found from the local deftoom field. For a given pixel, we find
the rotational component of the Jacobian of the deformafi@m the results in this chapter we find the
rotational components to be extremely small (sub one-#&@gred so do not reorientate the gradient

direction.

7.2 Method

We apply the PPCR method (Melbourne et al., 2007b) to 12 detasEach dataset consists of a

128x128x64 volume acquired from 15 diffusion directionswad b-value ofl000s.mm =2 and a corre-
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sponding b0 volume. The PPCR method is implemented in 8Mlimplementation and is compared to
both a 3D affine registration of each diffusion gradientclien volume to the corresponding b0 volume
and a 3D single fluid registration of each diffusion direwtio the first diffusion direction - the registra-
tion cost function used in the case of affine registrationsingle fluid registration is Normalised Mutual
Information (Studholme et al., 1999), the similarity measthat should be most appropriate here since
the pixel intensity relationship is unknown. The affine sdgition provides a comparison of the PPCR
method to an existing registration method and the singld flegistration allows a comparison of the
PPCR and affine methods to a direct non-rigid registratibese.

Application of PPCR to DW-MRI is analogous to its applicatio DCE-MRI. As with DCE-
MRI, conventional cost-functions will seek to minimiseedacts due to both motion and contrast change
with equal weight leading to poor registration. PPCR alldias generation of target images that are
contrast matched to the original images. This is because theshared information between images
with different diffusion gradient directions - the gradigmlirections overlap with at least one of three
orthogonal coordinate directions. Motion artefacts intijpatar do not overlap with gradient direction
(although eddy currents will), they are unique to a particihage and are therefore unlikely to appear
in early principal components. Figure 7.2 shows the reafltebuilding the dataset for three images
(top row), using (on each successive row) 1-4 principal comemts. In the case of diffusion images,
principal components represent functions of signal iritgnsith direction. For a region of restricted
diffusion a smoothly varying function of diffusion stregtith angle might be disrupted by motion in
individual images. In this case early principal componegpsesent pixels with well-defined directional
information and later components may be used to remove thgdmoise that is largely unique to a
particular diffusion direction. Information from pixelsitlv multiple dominant diffusion directions is
likely to be encoded in a handful of early principal compaseprovided that noise does not dominate
the numbers of pixels with well-defined signal-angle prsfilegistration by PPCR may proceed.

A reminder of the fundamental PPCR equation is shown in Bguat2, in which the result (the
new best registered data) at a given iteratigris given by the registration of the best registered datafro
the previous step, registered to artificial images genéfaten a temporal principal components analysis
of the best registered data from the previous step, reksiiligw. principal components. Registration of

source images to artificial target images uses a fluid regjistr algorithm (Crum et al., 2005).
n<T

AL =AY = Y (U - AT, (7.2)
m=1

The results of the three registration methods are combirtedbth fractional anisotropy maps and
principal diffusion direction RGB images so that differesdn the resulting features can be observed.
Due to the combination of the 15 separate, registered diffudirection images into a single fractional
anisotropy map, it is difficult to analyse the direct conitibn of the individual deformation fields to the
final result.

A comparison of the consistency of the fractional anisotrbgefore and after registration can be
used to provide evidence of registration success. Work hyHa & Alexander, 2008) compared frac-

tional anisotropy values calculated from two sets of 30 iesaffom a 60 diffusion direction dataset
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before and after registration. We choose to use a leavesohanalysis since we are also constrained
by having only 15 direction images; this also removes the@nfte of bias when choosing which com-
bination of directions to leave out. Calculation of the fiawal anisotropy uses combined information
from the remaining 14 different diffusion directions. Farcé diffusion direction in turn, we calculate
the fractional anisotropy without that direction. This guces 15 values of the fractional anisotropy for
each pixel. If the registration is successful we would expiee fractional anisotropy to be consistent
despite the removal of a particular direction; hence weentsghe standard deviation of the fractional
anisotropy values for each pixel over a central region ofttteén (as defined by an ellipsoidal binary
mask of radius; x 1 x 1 of the image dimensions i, y, z] on the centre of the image) on the assump-
tion that smaller variations in FA value correspond to golighaent of those diffusion directions used
in its calculation. The central region of the brain refers tasult of a mask formed by a sphere located
in the centre of the image. Larger image mis-alignment sroacur in the lateral brain, some of which
may not be included as a result of masking so the followingltesnight not show the increased benefit
of image registration in these errors. The sphere size in@®fio that spurious tensor calculations in the
skull and air are ignored.

Also provided are the results of the tensor fitting calcolatising the least-squares fitting method
(see (Kingsley, 2006)) in which the system matrix is comgifrom the gradient vectors. The total
tensor-fit residuals over the central region of the brainsli@vn for each dataset. The central region is

calculated as described above.

7.3 Results

Qualitative registration results are presented in Figdt8s7.4 and 7.5. These figures are best viewed
electronically. The images presented here demonstratgeimegistration success, or otherwise, by
allowing inspection of the brain features calculated aftewversion of the diffusion direction images into

fractional anisotropy and principal diffusion directiamages (Melbourne et al., 2008b). Quantitative

registration results are provided in the following secsion

7.3.1 Visual Inspection of Fractional Anisotropy Maps

Figure 7.3 demonstrates the benefit ofimage registratiarsirbject in which there is substantial motion
between diffusion directions. The resulting fractionakatropy calculations in this region, particularly
in the anterior brain, provide little fibre tract informatioThe implementation of affine or fluid registra-
tion improve the demarcation of fibre tracts slightly, bie #pplication of the PPCR method appears to
have well-recovered fibre-tracts in this area.

Figure 7.4 is a slice from the same subject but superior tbith&igure 7.3. Improved feature
resolution and apparent visual noise reduction are seeaghout the slice using the affine and fluid-

based registrations, but PPCR appears to show further iraprents, particularly in the lateral brain.

Figure 7.5 from a different subject to those presented abmuewith less severe artefacts as seen

in the unregistered fractional anisotropy images. Regisin of the diffusion direction images allows
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improved artefact reduction, for instance as seen hereeinghtricles. Analysis of the fluid registration
result seems to show mis-registration of the corpus cattosiThis feature appears to be the result
of mis-registration as a result of registering componergation images that contain strong signal in
one image and weak in the other relative to the global intgdeiel. As a result the strong image
features are contracted in the resulting registration. atfsence of this feature in the other registration
methods suggests that problems may be encountered in rig@eer@gistration. Despite this error, fluid
registration shows improved feature resolution in the milebliain, but this is matched by the PPCR

result, and exceeded, particularly with reference to thectliregistration failure in the corpus callosum.
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Figure 7.2:Top row: Images from a DW-MRI dataset for gradient directions 1 t&8bsequent Rows

Images rebuilt using, on each row, 1,2,3,4 components c&gphy.



7.3. Results 140

Unregistered Affine Fluid PPCR

Figure 7.3: (Subject 175) Demonstration of apparent imgdguixel resolution and feature demarcation
with registration method in Fractional Anisotropy (FA) aRdncipal Diffusion Direction Images. Note
increased demarcation of features in the anterior braith, wtreasing improvement using affine, fluid

and PPCR registration protocols respectively. Also noteaeahse in spurious features in the ventricles

with registration method.
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Unregistered Affine Fluid PPCR

Figure 7.4: (Subject 175) Demonstration of apparent imgdopixel resolution and feature demarca-
tion with registration method in Fractional Anisotropy (Fand Principal Diffusion Direction Images.
Note improved resolution of features throughout this bedice with increasing registration algorithm
complexity. Serious motion artefacts associated with plaiicular patient have been removed most

successfully using PPCR, making the dataset suitable fdrduanalysis.
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Unregistered Affine Fluid PPCR

Figure 7.5: (Subject 52) Demonstration of apparent impiqigel resolution and feature demarcation
with registration method in Fractional Anisotropy (FA) aRdncipal Diffusion Direction Images. Frac-
tional Anisotropy Imageato d: note disruption of corpus collosum using simple fluid r&gigon, but
preservation under PPCR. This disruption is likely to be ttuerroneous through plane registration of
the corpus collosum edges in the diffusion direction image® h. Note also reduction in noise in
ventricles under PPCR in comparison to other methods. Diefindf lateral brain features is enhanced

in both non-rigid registration algorithms.
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Registration Variahility in FA using Leave-One-Out Analysis
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Figure 7.6: Analysis of variation in Fractional Anisotrogalue for a leave-one-out analysis of the fifteen
diffusion directions. Values are expressed as a percenfdabe original FA standard deviation for each

registration methodee text

7.3.2 Analysis of Fractional Anisotropy Variation

Figure 7.6 contains the results for the leave-one-outifyaat anisotropy consistency analysis described
in the methods section. In all cases, the PPCR algorithmeis s@improve the fractional anisotropy
calculation by reducing the variability in its result by up35%. Registration by the affine method
produces only a modest improvement suggesting that thetration algorithm is unable to cope with
the type of deformations required. Fluid registration progs an improvement over the affine case. The
calculation of the fractional anisotropy variability inishway suggests that the non-rigid registration

methods are producing both visually and quantitativelyesigp results.

The results in Figure 7.6 may contain the effects of an olezduction in fractional anisotropy
across the region of interest. Motion artefacts in regidriew signal are likely to cause the resulting FA
value to appear high. Reduction of these motion artefadisaes the observed anisotropy, reducing the
observed FA in these regions. Conversely, a reduction ofomatrtefacts due to the image registration
procedure in regions of high anisotropy might have less ehpa the calculated FA which will remain
high. The combined impact should result in improved contyaartly explaining the improved feature

demarcation in Figures 7.3to 7.5.
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Tensor Fit Residual for Varying Registration Method
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Figure 7.7: Analysis of tensor fitting residual after fittitogl 5 diffusion directions. Values are expressed

as a percentage of the original residual of the unregisiarages for each registration method.

7.3.3 Analysis of Tensor Fitting Residuals

Figure 7.7 contains the results of the residual in the tefitsimg procedure in signal space. Values rep-
resent the average residual over a central sphere of theeda@s described above. Affine registration
in this case produces results that make tensor fitting mdiiewdi. This may be the case at the extreme
edges of the sphere due to the constrained nature of thenaltion and the resulting increase in dis-
placements away from the image centre. Non-rigid registiatan be seen to allow improved tensor
fitting for both direct fluid registration and PPCR.

Affine or Non-Rigid Image Registration?

An important question is the use of non-rigid image regigrain an application in which affine reg-
istration is considered adequate. The PPCR algorithm doesxplicitly require a non-rigid image
registration method and therefore we may in future sulistitin affine registration method. The oper-
ation of the PPCR algorithm allows conventional image snty measures to be used on images with
varying contrast in non-rigid applications where localurmke change would otherwise be a problem.
The imposition of a global affine deformation model is likédybe reasonably robust to the local con-
trast changes seen when inspecting DCE-MRI or DW-MRI imadg®ugh the cost-function may still
be inappropriate. In an affine registration there can be oal lcontraction of enhancing features that
might result from non-rigid registration and so there skdaé little justification for a PPCR-affine algo-

rithm. The results of the previous sections suggest thaRPB@ble to successfully non-rigidly register



7.4. Conclusion 145

images in which there is reason to believe the number of dsgrefreedom is restricted. In the case of

atlas-based image registration and inter-subject regjistr, non-rigid registration will be necessary.

7.4 Conclusion

The PPCR method demonstrates improved registration otifligh Weighted MR images when com-
pared to simple affine registration or when using a naive ftaglstration scheme. The use of affine
registration in the alignment of cranial DW images is regards adequate, but this is particularly un-
likely to be the case for extra-cranial organs such as tle.liThe computational time penalty of the
PPCR method, when compared to affine registration, is langeaghandicap when considering that im-
provements with affine registration are marked and detéxtilowever, the PPCR method has a higher
success rate when compared to the single fluid registrataahad and is preferable in this instance. The
PPCR method works as a result of combining overlapping in&ion from the non-orthogonal gradient
directions. Without this overlap, the images would not bigakly similar in order to generate principal
components indistinguishable from noise and the PPCRtraticm would likely fail. The method al-
lows enhanced feature detection and reduced noise by refongtion and eddy current artefacts, which
is a benefit to subsequent analysis such as calculatingatigoinal anisotropy (as shown) and also when
considering tractography. The use of PPCR on much higherdangesolution data might be limited by
the increasing violation of the linearity assumption of himcipal components, an isotropic distribution
of orientated pixels will no longer be present. Howevered®aination of the exact threshold is left as

future work.
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7.5 Diffusion MRI of the Liver

7.5.1 Introduction

Diffusion Imaging is increasingly finding application in @rlogy to measure diffusion coefficients in
regions of tumour. Here the emphasis is not on taking mariysiifn gradient directions to form a di-
rectional diffusion tensor, but on quantifying the isofiogiffusion coefficient (in this case the Apparent
Diffusion Coefficient, ADC). Equation 7.3 shows the diffosisignal with a b-valuéy and ADC value,
D given the un-weighted signal,. In order to find the ADC, data from differebtvalues are taken.
Hence an ADC map can be found for example as in Equation 7 #vfodifferentb values. For manip

values, the ADC can be found by least-squares fitting, whidhoe presented further in the methods.

S(b) = Spe PP (7.3)

B 1 S(by)
ADC = — IOg(S(bg)) (7.4)

ADC measurements have been investigated for both tumoerrditation and for the assessment of
changes to ADC brought about by anti-angiogenic therapiesuption to high density neo-vasculature
cannot easily be said to either increase or decrease the Ab@igh necrosis is considered to increase
the local ADC (Provenzale et al., 2006). The disorganisesvtit of a tumour is believed to result in
isotropic diffusion without a preferred orientation ovieesize of an imaging pixel. The relatively highly
cellular environment of tumour tissue, when compared tdthgéissue, is expected to be restrictive to
diffusion. However, the expected changes to the ADC valuesamewhat complicated and have not
been fully characterised as reported separately by Koh and&taveye ((Koh & Collins, 2007), (Van-
decaveye et al., 2007)). Regions of tumour growth are likelge disorganised and increased cellular
density might be expected to result in a decrease in the widésotropic diffusion coefficient (Van-
decaveye et al., 2007). Since we are assessing areas ojpigotalues between the three orthogonal
directions should be the same up to the noise value. Betwiffenedit b-values, the isotropy measure
should simply be related by scaling. Therefore, convemtiioost-functions (at least those that accommo-
date overall intensity change (e.g. cross-correlatiombtisum-of-squared differences) should remain
appropriate. Assessing diffusion coefficients in the ligemade difficult by patient breathing motion,
requiring either gated acquisition or post-processingnapes such as image registration (Kwee et al.,
2008). This section applies image registration methodsderdo observe changes to the calculation of
pixel-wise ADC values. Figure 7.8 shows example liver insagen varying thé-value: liver tumours

appear as focal increases in the signal throughout the liver

7.5.2 Method

Data assessed here consists of information from sevenatitfe-values between 0-750nm 2, each
non-zero value is assessed in three orthogonal directiensrgting a total of 16 images (volumes)
(see Table 1.4). As reported by Koh (Koh & Collins, 2007), speead ofb-values is susceptible to
flow artefacts at loweb-values § < 150s.mm~2) (particularly relevant for the highly vascular hepatic
environment) so vascular regions (an extreme example isdii@) might be assigned inappropriate

ADC values when using a mono-exponential function such &sjination 7.3.
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bingr biogs

Figure 7.8: Example Abdominal DWI Slice, comprised of a Bage and fifteen diffusion images cor-
responding to different values and orthogonal directiopss (labelled). The imaging signal decreases

with increasingb-value (Equation 7.3), liver tumours appear as focal ineesan the signal.
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In contrast to the previously assessed DCE-MRI data andpteuttiffusion direction cranial imag-
ing, we are now assessing data where there should bbecabcontrast change. As discussed by Koh
(Koh & Collins, 2007) we do not expect directional anisotrdp the ADC within areas of interest,
although this might not always be the case, for instancetodalbod vessels.

Calculation of the ADC, is found by non-linear least-sqsditing; finding the optimal value ab
in the solution of 7.5. The estimation &f is dependent on the spreadm¥alues, noise and the stability
of the signal to flow artefacts at lobrvalues. In this section we do a linear fit to tleg of the signal
intensities. Although this might introdudevalue dependent errors in the fitting, the bias towardsdrigh
values might be thought to counteract the lower confidendevinb-value data as a result of possible
perfusion artefacts.

Ny

min[» (S(bn) — S(bo)e )] (7.5)

n
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Table 7.1: Total ADC Residual Before and After Image Registn
Dataset Number of Unregistered Fluid PPCR

images Registration
1 7 100% 94% 63%
2 16 100% 80% 71%

7.5.3 Results

Figure 7.9 shows calculated ADC maps before and after ragjs with corresponding fitting residual
images in Figure 7.10 for the dataset with 7 b-values. \&silviprovements are not immediately clear
when assessing the the accuracy of the ADC values throughewdlices shown, however slices are
shown for completeness. Inspection of the ADC fit residugaés some improvement after registration.
Figures in Table 7.1 are calculated over the central redidineodataset only (as in the previous section,
defined by an ellipsoidal binary mask of radiﬁjsx i X % of the image dimensions ifx, y, z] on the
centre of the image). A reduction in residual is seen usiePRCR method in the residual maps in the
right hand column of Figure 7.10. Corresponding figuresHertbtal residual are presented in Table 7.1
showing a fall in ADC residual over the entire volume29% for this case. Direct registration sees a
reduction in residual 020% in this case, as may be expected following the discussiomeaimowhich
we would expect image registration using unmodified costfions to be successful. A reduction in

ADC residual is also seen for dataset 1 in Figure 7.1 altheughre fitting to feweb-values.

7.5.4 Conclusion

This section presents preliminary work on the registratbdiffusion MRI outside of the brain. The
increased use of diffusion weighted imaging in oncologyl véhuire sophisticated image processing
techniques to reduce the influence of patient motion. Iriqdar for the abdomen, the use of non-rigid
registration algorithms is likely to be necessary. Thigisecprovides evidence that standard non-rigid
registration techniques should be suitable, however optaeation for improved results using PPCR
is that the iterative nature of PPCR and registration to amomcoordinate frame rather than that of
a single particular image can be used to provide a bettelt @ai & Alexander, 2008). Perhaps the
implementation of PPCR in the registration of any large grofiimages (given the conditions imposed

in Chapter 5) should be considered when using images in afiications.
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Unregistered Fluid PPCR

Slice 8

10

11

12

Figure 7.9: ADC maps for slices from Patient 1 from Table Tdlumn 1 before registrationColumn

2 after fluid registration using NMI cost functio@olumn 3 after registration by PPCR.
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Unregistered Fluid PPCR

Figure 7.10: ADC residual maps for slices from Patient 1 frtable 1.4:Column 1 before registra-
tion, Column 2 after fluid registration using NMI cost functio€olumn 3 after registration by PPCR.

Showing some evidence of reduction to model-fit residudés aggistration.



Chapter 8

Kullbach Leibler Assisted Image Matching
and Patching (KLAMP)

8.1 Introduction

A Dynamic Contrast Enhanced MRI dataset consists of mangimgaframes, often both before and
after contrast injection. Registration may be driven byimising joint image histogram dispersion.
Force gradients used to drive registration algorithms arield from changes that reduce the dispersion
in the joint image histogram. Differences between jointga&istograms between images before and
after contrast arrival can be compared. We investigatexiélpicontributing to joint image histogram
dispersion by contrast change alone might be separatedifimse due to motion changes. As discussed
in Chapter 5 the joint histogram between pre and post enhagtieimages contains dispersion due to
both motion and enhancement, both of which are minimisethduegistration. If we assume that there
are gross changes to the joint image histogram between grpast enhancement due to enhancement
processes, then we can seek to minimise those changes bysampof the histogram distributions.
Work related to intensity alteration has been produced bis#veld (Weisenfeld & Warfield, 2004):
the authors sought a functional multiplicative relatidpdtetween intensities in two images in order to
correct for intensity biases in the MRI acquisition and #fere improve segmentation techniques. The
concept is similar to that proposed in this chapter, but herseek to reduce the influence of large local
contrast variations on image registration.

Figure 8.1 shows the generation of joint image histogranme leetween two pre-enhancement
images and the second between a pre-enhancement and pastement image. Image registration
force gradients are calculated to reduce dispersion indiheimage histograms, however in the case of
the pre and post-enhancement images, dispersion in theijoaige histogram is generated from both
motion and contrast-enhancement and it is possible thagemegistration will attempt to shrink or

distort enhancing regions as discussed in Chapter 4.

8.2 Method

We describe the joint image histogram (normalised so timaait be considered a probability distribution

of intensity values) of two pre-enhancementimaggs., andA, . asJIH (Apre1, Apre2). Similarly,
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Figure 8.1: Formation of joint image histograms betweenesgmhancement images and either a pre or
post enhancement image. Force-gradients that reducegpersiion in the histogram formed using the

post enhancement image may result in shrinkage of enhafezitgyes.

we consider the normalised joint image histogram betweee-@phancementimagg,,.., and a post
enhancement imag#,,,s:1, multiplied by a binary pixel masi giving JIH (A1, M - Appe1). We
optimise this mask so that the divergence between the prp@stdoint image histograms, as measured
by the Kullbach Leibler divergence (KLD - Equation 8.3), iswmised (Equation 8.2). For an enhancing
image, masking pixels that are enhancing reduces theirdhgpethe formation of image force gradients
as discussed in Chapter Four. In this sense our pre-enhantéistogram is &aining histogranmused

to modify theenhancement histograso that it can be used for motion correction. Our pre-enhaecé
histogram should contain dispersion typical of the motietwen two images and should therefore be
calculated between pre-enhancement images only. Anymdispein this joint image histogram can be
considered to be motion related. By comparing the pre-pdepa@-post joint image histograms we can
estimate which contributions to the pre-post joint imaggdgram are due to enhancement and suppress

their influence in subsequent image registration procedure

KLD@JIH (Apret, Apre2) |I3H (Apre1, M - Aposin)) (8.1)

min[KLD(JIH (Apret, Apre2) |[IIH (Apre1, M - Aposi1)))] (8.2)

The mask can be found using an automatic method inspeceérgntiall change in Kullbach Leibler
divergence (KLD) brought about by removing individual g&xehe approach used here is similar to that

used by Crunet al (Crum et al., 2005). If the removal of a particular pixel reds the KLD, then the
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corresponding mask position is set to zero. The small changéD can be found by considering the
removal of a particular pixel from the histogram, hence #soaiated bin contents are reduced by 1. This
procedure is non-iterative and fast and the derivationvsrgin Equations 8.3 to 8.8 for corresponding

intensity bin contents in the training histogramand enhancement histogram).

bins

KLD = % ; ni 1og(%) (8.3)
KLD = KLD;4;+ %[n] log(n;) — n; log(m;)] (8.4)
KLD = KLDy;+ %[(nj —1)log(n; — 1) — (n; — 1) log(m, — 1)] (8.5)
KLD = KLDiz;+KLD;+dKLD (8.6)
AKLD = ~n, 1og<%> ~log(22) (8.7)
AKLD =~ %log(:—j) (8.8)

From the steps outlined above, we expand Equation 8.5 totlequé.7 and find the change in KLD
(dK L D). For a large number of pixel§ and large bin contents; andm; (thereforen; =~ n;, — 1) , the
expression forl K L D can be represented as Equation 8.8.

It may not be appropriate to simply remove those pixels testlt in a reduction in the KLD. By
inspection of test data, this process also removes pixatstie not enhancing. Theoretically this is due
to discrepancies between the training histogram and eenaertt histogram that encompass motion not
captured by the training histogram. It is therefore neagssadefine a threshold K LD so that if re-
moving a particular pixel reduces the total KLD by more thaa threshold amount, we mask that pixel.
The assumption is that contrast enhancement intensitygelsacontribute more to the KLD value than
motion artefact intensity changes; it follows that conteathancement intensity changes that contribute
to a large KLD are generating dispersion in the enhancing joiage histogram that is greater than that
that due to motion artefacts. The reduction of contrastanbment induced joint image histogram dis-
persion is likely to result in mis-registration, so its rerabmay be advantageous. Using this method, the
pixel mask should remove the influence of contrast-enhaaneam the force gradient by removing from
the analysis those pixels that are changing intensity Vadite@een pre and post enhancement images in
a fashion unlike those between the pre-enhancement images.

If registration was carried out between the pre enhanceimage and the masked post enhance-
ment image, we would still have spurious force gradiente@aimask boundaries. To reduce or remove
this effect it is necessary to calculate a patch image tdfiligap produced by the mask. One method of
doing so is as follows: for each masked pixel, we look at thagenintensity it should have, given the
joint image histogram formed by the masked post-enhanceimage and the pre-enhancement image
(see Figure 8.2). The most likely value (that with the higipgebability) is then given to each masked
pixel to create a patch. Selecting the most likely value &qrable to drawing from the associated inten-
sity probability distribution since this would introducestogram dispersion that may produce spurious
force-gradients; taking the most likely value prevents.tfiihe effect of the patch is to reduce or remove

the effect of erroneous force gradients at the mask edgeés afises because the masked pixel has been
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given the most likely intensity value and so generating adacross it is unlikely to further minimise

(or maximise) the cost-function.

Postl Postl

Pre1
Pre1

a b

Figure 8.2: Selection of most-likely pixel intensity vafufor the masked image patch. Masked pixels
have a new value calculated by considering their most likalye from the new joint image histogram
between pre and masked post-enhancementimages (as deatezhy the green line markings, arrows
show the original intensity values, the green dot the reggldntensity value).a Original joint image

histogram andb Joint image histogram after masking.

The process described above is terrkadlbachL eibler Assisted imagél atching andPatching
(KLAMP).

Results are shown for two different variations of the KLAMRtmod. First we inspect the effect
on final image registration result using the non-rigid fliedistration method described in Appendix C
where we submit an anchor image and a masked and patchedlage.i Second we modify the fluid
registration algorithm so that the KLAMP method is diredtigorporated (see Appendix D). To anal-
yse registration performance, we use a real pre-enhandememor image and a real post-enhancement
image subject to an additional deforming force (as per Gh&)t The additional perturbing force gener-
ates motion artefacts larger than the existing motion betwtiee real pre and post enhancementimages.
Therefore we have a reasonable approximation to the gotdiatd deformation that the registration
algorithms should recover. Analysing manually segmenteabies of the liver, heart and aorta, we can

investigate how well we recover the gold-standard imagesyaiantify mis-registration.
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8.3 Results

Results are presented for direct analysis of the force gnasli selection of the pixel rejection threshold
and analysis of the deformation fields using a pre-enhaneeamehor image and masked and patched
post-enhancement floatimage. We also investigate thet efféte registration after incorporation of the

KLAMP algorithm into a fluid registration implementation msAppendix D.

8.3.1 Inspection of Driving Force Gradients using KLAMP

Figure 8.3 demonstrates the formation of an image mask siefféct on reducing contrast-enhancement

induced dispersion on the joint image histogram betweempdgost-enhancement images.

Figure 8.3: Formation of joint image histograms between pr®enhancement images and a masked
post enhancement image. Formation of the image mask assdextin the text reduces force-gradients

that are likely to contribute to shrinkage of enhancingdess.

Figure 8.4 demonstrates the described masking and patetatigpd and the effect on the image reg-
istration force gradients. Force gradients are calculbyecbnsideration of maximising the Normalised
Mutual Information as shown in Appendix B. Force gradientdfie registration of the unmodified post-

enhancement image to the pre-enhancement image are wrignggB.4): in addition to medial-lateral
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correction of abdominal wall movement and superior-irtfefiver/diaphragm displacement there are
pinching force gradients on both the aorta and the leftn@atascending aorta. The formation of NMI
force gradients when using the masked post-enhancemeg iamal the pre-enhancementimage are dif-
ferent (Figure 8.5), but as discussed in the methods sedtiiere are difficulties in calculating force gra-
dients over the boundaries between masked and unmaskésl dJikese effects are reduced or removed
using masking and patching (Figure 8.6). In the masked amthed method we maintain the force
gradients correcting medial-lateral abdominal wall moeatrand superior-inferior liver/diaphragm dis-
placement but have removed force gradients associatedhv@tpinching of enhancing features. There
remains some residual difficulty in the left-ventricle wiimay need to be considered on the eventual
image registration. The application of regularisatiom(efinding the displacement from these force
gradients using the fluid-equation) will smooth 'noisy’dergradient regions but is likely to preserve the

consistent forces that correct the major abdominal wallenwent and superior liver displacement.

Float Anchor

NMI Force Gradients

Figure 8.4: Formation of Normalised Mutual Information dergradients between unaltered post-
enhancement and pre-enhancement images. Note the pingtadgents around the heart and aorta

in addition to abdominal wall and diaphragm position catimets.
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Masked Float Anchor

NMI Force Gradients

Figure 8.5: Formation of Normalised Mutual Informationdegradients between masked post enhance-
ment image and pre-enhancement image. Note the absenaecbfnyg force gradients in the heart and
aorta but appearance of flat regions with visible gradientiseaboundaries. The mask used is identical

to that shown in Figure 8.3.

IMlasked & Patched Float Anchor

NMI Force Graclients

Figure 8.6: Formation of Normalised Mutual Informationdergradients between masked and patched
post-enhancementimage and pre-enhancementimage. Eabgbnce of pinching force gradients and
its replacement with local noise in masked regions. Abdainivall and liver position corrections are

maintained. The mask used is identical to that shown in Eigu3.
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8.3.2 Setting the KLD Threshold in KLAMP

The selection of the threshold in the previous section wasgpirical choice having a value bfg - =

—1 for the bin contents andm at intensity: in the training and enhancement histograms respectively.
This threshold value is now tested, and varied between 0 2nd steps of 0.25. Figure 8.7 shows
the resulting image masks (morphologically dilated by oixeljp Selection of a threshold value of -1
appears to provide a trade off between masking enhancityésssuch as the aorta and masking features
due to unmodelled histogram differences. This should beddsirther before stronger conclusions can

be formed.

Er 175 - -2

Figure 8.7: KLAMP mask formation for threshold values begw® and -2 using step size 0.25 (Pixels

are masked ifog 7 < threshold).

i
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8.3.3 Float Image Pre-Processing using KLAMP

Hand-segmented contrast enhanced images are selectethfzahata in Table 1.2 as demonstrated in
Figure 8.8. Three segmentation types are selected repiregéime heart, the enhancing aorta and the
liver. Since the images are in reasonable alignment pricedéstration, we impart an additional defor-
mation using the motion model in Chapter 3. The deformasaapiplied to both the enhancing images
and the training image (image 2) so that a good training disim is found. We now have a gold-standard
against which to compare the results of image registrafibis-registration of enhancing features may
result in a reduction in the area of segmented enhancingrissafvolume in 3D) between gold-standard
and registered images. Correct registration should r@salh increased intersection of the segmented
liver between gold-standard and post-registration cetgahanced images. Image registration is car-
ried out between post-enhancement and pre-enhancemeagesméth and without KLAMP to produce
deformation fields which may then be applied to the segmientain order for a comparison with the

'undeformed’ gold-standard.

Pre-Enhancement Images

1

Enhancement Images

Figure 8.8: Segmentation of enhancing features and thefliveanalysis of registration performance.
Image 1 represents the anchor image to which we registeneirtggfloat images 5 to 7. Image 2 is the
additional training image used in the KLAMP method. Motiategacts between images 1 and 2 are

used to generate the training joint image histogram.

The following section will provide an analysis of the KLAMPeatiod as applied within the fluid
registration framework of Appendix C. Table 8.1 shows risstdr the total area of heart and aorta

and the intersection of liver pixels before deformation aftdr deformation and subsequent registration
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with and without the KLAMP method. There is evidence thatithenodified registration method causes
shrinking of the enhancing heart and aorta by up to 18%. Haisrrect shrinking of the heart and aorta
is visible in both the registered and segmentation imagdsweay be counteracted using the KLAMP
method. The final row in the Table 8.1 suggesting that thenkimi is the same both with and without
KLAMP is the result of poor threshold choice in the KLAMP imeagask (the threshold is too high
and no pixels are masked in this case). Registration sucaesaeasured by an increased overlap of
segmented liver pixels is represented in Table 8.1 columasdb6, as a percentage of the maximum
possible number of overlapping green pixels. The numbeweflapping pixels between the original
undeformed image and the registered image is improved icaalts both with and most cases without
KLAMP. However, the KLAMP method appears to cause undeistegtion of the images, as marked by
a much smaller increase in overlapping pixels. The reasonhki are investigated further by inspection
of the modification to the potential cost-function minintisa space caused by the KLAMP algorithm.

Further results are shown in Table 8.1 Columns 7 and 8 footiababsolute difference between the
applied deformation and correcting registration deforomdfield. Results are expressed as a percentage
of the applied deformation; perfect deformation recoveoyld result in a zero absolute difference. The
under registration using the KLAMP method is summariseddsjdual deformations that represent a
large fraction of the original applied deformation. Reagvef the deformation without the KLAMP
method is variable.

Some example images are shown in Figure 8.9 for the markett nesTable 8.1. Given the pre-
enhancement anchor image, we register a post-enhanceownirfhge to the anchor using normalised
mutual information. The results for each registration rodthre shown in imagds,c,d in Figure 8.9.
There is visible pinching of the enhancing left ventricletie registration without KLAMP. Correspond-
ing segmentation images are shown in the second row anddabeenry of the gold-standard deformation
is shown in the third row in the colour difference image. @eaisible in imagei is the contraction of
the ventricle (and also the descending aorta). Resulth&corresponding segmentation image (image
j) after registration using KLAMP show the under-registratsuggested by the results of Table 8.2. The

KLAMP method implemented as a float image pre-processingatpears to make registration difficult.



Table 8.1: Segmentation statistics for the change in arbaaft and aorta and the intersection of the liver after imagistration with and without KLAMP. Columns 7 and

8: Absolute Residual Deformation (as percentage of orlgletormation) after image registration with and withoutAMUP. *see Figure 8.9

Dataset Area of Segmented Area of Segmented Intersection terséction Intersection Residual Residual
Heart and Aorta Heart and Aorta of Liver of Liver of Liver Defation Deformation
Timepoint  (Without KLAMP)  (With KLAMP)  (Deformed) (WithotKLAMP) (With KLAMP) (Without KLAMP) (With KLAMP)
1:5—1 -13% -1% 90% 99% 93% 33% 56% %
1:6—1 -16% -1% 91% 99% 92% 32% 82% :
D
1:7—1 -7% -4% 86% 97% 89% 33% 83% 2
2:5—1 -17% -2% 87% 99% 88% 27% 67% 5
2:6—1 -10% -2% 83% 98% 92% 31% 51%
2:7—1 -7% -8% 88% 96% 90% 78% 98%
3:5—1 -11% -0% 87% 95% 85% 50% 100%
3:6+— 1% -14% -1% 88% 98% 87% 48% 90%
3:7—1 -10% -13% 88% 95% 88% 70% 98%

29T
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Anchor

Original No KLAMP KLAMP

Figure 8.9: Example images from Table 8.2 RowaBanchor imageb) original un-deformed image to
compare withe) registration without KLAMP andl) registration with KLAMP.Row 2. Corresponding
segmentation images after registratioRow 3. Segmentation difference images with gold-standard

segmentation for each registration method.
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Inspection of the effect of the KLAMP method on cost-funotiminimisation may reveal the reason
for the apparent under-registration. Using the cost-fionaninimisation space analysis of Section 4.3
it is possible to inspect how easily we might expect to misgrour cost-function after KLAMP. Figure
8.10 demonstrates the changes to the minimisation spacthareffect of the suppression of enhanc-
ing features. It appears that the inclusion of the KLAMP aillpon might make the minimisation of
information theoretic cost-functions difficult. The reador this is the patching of the image with the
most likely intensity values. This is designed to reducerisius force gradients in the masked image,
but has the effect of increasing the value of the normalisetlat information, reducing the scope for

cost-function improvement by registration and flattenimg minimisation space.

Before KLAMP
Normalised Mutual Mutual Joint Entropy Cross
Information Information Correlation
After KLAMP
Normalised Mutual Mutual Joint Entropy Cross
Information Information Correlation

Figure 8.10: Cost-function minimisation spaces of a pre post enhancement image. Top row: Un-
modified images deformed by a force varyingxrandy. Bottom row: Corresponding minimisation
spaces for pre-enhancement image and KLAMPed post-enmamténage demonstrating a flattening

of the cost-function space.
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8.3.4 Joint Entropy Recalculation Using KLAMP

We now analyse the effect of incorporating the KLAMP alduamitinto the image registration procedure.
The previous sections necessitate a modification to thénatiglLAMP algorithm in order to maintain
a cost-function that may be minimised. The use of the KLAMRhuéd to produce a float image suit-
able for registration appears to make the cost-functioficdif to minimise successfully. In order to
maintain the minimisation of the cost-function we make theAKIP method internal to the registration
algorithm and update the mask and patch at each iteratioa.ré3ulting fluid-KLAMP algorithm and

the modification to the cost-function formation is descdilie Appendix D.

From Chapter 2, when inspecting the entropies calculateshwising mutual information (or nor-
malised mutual information), we seek to maintain the marpgémtropiesi 4 and Hy whilst reducing
the joint entropyH 4. Of these three terms, it is the joint entropy that is diffidol minimise suc-
cessfully due to the formation of the joint image histogrdwat includes dispersion due to both motion
artefacts and contrast enhancement. The marginal entigpiy the presence of contrast-enhancement
is likely to be increased when using contrast-enhanceniérgrefore it may be considered important
not to influence the marginal probability distribution wgithe KLAMP algorithm. It is possible to use
the KLAMP algorithm to modify the joint image histogram foation only, leaving the marginal float
image histogram unchanged. This will alter the interpietadf the mutual information slightly since
we are now considering a measure of mutual information girege images. In an information theoretic
sense we are assessing the interaction information of ttteoarfloat and masked-float images, however
a formal definition is not be presented in this thesis andfiakefuture work. This re-definition of the
mutual information should allow improved image similanbaximisation; we maintain an unmodified
marginal float entropy and also minimise the effects of thetrest-enhancement dispersion formed in
the joint-image histogram.

Table 8.2 columns 2 and 3 show the reduction in volume of ttathend aorta with and without
the internal KLAMP algorithm. The volume reduction asstmiawith enhancing features is minimised
using the internal KLAMP algorithm. However there remaionsng residual volume reduction. The
segmented liver intersection results in Table 8.2 columtts @ show improved results when using the
internal-KLAMP method as compared to Table 8.1. Regisiraierformance in many cases is compa-
rable to results not including the internal-KLAMP algorith Results for the absolute deformation re-
covery residual are shown in Table 8.2 Columns 7 and 8 confgmin improvement to the re-alignment
of the deformed images both with and without internal-KLAKIEhough the registration fails to register
in two cases. This under-registration is the reason fordtve$t results for the change in segmented area

of heart and aorta also seen in Table 8.1.

Some example images are shown in Figure 8.11 for the markeit ie Table 8.2. Given the pre-
enhancement anchor image, we register a post-enhanceownirfhge to the anchor using normalised
mutual information. The results for each registration rodthre shown in imagdsc,d in Figure 8.11.
There is visible pinching of the enhancing left ventricléhe registration without KLAMP. Correspond-

ing segmentation images are shown in the second row anddabeenrsy of the gold-standard deformation
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is shown in the third row in the colour difference image. @heaisible in imagei is the contraction

of the ventricle (and also the descending aorta). TheserfEsabf mis-registration are not present in
the corresponding segmentation after registration usit§MP (imagej), although there appears to be
slight under-registration of the liver position and smakpcorrection of the position of the aorta. These

results correspond well to Table 8.2.



Table 8.2: Segmentation statistics for the change in areaatf and aorta and the intersection of the liver after inmagistration with and without internal-KLAMP. Columns

7 and 8: Absolute Residual Deformation (as percentage giraii deformation) after image registration with and withmternal-KLAMP.*see Figure 8.11

Dataset Area of Segmented Area of Segmented Intersection terséction Intersection Residual Residual
Heart and Aorta Heart and Aorta of Liver of Liver of Liver Defation Deformation
Timepoint  (Without KLAMP)  (With KLAMP)  (Deformed) (WithotKLAMP) (With KLAMP) (Without KLAMP) (With KLAMP)
1:5—1 -13% -10% 90% 99% 99% 33% 33%
1:6—1 -16% -12% 91% 99% 98% 32% 32%
1:7—1 -7% -5% 86% 97% 96% 33% 36%
2:5—1 -17% -0% 87% 99% 87% 27% 97%
2:6—1 -10% -6% 83% 98% 96% 31% 35%
2:7—1 -7% -6% 88% 96% 96% 78% 71%
3:5—1 -11% -7% 87% 95% 94% 50% 53%
3:6+— 1% -14% -5% 88% 98% 95% 48% 53%
3:7—1 -10% -1% 88% 95% 88% 70% 93%

S|nsay '€'8

29T
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Anchor

Original No KLAMP KLAMP

Figure 8.11: Example images from Table 8.2 RovaBanchor imageb) original un-deformed image to
compare witlc) registration without KLAMP andl) registration with KLAMP.Row 2: Corresponding
segmentation images after registratioRow 3. Segmentation difference images with gold-standard

segmentation for each registration method.
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8.4 Conclusion

The development of the Kullbach Leibler Assisted image Mg and Patching (KLAMP) method
has suggested that correct registration of images contagnhancing features may be achieved by a
modification to the underlying cost-function intensitytistics. The method is suitable for low numbers
of images, perhaps those containing first pass bolus infimmas shown in the examples in this chapter.
The method requires at least two pre-enhancement imagésisa training joint image histogram free
of contrast-enhancement related dispersion can be catesticul he formation of the training jointimage
histogram is not necessarily limited to only two pre-entement images. It is conceivable that a wider
range of motion artefacts could be allowed when using langenbers of training images. Setting the
threshold mask value is currently a largely empirical eiserchosen to eliminate contrast-enhancing
features whilst maintaining artefacts due to motion digareies between the training and enhancement
joint image histograms. Further investigation might bedwsekin order to define a theoretical cut off,
given a set of anchor, float and training images.

The KLAMP method was originally devised as a method to allogregistration of a pre-processed
post-enhancement masked and patched float image to a paeearhent anchor image without modifi-
cation to the following registration algorithm. Howevdretformulation of the patched image appears to
make the cost-function difficult to minimise. This is theuk®f masked pixels being given their most
likely intensity value. Unfortunately this is necessanycg we do not want spurious force gradients to
remain in the image registration. Modifying the image regison algorithm so that the KLAMP method
is incorporated within it allows the direct modification bEtfluid equation driving force gradients. The
following solution to the fluid equation (the regularisajgproduces an acceptably smooth deformation
across the force gradient mask boundaries.

The results in this chapter, although fairly preliminanyggest that the method might be able to
allow improvements to registration accuracy in the preseasfccontrast-enhancement. Unfortunately
the results are not conclusive enough to suggest that theM Algorithm in its current form is either
robust or suitable for a wide range of enhancement chaistitsr Further work is required to analyse the
best implementation of the algorithm but results have shihahit is possible to achieve better results
if the KLAMP algorithm is incorporated as a modification withan existing registration algorithm.
Implementation of the KLAMP algorithm into the registratialgorithm allows adaptive modifications
to be made to the method. For instance, it would be possikddlder adaptive setting of the KLAMP
threshold, adaptive setting of the bin number or an adaptingce of cost-function depending on the

properties of the component entropiés, Hr andH 4 .



Chapter 9

Conclusion

9.1 Summary

This thesis has presented work towards the successfutna@ea of images in which conventional reg-
istration algorithms are ill-equipped to cope with locahtrast changes. Chapter 2 presented an intro-
duction to commonly used registration algorithms and deedrthe cost-functions that are minimised
(or maximised) during registration and the associated [gogransformation models. Chapter 2 also
detailed the motivation and physiological basis of dynaatintrast enhancement with exogenous Gd-
DTPA. Chapter 4 presented a discussion of the limitationsoof/entional cost-functions ranging from
the restrictive image intensity assumptions of the sum abeed difference cost-function to the more
general description of image similarity given by normadiseutual information. Chapter 4 was used
to provide evidence that registration failure is likely t® daused by inappropriate cost-function choice.
Analysis was carried out using the novel inspection of dosttion minimisation spaces and the di-
rect visual examination of cost-function gradient forroati In particular, Chapter 4 showed that the
cost-functions discussed are likely to fail when local cast changes occur since they are unable to
distinguish between poor image similarity due to motiorfatts and changes to image similarity due
to contrast enhancement. This discussion motivated the foe¢he Progressive Principal Component
Registration (PPCR) algorithm in Chapter 5, which devetbpenodel-free, full field-of-view regis-
tration technique without the need for model-fitting or segmation. The PPCR algorithm was been
published (Melbourne et al., 2007b). The method allows oapd registration performance by produc-
ing registration anchor images that are contrast-matah#tkir respective float images. As a result, the
minimisation of a given cost-function between float imageé BRCR anchor image is likely to be robust
to contrast-enhancement mis-registration.

Chapter 4 also introduced a generalisation of image siityiltor groups of images in the form of
the Cost-Function Matrix Mean. This allowed a measure ofdigéstration of all images within a dataset
to one another. This was in contrast to the alternative féatimn, comparing the registration of images
to only a single image. The CFMM was used throughout the sheesia measure of registration perfor-
mance. Within the thesis, the formulation of the CFMM in@dd/alues from the diagonal elements of
the cost-function matrix, a true generalisation shoul¢ aohsider off-diagonal elements so that for the

case of only two images, the CFMM is simply the cost-functialue between the two images.
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Chapter 3 developed a general simulator for producing dymaontrast enhanced MRI datasets
incorporating both image deformations and image conthatige. The 2D model was built up of three
main components: a motion model; a contrast-enhancemetdlwith specific properties for simulating
pathology; and a signal model for converting contrast-agencentrations into MR image intensities.
The model was designed with the evaluation of registratigarghms as its principal function in this
thesis: results are used in Chapters 4, 5 and 8. The motiorlnsduitable for this purpose but the
inclusion of a biomechanical model would be a desirablerfustep. The contrast enhancement model
makes use of recent work on the representation of contrdstireeement properties in the liver using
suitable arterial input function modelling. Improvemetdsthe enhancement curve modelling could
be made using a more sophisticated image segmentation amry tissue classification to vary the
pharmacokinetic parameters. Additions to the signal miodetould be made that would allow for
intra-image intensity variations and the analysis of theulting k-space artefacts. A basic form of this
2D DCE-MRI simulator was presented in (Melbourne et al.,&4)0a full 3D extension of the work

might prove to be useful as future work.

Chapter 5 presented results toward the explanation forauga registration performance using
PPCR by discussing the generation of contrast-matchedastagwhich registration can proceed using
conventional cost-functions. The reduced influence ofrasttenhancement on image similarity allows
registration using an unmodified registration algorithtetnal to the PPCR algorithm. This was shown
by inspection of the joint-entropy values calculated froatadets generated with varying motion cor-
ruption and contrast enhancement. The iterative natuteeoPPCR algorithm allows refinements to the
registration to be made with the inclusion of higher ordéngipal components. The PPCR algorithm
was initially tested on a simulated dynamic contrast enbdMRI dataset incorporating an elastic defor-
mation model and a model of contrast enhancement as distis&hapter 3. Variation of the strength
and periodic nature of the motion model and the dose of csttigent revealed circumstances in which
the PPCR algorithm was expected to allow improved registrgd those methods that do not make

allowance for local contrast changes. Part of this Chapéerpublished in (Melbourne et al., 2008a).

Chapter 5 also investigated the inclusion of some commutatperformance benefits into the PPCR
algorithm. The time-limiting step is the individual regitions, run after the inclusion of each principal
component. In particular, it was found that the number ohiiens in each registration can be reduced
whilst the set of registrations at each PPCR iteration carubén parallel. The further parallelisation
of the algorithm by running each registration on a graphicatessing unit (GPU) will also make the
algorithm fast. GPU-parallelisation of the fluid regisimatalgorithm is a particularly desirable step; if
the Cahill (Cahill et al., 2007b) method is used, the algonitan make use of existing GPU algorithms
for the Fast Fourier Transform and for convolution makingjsgration much more rapid than on a con-
ventional single CPU. This use of the fluid algorithm has gdi¢ implemented and would be beneficial

to wider registration applications.

Chapter 6 applies the PPCR algorithm to real DCE-MRI dataingaitse of the datasets described
in Chapter 1. The benefits of the PPCR algorithm on visual aggpee are discussed and the use of the
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algorithm in statistical testing of motion within a datasets presented. Visual inspection of difference
images and visual comparison of registration methods biyedaobservers were used as method eval-
uation. Further analysis using a generalised cost-fundtio multiple image datasets (Cost Function
Matrix Mean) and crude pharmacokinetic curve-fitting sugjge that the PPCR algorithm gives more
acceptable results to the direct fluid registration algponit The application of PPCR to 3D DCE-MRI
datasets reveals an improvement in their registration ineeuse of a direct registration algorithm. The
use of complex model-fitting using the independent MRIWwaft (d’Arcy et al., 2006) to the contrast-
agent concentration time-curves showed improvement edtgstration by PPCR when inspecting the
reduction in residual model-fit. Both the PPCR algorithm &émel direct registration method showed
superior registration (or resistance to mis-registrgttban that seen using a proprietary scanner-based

registration package.

Application of the PPCR algorithm to a superficially quitéetient application was presented in
Chapter 7. On closer inspection, the reasons for failuregistration algorithms on both DCE-MRI and
DW-MRI are analogous - local contrast changes disrupt teeraptions of conventional cost-functions
which may lead to either under-registration or mis-regtin. The improvement on image registration
of DW-MRI datasets produced by the PPCR algorithm were edliin this chapter. Analysis is carried
out using visual inspection of registered slices and amabfsdown-stream fractional anisotropy statis-
tics. Analysis of the fractional anisotropy used a leave-ont calculation of each diffusion direction
and reveals reduced variation in fractional anisotropyalmslity. Part of this work was published in
(Melbourne et al., 2008b). The PPCR algorithm is also afdpbethe registration of diffusion weighted
images of the liver. Here the analysis concerned differemealiffusionb-value rather than gradient
direction. As a result PPCR is not theoretically necessagkded, as discussed in Chapter 7. However,
inspection of the residual of model-fitting to the signal darection ofb-value, PPCR appeared at least
as good as direct registration to a the zero-weigt@dmnage. Improved registration by PPCR may
be the result of the algorithm acting to register all imagegards a common coordinate frame rather
than towards the coordinate frame of a single image, here€EMM will give a higher result when

compared to direct registration.

Chapter 8 presented a novel algorithm for direct influenamosf-function gradients during image
registration. The formation of this algorithm is a paralfielvelopment to the PPCR algorithm. 1t is
developed in answer to problems found when there are lar@egels in image contrast profile (such as
bolus arrival in the heart) relative to the reminder of imagethe dataset. The PPCR method should be
applied to groups of images under contrast enhancemenktretree changes in contrast in one or two
images lead to principal components that do not necess&rdple contrast-matching of these images;
hence this might result in mis-registration. Therefore étgorithm may be used complementary to
the PPCR method. Analysis of the Kullback-Leibler divercebetween joint image histograms in
which both contain similar levels of motion, but only one tains contrast-enhancement allows the
removal of contrast-enhancement by image matching andhipatasing the Kullbach Leibler Assisted

image Matching and Patching technique (KLAMP). Registrativith reduced contrast-enhancement
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influenced artefacts may proceed using either a standaistnaggpn algorithm of the pre-enhancement
image and the KLAMPed post-enhancement image or by incatjpor of the KLAMP algorithm into
the registration algorithm to influence the driving forcadjents.

Overall this thesis has demonstrated the limitation of ienaggistration in difficult circumstances.
The thesis has shown the influence of contrast-enhancemesdst-function gradient formulation by
using simulated motion corrupted, and contrast-enhand&l,developed specifically for registration
testing. Two new algorithms have been proposed, desigrexifiggally for the registration of contrast
enhanced data; performance benefits have been demondtaberih. The PPCR algorithm has been
demonstrated on subject data with both contrast variatientd extrinsic contrast-agent injection and
diffusion gradient direction selection. Further benefitthe PPCR algorithm may be envisaged when
considering the registration of any group of images intorammn coordinate frame; some evidence was
provided that this may be the case for diffusion weighted MBihg multiple b-values. The contribu-
tion of these algorithms has stretched the realm of apicatf image registration and the process of
algorithm development during this thesis has revealeddbfairements for novel, flexible image regis-
tration algorithms. The development of the PPCR and KLAM&thms allows improved registration

in circumstances previously considered liable to misstegtion.

9.2 Future Work

A natural extension of the work outlined in this thesis is doenbination of the PPCR and KLAMP
algorithms. In cases in which contrast change is well regriesl by early principal components, the
PPCR algorithm should operate without KLAMP. However, ingé circumstances where one or two
images contain contrast changes unlike those in the remaofdhe dataset, the KLAMP algorithm
may need to be incorporated to mediate against large locdtasi variation. Some of the work in
Chapter 4 and Chapter 8 may allow the adaptive selection ostfanction and the parameters of the
cost-function. For instance, a suitable cost-functiomftbose listed in Chapter 2 and Appendix B could
be determined by inspecting the component entrofigs Hr and H 4 or adapting the number and
breadth of the intensity bins.

An alternative to Principal Components Analysis for datalgsis is Independent Components
Analysis. Independent Components are found by considéhieig contribution to a signal by source
separation. Due to the fact the components are indeperidepthave no preferred ordering in terms of
importance nor relative scaling (see (Milles et al., 2008))ese factors make PCA a preferable option
for use in the PPCR algorithm. A generalisation of PCA is thiadfpal Geodesic Analysis concerning
shapes (Fletcher et al., 2004). Further investigationisfgeneralisation in the context of image regis-
tration, and the corresponding generalisation of the PRG&ithm could provide interesting work but
this is left to the interested reader.

The work in this thesis addresses only motion artefacts éstwmages (PPCR is an inter-image
registration method). During an MRI acquisition, there rbayintra-image motion corruption. Recent
work by Whiteet al (White et al., 2008) has addressed this, but only for imag#sowt contrast en-

hancement. If contrast-agent intensity changes withinrttegye acquisition are small, this method will
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be applicable in its current form. It may also be straightfard to approximate linear-contrast varia-
tions. In the spirit of the paper by Whitd alit may be beneficial to use a set of contrast-change training
images, formed using a pre-bolus contrast agent injec@orinjection of the full-bolus, the training im-
ages may be used to correct intra-image motion corruptidindrpresence of local contrast changes. In
addition to the PPCR algorithm, this would allow full inti@ad inter- image registration of a DCE-MRI
dataset. There may be some scope for a direct intra-imagendafion recovery scheme using PPCR by
operating a PCA scheme (or more suitable data-reductioensehon the separate k-space fragments.
However, some basic preliminary work on this idea was intgsiee.

Image registration in general does not incorporate bigklgihformation into the modelling of
deformation. B-spline or fluid registration algorithmsatell pixels as equal when imposing a trans-
formation. This is primarily due to the difficulties and contational complexity of building individual
large region of interest physiological motion models. Sdypes of motion are particularly difficult to
implement; a major example is sliding motions which are @né#n the abdomen under the influence
of the breathing cycle. A registration algorithm that inoorated these features could benefit from tech-
niques used in the computer game industry to track objeatganvide realistic physics under which
the objects are influenced. This may include environmentakfs and prevention of undesirable mesh
intersections.

This thesis has purely addressed MRI imaging modalitieavéver, MRI techniques have a wide
diversity in the properties that they measure. The PPCRrighhgo does not intrinsically require MR
images on which to operate; the method should be widely egipli to other modalities. One interesting
application may actually be the combination of images fraffeent modalities of the same features.
This would be a good extension of the work presented hereteard tire no direct theoretical problems
other than those relating to good principal component fédatmn. Recent work on perfusion tensor
imaging (Frank et al., 2008) and also functional diffusiendor imaging (analysing changes to diffusion
caused by repeated nerve fibre activation) may also providetlzer future application which would
combine the results of Chapter 6 and 7.

The model of DCE-MRI presented in Chapter 3 is purely maapic Future work could investi-
gate the microscopic concentration changes in contrasitaBg modelling diffusion of contrast agent
along a concentration gradient between vascular and egthalar, extra-vascular compartments, it may
be possible to directly predict MR signal intensities gitea vascular properties of the local region,

taking into account parameters such as vessel size, peilityeaid tortuosity.



Appendix A

Formulation of Fluid Equation

For the interested reader, the following is a derivationhef fiuid equation. The viscous fluid equation
used in image registration is found from this argument.

Starting by considering the force on a given unit piece offfltine total force=7 is given by the
pressure gradient across the piece of fluid (Equation A.1§.a80 add a general term for a potential
term, for instance if our fluid existed in a gravitationaldi@e would add a term dependent on its relative

height in relation to neighbouring pieces of fluid and as afiom of local mass density.

Fr = -VP (A.1)

Fr = —VP—pVy (A.2)

We also include a continuity condition that says the totabant of fluid is conserved, if fluid moves
away from a particular point, the amount of fluid remaining) gd down!

dp

Ve (pv) = -5

(A.3)

We now consider the total forder on the left-hand side. This is the full derivative rathenthiae
partialp% since we are considering a particular piece of flasdt moveshot a particular spatial point

through which the fluid is passing. Hence we must use the &ulVdtive forp%, Equation A.5.

Fro= o2 (A.4)
Fro= ol(v- Vvt 2 (AS5)

Next we add in a viscous component that describes the flugistaace to being deformed. The
fluid has no resistance to shear but will slip past itself @uun A.6). We form the viscous term from
the stress tensd;; which can be derived from considering two plates encompgssipiece of fluid.

If we move one plate by applying a force relative to the other,consider a linear change in velocity
between the two plates (the relative velocity of the fluidatheplate is zero. The linear relationship is
governed by the viscosity parameterThe second viscosity parameters required to make the stress

tensor complete and allows for a response to internal forces
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5V1‘ 5Vj
S;; = ”[&cj + 5:131-] + A3 (V- V) (A7)
3
3Sy;
F . .= = A.
visc,t J:Zl 5$j ( 8)

For an isotropic medium (Equations A.9 and A.10), the d¢ikieaof the stress tensor has only
second order components and so may be expressed as Equatiowlich is the most general form of
a function consisting only of second-order derivativesh& medium was anisotropic we would require

modifications as shown previously in Equation 3.16.

5
oo

A.9

57 (A.9)
Ny (A.10)
ox

Putting together the terms, the entire fluid equation frordiigpn A.6 appears in Equation A.12
and particular assumptions can be made depending on thredlpsbperties of the fluid. Equation A.12
includes an additional spatially dependent force tEgm, (u) which for our purposes is generated by an

image similarity measure.

pl(v- V)V + %] = —VP — pVi) + uV>V + (1 + AN V(V - V) + Fyim (U) (A.12)

In medical image fluid registration, our fluid is considerésceus so we can ignore inertial and
pressure terms as small or slowly varying and Equation Aetitices to Equation A.13. However it is
important to recognise the above assumptions that wenthetderivation in order to arrive at the result

in Equation A.13.

PV A (0 + AV (V V) + Fain (U) = 0 (A.13)



Appendix B

Formulation of Cost-Function Gradients

B.1 Change in Sum of Squared Difference with Pixel Displaceant

The gradient of the local sum of squared difference can beddny the derivation shown in Equations
B.1 to B.3. The final result is equivalent to that used by Gharisen (Christensen et al., 1996). The
parameters are defined as follows for each pixelithin all pixels N: A is the anchor imagé;(v) is

the float image deformed under the transformationVe seek the derivative of the function over the

transformation.
N
SSD = Y (A, ~Fu(v))? (B.1)
n=1
dSSD,, d
= 2(An —Fu(v) - Fu(v) (B-2)
VSSD = (A—F)V(F) (B.3)

B.2 Change in Cross Correlation with Pixel Displacement

The un-normalised local gradient of the cross-correlatiost-function can be derived as in Equations
B.4 to B.5. Again, the parameters are defined as follows foh géxeln within all pixels N: A is the
anchor imagek(v) is the float image deformed under the transformatiowe seek the derivative of the

function over this transformation.

N
CC = > (An-Fulv) (B4)
n=1
dCC, d
— = An (V) (B.5)
VCC = AVF (B.6)

The result of Equation B.6 can be seen to be one of the terms tihe SSD Equation B.3 and
therefore we may expect registration performance to bdainiscrepancies occur for large biases in
the FVF (self-similarity) term.

If normalisation is included, the gradient must be modifiedthe normalisation as in Equations

B.7to B.9.

1 N
CC = TamE@ 2 A Fal) B-7)
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d 1 1 N d
dv [F(V)] 75(? z:: wr (B.11)

B.3 Change in Joint Entropy with Pixel Displacement

The following is a derivation of the procedure used in findihg gradient of an information theoretic
cost function. The result of this derivation is presente@€bym in (Crum et al., 2003) without discussion
of the assumptions made in its derivation. The final resldina cost-function gradients to be calculated
extremely rapidly when compared to methods that are moreenatically robust and continuous, for
instance using a Parzen window method, or generalising ¢higadion used here to a partial volume
derivation.

We start with the derivation for Joint Entropy. Pixels laxhin an image contribute to a particular
intensity bin in the image histogram and joint image hisémgr For two intensity bins with histogram

countsn; andns in a histogram withV total counts, their contribution to the entrogys:

bins

intEnt = E —1 B.12
Joint Entropy g N ( )
- = — —= _2

We now imagine spatial shifting a particular pixel by onegbiwidth (perhaps to the right). This moves
a unit value in the joint image histogram between two bingharbitrary locations in the joint image

histogram). We decrease the value of one intensity bin acr@&se the other. Equation B.15 demon-
strates this by moving a pixel count from big to binn,, hence the total joint entropy is now given by

this equation. The remaining contribution of all other limshe joint entropy is summarised I5y.

77114’1 n1+1 n271 ngfl
JE = N log N + N log N + S0 (B.15)
Expanding...
ni n1+1 1 n1+1 no ngfl 1 ngfl
—1 —1 —1 ——1 B.16
N2 TN TN®TN TN®TN TN®TN (8.16)
And again...
ni 1
" oe M 4 M oe(1 B.17
N g -+ N og( +n1) (B.17)
—1 — log(1 B.1
+5 gN+N0g(+ ) (B.18)
1
—1 — —1 1-— B.1
+y los N 2 + N og( n2) (B.19)
1 1
S T B R L (B.20)

N N N na
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We see that two terms in B.20 are the original entropy valaeach,

. n1 1 1 nq
AJE = N log(1 + n1) tN log N (B.21)
1 no 1
1 ng 1 1
Re-writing (to expand the, terms)
1 1
AJE = N[ nq log(1 —|— ) +logny —log N + njlog(l+ —) (B.24)
ni
1 1
+nolog(l — —) +log N —logns — log(1 — —)] (B.25)
N2 n2
Doing some cancellation & rearrangement gives:
1 1 1
AS = N[ n1 log(1 + )+ log(nq(1 + )) (B.26)
1 1
+nglog(l — —) — logns — log(l — —)] (B.27)
o 2
A final round of rearrangement gives:
1 1
AJE = N[ n1 log(1 + - ) +log(ny +1) (B.28)
1
+nalog(l — n—) —log(na — 1)) (B.29)
2

We now see that for a stable value of the change in joint eptnaprequire that both, andns are big.
This also means that we can approximateltiys usinglog(1 + x) = « for smallz. this can be shown

to reduce to Equation B.30.

11 1
~ flog 2 B.30
N[n1+n2+ og ] (B.30)

AS =

The log ratio term dominates for large andn. leaving us only to consider the fractional change for
moving the pixel a little waylx Equation B.34. We now implement the same process-ét which

would involve a third intensity bims. This is the result shown in (Crum et al., 2003).

1
AJE* = Nlogﬂ (B.31)
na
1
AJE- = NlogZ—; (B.32)
_ 1 ni1 1 nq

AJET —AJE- = —log 2~ —log L B.33
J J N o8 Ty les (B.33)

dJE 1 ns
= —log —= B.34
dx N 08 o (B.34)

B.4 Change in Mutual Information with Pixel Displacement

For Mutual Information we proceed with an identical analykir the effect of a pixel shift on the
marginal entropy of the float image. We include the resulinfrabove for the joint image histogram

bin countsn, andns and also the corresponding change to the float image masgit@py by moving



B.5. Change in Normalised Mutual Information with Pixel placement 180

a pixel and its effect on the associated bin countsandmgs. The normalisation is by the total number

of pixels, N, which is the same for both the marginal and joint image histms.

MI = Hy+Hp— Hap (B.35)

MI = Ha+ bz_n; % log % - b: ”N log ”N (B.36)
dé\il - %mg% - %ng—z (B.37)
dé\i L _ %log Zzz (B.38)

B.5 Change in Normalised Mutual Information with Pixel Dis-

placement

The expression for Normalised Mutual information is givgralzombination of Equation B.34 and B.38
to give Equation B.42
Hi+ Hp

NMI = ZATHE (B.39)
Hyr
NMI — Ha+ Hp — Hap + Har (B.40)
Hyp
dNMI d MI
S B.41
dx d:z:[JE +1 ( )
dNMI 1 dM T dJE
= JE - MI B.42
dx H%F[ dx dz ) ( )

(B.43)

B.6 Alternative Information Based Cost-Functions

Registration using Normalised Mutual Information is e@lént to maximising the symmetric uncer-
tainty; how well A predictsF and vice versa (as discussed in Chapter 2). Historicalfjjsteation pro-
ceeds by deforming the float imageo match the anchor image so that a symmetric cost-function is
not necessary since we only deform in one direction. If weate@maximise the uncertainty coefficients
individually we are able to choose the direction which isrded more meaningful. Here we consider
the uncertainty coefficients of the pixel intensity probliépdistributions. The results are shown for each
uncertainty coefficient in Equations B.44 to B.47. If we ddes the uncertainty of the anchor image
given the float imag& we get the force gradient Equation B.45 which is equivalemhaximising the
mutual information as in Equation B.38 up to a scale factbe @lternative is to consider the uncertainty
of the float imagd- given the anchor imagA (Equation B.46). Finding the force gradients results in
Equation B.47; this is equivalent to the Normalised Mutudibtmation gradient, apart from the substi-
tution of the marginal entropyi » for the joint entropyH 4. To summarise, if registration proceeds
such that the float image is deformed towards the anchor, waisegan asymmetric cost function, in the
case described here we are maximising lvevtainwe are of the float image given the anchor image. If
we were to deform the float and anchor images towards each p#rhaps a symmetric coefficient is
more meaningful, particularly if we desire an invertiblediffeomorphic deformation; in this case NMI

may be more suitable for maximisation.
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U(A|F)
dU(A|F)

U(F|A)
dU (F|A)

Hy+Hp — Hap
Hy
1 dMI
H_A dx
Hy+Hp — Hap
Hp
1 dM1 dHp

—|Hp——— — MI
HI%[ Fode dz]

(B.44)
(B.45)
(B.46)

(B.47)
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Appendix C

Formation of a Fluid-based Image

Registration Algorithm

The results of the two previous appendices may now be combiFr@m Appendix B, for a given cost-
function we have expressions that give a force map that geeksximise (or minimise) the similarity
measure. From Appendix A we have an expression for the visttoid equation from which is solved

for the velocity of the registration correctisrfrom the similarity measure forde (Equation C.1).

PV 4 (u+ NV(V-v) =F (C.1)

The solution for the velocity given the for¢eat a given iteration is found using the method de-
veloped by Cahill (Cahill et al., 2007b) for a zero-boundemydition. This is analogous to the solution
for the elastic deformation used in Chapter 2 and the methadeintical making use of the Fast Sine
Transform coded in Numerical Recipes (Press et al., 200 algorithm is presented in Table C.1,
where we update using the full derivative far dince we are considering the velocity of elements of

fluid, rather than the velocities at fixed points in the lattic

Table C.1: Algorithm for fluid registration (see text for dission)

Given two images:
Initial Displacmentu,;; = 0.
Start Loop
1) Find force gradients using Appendix B.
2) If images are too similar or force gradients too smallakrie@op.
3) Solve Equation C.1 for velocity field given result of 1.
4) Update displacement field using full derivativg;.., = Uyq + Vdt — dt Zle vmj—i
5) Transform float image by current displacement.
End Loop

Output Result



Appendix D

Formation of a KLAMP capable Fluid-based

Image Registration Algorithm

Here we present the internal implementation of the KLAMPvallhm as discussed in Chapter 8. Instead
of the masking and patching of the float image as a preproggstp, we calculate the image mask and
patch at each iteration but use the masked and patched imagketilate the joint entropy force gradient
component prior to the solution of the velocity field using tiuid equation in Equation D.1. The
gradient formulation outlined in Appendix B is adjusted battthe marginal probability distributions
used inH, and Hr are calculated using the unmodified float and anchor, butdim probability
distribution used to forn# 4 r uses the masked and patch float imé&je= M - F' + P to give M [ =

Hy + Hp — Ha pr.r+p- The resulting algorithm is presented in Table D.1.
uVAV+ (u+NV(V-v) =F (D.1)

Table D.1: Algorithm for KLAMPed fluid registration (see tdrr discussion)
Given three image#;, A, and a training imageéls:

Initial Displacementi,;; = 0.

Start Loop
1) Calculate the float image magki, and patch P using KLAMP.
2) Find force gradients combiningHp ,, Hp , a”dHAl,M Aq4 p Using Appendix B.
3) Ifimages are too similar or force gradients too smallakr®op.
4) Solve Equation D.1 for velocity field given result of 2.
5) Update displacement field using full derivativg;.., = Uyq + Vdt — dt Zle vm%
6) Transform float imagé, by current displacement.

End Loop

Output Result



Appendix E

List of Movies included on supplementary CD

This appendix contains descriptions of the movie files idetlion the attached CD as supplementary

material.

Chapter 2
e Movie-2-01.avlllustration of cost-function values with horizontal diapement of two (identical)

brain images. Note that all cost-function values are nosedlto fall in the range 0-1.

Chapter 3

e Movie-3-01.avillustration of motion model (coronal).
e Movie-3-02.avillustration of enhancement model (coronal).

e Movie-3-03.avillustration of combined motion and enhancement modeli(isdy

Chapter 6

All movie files have the same format from left to right. Thetdefost movie is the original, unregistered

DCE-MRI dataset. The second is registration by direct fleigistration using cross-correlation to the
first (unenhanced) image in the dataset. The third is thdtrestegistration using the PPCR algorithm.

If a fourth movie exists, this is the result of a scanner-Hasmge registration algorithm. Since the data

from Table 1.2 is 3D, only the central slice is shown.

e Movie-6-01.avDCE-MRI movie for Patient 2 from Table 1.1.

Movie-6-02.avDCE-MRI movie for Patient 3 from Table 1.1.

Movie-6-03.avDCE-MRI movie for Patient 5 from Table 1.1.

Movie-6-04.avDCE-MRI movie for Patient 1 from Table 1.2.

Movie-6-05.avDCE-MRI movie for Patient 5 from Table 1.2.

Movie-6-06.avDCE-MRI movie for Patient 6 from Table 1.2.
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