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This paper studies a shape-invariant Engel curve system with endogenous total ex-

penditure, in which the shape-invariant speci�cation involves a common shift parameter

for each demographic group in a pooled system of nonparametric Engel curves. We focus

on the identi�cation and estimation of both the nonparametric shapes of the Engel curves

and the parametric speci�cation of the demographic scaling parameters. The identi�ca-

tion condition relates to the bounded completeness, and the estimation procedure applies

the sieve minimum distance estimation of conditional moment restrictions allowing for

endogeneity. We establish a new root mean squared convergence rate for the nonparamet-

ric IV regression when the endogenous regressor could have unbounded support. Root-n

asymptotic normality and semiparametric e¢ ciency of the parametric components are

also given under a set of �low-level�su¢ cient conditions. Our empirical application using

the UK Family Expenditure Survey shows the importance of adjusting for endogeneity

in terms of both the nonparametric curvatures and demographic parameters of systems

of Engel curves.

KEYWORDS: Consumer demands, nonparametric IV, bounded completeness, sieve
minimum distance, sieve measure of ill-posedness, nonparametric convergence rate, root-

n semiparametric e¢ ciency.

1. INTRODUCTION

THE EMPIRICAL ANALYSIS of consumer behavior represents an important area for the application
of semiparametric and nonparametric methods in economics. The Engel curve relationship, which

describes the expansion path for commodity demands as the household�s budget increases, is a key

example of this and one that lies at the heart of the study of consumer behavior. Historically

parametric speci�cations have been based on the Working-Leser (Working, 1943; Leser, 1963) form
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for the Engel curve in which the budget share is linear in the logarithm of the total budget. This

shape underpins the popular Almost Ideal and Translog models of consumer behavior developed by

Deaton and Muellbauer (1980) and Jorgenson, Lau and Stoker (1982), respectively. More recent

empirical studies have suggested further nonlinearities in the total budget variable are required to

capture observed behavior at the microeconomic level (see, for example, Hausman, Newey, Ichimura

and Powell, 1991; Lewbel, 1991; Banks, Blundell and Lewbel, 1997) and nonparametric methods

are now commonly used in application (see Hausman and Newey, 1995; Deaton, 1997). Blundell,

Browning and Crawford (2003, 2004) show how to use nonparametric Engel curves together with the

Afriat-Varian analysis of revealed preference to identify consumer responses to relative price changes

across the income distribution.

The motivation for the Instrumental Variable (IV) estimator developed in this paper comes from

the endogeneity of the total budget variable in the analysis of consumer Engel curves. This variable

is the total expenditure allocated by the consumer to the sub-group of commodities under study, e.g.

non-durables and services. As such it is also a choice variable in the consumer�s allocation of income

across consumption goods and savings. Consequently, it is very likely to be jointly determined with

individual demands and an endogenous regressor in the estimation of consumer expansion paths.

If total expenditure is endogenous for individual commodity demands, then the conditional mean

estimated by nonparametric Least Squares (LS) regression does not identify the economically mean-

ingful �structural�Engel curve relationship. The �statistical�Engel curve does not recover the correct

shape necessary for the analysis of expansion paths or revealed preference. However, the alloca-

tion model of income to individual consumption goods and to savings does suggest that exogenous

sources of income will provide suitable instrumental variables for total expenditure in the Engel curve

regression.

Our focus on semi-nonparametric IV estimation is due to the need to pool nonparametric Engel

curves across households of di¤erent demographic types while allowing for the endogeneity of total

expenditure. The Engel curve relationship is well known to di¤er by demographic type, see, for

example, Blundell (1988). This variation is often used to estimate equivalence scales (see, for example,

Pendakur, 1998). To capture a wide range of income variation in consumer expansion paths and also

to estimate equivalence scales it is typical to pool Engel curves across di¤erent demographic types of

households. Recently Blundell, Browning and Crawford (2003) have shown that, in a nonparametric

budget share speci�cation, demographics cannot enter additively into each Engel curve equation

while retaining consistency with consumer optimization theory; they must also enter so as to scale
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the total expenditure variable inside the nonparametric Engel curve for each commodity. A partially

linear semiparametric formulation (Robinson, 1988) is therefore ruled out. An attractive alternative

semiparametric formulation, which is also consistent with consumer theory, is one that is based on

the shape-invariant speci�cation (see Härdle and Marron, 1990; Pinkse and Robinson, 1995; Blundell,

Duncan and Pendakur, 1998) in which demographics simply shift and scale each demand function

without altering its overall shape. The aim of the present paper is to extend the existing work on

shape-invariant Engel curves to allow for endogenous total expenditure regressor. Our attention is

on semi-nonparametric estimation, that is on both the nonparametric estimation of the Engel curve

shape and the estimation of the parametric speci�cation of the demographic variables. In a semi-

nonparametric regression framework of the type adopted here, there are two alternative approaches to

estimation under endogeneity - the IV and the Control Function (CF) approaches. Here we develop

the IV approach for this semi-nonparametric Engel curve case.2

The IV approach is investigated in Newey and Powell (2003), Darolles, Florens and Renault

(2006) and Hall and Horowitz (2005) for the purely nonparametric regression model. Ai and Chen

(2003) have considered the IV approach in the context of semiparametric e¢ cient estimation of

models with conditional moment restrictions containing unknown functions. In this paper we apply

the sieve IV estimation method of Newey and Powell (2003) and Ai and Chen (2003). Existing

papers on Engel curve models typically consider kernel based methods assuming exogenous total

expenditure. In this paper, given the endogeneity of total expenditure and the shape-invariant semi-

nonparametric speci�cation, we argue that the sieve method o¤ers an attractive alternative to the

kernel based methods. This is because the sieve method is not only easier to implement numerically

but also capable of achieving the optimal convergence rates simultaneously for both nonparametric

and parametric components of the model speci�cation. Moreover, this semi-nonparametric form is

common in economic applications.

A nonparametric IV regression is a di¢ cult ill-posed inverse problem and has not, to our knowl-

edge, been implemented in empirical research prior to the study reported in this paper. Although

this paper applies the general sieve IV estimation method of Newey and Powell (2003) and Ai and

Chen (2003), our theoretical justi�cation is nontrivial. While Newey and Powell (2003) provide con-

sistency of the sieve nonparametric IV estimators, and Ai and Chen (2003) obtain root-n asymptotic

normality and semiparametric e¢ ciency of estimators of the parametric components, their results

are established under sets of relatively �high-level�su¢ cient conditions since they aim at very gen-

eral models of conditional moment restrictions containing unknown functions. Moreover, neither of
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these two papers provide convergence rates of the sieve nonparametric IV estimator under root mean

squared metric; nor do they discuss details of implementation and empirical application.

In our analysis of the semi-nonparametric shape-invariant Engel curve model, we �rst provide

identi�cation under a �bounded completeness�condition, which is natural since Engel curves are all

bounded between zero and one, and which is also much weaker than the �completeness�condition

stated in Newey and Powell (2003) and Darolles, Florens and Renault (2006). Moreover, we are

able to provide a set of �low-level� su¢ cient conditions for consistency of the sieve IV estimator

of Engel curves, and for the root-n asymptotic normality and e¢ ciency of the estimator of the

parametric demographic e¤ects. In addition, we obtain the nonparametric convergence rate in root

mean squared metric when the endogenous log-total expenditure has unbounded support, which is

new even in the literature on ill-posed inverse problems. The only other results on convergence

rates of nonparametric IV regression are those by Darolles, Florens and Renault (2006) and Hall and

Horowitz (2005).3 Their estimation procedures and the su¢ cient conditions for convergence rates they

derive are di¤erent from ours. In particular, they assume that the endogenous regressor has bounded

support, while we allow the endogenous regressor to have unbounded support, which is natural in

the semiparametric shape-invariant Engel curve case with endogenous log-total expenditure.

In our convergence rate analysis, we introduce a �sieve measure of ill-posedness�, which directly

a¤ects the variance part hence the mean squared convergence rate of the sieve nonparametric IV

estimator. The �sieve measure of ill-posedness� is identically one for the sieve nonparametric LS

regression, but, for the sieve nonparametric IV regression, it is always greater than one, and increases

with the complexity of the sieve space as well as the smoothness of the conditional expectation

operator. The greater the �sieve measure of ill-posedness�, the bigger is the variance and the slower

is the mean squared convergence rate of the sieve IV estimator.

Two Monte Carlo studies are included to assess the performance of the sieve nonparametric IV

estimator. The �rst simulation is designed to mimic the subsample of household without children

from the British Family Expenditure Survey (FES) data, which is the data set used in our empirical

application. The estimated �sieve measure of ill-posedness� is relatively large for the subsample of

couple without children, which translates into a slow mean squared convergence rate of the sieve IV

estimator given a typical sample size and given a �nite smoothness of the true unknown Engel curve

function. The second Monte Carlo design is similar to the �rst except that we draw the endogenous

regressor and the instrumental variable jointly from a bivariate Gaussian density. This leads to a

severely ill-posed inverse problem and the sieve measure of ill-posedness goes to in�nity exponentially
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fast, which translates into a logarithmic mean squared convergence rate of the sieve IV estimator.

Nevertheless, the Monte Carlo results indicate that the slow convergence rates are mainly due to

the large variances and not due to the biases. In contrast, the inconsistent sieve LS estimator has a

small variance but large bias. We �nd that there are choices of smoothing parameters which reduce

the variances hence make the mean squared errors of the sieve IV estimators small, while there is no

choice of smoothing parameters which can reduce the large bias of the inconsistent sieve LS estimator

in both simulations. These �ndings are consistent with our theoretical result on the convergence rate

of sieve IV estimator. The Monte Carlo simulations also shed light on the choice of sieve bases

and smoothing parameters, and demonstrate that the sieve IV estimator performs well even for the

severely ill-posed inverse problem.

The application of the sieve IV system estimator is to the estimation of a system of Engel curves

describing the allocation of total non-durable consumption expenditure across eight groups of non-

durables and services for a sample of families with and without children in the Family Expenditure

Survey. This data records detailed information on expenditures, incomes and family composition

and has been a central data source for many investigations of consumer behavior. In the application

we select only working age families in which the head is in employment. Total expenditure is allowed

to be endogenous and we use the gross earnings of the household head as an instrument for total

expenditure. We �nd the estimated curves and demographic parameters to be plausible and we

document a signi�cant impact of accounting for the endogeneity of total expenditure. Adjusting

for endogeneity increases the common demographic shift parameter and produces a much more

interpretable estimate of the income equivalence scale.

The structure of the remaining paper is as follows. Section 2 speci�es the semi-/nonparametric

Engel curve model with endogenous total expenditure, and provides su¢ cient conditions for iden-

ti�cation. Section 3 presents the Sieve Minimum Distance (SMD) procedure. Section 4 establishes

root mean squared convergence rates of the sieve IV estimators of the nonparametric Engel curves.

Section 5 obtains root-n asymptotic normality and e¢ ciency of the estimators of the parametric parts

in the system of shape-invariant Engel curves. Section 6 discusses the implementation of the SMD

estimation of the system of shape-invariant Engel curves, and presents two Monte Carlo studies to

assess the performance of the sieve nonparametric IV estimator. Section 7 presents the empirical

application using the FES data, and Section 8 brie�y concludes. All proofs are collected into the

Appendix.

2. MODEL SPECIFICATION AND IDENTIFICATION
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2.1. The Model

Let f(Y1il; Y2i; X1i)gni=1 represent an i.i.d. sequence of n household observations on the budget
share Y1il of good l = 1; :::; L � 1 for each household i facing the same relative prices,4 on the

log of total expenditure Y2i, and on a vector of household composition variables X1i. Household

expenditures typically display a large variation with demographic composition. For each commodity

l; budget shares and total outlay are related by the general stochastic Engel curve

(1) Y1il = Gl(Y2i; X1i) + "il;

where Gl; l = 1; :::; L, are unknown functions that can be estimated using standard nonparametric

LS regression method under the exogeneity of (Y2i; X1i) assumption: E["iljY2i; X1i] = 0. When X1

is discrete, one approach to estimation would be to stratify by each distinct discrete outcome of

X1 and estimate by nonparametric regression within each cell. Alternatively we may wish to pool

Engel curves across household demographic types and allow the X1 to enter semiparametrically in

each Engel curve. Blundell, Browning and Crawford (2003, proposition 6) show that the following

extended partially linear speci�cation is consistent with consumer optimization theory:

(2) Y1il = hl(Y2i � �(X 0
1i�1)) +X

0
1i�2;l + "il;

where hl; l = 1; :::; L; are unknown functions, �(X 0
1i�1) is a known function up to a �nite set of

unknown parameters �1 and can be interpreted as the log of a general equivalence scale for household

i; see, e.g., Pendakur (1998).5 For example, we may choose �(X 0
1i�1) = X 0

1i�1 where X1i is a vector of

demographic variables representing di¤erent household types and �1 is the vector of corresponding

equivalence scales. Notice that (2) reduces to an additive form for functions of the demographic

variables X1i only when hl is linear. This corresponds to the Almost Ideal model or Translog models

of Deaton and Muellbauer (1980) and Jorgenson, Lau and Stoker (1982). For nonlinear speci�cations

of hl, including the QUAIDS speci�cation of Banks, Blundell and Lewbel (1997), the theoretical

consistency result implies that the demographic terms must also enter in the function hl as is the

case for (2).

There are both theoretical and empirical reasons why the total expenditure is likely to be en-

dogenous in the sense that E["iljY2i] 6= 0. Notice that the log of total expenditure Y2i re�ects savings
and other consumption decisions made at the same time as the budget shares Y1i are chosen. In fact

the system of budget shares can be thought of as the second stage in a two-stage budgeting model in
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which total expenditure and savings are �rst determined and then, conditional on total expenditure,

individual commodity shares are chosen at the second stage; see, e.g., Blundell (1988). There are

other explanations for endogenous total expenditure. See Hausman, Newey, Ichimura and Powell

(1991) and Newey (2001) for a measurement error story. In our application we consider households

in which the head of household is working and use gross earnings of the head of household as an

instrument X2i. The gross earnings of the household head will be exogenous for consumption ex-

penditures under the assumption that heterogeneity in earnings is not correlated with households�

preferences over consumption.

A central objective of this paper is to relax the exogeneity assumption on Y2i in the estimation of

the semi-nonparametric budget share system (2). Blundell, Duncan and Pendakur (1998) have ana-

lyzed the parametric control function approach. In this paper, we consider the alternative nonpara-

metric IV approach to solve the endogeneity problem. In particular, we consider semi-nonparametric

IV estimation where hl(�) is a unknown function and �1; �2;l are unknown �nite-dimensional parame-
ters. Functions of X2i are then used as instrumental variables. More precisely we shall assume:

(3) E["iljX1i; X2i] = 0; l = 1; :::; L:

2.2. Identi�cation

We �rst lay out the notation that will be adopted throughout the remaining discussion. Denote

Y1i = (Y1i1; :::; Y1iL)
0 2 RL, Xi = (X

0
1i; X

0
2i)

0 2 X with dim(X1); dim(X2) � 1 and Zi = (Y 0
1i; Y2i; X

0
i)
0.

Let � � (�; h1; :::; hL) denote all the unknown parameters of interest, and A � � � H1 � � � � �
HL denote the parameter space, where � � (�01; �

0
2;1; :::; �

0
2;L)

0 denote a vector of unknown �nite-

dimensional parameters and � 2 �, a compact subset of Rd� with d� � (1+L) dim(X1), and hl 2 Hl

denote unknown Engel curve associated with good l, l = 1; :::; L, where Hl is a subset of space of

functions that are square integrable against the probability measure of Y2i (to be speci�ed later).

Finally we denote � � (�1; :::; �L)0 2 RL, where for l = 1; :::; L;

�l(Zi; �) � Y1il � hl(Y2i � �(X 0
1i�1))�X 0

1i�2;l,

with a known functional form �(�). For each household i facing the same relative prices and for goods
l = 1; ::; L; the Engel curve model satis�es (2) and (3) which we rewrite as:

(4) E [�(Zi; �o)jXi] = 0;
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where �o � (�o; ho1; :::; hoL) 2 A is the true but unknown parameters of interest. For policy analysis,
we would like to estimate �o, the Engel curve functions hol, and other linear functionals such as the

average derivatives E [rhol(Y2i � �(X 0
1i�o1))], l = 1; :::; L.

The �rst assumption is about identi�cation of �o.

Assumption I (Identification): E[Y1il � hl(Y2i � �(X 0
1i�1)) � X 0

1i�2;ljX1i; X2i] = 0 for l =

1; :::; L implies �1 = �o1; �2;l = �o2;l and hl = hol a.s.

We provide the following set of su¢ cient conditions, which might not be a minimal set of condi-

tions but appear quite sensible for our Engel curve system application:

Theorem 1: Suppose (4) and the following hold: (1) for all bounded measurable functions

�(Y2; X1), E[�(Y2; X1)jX1; X2] = 0 implies �(Y2; X1) � 0 almost surely; (2) the conditional distribu-
tion of Y2 given (X1; X2) is absolutely continuous with respect to the Lebesgue measure on (�1;+1);
(3) hl, l = 1; ::; L, and � are bounded, di¤erentiable, and cannot be simultaneously linear; (4) X1 is

a vector of linearly independent, discrete random variables which only takes �nite many values and

does not contain constant one; (5) if X1 is a scalar dummy variable, then at least one hl is not linear

and � is not periodic. Then Assumption I is satis�ed.

Remark 1: (i) Condition (1) is normally referred to as bounded completeness in X2 of the condi-

tional distribution of Y2 givenX = (X1; X2). Note that this is a weaker concept than the completeness

in X2 of the conditional distribution of Y2 given X = (X1; X2) [which is de�ned as: For all measurable

functions �(Y2; X1) with �nite expectations, E[�(Y2; X1)jX1; X2] = 0 implies �(Y2; X1) � 0 almost

surely]. By de�nition, completeness automatically implies bounded completeness. However, the

requirement that the conditional distribution of Y2 given X = (X1; X2) is complete is somewhat re-

strictive, since there are not many known families of distributions beyond the exponential family that

are complete. Luckily, there are much larger families of distributions that are bounded complete. For

instance, within the location family of absolutely continuous distributions (with respect to Lebesgue

measure), they are bounded complete if and only if the characteristic functions are zero-free; while

within its subclass of very thin tailed densities, the only complete class is either a Gaussian or a

Dirac measure. In particular, a location family of absolutely continuous distributions with compact

supports are bounded complete but of which the only complete distribution is a Dirac measure. Also,

a family of nontrivial �nite scale mixtures of the standard Gaussian distribution is bounded complete

but not complete. See, e.g., Lehmann (1986, page 173), Hoe¤ding (1977) and Mattner (1993) for

more examples of distributions which are bounded complete but not complete. For the identi�cation

of g in a purely nonparametric IV regression model E[Y1 � g(Y2)jX] = 0, Newey and Powell (2003)
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and Darolles, Florens and Renault (2006) impose the �completeness� condition. However, if one

restricts the unknown functions g to be sup-norm bounded (i.e. supy jg(y)j � const: < 1), then
E[Y1 � g(Y2)jX] = 0 uniquely identi�es the unknown g if and only if the conditional distribution of
Y2 given X is bounded complete. Therefore, if economic theory or any prior information suggests

the unknown g() should be sup-norm bounded, then it will be much easier to identify the unknown

g from E[Y1 � g(Y2)jX] = 0. For example, if some economic theory implies that g should be con-

tinuous and that Y2 has bounded support, then g is identi�ed from E[Y1 � g(Y2)jX] = 0 as long as
the conditional distribution of Y2 given X is bounded complete. Here, for the Engel curve applica-

tion, even though Y2 (log-total expenditure) could have unbounded support, but since Engel curves

should be all bounded below by zero and above by one, it su¢ ces to impose the weaker �bounded

completeness�identi�cation condition.

(ii) Conditions (2) - (5) are satis�ed in our Engel curve study. In the empirical application in

Section 7, we take X1i = 1 or 0 to indicate if the i-th family has children or not. In our data set and

in many other empirical Engel curve analyses, the estimated joint density of log-total expenditure

and log-gross earnings is approximately bivariate normal with high correlation coe¢ cient. Since

our instrumental variable X2 is a monotonic transformation of log gross earnings into [0,1] support,

the dependence between Y2 and X2 is still strong. Finally, as noted in the introduction, nonlinear

behavior in the Engel curve relationship is commonplace for many goods; see, e.g., Hausman, Newey,

Ichimura and Powell (1991), Lewbel (1991) and Banks, Blundell and Lewbel (1997).

3. SIEVE MINIMUM DISTANCE ESTIMATION

Our estimation method corresponds to the one in Ai and Chen (2003) for semiparametric con-

ditional moment restrictions and is similar to Newey and Powell�s (2003) for nonparametric IV

regression. First we approximate the unknown functions hl 2 Hl by hl;n 2 Hl;n, l = 1; :::; L,

where Hl;n is a sieve space for Hl, in particular, we let Hl;n be some �nite-dimensional approx-

imation space (e.g. Fourier series, splines, wavelets, etc.) that becomes dense in Hl as sample

size n ! 1. Then for arbitrarily �xed candidate value � = (�; h1;n; :::; hL;n) in the sieve pa-

rameter space An � � � H1;n � � � � � HL;n, we estimate the population conditional moment

function m(x; �) � (m1(x; �); :::;mL(x; �))
0 � E [�(Zi; �)jXi = x] nonparametrically by bm(x; �) �

(bm1(x; �); :::; bmL(x; �))
0. Finally we estimate the � and the unknown sieve coe¢ cients of hl;n,
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l = 1; :::; L, jointly by applying the SMD procedure:

(5) min
�2An

1

n

nX
i=1

bm(Xi; �)
0[b�(Xi)]

�1 bm(Xi; �);

where b� is some consistent estimator of some positive de�nite weighting matrix �. To obtain a

semiparametric e¢ cient estimator of �o, we may follow the three-step procedure proposed in the �rst

version of Ai and Chen (2003):

Step 1: Compute the identity weighted SMD estimator b�n = argmin�2AnPn
i=1 bm(Xi; �)

0 bm(Xi; �).

Step 2: Compute a nonparametric estimator b�o(X) of the optimal weighting matrix �o(X) �
V ar [�(Z; �o)jX] using b�n and any nonparametric regression procedures (such as kernel, nearest
neighbor or series).

Step 3: Obtain the optimally weighted SMD estimator e�n = (e�n;eh1;n; :::;ehL;n) 2 An by
(6) min

�2An

1

n

nX
i=1

bm(Xi; �)
0[b�o(Xi)]

�1 bm(Xi; �);

using b�n = (b�n;bh1;n; :::;bhL;n) 2 An as the starting point.
Remark 2: (i) An equivalent but sometimes computationally simpler alternative to the proce-

dure (5) is the pro�le SMD procedure: First, for each �xed � 2 �, we compute bhl;n(�; �), l = 1; :::; L
as the solution to

min
hl2Hl;n;l=1;:::;L

nX
i=1

bm(Xi; �; h1; :::; hL)
0[b�(Xi)]

�1 bm(Xi; �; h1; :::; hL):

Second, we compute b�n as the solution to
min
�2�

nX
i=1

bm(Xi; �;bh1;n(�; �); :::;bhL;n(�; �))0[b�(Xi)]
�1 bm(Xi; �;bh1;n(�; �); :::;bhL;n(�; �)),

and estimate hol(�) by bhl;n = bhl;n(b�n; �) for l = 1; :::; L.
(ii) If total expenditure is assumed to be exogenous, then Y2 is a �perfect IV� and we have

E[�(Zi; �o)jX1i;Y2i] = 0. In this case, we do not need to estimate �o via (5). Instead we can
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apply the following sieve generalized least squares (GLS) procedure:

(7) min
�2An

1

n

nX
i=1

�(Zi; �)
0b�(Xi)

�1�(Zi; �);

or the pro�le sieve GLS procedure. Again the semiparametric e¢ cient estimator of �o can be obtained

by the above three-step procedure except with bm(Xi; �) replaced by �(Zi; �).

3.1. Possible Sieve Bases for h

Since hol(�), l = 1; :::; L have the same argument Y2��(X 0
1�1) and similar smoothness, to simplify

notation, we assume that they belong to the same function space, hol 2 H = Hl, hence they can be

approximated by the same sieve spaceHn = Hl;n for l = 1; :::; L. In our empirical application Y2 is log

total expenditure, and a simple kernel nonparametric estimation of the density of Y2 using our data

set reveals an approximate normal density. Therefore we assume that the support of Y2 � �(X 0
1�1)

is the entire real line R. Then the choice of sieve bases are partially suggested by what kind of
smoothness we want to impose on hol 2 H:
We now introduce several typical spaces for real-valued functions on Y, where Y is either R

or a bounded interval of R. Let k be a nonnegative integer and Ck(Y) be the space of k�times
continuously di¤erentiable functions. For any real-valued r > 0, let k = [r] be the largest nonnegative

integer such that [r] < r and set r0 � r� [r] 2 (0; 1]. A function h on Y is said to be in Hölder space
�r(Y) if it is in C [r](Y) and its [r]�th derivative, r[r]h, satis�es a Hölder condition with exponent

r0 (i.e., jr[r]h(x) � r[r]h(y)j � cjx � yjr0for all x; y 2 Y for some �nite c > 0). The space �r(Y)
becomes a Banach space under the Hölder norm:

jjhjj�r � max
j�[r]

sup
x
jrjh(x)j+ sup

x6=y

jr[r]h(x)�r[r]h(y)j
jx� yjr�[r] <1:

Let L2(Y) be the space of functions with �nite jjhjjL2 �
qR

Y jh(y)j2dy. Let W
k
2 (Y) be the Sobolev

space of functions in L2(Y) with their derivatives up to order k also in L2(Y); it becomes a Banach
space under the norm jjhjjWk

2
�
Pk

j=0 jjr
jhjjL2 < 1. For any real-valued r > 0 with k = [r] < r <

k + 1, let W r
2 (Y) be the (fractional) Sobolev space of functions in L2(Y) with �nite norm jjhjjW r

2
:

(8) jjhjjW r
2
�

[r]X
j=0

jjrjhjjL2 +
 Z

Y

Z
Y

jr[r]h(x)�r[r]h(y)j2
jx� yj2(r�[r])+1 dxdy

!1=2
<1:

11



Let w() be a positive continuous weight function on Y, and L2(Y ; w) be the weighted space of
functions with �nite norm jjhjjL2(Y;w) � jjh � w1=2jjL2 . Denote W r

2 (Y ; w) as the weighted Sobolev
space of functions with �nite norm jjhjjW r

2 (Y;w) � jjh�w
1=2jjW r

2
. Also de�ne a mixed weighted Sobolev

space W r
2 (Y ;w; leb) � fh 2 L2(Y ; w) : jjrhjjW r�1

2
<1g.

Let �rc(Y) � fh 2 �r(Y) : jjhjj�r � cg be a Hölder ball (of radius c) with smoothness r, and
W r
2;c(Y ;w; leb) �

n
h 2 W r

2 (Y ;w; leb) : jjhjjL2(Y;w) + jjrhjjW r�1
2

� c
o
as a weighted Sobolev ball (of

radius c) with smoothness r. Since Engel curves hol, l = 1; :::; L are bounded between zero and one,

and since consumer demand theory and many empirical studies suggest that hol, l = 1; :::; L are

reasonably smooth, we could assume either hol 2 Ha = fh 2 �rc(R) : 0 � h � 1g for some r > 1=2,
or hol 2 Hb = fh 2 W r

2;c(R; fY2 ; leb) : 0 � h � 1g for some r > 1, here fY2 denotes the marginal

density of Y2. Then a sieve space Hn could take either the form

(9) Ha
n =

(
hn : R! [0; 1]; supy jr[r]hn(y)j � c;

hn(Y2 � �(X 0
1�1)) =  kn(Y2 � �(X 0

1�1))
0�

)
;

or the form

(10) Hb
n =

(
hn : R! [0; 1]; jjr[r]hnjjL2 � c;

hn(Y2 � �(X 0
1�1)) =  kn(Y2 � �(X 0

1�1))
0�

)
;

where  kn(�) is a kn � 1-vector of known basis functions that are at least 
 = ([r] + 1)�times
di¤erentiable, such as Fourier series, wavelets or B-splines, and � is a kn�1-vector of unknown sieve
coe¢ cients.

In theoretical sections 4 and 5 we have used wavelet sieve basis for hn 2 Hn. Let 
 > 0 be

an integer. A real-valued function  is called a �mother wavelet� of degree 
 if it satis�es: (a)R
R y

k (y)dy = 0 for 0 � k � 
; (b)  and all its derivatives up to order 
 decrease rapidly as

jyj ! 1; (c) f2k=2 (2ky � j) : k; j 2 Zg forms a Riesz basis of L2(R), that is, the linear span of
f2k=2 (2ky � j) : k; j 2 Zg is dense in L2(R) and






1X
k=�1

1X
j=�1

akj2
k=2 (2ky � j)







2

L2(R)

�
1X

k=�1

1X
j=�1

jakjj2

for all doubly bi-in�nite square-summable sequence fakj : k; j 2 Zg. (The notation ak � bk means

c1ak � bk � c2ak for some �nite positive constants c1; c2 that do not depend on the sequences fakg,
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fbkg.) A scaling function ' is called a �father wavelet�of degree 
 if it satis�es: (a�)
R
R '(y)dy = 1;

(b�) ' and all its derivatives up to order 
 decrease rapidly as jyj ! 1; (c�) f'(y� j) : j 2 Zg forms
a Riesz basis for a closed subspace of L2(R).
Orthogonal wavelets. Given an integer 
 > 0, there exist a father wavelet ' of degree 
 and

a mother wavelet  of degree 
, both compactly supported, such that for any integer k0 � 0, any

function h in L2(R) has the following wavelet 
� regular multiresolution expansion:

h(y) =

1X
j=�1

ak0j'k0j(y) +

1X
k=k0

1X
j=�1

bkj kj(y); y 2 R;

where

akj =

Z
R
h(y)'kj(y)dy; 'kj(y) = 2

k=2'(2ky � j); y 2 R;

bkj =

Z
R
g(y) kj(y)dy;  jk(y) = 2

k=2 (2ky � j); y 2 R;

and f'k0j; j 2 Z; kj; k � k0; j 2 Zg is an orthonormal basis of L2(R); see Meyer (1992, theorem
3.3). For an integer Kn > k0, we consider the �nite-dimensional linear space spanned by this wavelet

basis of order 
 > r

hn(y) =  kn(y)0� =
2Kn�1X
j=0

�Kn;j'Kn;j(y); kn = 2
Kn :

Cardinal B-spline wavelets. The cardinal B-spline wavelets of order 
 > r

(11) hn(y) =  kn(y)0� =
KnX
k=0

X
j2Kn

�kj2
k=2B
(2

ky � j); kn = 2
Kn + 1;

where B
(�) is the cardinal B-spline of order 
 > r,

B
(y) =
1

(
 � 1)!


X
i=0

(�1)i
 



i

!
[max (0; y � i)]
�1 ,

which is 
 � 1 times di¤erentiable and has support on [0; 
]. For any �xed integer k = 0; 1; :::; Kn,

Kn is the set consisting of those j�s such that the support of z ! B
(2
kz � j) overlaps with the

empirical support of Y2 � �(X 0
1�1), j = �1;�2; :::. The compact support of B
(�) ensures that #Kn

13



is �nite for any �xed k.

In simulations and empirical studies we have also used the following two sieve bases for hn 2 Hn:

Polynomial splines of order qn > r

(12) hn(y) =  kn(y)0� =

qnX
j=0

�j(y)
j +

rnX
k=1

�qn+k (y � �k)
qn
+ ; kn = qn + rn + 1;

where (y � �)q+ = maxf(y � �)q; 0g and f�kgk=1;:::;rn are the knots. In the empirical application,
for any given number of knots value rn, the knots f�kgk=1;:::;rn are simply chosen as the empirical
quantiles of Y2, i.e., �k = k= (rn + 1)-th quantile of Y2.

Hermite polynomials of order kn � 1

(13) hn(y) =  kn(y)0� =
kn�1X
j=0

�j(y � �1)
j exp

�
�(y � �1)

2

2�22

�
;

where in the Monte Carlo study �1 and �22 are chosen as the sample mean and sample variance of

the data fY2igni=1.

3.2. Sieve Least Squares Estimation for m and �o

There are many nonparametric procedures such as kernel, local linear regression, nearest neighbor

and various sieve methods that can be used to estimate m(x; �) and �o(x). Here we present the

sieve LS estimation as illustration.

For each �xed (X;�), we approximate m(X;�) = E[�(Z; �)jX] by the function mn(X;�) =P
j2Jn aj(�)p0j(X), where p0j are some known basis functions, and Jn � #(Jn) ! 1 slowly

as n ! 1. We write mn(X;�) = pJn(X)0A where pJn(X) = (p01(X); :::; p0Jn(X))
0, and P =

(pJn(X1); :::; p
Jn(Xn))

0. Then the sieve LS estimator of m(X;�) is:

(14) bm(X;�) = pJn(X)0(P 0P )�
nX
i=1

pJn(Xi)�(Zi; �);

where (P 0P )� denotes the generalized inverse of the matrix P 0P . Similarly we can compute a sieve

LS estimator �̂o(X) of �o(X) in Step 2 by regressing �(Z; �̂n)�(Z; �̂n)0 on pJn(X):

(15) �̂o(X) = pJn(X)0(P 0P )�
nX
i=1

pJn(Xi)�(Zi; �̂)�(Zi; �̂)
0;

14



where �̂n is the SMD estimator obtained in Step 1 or any other consistent estimator of �o.

Many known sieve bases could be used as pJn(X). In our empirical application X = (X1; X2)
0 is a

bivariate vector, where X1 2 f0; 1g and X2 is the normal transformation of the log of gross earnings:

X2 = �(log-gross earnings) 2 [0; 1]. We take

(16) pJn(X) �
�
BJ2n(X2)

0; X1 �BJ2n(X2)
0�0 ; Jn = 2J2n;

where BJ2n(X2) is a J2n�1-vector of univariate B-splines or polynomial splines or wavelets or cosine
series fcos(�jX2) : j = 0; 1; :::; J2n � 1g.

4. CONVERGENCE RATE of SIEVE NONPARAMETRIC IV ESTIMATOR

In this section we study the convergence rate of the sieve IV estimator bhnl of the unknown Engel
curve hol using the subsample of X1 = 0, where bhnl is computed using b�(X) = IL without loss of

generality. We establish the convergence rate of bhn;l under the mean squared error metric:
jjhl � holjj2Y2 = E

�
fhl(Y2 � �(0))� hol(Y2 � �(0))g2

�
:

In the following we denote kn � dim(Hn), and assume:

Assumption 1: (i) The data fZi = (Y 0
i ; X

0
i)
0 : i = 1; 2; :::; ng are i.i.d.; (ii) 0 � Y1il � 1 for

l = 1; :::; L; (iii) conditions (1) and (2) of Theorem 1 hold.

Assumption 2: (i) hol 2 H � fh 2 �rc(R) : 0 � h � 1g for l = 1; :::; L for some r > 1=2; (ii)

E[jY2j2a] <1 for some a > r.

Assumption 3: For any x1 in the support of X1, E[Y1ljX1 = x1; X2 = �]; l = 1; :::; L belong to
�rmc (X2), rm > 1=2, and E[hn(Y2 � �(X 0

1�1))jX1 = x1; X2 = �] belongs to �rmc (X2) for any hn 2 Hn.

Assumption 4: (i) the smallest and the largest eigenvalues of EfBJ2n(X2)B
J2n(X2)

0g are
bounded and bounded away from zero for each J2n; (ii) BJ2n(X2) is either a cosine series or a

B-spline basis of order 
b, with 
b > rm > 1=2; (iii) the density of X2 is continuous, bounded and

bounded away from zero over its support X2, which is a compact interval with non-empty interior.
Assumption 5: (i) kn !1, J2n=n! 0; (ii) limn!1 (J2n=kn) = c0 > 1; limn!1(k

2
n=n) = 0.

We de�ne �n as a sieve measure of ill-posedness:

(17) �n � sup
h2Hn:h 6=0

p
Efh(Y2)g2p

EfE[h(Y2)jX1 = 0; X2]g2
,
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which is well de�ned under the conditions for identi�cation. Obviously �n � 1, and �n = 1 if and only
if Y2 is measurable with respect to the sigma-�eld generated by fX1 = 0; X2g (then E[h(Y2)jX1 =

0; X2] = h(Y2) for all h 2 Hn). For example �n = 1 when Y2 is exogenous (and we take Y2 = X2).

We note that the �n measure of ill-posedness, as given in (17), depends on the choice of sieve space

Hn. This is why we call it a �sieve measure of ill-posedness�.

Assumption 6: For l = 1; :::; L, there is a f kng0�lo 2 Hn such that � 2n � EfE[hol(Y2) �
f kn(Y2)g0�lojX1 = 0; X2]g2 � const:jjhol � f kng0�lojj2Y2.

Theorem 2: Let b� be the identity weighted SMD estimator with the sieve space Hn given in

(9)-(11). Suppose Assumptions 1, 2(i)(ii), 3, 4, 5(i)(ii) and 6 are satis�ed. Then

jjbhnl � holjjY2 = Op

�
k�rn + �n �

p
kn=n

�
for all l = 1; :::; L.

(1) Mildly ill-posed case: if �n = O ((kn)
sL(kn)) for some �nite s > 0 and L(kn) = 0 or a slowly

varying function that goes to 1 slower than any polynomial order, then

jjbhnl � holjjY2 = Op

�
n�

r
2(r+s)+1L(n

1
2(r+s)+1 )

�
provided kn = O

�
n

1
2(r+s)+1

�
;

(2) Severely ill-posed case: if �n = O (exp(kn)) and rm =1, then

jjbhnl � holjjY2 = Op([log n]
�r) provided kn = O(log n):

Remark 3: (i) For exogenous total expenditure Y2, we have �n = 1. Theorem 2 implies jjbhnl �
holjjY2 = Op(k

�r
n +

p
kn=n). If kn = O(n1=(2r+1)) then jjbhnl�holjjY2 = Op(n

�r=(2r+1)), which coincides

with the well-known optimal rate of Stone (1982) for nonparametric LS regression; see also Newey

(1997, theorem 1) or Chen and Shen (1998, theorem 1). Comparing this rate for the exogenous Y2
case to that for the endogenous Y2 case in Theorem 2, we note that the bias part k�rn is of the same

order, however, the standard deviation part blows up from
p
kn=n in the exogenous case to �n

p
kn=n

in the endogenous case.

(ii) Without further assumption on the conditional expectation operator E[h(Y2)jX1 = 0; X2], one

generally does not know the speed of divergence of the sieve measure of ill-posedness �n. Nevertheless,
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�n can be easily estimated from the data by

b�n � sup
hn2Hn:hn 6=0

q
1
n

Pn
i=1fhn(Y2i)g2q

1
n

Pn
i=1f bE[hn(Y2)jX1i = 0; X2i]g2

;

where, for any �xed hn 2 Hn, bE[hn(Y2)jX1 = 0; X2] is a nonparametric estimate of the conditional

expectation E[hn(Y2)jX1 = 0; X2] such as a sieve LS estimator using the sieve basis BJ2n(X2). In

most applications, log(� kn) behaves either as s � log(kn) + o(log(kn)) for the mildly ill-posed case

(with some �nite s > 0), or as c� kn + o(kn) for the severely ill-posed case (with some �nite c > 0).

For kn = 2; 3; 4; :::; we can compute log(b� kn), and regress it on either log(kn) or kn to estimate the
speed of divergence of � kn.

In the following we provide some su¢ cient conditions to bound the sieve measure of ill-posedness

�n. Let f0;X2;Y2, f0;X2, f0;Y2 respectively denote the joint probability density of (X2; Y2) (with respect

to Lebesgue measure on X2�R), marginal densities of X2 and Y2, all conditioning onX1 = 0. Denote

the conditional expectation operator as fThg(X2) � E[h(Y2)jX2; X1 = 0], which maps L2(R; f0;Y2)
into L2(X2; f0;X2). Denote the adjoint operator of T as T �, fT �gg(Y2) � E[g(X2)jY2; X1 = 0], which

maps L2(X2; f0;X2) into L2(R; f0;Y2). Assumptions 1(iii) and 4(iii) imply that T and T � are compact
operators. Therefore T has the singular value decomposition f�k;�1k; �0kg1k=1, where f�kg1k=1 are the
singular numbers arranged in non-increasing order (�k � �k+1 & 0), f�1k(y2)g1k=1 and f�0k(x2)g1k=1
are eigenfunction (orthonormal) bases for L2(R; f0;Y2) and L2(X2; f0;X2) respectively. See Appendix
A for details.

Lemma 1: Let Assumptions 1(iii) and 4(iii) hold. Then: (1) �n � 1=�kn; (2) If the sieve

space Hn spans the linear subspace (in L2(R; f0;Y2)) generated by f�1k : k = 1; :::; kng, then: (2.i)
�n � 1=�kn, and (2.ii) Assumption 6 is satis�ed.

Remark 4: (i) If the joint density f0;X2;Y2 is bivariate Gaussian with non-zero constant cor-

relation coe¢ cient, then �k � exp(�ck) for some constant c > 0. This corresponds to the so-

called severely ill-posed inverse problem. Noting that E[Y1 � hol(Y2)jX2] = 0 if and only if E[Y1 �
hol(Y2)j�(X2)] = 0 and the conditional expectations operator E[�j�(X2)] shares the same singular

values f�kg as those of E[�jX2], we could use Hermite polynomial sieve for hol(Y2) and Lemma 1

implies that �n � 1=�kn � exp(ckn). Notice that rm = 1 in this case, hence we could use cosine

sieve for E[Y1 � hl(Y2)j�(X2)] to satisfy Assumption 4(ii). Now Theorem 2 (2) becomes applicable

and jjbhnl � holjjY2 = Op([log n]
�r) provided kn = O(log n). This logarithmic rate is shown to be
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optimal in Efromovich and Koltchinskii (2001, corollary 6.3 and example 3.2 with their ", � and �

being our n�1=2, r and 1), in the context of an ill-posed inverse white-noise model with an unknown

operator that can be estimated by a training sample.

(ii) According to Theorem 2, in order for the sieve nonparametric IV estimator to perform well for a

given sample size n, we should choose the sieve space Hn to best approximate the structural function

ho, and at the same time to have the best order of sieve measure of ill-posedness �n. Lemma 1 suggests

that the sieve nonparametric IV estimator could reach optimal convergence rate when Hn coincides

with the linear subspace generated by the eigenfunctions f�1k : k = 1; :::; kng. Nevertheless, it does
not rule out the existence of other sieve spaces that possess the best approximation error rate k�rn
and the best order of �n. In fact, for an ill-posed inverse white-noise model with a known operator

T , Donoho (1995) establishes the optimal convergence rate for a sieve estimator using a wavelet

sieve Hn that best approximates the function ho, but di¤ers from the linear subspace generated by

the eigenfunctions f�1k : k = 1; :::; kng. See Cohen, Ho¤mann and Reiss (2004) for similar results.
In subsection 6.2 we present a Monte Carlo study to evaluate the �nite sample performance of the

sieve IV estimator when (X2; Y2) is drawn from a bivariate Gaussian density. We �nd that the sieve

IV estimator using cardinal B-splines for both ho(Y2) and E[Y1 � ho(Y2)jX2] performs well and is

comparable to the one using the ideal Hermite polynomial (eigenfunction) sieves.

Even if one knows the conditional expectation operator T , one might still not know its correspond-

ing singular value system f�k;�1k; �0kg1k=1 explicitly. Nevertheless, we can still bound �n using the
smoothness of the operator T �T and the property of the sieve space Hn. We provide such examples in

the next two theorems. Let bh denote the Fourier transform of h (i.e., bh(�) = 1p
2�

R
expf�iy�gh(y)dy),

and (g)_ the inverse Fourier transform of g (i.e., (g)_ (y) = 1p
2�

R
expfiy�gg(�)d�). For any s 2 R, a

fractional Sobolev spaceW s
2 (R) is the space of functions h in L2(R) such that (1+j�j2)s=2bh(�) 2 L2(R);

i.e., W s
2 (R) = fh 2 L2(R) : jjhjjW s

2 (R) �




�(1 + j � j2)s=2bh(�)�_





L2

< 1g. This de�nition is equiv-

alent to that of (8) when s > 0. Note that for s > 0, the norm jjhjjW�s
2 (R) is a shrinkage in the

Fourier domain. It is known thatW�s
2 (R) is the dual space ofW s

2 (R). See Triebel (1983) for various
equivalent de�nitions of W s

2 (R) and the corresponding space W s
2 (Y) for Y being an interval of R.

Theorem 3: Let Assumptions 1(iii) and 4(iii) hold. Suppose that f0;Y2 is bounded above and

bounded away from zero over its support Y, which is a bounded interval of R with non-empty interior.
Suppose that there is a �nite constant s > 0 such that jj(T �T )1=2hjjY2 � jjhjjW�s

2 (Y) for all h 2
L2(Y ; f0;Y2). Then: (1) �k � (k)�s;
(2) Let the sieve space Hn be either cosine sieve, or spline sieve of order 
 > s, or wavelet sieve
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of order 
 > s. Then: (i) �n � const:(kn)
s; (ii) Assumption 6 is satis�ed; (iii) If Assumptions 1,

2(i)(ii), 3, 4 and 5(i)(ii) hold with kn = O(n
1

2(r+s)+1 ), then jjbhnl � holjjY2 = Op

�
n�

r
2(r+s)+1

�
.

We note that the condition �jj(T �T )1=2hjjY2 � jjhjjW�s
2 (Y) for all h 2 L2(Y ; f0;Y2)�means that

the operator (T �T )1=2 maps L2(Y ; f0;Y2) isomorphically onto W s
2 (Y). This condition implies an

eigenvalue decay order �k � (k)�s, but it does not provide expressions of the eigenfunctions of

(T �T )1=2. Nevertheless, according to part (2) of Theorem 3, several commonly used sieve spaces

Hn that have the best approximation error rate k�rn also have the best order of sieve measure of

ill-posedness �n. The convergence rate of Theorem 3 achieves the minimax optimal rate obtained in

Chen and Reiss (2007) for the ideal case of a nonparametric instrumental regression with a known

conditional expectation operator T .

Recently, Hall and Horowitz (2005) and Darolles, Florens and Renault (2006) propose alternative

nonparametric IV estimators and obtain convergence rates of their estimators. Due to the di¤erent

estimation procedures and di¤erent assumptions, it is beyond the scope of this paper to clarify the

exact relations between their convergence rates and ours as stated in Theorem 3. Nevertheless, we

point out that Hall and Horowitz (2005) establish rate optimality of their estimator without assuming

the existence of any derivatives of ho, instead they impose a condition on ho in terms of the decay

speed of its Fourier coe¢ cients relative to the eigenfunction basis f�1k : k � 1g of the operator T �T .
We assume ho 2 �rc(Y) for some r > 1=2 (see Assumption 2(i)), which requires the existence of

[r]�th derivative, r[r]ho, where [r] is the largest nonnegative integer such that [r] < r. Moreover, as

a su¢ cient condition to obtain root-n consistent estimation of the equivalence scale parameter, �o1,

in condition (3) of Theorem 1 we assume the existence of the �rst derivative of ho (also see Section 5).

Therefore, our estimation of shape-invariant Engel curves imposes derivative smoothness condition

on ho that is not assumed in Hall and Horowitz (2005).

Theorem 3 assumes that the support of f0;Y2 is a bounded interval of R. The following result
relaxes this assumption.

Theorem 4: Suppose that Assumptions 1, 2(i)(ii), 3, 4 and 5(i)(ii) hold. Let wa(y) � (1+y2)�a

for some a > 1=2. Suppose that f0;Y2(y) � wa(y) for large jyj. Suppose that there are �nite constants
c; s > 0 such that jj(T �T )1=2hjjY2 � cjjhjjW�s

2 (R;wa) for all h 2 L2(R; f0;Y2). Let the sieve space Hn

be given in (9)-(11) with 
 > s. Then: (1) �n � const:(kn)
s; (2) If Assumption 6 is satis�ed, then

jjbhnl � holjjY2 = Op

�
n�

r
2(r+s)+1

�
provided kn = O

�
n

1
2(r+s)+1

�
.

The relation between the smoothness of T �T and singular values �k becomes more complicated

when f0;Y2 has unbounded support R. See Chen, Hansen and Scheinkman (2005) for some results.
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5. ASYMPTOTIC NORMALITY AND EFFICIENCY OF �̂

For the system of shape-invariant Engel curve with exogenous total expenditure model, Blundell,

Browning and Crawford (2003) have established
p
n-asymptotic normality of their kernel LS estima-

tor of �o. However, there is no published results on whether �o could be estimated at
p
n-rate for

the endogenous total expenditure case, nor on how to obtain e¢ cient estimation of �o under het-

eroskedasticity of unknown form. In this section, for the system of shape-invariant Engel curve with

possibly endogenous total expenditure model, we provide relatively low-level su¢ cient conditions for

�̂ to be
p
n-asymptotically normally distributed and for the three-step estimator to be semiparamet-

rically e¢ cient. The following Propositions 1 - 3 can be obtained by applying the general theory of

Ai and Chen (2003). We refer readers to our working paper version, Blundell, Chen and Kristensen

(2003), for the proofs.

5.1. Asymptotic Normality and E¢ ciency

We �rst impose the following conditions:

Assumption 2: (iii) conditions (3) - (5) of Theorem 1 hold; (iv) �o = (�0o1; �
0
o2;1; :::; �

0
o2;L)

0 2
int(�).

Assumption 5: (iii) Jn � (1 + L�1) dim(X1) + kn; (iv) k2n ln(n)=
p
n! 0, k�rmn = o

�
n�1=4

�
.

Assumption 7: Uniformly over X 2 X , (i) b�(X) = �(X)+op(n�1=4); (ii) �(X) is �nite positive
de�nite; (iii) �o(X) = V ar [�(Z; �o)jX] is �nite positive de�nite.

Proposition 1: Suppose Assumptions 1-7 and B1-B2 stated in the Appendix B are satis�ed.

Let b� be the SMD estimator (5) with the sieve space given by (9). Then pn(b�n� �o) =) N (0; V �1),

where V is given in (28) in the Appendix B.

Before we state the semiparametric e¢ ciency of the three-step estimator e� obtained in (6), we
need some additional notation. We de�ne Dw1(X;�o) and Dw2;l(X;�o) as the L � dim(X1)-matrix

valued functions given by

(18) Dw1(X;�o) = E
�
rho(Y2 � �(X 0

1�o1))r�(X 0
1�o1)X

0
1 + w1(Y2 � �(X 0

1�o1)) j X
�

with

rho(Y2 � �(X 0
1�o1)) �

2664
rho1(Y2 � �(X 0

1�o1))

:::

rhoL(Y2 � �(X 0
1�o1))

3775 L� 1 vector,
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and for l = 1; :::; L;

(19) Dw2;l(X;�o) = E
�
�elX 0

1 + w2;l(Y2 � �(X 0
1�o1)) j X

�
;

where el denotes the L � 1-vector with 0�s everywhere except 1 in the l-th element; and w1(Y2 �
�(X 0

1�o1)); w
2;l(Y2 � �(X 0

1�o1)) are L� dim(X1)-matrix valued squared integrable functions of Y2 �
�(X 0

1�o1). Let Dwjk
(X;�o) be the k-th column of Dwj(X;�o). Let woj(Y2 � �(X 0

1�o1)) = (w
oj
1 (Y2 �

�(X 0
1�o1)); :::; w

oj
dim(X1)

(Y2 � �(X 0
1�o1))) be given by

wojk = arg inf
wjk2H�fhog

wjk 6=0

E
h
Dwjk

(X;�o)
0�o(X)

�1Dwjk
(X;�o)

i
for k = 1; :::; dim(X1):

Finally we denote

(20) Dwo(X;�o) = (Dwo1(X;�o); Dwo2;1(X;�o); :::; Dwo2;L(X;�o))

as the L� (1 + L) dim(X1)-matrix valued function, and wo = (wo1; wo2;1; :::; wo2;L).

Proposition 2: Let ~�n = (~�n; ~hn) be the three-step estimator (6). Suppose all conditions of

Proposition 1 are satis�ed with � = �o. Then ~�n is semiparametrically e¢ cient, and
p
n(~�n��o) =)

N (0; V �1
o ), where Vo = E [Dwo(X;�o)

0[�o(X)]
�1Dwo(X;�o)] :

5.2. Consistent Covariance Estimator

To conduct any statistical inference using the semiparametric e¢ cient estimator e�, we need a
consistent estimator eVo of Vo. Let bDwj(X; e�) be a consistent estimator of Dwj(X;�o). For example

we can use the sieve LS estimator

bDwj(X; e�) = pJn(X)0(P 0P )�
nX
i=1

pJn(Xi)

�
d�(Zi; e�)
d�j

� d�(Zi; e�)
dh

[wj(Y2i � �(X 0
1i
e�1))]� ;

where for j = 1,

d�(Zi; e�)
d�1

� d�(Zi; e�)
dh

[w1(Y2i � �(X 0
1i
e�1))]

= reh(Y2i � �(X 0
1i
e�1))r�(X 0

1i
e�1)X 0

1i + w1(Y2i � �(X 0
1i
e�1));
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with

reh(Y2i � �(X 0
1i
e�1)) =

2664
reh1(Y2i � �(X 0

1i
e�1))

:::

rehL(Y2i � �(X 0
1i
e�1))

3775 L� 1 vector,

and for l = 1; :::; L;

d�(Zi; e�)
d�2;l

� d�(Zi; e�)
dh

[w2;l(Y2i � �(X 0
1i
e�1))] = �elX 0

1i + w2;l(Y2i � �(X 0
1i
e�1)).

Let bDwjk
(X; e�) denote the k-th column of bDwj(X; e�), and ewj = ( ewj1; :::; ewjdim(X1)) the solution to

inf
wjk2Hn:w

j
k 6=0

1

n

nX
i=1

bDwjk
(Xi; e�)0b�o(Xi)

�1 bDwjk
(Xi; e�) for k = 1; :::; dim(X1):

Then bD ew(X; e�) = ( bD ew1(X; e�); bD ew21(X; e�); :::; bD ew2L(X; e�)) is a consistent estimator of Dwo(X;�o)

given in (20). Finally Let eVo = 1
n

Pn
i=1
bD ew(Xi; e�)0b�o(Xi)

�1 bD ew(Xi; e�).
Proposition 3: Under the conditions of Proposition 2, ~Vo = Vo + op(1).

6. IMPLEMENTATION AND SIMULATIONS

6.1. Implementation

The SMD estimation of the system of shape-invariant Engel curves can be easily implemented

using a matrix-oriented software package such as Gauss or Matlab. Here we only discuss the imple-

mentation for the endogenous case; the exogenous case follows along the same lines.

Since the l�th unknown Engel curve hl(�) only enters the l�th conditional moment function
ml(x; �; hl) � EfY1l � hl(Y2� �(X 0

1�1))�X 0
1�2;ljX = xg linearly, Step 1 of the SMD procedure can

be easily implemented using the pro�le approach:

Step 1a: for each �xed � 2 �, compute bhl;n(�; �) = argminhl2Hn

Pn
i=1[bml(Xi; �; hl)]

2 for l =

1; :::; L;

Step 1b: compute b�n = argmin�2�PL
l=1

Pn
i=1[bml(Xi; �;bhl;n(�; �))]2, and estimate hol(�) by bhl;n =bhl;n(b�n; �) for l = 1; :::; L.

Recall that any candidate Engel curve function hl;n(�) =  kn(�)0�l 2 Hn, l = 1; :::; L; is subject to

two constraints: (i) 0 � hl;n < 1 and (ii) supy jr[r]hl;n(y)j � c forHn in (9) or jjr[r]hl;njjL2 � c forHn
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in (10). In simulations and empirical applications, we have imposed one weaker but easier-to-compute

constraint: 1
n

Pn
i=1 jhl;n(Y2i)j2 +

R ���r[r]hl;n(y)
���2 dy � Dn, where Dn could grow slowly with sample

size n (say Dn = log n or log log n). Let C0 = 1
n

Pn
i=1  

kn(Y2i � �(X 0
1i�1)) 

kn(Y2i � �(X 0
1i�1))

0 and

C[r] =
R
fr[r] kn(y)r[r] kn(y)0gdy (for spline basis, C[r] can also be the self-adjoint di¤erence Gram

matrix; see, e.g., Schumaker, 1993). Let C = C0 + C[r] be kn � kn�matrices. Then the constraint
becomes (�l)0C�l � Dn for a known bound Dn. If we use the sieve LS estimator bml for ml, then the

Step 1a procedure becomes: for l = 1; :::; L, compute bhl;n(�; :) =  kn(:)0b�lD(�), where b�lD(�) solves
(21) min

�l;�

�
Y1l(�2;l)�	(�1)�l

�0
P (P 0P )�P 0

�
Y1l(�2;l)�	(�1)�l

�
+ �f(�l)0C�l �Dng

with Y1l(�2;l) = (Y11l � X 0
11�2;l; :::; Y1nl � X 0

1n�2;l)
0, 	(�1) = ( kn(Y21 � �(X 0

11�1)); :::;  
kn(Y2n �

�(X 0
1n�1)))

0, and � � 0 being the Lagrange multiplier. The problem (21) has a simple closed-form

solution: b�lD(�) = �	(�1)0P (P 0P )�P 0	(�1) + b�C��	(�1)0P (P 0P )�P 0Y1l(�2;l)
where b� satis�es fb�lD(�)g0Cfb�lD(�)g = Dn.

In practice the boundDn might be unknown. In our simulation studies and empirical applications

we actually solved the following equivalent problem to (21) for a few possible values of � 2 [0; 1]:

(22) min
�l

�
Y1l(�2;l)�	(�1)�l

�0
P (P 0P )�P 0

�
Y1l(�2;l)�	(�1)�l

�
+ ��l0C�l;

and the solution is: b�l�(�) = (	(�1)
0P (P 0P )�P 0	(�1) + �C)

�
	(�1)

0P (P 0P )�P 0Y1l(�2;l). We note
that when � = 0 (i.e. without smoothness constraints), this solution is simply the well known

IV/2SLS estimator.

Let b�l(�) denote either the solution b�lD(�) to the problem (21) or the solution b�l�(�) to the
problem (22). Then bhl;n(�; :) =  kn(:)0b�l(�) is the pro�le SMD estimator in Step 1a. Next, we plug
(bh1;n(�; :); :::;bhL;n(�; :))0 into the Step 1b problem:
(23) min

�2�

LX
l=1

�
Y1l(�2;l)�	(�1)b�l(�)�0 P (P 0P )�P 0 �Y1l(�2;l)�	(�1)b�l(�)� .

The solution b� to the problem (23) will be a
p
n-consistent estimator for �o, and the corresponding

SMD estimator for hol is bhl;n(b�; :) =  kn(:)0b�l(b�), l = 1; :::; L. To solve the problem (23), one needs

to run a numerical routine since � enters nonlinearly, but it is relatively easily performed compared
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to optimizing over both � and � simultaneously.

In Step 2, we use the above sieve pro�le estimator (b�;b�) to compute a consistent estimatorb�o(X) for �o(X). In Step 3, we could use the above sieve pro�le estimator (b�;b�) as a starting
point to solve the optimally weighted SMD problem (6) simultaneously over (�; �). Actually this

optimization can again be solved easily using the pro�le approach.

In the actual implementation of the above procedures, one has to specify sieve bases (pJn(X),

 kn(Y2)), and smoothing parameters (Jn, kn). The theoretical results obtained in Sections 4 and

5 provide some guidelines about such choices for the case of known bound Dn. In particular, one

should choose Jn � kn to ensure identi�cation and to satisfy Assumption 5, but then the choice of

Jn will be mainly related to the invertibility of the matrix P 0P , and the quality of the �instruments�

pJn(X) for the �endogenous regressors� kn(Y2). In the simulations and empirical applications we

�nd that Jn = c0kn, c0 � 2 or 3 works �ne. We also consider the case of unknown bound Dn; hence,

we have to select � in addition to (Jn, kn). There is a certain interdependence between kn and �; a

high number kn could potentially lead to over�tting (i.e. the estimated Engel curve h becomes wiggly

and the variance gets big), but this can be controlled for with a slightly bigger penalization weight

�. For a given choice of kn, one may try out di¤erent values of � 2 [0; 1] and choose the one which
appears most plausible. An alternative method would be to use a data-driven procedure such as the

generalized cross-validation (GCV) to choose � 2 [0; 1]; see, e.g., Eubank (1988) for a discussion of
this procedure in a standard nonparametric LS regression setting. However, there is no theoretical

justi�cation for such a procedure in the endogenous case. In fact, even for the sieve nonparametric

LS regressions, how to optimally choose kn and � simultaneously is still an open question. Finally,

for the semiparametric e¢ cient estimation of �, one can choose slightly bigger Jn; kn (or smaller �)

than those used for the purely nonparametric IV estimation of h.

6.2. Two Monte Carlo Studies

Before applying the SMD estimators of the shape-invariant Engel curves to the British FES data

set, we assess the performance of the purely nonparametric IV estimator in two small simulation

studies. We are particularly concerned with the quality of our chosen instrument X2 (gross earnings)

for the endogenous variable Y2 (total expenditure), as well as the impacts of the choices of sieve

basis functions and various smoothing parameters. The simulation results suggest that our chosen

instrument X2 is a reasonable one in the sense that our sieve IV estimator performs well for the

FES data set in consideration. Moreover, our sieve IV estimator is found to be relatively insensitive
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to the choice of sieve basis functions, while many di¤erent combinations of smoothing parameters

Jn = 2J2n; kn and � will lead to similar estimated functions that are all consistent estimates of the

true unknown function.

6.2.1. Simulation 1: (Y2; X2) is drawn from the data

The �rst Monte Carlo design will mimic the speci�c FES data set; see the empirical section for a

detailed description of the data. All we need to know here is that the data set consists of two sub-

samples of households: one consisting of families with no children and one of families with 1-2 children

such that X1 2 f0; 1g and Jn = 2J2n. In this simulation study, we only use the data from the group

of households with no children (i.e. X1 = 0), which has sample size n = 628. For each household

in this group, we observe an endogenous regressor Y2 (log-total expenditure), and an instrument X2

(normal transformation of log-gross earnings, which takes values in [0; 1]). We may then estimate

the joint density of (Y2; X2) using kernel methods, and denote the resulting nonparametric estimator

as f̂(y2; x2), from which the data will be drawn in our simulation study. The model we simulate is

given by

(24) Y1 = ho (Y2) + "; " = E [ho (Y2) jX2]� ho (Y2) + v;

where v � N (0; 0:01) and is independent of (Y2; X2) � f̂(y2; x2). We draw an i.i.d. sample from

(v; Y2; X2) with sample size n = 628, and use these to calculate Y1 via (24) for two choices of ho, one

is linear and the other is nonlinear:

(i) ho(y2) = �0:1095y2 + 0:7229; (ii) ho(y2) = � ((y2 � 5:5)=0:3) ;

where � denotes the standard normal cdf. and where the mean (5:5) and variance (0:32) have been

chosen such that ho(y2) � 0 for y2 = mini fY2ig and ho(y2) � 1 for y2 = maxi fY2ig. Model (i) closely
mimics the estimate obtained for food-in expenditure in the empirical application.

The sieve nonparametric IV estimation of ho(y2) is very simple. First, we approximate ho (Y2) by

hn(Y2) =  kn (Y2)
0� and m(X2) = E[Y1 � h (Y2) jX2] by mn(X2) = BJ2n(X2)

0A. We then obtain an

estimator of � by solving

min
�
[Y1 �	�]0B(B0B)�1B0[Y1 �	�] + �(�)0C(�);
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where Y1 = (Y11; :::; Y1n)
0, 	 = ( kn(Y21); :::;  

kn(Y2n))
0, B = (BJ2n(X21); :::; B

J2n(X2n))
0, and the

smoothness penalization matrix C = C0 + C2 with C0, C2 de�ned in Subsection 6.1. This problem

has the solution b�� = (	0B(B0B)�1B0	+ �C)�	0B(B0B)�1B0Y1, such that bh(y2) =  kn(y2)
0b��.

For each choice of ho, we simulate 100 data sets f(Y2i; X2i; Y1i)gn=628i=1 , and for each simulated

data set we estimate ho using the sieve nonparametric IV-estimator. We tried various basis functions

BJ2n(X2) and  
kn (Y2) for the conditional mean m and h respectively, all yielding similar results as

long as the sieve approximating terms J2n and kn and the penalization weight � are similar. We here

report the results for a few combinations: h is approximated by either a 3nd order polynomial spline

with kn = 4; 5; 6; 7; 8; 9, or a 3rd order B-spline with kn = 9; 14; m is approximated by either a cosine

basis with J2n � 3kn,27, or a 4th order B-spline with J2n = 15; 25. To check for the robustness of

the sieve IV estimators towards the choice of smoothness penalization, we also present the results

for di¤erent penalization weights � = 0:8, 0:4, 0:1, 0:01, 0:001, 0:0. Table 4 reports the integrated

squared bias, integrated variance and integrated MSE based on the 100 simulations for the sieve IV

estimators of nonlinear h,6 where h was estimated using either polynomial spline or B-splines with

di¤erent smoothing parameters kn; J2n and �. In all the cases, the sieve IV estimator behaves well

for � � 0:01; the integrated bias of the sieve IV estimators is relatively small and not very sensitive
towards the choice of the penalization weight �; however the variance increases as � decreases; and

� = 0:8 yields the best performance in terms of the integrated MSE for large kn � 8. We obtained
similar results for sieve IV estimators of the linear h. The sieve IV estimates for the nonlinear and the

linear h are plotted in Figures 1 and 2 with a kn = 9-dimensional B-spline for h, J2n = 25-dimensional

B-spline for m, � = 0:8 and 0:0. Corresponding tables and plots for other choices of kn, J2n and other

bases functions for h and m were very similar, and the full set of results can be obtained from the

authors upon request.

From these results it is also apparent that imposing smoothness constraints (i.e., � > 0) improves

the quality of the sieve IV estimators, both in terms of the variance and the smoothness of the

estimated functions. However, the overall shape of the estimated functions and their relative positions

to the true h are not strongly a¤ected by the choice of �, which again indicates that for a given value

kn of sieve terms in approximating h, the penalization weight � does not have a great in�uence on

the bias of the sieve IV estimator.

In the empirical section below we note that for the group of families with no children, the Stock-

Yogo (2005) test for weak instruments in the parametric linear 2SLS regression problem, suggests the

presence of weak instruments under the speci�cation � = 0:0, J2n = 15 or 25, and kn � 4. For the
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sample with children and for the pooled sample this turns out not to be the case. So again our focus

here on the sample without children is relevant. However, a consequence of weak instruments is that

if one wrongly treats the sieve IV estimation as a parametric 2SLS regression, then each estimated

sieve coe¢ cients will be heavily biased towards their LS estimates. Hence, the corresponding sieve

IV curve should be biased towards the inconsistent sieve LS estimator of h. Figures 1 and 2 show

no indication of any bias towards LS. This is also con�rmed by Table 4 where with � = 0:0, the bias

of sieve IV generally decreases as J2n increases from 15 to 25. Finally Table 5 reports the integrated

squared bias, integrated variance and integrated MSE of the sieve IV and the inconsistent sieve LS

estimators with kn = 6; 9. This shows that the sieve LS estimator is not sensitive toward the choice

of �, consistently having a small variance but a large bias compared to the sieve IV estimator leading

to its MSE being greater than the one of the IV estimator.

The results of the �rst Monte Carlo study can be summarized as follows: (1) The choices of basis

functions for h [3rd order poly-spline vs 3rd order B-spline], and m [cos-sin vs 4th order B-spline]

are not very important. (2) For any �xed � 2 [0; 1]; the choice J2n = c0kn with c0 � 2; 3 works

well for sieve IV estimator. (3) For any �xed � 2 [0; 1], increasing kn will slightly reduce squared
bias but increase variance of the sieve IV estimator; In particular for �xed small � 2 [0:0; 0:001], kn
has to be small (4 or 5) to get a small variance (hence a small MSE) of the sieve IV estimator. (4)

For any �xed kn; increasing � towards 1 reduces variance hence makes the MSE of a sieve IV small.

In particular, a large kn (7, 8, 9, 14) can be balanced by a high � 2 [0:01; 0:8] that still keeps the
variance and the MSE of a sieve IV estimator small. (5) There are many combinations of smoothing

parameters J2n; kn; � which can reduce the variance part and lead to a small MSE of the consistent

sieve IV estimator. (6) There is no combination of smoothing parameters kn; � which can reduce the

bias part of the inconsistent sieve LS estimator, hence the inconsistent sieve LS estimator has a big

MSE. (7) For any �xed � 2 [0:1; 1] and �xed kn, increasing J2n = c0kn with a bigger c0 � 2 still leads
to small MSE of sieve IV estimator, and the sieve IV estimator is not biased towards the inconsistent

LS estimator.

We note that the �ndings (1)-(3) are consistent with our theoretical results in Sections 4 and 5.

In the empirical application with sample size n = 1655, the set of smoothing parameters kn = 4; 5; 6,

J2n � 3kn and � 2 [0:0; 0:001] will satisfy Assumption 5 (with r = 2 say) for
p
n�normality and

e¢ ciency of � estimates. The �ndings (4)-(5) should be related to the smoothing spline literature,

although there is no theoretical justi�cation yet. The �nding (6) is not too surprising given the

Monte Carlo design since the sieve LS estimator of the linear and the nonlinear h is inconsistent.
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The �nding (7) seems in contradiction to the results in the parametric weak IV literature. It could be

interesting to study the relation between the sieve IV estimation and parametric weak IV regression

in the future.

We want to make sure the simulated data sets do mimic the real FES data set with no children

subsample such that the insights we learnt about the smoothing parameters kn; J2n; � from the Monte

Carlo can be applied to the empirical estimation in the next section. From the discussion of the

sieve measure of ill-posedness, we know one important ingredient for nonparametric IV regression is

the decay behavior of the singular values f�kg associated with the conditional expectations operator
T (h) (�) = E [h (Y2) jX2 = �]. Therefore, we estimated the singular values f�kg associated with T . We
restricted h to h (Y2) =  kn (Y2)

0� and imposed smoothness constraints on it via the aforementioned

penalization matrix C and Lagrange multiplier �, while the operator T was approximated using

BJ2n(X2). Then for each simulated data set, we estimated 1 = �21 � �22 � ::: � �2kn by the solutions

to the eigenvalue problem ����2 (		0 + �C)�	0B (BB0)�1B	0
��� = 0;

where 	 and B are de�ned earlier,  kn (Y2) is a 3rd order B-spline basis with kn = 14, and BJ2n(X2)

is a 4th order B-spline basis with J2n = 25. We repeated this 100 times. We found that the eigenvalue

estimates using simulated data match well with the ones estimated using the real FES data of no-kids

subsample. See Blundell, Chen and Kristensen (2003) for these estimates.

Another important point in relation to the weak IV issue is that the singular values for the pooled

FES data decay less rapidly than the ones for the no-kids subsample. Consequently, we expect our

estimator to be better behaved in the pooled sample.

6.2.2. Simulation 2: (Y2; X2) is drawn from a bivariate Gaussian density

From Remark 4 in Section 4, we know that the theoretical convergence rate of the sieve IV

estimator will be very slow (logarithmic) if the joint density of log-total expenditure and log-earnings

were in fact bivariate Gaussian. We now investigate the �nite sample performance of the sieve

IV estimator in this severely ill-posed inverse setting. We maintain the Monte Carlo design from

above, only now we draw (Y2; X2) from a bivariate Gaussian density instead of from the kernel

density estimate. The mean and covariance matrix of the Gaussian density is chosen as the empirical

counterparts of the no-kids subsample. We consider four di¤erent cases for both linear and nonlinear

h: (1a) use X2 as an instrument and B-splines for both h(Y2) and m(X2) = E[Y1 � h(Y2)jX2]; (1b)
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use X2 as an instrument and Hermite polynomials for both h(Y2) and m(X2); (2a) use ~X2 = �(X2)

as an instrument and B-splines for both h(Y2) and m( eX2) = E[Y1�h(Y2)j eX2]; (2b) use ~X2 = �(X2)

as an instrument, Hermite polynomials for h(Y2) and cosine basis for m( eX2). For each case, we have

tried di¤erent combinations of smoothing parameters: kn = 6; 9, J2n = 23 and � = 0:8, 0:4, 0:1, 0:01,

0:001, 0:0. See Tables C.3 and C.4 and Figure D.3 for some of the results with nonlinear h.

Our �ndings for both linear and nonlinear h are as follows: (1) Regardless the choices of instru-

ment (X2 or ~X2) and the smoothing parameters (�; kn), the sieve IV estimates of h using cardinal

B-spline bases for both h and m perform very well. (2) For � = 0:0, the sieve IV estimates of h

under cases (1a), (2a) and (2b) all perform well. However, the sieve IV estimate using the ideal

Hermite polynomial sieves for both h and m performs poorly due to big variance. (3) It has slight

advantage to use ~X2 = �(X2) 2 [0; 1] as an instrument, especially so if one uses Hermite polynomial
sieve for h. (4) For � 2 [0:001; 0:4], the sieve IV estimates of h under all four cases perform well,

that is, the choices of sieve bases are not very important as long as � 2 [0:001; 0:4]. (5) For all
four cases with �xed kn = 6; 9, J2n = 23, as � increases from 0:0 to 0:8, the variances of sieve IV

estimates reduce fast, but the squared biases of sieve IV estimates increase a little bit. (6) There are

many combinations of sieve bases and smoothing parameters J2n; kn; � which can reduce the variance

part and lead to a small integrated MSE of the consistent sieve IV estimator. However, there is no

combination of sieve bases and smoothing parameters kn; � which can reduce the large bias of the

inconsistent sieve LS estimator.

We already demonstrated that the sieve IV estimation is very easy to implement, the Monte Carlo

results now indicate that the sieve IV estimators perform well even in the severely ill-posed inverse

setting.

7. AN EMPIRICAL INVESTIGATION

In this section we apply the results developed in the previous sections to the problem of estimating

a system of shape-invariant Engel curves. In this application total expenditure is allowed to be

endogenous and gross earnings of the head of household is used as an instrument. We begin our

analysis with a data description and examination of the quality of the gross earnings as an instrument.

We then present semi-nonparametric estimates of Engel curves under the two alternative assumptions:

(i) Y2 is exogenous and (ii) Y2 is endogenous. We assess the importance of allowing for endogeneity

both on the nonparametric shape of the Engel curve and on the parametric components that represent

the demographic parameters.
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7.1. The Engel Curve Data

In our application we consider L = 7 broad categories of non-durables and services: food-out,

food-in, alcohol, fuel, leisure goods and services, fares (including expenses on public transports), and

travel (excluding expenses on public transports). The data set is drawn from the British FES. We

have applied the SMD estimator on data from the survey for three di¤erent years and the qualitative

conclusions are the same. But for the purposes of this discussion we select a single year (1995). In

order to preserve a degree of demographic homogeneity, we select from the FES a subset of married

or cohabiting couples with and without children. We select those where the head of household is

aged between 20 and 55 and in work. We exclude all those households with three or more children.

So our demographic variable, X1, is simply a binary dummy variable re�ecting whether the couple

have 1-2 children (X1 = 1) or no children (X1 = 0), and we may write �(X 0
1i�1) as X1i�1. The

log of total expenditure on non-durables and services is our measure of the continuous endogenous

explanatory variable Y2. The earnings variable is the amount that the male of the household earned

in the chosen year before taxes. This leaves us with 1655 observations, including 1027 couples with

one or two children.

Table 1 presents descriptive statistics for the main variables used in the empirical analysis. It

shows the smaller share of food-out, alcohol, fares, leisure goods and travel expenditure for households

with children while on the other hand the comparably larger expenditure share of food-in and fuel.

This indicates strong di¤erences in the spending patterns between the two demographic groups, and

we should expect the parameter � in our semiparametric model to re�ect these.

Figures 4-5 present plots of the kernel estimates for the joint density of log-total expenditure and

log-earnings; see Härdle and Linton (1994) for a review of the kernel method. On each graph there is

also a series estimate of E [Y2j log-earnings]. The two variables show a strong positive correlation; for
the sample with children the correlation is 0.5095 and for those without children 0.5111. We see that

the joint density is also smooth and, together with the conditional mean, con�rms our belief that

the gross earnings variable should be a good choice for our instrumental variable. Since the kernel

estimate of the density of log-earnings is close to normal, we have taken the instrumental variable

X2 = �(log-earnings) in the empirical applications.

7.2. Quality of the Instrument

Our sieve IV estimator is similar to the parametric linear IV regression once the basis functions

pJn(X) and  kn (Y2), and the smoothing parameters Jn; kn and � are chosen. As a consequence, we
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Table 1: Data Descriptives

couples w/o children couples w/ children
mean std. mean std.

budget shares:
food-in 0.1776 0.0950 0.2256 0.0938
food-out 0.0829 0.0591 0.0790 0.0555
alcohol 0.0712 0.0791 0.0496 0.0543
fares 0.0216 0.0499 0.0137 0.0399
fuel 0.0612 0.0385 0.0675 0.0364
leisure goods 0.1357 0.1456 0.1261 0.1268
travel 0.1488 0.0985 0.1324 0.0857
expenditure and income:
log non-durable expenditure 5.3744 0.4864 5.4503 0.4229
log gross earnings 5.7712 0.5389 5.9112 0.5309

sample size 628 1027

consider the following regression,

(25)  kn�1 (Y2) = ApJn(X) + e; E [ejX] = 0;

where  kn�1 (Y2) is a vector of endogenous regressors of dimension kn � 1 (excluding the constant
one from the original sieve basis  kn (Y2)) and pJn(X) is a vector of instrumental variables with

dimension Jn. Here we choose  
kn (Y2) = Bkn

3 (Y2) as a 3rd order B-spline basis with kn = 9 (and

� = 0:4), and let pJn (X)0 = [BJ2n
4 (X2)

0 ; X1B
J2n
4 (X2)

0] where BJ2n
4 (X2) is a 4th order B-spline basis

for functions of X2 with the number of sieve terms J2n = 15, hence the length of the vector pJn (X)

is actually Jn = 2J2n = 30 for the full sample including both types of households. We then perform

two tests for the quality of instruments.

In the �rst we test the hypothesis H0 : rank(A) = r� by applying the result in Robin and Smith

(2000). As reported in Blundell, Chen and Kristensen (2003) we easily reject H0 for r� = 0; :::; 8.

Note that the Robin-Smith (2000) test is based on the assumptions that the model (25) is correctly

speci�ed with both kn and Jn being �xed and �nite known numbers, and that A is estimated root-

n consistently with asymptotically normal distribution. However, our basic setup of unknown h()

implies that the model (25) with �nite �xed kn and Jn are misspeci�ed, and that A could only

be estimated at a slower than root-n rate. Nevertheless, this test could be seen as a parametric

approximation of the test for E [ho (Y2) jX] = 0. Second, we perform the Stock and Yogo�s (2005)
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test of the null hypothesis H0 : B
J2n (X2) are weak instruments for  

kn�1 (Y2). This is done with

 kn�1 (Y2) = (Y2; Y
2
2 ; Y

3
2 ). The test statistic is 4.5647 for households without children, and 10.9535

for those with children. With number of instruments J2n = 15, the 5% critical values are given

by 10.33 and 4.37 (for a 10% and 30 % maximal bias relative to OLS respectively). When pooling

the two household groups with number of instruments becoming 2J2n = 30, the test statistic equals

14.0615 while the 5% critical value is 10.77 (for a 10% maximal bias relative to OLS). Note that

the Stock and Yogo�s (2005) test is conservative, and is based on the parametric 2SLS estimator

under the assumption that the model (25) is correctly speci�ed with kn being �xed and �nite known

numbers. See Blundell, Chen and Kristensen (2003) for further discussion.

Together these results suggest that we may wish to be cautious in our interpretation of the

nonparametric IV results for the sub-sample of families without children. But the results should be

reliable for the pooled sample that is used for the SMD estimator of the shape-invariant Engel curve

model developed in this paper. This is given further consideration when we report the estimated

curves below.

7.3. Estimation Results

The estimation of the system was performed as follows: First we obtained a pro�le estimator of

� = (�;�) using the closed form sieve IV solution of b�(�). We then used this estimator as a starting
point for the numerical optimization procedure employed to obtain simultaneous estimates of � and

�. In most cases however, the simultaneous estimates are practically identical to the initial pro�le

ones. Note also that we do not restrict h to 0 � hl � 1 and 0 �
PL

l=1 hl � 1 in the estimation

procedure; as we shall see, imposing this restriction would have no e¤ect on our estimates anyway,

since the resulting unrestricted estimates all satisfy these constraints for y2 in the domain of our

sample of Y2. In order to obtain e¢ cient estimates of �, we run the 3-step procedure described in

Section 3. In the 2nd step, the conditional covariance matrix, �o (X) ; is estimated using either the

sieve method or the kernel method. The results reported here are based on kernel estimates, but

�̂ proves to be fairly robust to the choice of estimator for �o (X). To improve the estimates we

run an iterative procedure, repeating Step 2 and 3 until �̂ converges towards a stable level. In this

application, we require that jj�̂(i+1) � �̂
(i)jj < 0:005 where �̂

(i)
denotes the estimate obtained in the

i-th iteration; this convergence criterion is satis�ed after 7-10 iterations.

Figures 6 to 9 present the range of estimated curves for four of the goods in our system. The

plots o¤er a comparison of the fully nonparametric estimates vs. the semiparametric ones, and the
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endogenous case vs. the exogenous one. For these plots, we use a 3rd order B-spline sieve for h with

number of sieve terms kn = 9, and a 4th order B-spline of dimension J2n = 15 form. We penalize both

the level and the 2nd order derivative of h (i.e., C = C0+C2), with penalization weight � = 0:4. All

plots are with identity weighting, b�(Xi) = IL. As noted earlier, the nonparametric IV estimates using

the subsample of households without children should be interpreted with care. However, the plots

of the estimated curves seem to be consistent with the Monte Carlo �ndings and appear reasonably

well behaved, even for the subsample without children. Our main focus is on the lower right hand

side plot in each panel that represents the sieve IV estimates under the shape-invariant restriction.

Together with the estimated Engel curves, we also report their 95% pointwise con�dence bands.

The bands are obtained using the nonparametric bootstrap based on 1000 resamples. In each re-

sample, n = 1655 observations are drawn from the original data set with replacement, and then h is

reestimated. We perform this with � = b� �xed at its e¢ cient estimated value, since b� ispn-consistent
while bh has a slower than pn-convergence rate; hence, this has no e¤ect asymptotically. For sim-
plicity, we use the same J2n and kn in the estimation of h using the bootstrap sample, however, to

control for the asymptotic bias in bh�ho, we slightly decreased � in the bootstrap sample so in e¤ect
we were over�tting (or undersmoothing in kernel literature);7 see, e.g., Hall (1992, Section 4.5) for

theoretical justi�cation of this undersmoothing procedure for kernel least squares regression. In the

exogenous case, by Theorem 2 in Newey (1997), bh(y2) has a pointwise asymptotically normal distrib-
ution; hence, in this case the bootstrap yields consistent estimates of the true con�dence bands; see,

e.g., Theorem 1.2.1 in Politis, et al. (1999). In the endogenous case, we have no theoretical justi�-

cation for the bootstrap since we have not derived a pointwise asymptotic distribution of bh(y2), but
we conjecture such a result exists. From Theorem 2 on the convergence rate of the nonparametric

IV regression, we know that compared to the exogenous case, the endogenous estimates have similar

asymptotic bias but a bigger variance. The reported con�dence bands in the endogenous case are

wider compared to those for the exogenous case, which is consistent with the theory.8

Several interesting features are present in the plots. As may be expected the estimated shares of

food-out for households with children are everywhere below those for households without children.

As family size increases, for any given total outlay, the shares going to food-out fall; at the same

time, the share going to food-in increases. So there is a shift in expenditure shares from one set of

non-durables to another when families have children. The curvature also changes signi�cantly as we

allow for endogeneity. So neglecting potential endogeneity in the estimation can lead to incorrect

estimates of the Engel curve shape. The Engel curve for food-in, for example, showing a much more
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pronounced reverse �S�shape under endogeneity with a more dramatic shift to the right in the curve

resulting from the presence of children.

To check the robustness of our Engel curve estimates with respect to the choices of sieve basis

functions and the smoothing parameters, we carry out extensive sensitivity analysis. We approximate

h by several di¤erent sieve bases such as wavelet cardinal B-splines, polynomial splines and Hermite

polynomials. For the endogenous case, we also approximate the conditional mean m by cosine series

and wavelet cardinal B-splines. To examine the robustness of the sieve estimator of the conditional

mean, we also employ kernel regression method to estimate m; this gives very similar results that are

available from the authors on request. The shapes of the estimated Engel curves based on di¤erent

bases all look similar as long as the number of e¤ective sieve terms in approximating h is kn = 5 to

9, and the number of sieve terms in approximating m is J2n = 15 to 27. Generally the smoothness

parameter � should increase slightly as kn grows. We try out di¤erent values of � for each value of

kn in the range 5 to 9; the shapes of the estimated Engel curves are fairly robust towards the choice

of �.9 In Figure 10 we report four semiparametric IV estimates of Engel curves for the leisure goods

that correspond to four di¤erent values of the smoothing parameter � = 0:1, 0:3, 0:5 and 0:7. As

noted above, the value of � used in Figure 9 is 0.4. There appears to be some overall robustness in

the Engel curve shape to the choice of � although for low values of � the curve appears too variable,

which is not too surprising since kn = 9 here. Analyses display a similar pattern for the other goods

and are available from the authors on request.

The semiparametric e¢ cient estimates of � are given in Table 2. These estimates have been

obtained using the same functional bases and the same J2n = 15 and kn = 9 as used to obtain the

Engel curves h estimates, except with a smaller �. The estimates of � are plausibly signed in both the

endogenous and the exogenous case. The di¤erences can be assessed more formally. Let b�LS and b�IV
denote the semiparametric e¢ cient estimate of � under H0: Y2 exogenous and H1: Y2 endogenous

respectively. Furthermore, let bVLS and bVIV denote the estimates of their respective variances. we
then have that n(b�LS�b�0IV )(bVLS� bVIV )�1(b�LS�b�IV ) asy:� �2L+1 under the null. This Hausman test for

the exogeneity of Y2 produces a statistic of 880:06 with critical value �28 (95) = 15:5, and we reject

the null-hypothesis. That is, the data supports the hypothesis that Y2 is endogenous. The results

show a strong impact on �1 of allowing for endogeneity. This parameter measures the general log

equivalence scale for the presence of children with a couple normalized to unity. The LS estimate is

implausibly low whereas the IV estimate is very plausible and represents an equivalence scale of about

.45, normalized to unity for a couple without children. This is also seen in the more dramatic shift in
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the plotted curves between the two groups as commented on above. One can also give interpretations

to the estimates of �2; e.g. the negative value of �2 for alcohol shows the decline in the overall alcohol

budget share, given total equalized expenditure, that occurs for larger households.

Table 2: E¢ cient estimates of � in the exog. and endog. case

Semiparametric IV Semiparametric LS
coe¢ cient std. (10�3�) coe¢ cient std. (10�3�)

�1 0.3698 57.4712 0.1058 34.3810
�2 - food-in 0.0213 6.5406 0.0461 4.8861
�2 - food-out 0.0006 3.6744 -0.0046 2.4182
�2 - alcohol -0.0216 4.5047 -0.0239 2.5322
�2 - fares -0.0023 2.5089 -0.0092 1.4027
�2 - fuel -0.0035 2.7611 0.0054 1.9069
�2 - leisure 0.0388 10.9148 -0.0016 6.2392
�2 - travel -0.0384 5.9912 -0.0226 3.9748

To check the robustness of our � estimates with respect to the choices of sieve basis functions

 kn and pJn, we also approximate h with a 2nd and a 3rd order polynomial spline of dimension

kn = 5 to 14, and to approximate m with Fourier series and 4th order B-splines with J2n = 15 to 27.

The estimates b� are very similar to the ones reported in Table 2, and are also stable as kn increases
in both the exogenous and the endogenous cases.10 To conserve space, here we only report a small

sensitivity check in terms of � estimates under the endogeneity. Although the � estimates reported

in Table 3 are obtained using smaller penalization � than those reported in Table 2, the estimated

values are virtually the same.

Table 3: Estimates of �: Sensitivity Analysis
Semiparametric IV

� estimates
kn, J2n Food-in Food-out Alcohol Fares Fuel Leisure Travel �1

B-spl 9, B-spl 15 0.0207 0.0003 -0.0210 -0.0019 -0.0038 0.0422 -0.0393 0.3834
B-spl 9, B-spl 25 0.0171 -0.0005 -0.0233 -0.0005 -0.0027 0.0489 -0.0419 0.4113
B-spl 8, Cos 20 0.0204 -0.0005 -0.0248 -0.0009 -0.0029 0.0458 -0.0387 0.3989
P-spl 8, B-spl 15 0.0209 -0.0019 -0.0222 -0.0004 -0.0029 0.0429 -0.0359 0.3981
P-spl 5, B-spl 25 0.0191 -0.0002 -0.0285 -0.0011 -0.0038 0.0496 -0.0399 0.4088

Finally, we brie�y mention the results of a number of further comparisons that we have carried out.

The �rst implements the control function approach of Newey, Powell and Vella (1999). As one might

expect, this gives estimates that are between our sieve IV-estimates (for the endogenous case) and
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the sieve LS estimates (for the exogenous case). Second, we compare our semi-nonparametric model

with a parametric quadratic model of the QUAIDS-class proposed in Banks, Blundell and Lewbel

(1997). A test on � rejects the QUAIDS-model in favour of the semi-nonparametric model. Third,

we implement the SMD procedure using three di¤erent years of FES data sets, and try both gross

earnings and disposable income as the instrument. The empirical �ndings are again surprisingly

robust to the choice of sieve bases and smoothing parameters in the sense of being qualitatively

similar, and are available from the authors on request.

8. CONCLUSIONS

In this paper we study the sieve semi- /nonparametric IV estimation of a shape-invariant En-

gel curve system with endogenous total expenditure. We provide identi�cation and establish the

nonparametric convergence rate and semiparametric e¢ ciency properties of our estimators under

relatively �low-level�su¢ cient conditions. We also present Monte Carlo simulation results that shed

some lights on the choice of smoothing parameters and the performance of the sieve nonparametric

IV estimator.

In our application to consumer behavior in the UK FES we show the importance of allowing

for endogeneity and document the relatively simple steps involved in implementing the sieve semi-

nonparametric IV method. The shape-invariant system of Engel curve speci�cation, that pools

across demographic groups, enable us to estimate the parametric e¤ects of equivalence scales and

the demographic impacts accurately and e¢ ciently. We �nd the estimated curves and demographic

parameters to be plausible, and we document a signi�cant impact of accounting for the endogeneity

of total expenditure. Adjusting for endogeneity increases the common demographic shift parameter

and produces a much more plausible estimate of the income equivalence scale. We also contrast

our sieve IV estimator with the sieve LS estimator that assumes exogenous total expenditure. It

appears that the nonlinear behavior in the share Engel curve is systematically di¤erent under the ex-

ogeneity assumption. Our application illustrates the importance of utilizing the semi-nonparametric

restrictions, and suggests that it would be worthwhile to further investigate the imposition of restric-

tions derived from economic theory in identi�cation and estimation of econometric models; see, e.g.,

Matzkin (1994).
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APPENDIX A: Proofs

Proof of Theorem 1: Without loss of generality and given condition (4), we can assume that X1i is

a scalar dummy random variable (i.e., X1i 2 f0; 1g). First conditioning on X1i = 0; we have:

E[Y1il � hl(Y2i � �(0)) jX1i = 0; X2i] = 0 for l = 1; :::; L;

since � is known, conditions (1) and (2) imply:

hl = hol almost surely, for l = 1; :::; L.

Now hol(�) is identi�ed. This and conditions (3) and (4), together with conditional moment restriction
(4), identify �o1 and �o2;l. Since for all l = 1; :::; L,

E[Y1il � hol(Y2i � �(X1i�1))�X1i�2;l jX1i = 1; X2i] = 0;

this and (4) imply:

(26) E[hol(Y2i � �(�o1))� hol(Y2i � �(�1)) + (�o2;l � �2;l) jX1i = 1; X2i] = 0

Since there is a l� with hol�() nonlinear and di¤erentiable, we have

E[rhol�(Y2i � �(�o1)) jX1i = 1; X2i]� (�(�1)� �(�o1)) + (�o2;l� � �2;l�) = 0

where �o1 is some value between �o1 and �1. Again by conditions (1) and (2) and rhol�(Y2i��(�o1)) 6= const:
(in particular 6= 0) imply that E[rhol�(Y2i � �(�o1)) jX1i = 1; X2i] 6= const: (in particular 6= 0), hence

�(�1)� �(�o1) = 0 and �o2;l� � �2;l� = 0

by condition (5) we have �1 � �o1 = 0; this and (26) imply �o2;l � �2;l = 0 for l = 1; :::; L. Q.E.D.
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Proof of Theorem 2: It su¢ ces to establish the result for the purely nonparametric IV regression

model E[hol(Y2 � �(0))jX1 = 0; X2] = E[Y1ljX1 = 0; X2] for an arbitrarily �xed l = 1; :::; L. To simplify

notation further, we assume �(0) = 0 and suppress the conditioning variable X1 = 0 and drop the subscript

l. We denote bh = argminh2Hn
1
n

Pn
i=1 bm(X2i; h)2 where

Hn =

8<:h(Y2) = f kn(Y2)g0� =
KnX
k=0

X
j2Kn

�kj kj(Y2) : 0 � h � 1; jjr[r]hjj1 � c

9=; ;

and with pJn(0; X2) = BJ2n(X2), B = (BJ2n(X21); :::; BJ2n(X2n))0, Jn = 2J2n,

bm(X2i; h) =
nX
t=1

fY1t � h(Y2t)gBJ2n(X2t)0(B0B)�1BJ2n(X2i)

=

nX
t=1

fY1t � f kn(Y2t)g0�gBJ2n(X2t)0(B0B)�1BJ2n(X2i)

= bE[Y1jX2i]� bE[ kn(Y2)jX2i]0� = bE[Y1jX2i]� bE[h(Y2)jX2i]:
In the following we denote En;X2ffg � 1

n

Pn
i=1 f(X2i), hg; fin;X2 = En;X2fg �fg, jjf jjn;X2 =

q
hf; fin;X2 and

jjf jjX2 =
p
Eff(X2)g2. Also let go(X2) � E[Y1jX2]. Then Tho = go by Theorem 1. Let bg(X2) � bE[Y1jX2]

and ( bTh)(X2) � bE[h(Y2)jX2]. Then bh = argminh2Hn jjbTh� bgjj2n;X2 , which is the solution to
�nd bh 2 Hn such that DbTbh; bThE

n;X2
=
Dbg; bThE

n;X2
for all h 2 Hn.

We �rst state three claims.

Claim 1: (i) Under Assumption 2(i)(ii), and the sieve space Hn given by (9)-(11), we have: There is a
�nite c > 0 such that for any h 2 H, there is a f kn(Y2)g0� 2 Hn satisfying



h(�)� f kn(�)g0�


Y2
� ck�rn ;

(ii) Under Assumption 4, we have: there is a �nite c0 > 0 such that for any g 2 �rmc (X2), there is a
BJ2n(X2)

0A such that


g(�)�BJ2n(�)0A



X2
� c0J�rm2n .

Claim 2: Under Assumptions 1, 2(i)(ii), 3, 4 and 5(i)(ii), we have:

(i) jjgo � bgjjX2 = Op

�
J�rm2n +

p
J2n=n

�
;

(ii) sup
h2Hn

jjfbT � TghjjX2 = Op

�
J�rm2n +

p
J2n=n

�
;

(iii) sup
h2Hn

jjbm(�; h)�m(�; h)jjX2 = Op

�
J�rm2n +

p
J2n=n

�
.

Claim 3: Under Assumptions 1, 2(i)(ii), 3, 4 and 5(i)(ii), we have: there exist constants c1; c2 > 0
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such that

c1jjbm(�; h)jj2X2 � jjbm(�; h)jj2n;X2 � c2jjbm(�; h)jj2X2 ;
uniformly over h 2 Hn, except on an event whose probability tends to zero as n!1.

We now apply Claims 1, 2 and 3 to continue the proof of Theorem 2. Denote jjhjjY2 �
p
E[h(Y2)]2. By

the triangular inequality and Assumption 2, there is a f kng0�o 2 Hn such that

jjbh� hojjY2 � jjho � f kng0�ojjY2 + jjbh� f kng0�ojjY2 :
Next by the de�nition of �n and the triangular inequality,

jjbh� f kng0�ojjY2 � �n � jjTfbh� f kng0�ogjjX2
� �n � fjjTbh� bgjjX2 + jjbg � gojjX2 + jjTho � Tf kng0�ojjX2g
� �n � fjjfT � bTgbhjjX2 + jjbTbh� bgjjX2 + jjbg � gojjX2 + jjTfho � f kng0�ogjjX2g:

By Assumptions 1(iii) and 3, we have Tho = go 2 �rmc (X2). Also by the de�nition of Hn and Assumption
3, we have Th 2 �rmc (X2) for all h 2 Hn. Under Claim 3 and by the de�nition of bh, we have:

jjbTbh� bgjjX2f1 + op(1)g = jjbTbh� bgjjn;X2
� jjbTf kng0�o � bgjjn;X2 = jjbTf kng0�o � bgjjX2f1 + op(1)g:

Now by the de�nitions of bm and m, and the triangular inequality, it holds:

jjbTf kng0�o � bgjjX2 = jjbm(�; f kng0�o)jjX2
� jjbm(�; f kng0�o)�m(�; f kng0�o)jjX2 + jjm(�; f kng0�o)�m(�; ho)jjX2
= jjbm(�; f kng0�o)�m(�; f kng0�o)jjX2 + jjTfho � f kng0�ogjjX2 .

These and Claim 2 imply

jjbh� f kng0�ojjY2 � �n �
n
Op

�
J�rm2n +

p
J2n=n

�
+ jjTfho � f kng0�ogjjX2 � f2 + op(1)g

o
.

Hence

jjbh� hojjY2 � jjho � f kng0�ojjY2 + �n �Op �J�rm2n +
p
J2n=n+ jjTfho � f kng0�ogjjX2

�
.
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This, Assumptions 2(i)(ii), 5(i)(ii) and 6, and Claim 1(i) imply:

jjbh� hojjY2 � const:� k�rn + �n �Op
�p

kn=n
�
:

We now �nish the proof of Theorem 2 by establishing the three claims.

Proof of Claim 1: (i) Under Assumption 2(i)(ii) and given the sieve space Hn, we have for any h 2 H,
there exists f kng0� 2 Hn such that for any �xed a > r > 0; and c > 0;

sup
y

���[h(y)� f kn(y)g0�](1 + y2)�a=2��� � ck�rn ;

see, e.g., Chen, Hansen and Scheinkman (1997). Then:Z
[h(y)� f kn(y)g0�]2f0;Y2(y)dy

=

Z
[h(y)� f kn(y)g0�]2(1 + y2)�a

�
(1 + y2)af0;Y2(y)

�
dy

�
�
sup
y

���[h(y)� f kn(y)g0�](1 + y2)�a=2����2 Z (1 + y2)af0;Y2(y)dy
hence




h� f kng0�



Y2

�

sZ
[h(y)� f kn(y)g0�]2f0;Y2(y)dy

� C sup
y

���[h(y)� f kn(y)g0�](1 + y2)�a=2��� � C 0k�rn :

(ii) See Timan (1963) for Fourier series and Schumaker (1993) for spline sieve.

Proof of Claim 2: (i) By Assumptions 1, 2(i)(ii) and 3, go = Tho 2 �rmc (X2). This together with
Assumptions 4 and 5(ii) imply that all the conditions of Theorem 1 in Newey (1997, p. 150) are satis�ed

with his d = 0, his K = our J2n, his �0(K) = our
p
J2n, and his K�� = our J�rm2n , hence we obtain result

(i).

(ii) By the de�nition of Hn and Assumption 3, we have Th 2 �rmc (X2) for all h 2 Hn. Moreover, since
0 � h � 1 for all h 2 Hn, we have that V arfh(Y2)jX1 = 0; X2g � 1 for all h 2 Hn. Note that bTh is simply
the sieve LS regression of h(Y2) on BJ2n(X2). We now go through the proof of Theorem 1 in Newey (1997,

p. 161-163), and see that Newey�s result (with his d = 0) actually holds uniformly over h 2 Hn, hence we
obtain result (i).

(iii) Directly follows from (i) and (ii).

Proof of Claim 3: By the de�nition of Hn and Assumptions 1(iii), 2(i)(ii) and 3, we have m(�; h) 2
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�rmc (X2) for all h 2 Hn. Moreover, since 0 � Y1 � 1 and 0 � h � 1 for all h 2 Hn, we have that
V arfY1 � h(Y2)jX1 = 0; X2g � 1 for all h 2 Hn. Note that bm(�; h) is simply the sieve LS regression
of Y1 � h(Y2) on BJ2n(X2), hence bm(�; h) belongs to the closed linear span of BJ2n(X2) with probability
approaching to one. Now we go through the proof of Lemma 4 in Huang (1998) with his An = our

p
J2n

and his Nn = our J2n. Under our Assumptions 1 - 4 and 5(ii), we notice that Huang�s result actually holds

uniformly over h 2 Hn, hence we obtain Claim 3. Q.E.D.

For any h, h0 2 L2(R; f0;Y2), de�ne the inner product hh; h0iY2 �
R
R h(y)h

0(y)f0;Y2dy and the norm

jjhjjY2 =
q
hh; hiY2 . Similarly we de�ne the inner product h; iX2 and the norm jj � jjX2on L2(R; f0;X2). Let

f0;Y2jX2 denote the conditional density of Y2 given fX2; X1 = 0g. Assumptions 1(iii) and 4(iii) imply that
the densities f0;Y2 , f0;X2 , f0;X2;Y2 and f0;Y2jX2 are all continuous. Let L1(R) and L1(X2) be the spaces of
bounded measurable functions of Y2 and X2 respectively. Under the identi�cation condition, the conditional

expectation operator, fThg(X2) =
R
h(y)f0;Y2jX2(yjX2)dy, is a bounded linear operator from L1(R) into

L1(X2), and is invertible on its range (i.e., N(T ) = fh : Th = 0g = f0g). It is obvious that T is also a

bounded operator from L2(R; f0;Y2) into L2(X2; f0;X2), with its kernel function de�ned as

t(x2; y2) �
f0;X2;Y2(x2; y2)

f0;X2(x2)f0;Y2(y2)
=
f0;Y2jX2(y2jx2)
f0;Y2(y2)

for any (x2; y2) 2 X2 �R:

Denote the kernel function of the self-adjoint operator TT � : L2(X2; f0;X2)! L2(X2; f0;X2) as

t2(w; x2) �
Z
R
t(w; y)t(x2; y)f0;Y2(y)dy for any (w; x2) 2 X2 �X2:

Assumptions 1(iii) and 4(iii) imply that t2(w; x2) is continuous on X2�X2, where X2 is a compact interval.
Hence TT � is a compact operator (see e.g., theorem 3.1.5 in Zimmer, 1990). This implies that T , T � and

T �T are all compact. It is well-known that the compact operators T �T and TT � share the same eigenvalue

sequence
�
�2k
	1
k=1

with �21 = 1 � �22 � �23 � :::& 0, and for all k � 1,

T �T�1k = �2k�1k, TT
��0k = �2k�0k, T�1k = �k�0k, T

��0k = �k�1k.

The corresponding eigenfunctions, f�1kg1k=1 (of T �T ) and f�0kg
1
k=1 (of TT

�), are orthonormal bases for

L2(R; f0;Y2) and L2(X2; f0;X2) respectively. The non-negative value of
q
�2k is called the k�th singular

number of T (and of T �), which is also denoted as �k to simplify notation, and f�k;�1k; �0kg1k=1 is called
the singular value system of T . By the identi�cation condition we have �k > 0 for all k � 1. Therefore, the
inverse operator T�1 is not bounded.

Proof of Lemma 1: As already mentioned, Assumptions 1(iii) and 4(iii) imply that the operators T ,

T �, TT � and T �T are all compact with the singular value system f�k;�1k; �0kg1k=1. For any h 2 L2(R; f0;Y2),
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g 2 L2(X2; f0;X2), we have

(Th)(x2) =

1X
k=1

�k hh; �1kiY2 �0k(x2), (T �g)(y2) =
1X
k=1

�k hg; �0kiX2 �1k(y2),

f0;X2;Y2(x2; y2)

f0;X2(x2)f0;Y2(y2)
=

1X
k=1

�k�0k(x2)�1k(y2), �21 = 1 � �22 � �23 � :::& 0.

(1) Let clspfHng �
�
 kn(y)0� 2 L2(R; f0;Y2) : � 2 Rkn

	
be the closed linear subspace (in L2(R; f0;Y2))

that is generated by the sieve basis functions  kn(�) for Hn. It is easy to see that

(27) �2n = sup
h2clspfHng:h 6=0

E[h(Y2)]
2

E[fThg(X2)]2
=

1

infh2clspfHng:jjhjjY2=1 jjThjj
2
X2

:

Let Pkn�1 = clspf�1k : k = 1; :::; kn � 1g and (Pkn�1)? be its orthogonal complement in L2(R; f0;Y2). Since
dim(clspfHng) = kn, there is a eh 2 clspfHng \ (Pkn�1)? with jjehjjY2 = 1 such that

1

(�n)
2 = inf

h2clspfHng:jjhjjY2=1
jjThjj2X2 � jjTehjj2X2 � sup

h2(Pkn�1)?:jjhjjY2=1
jjThjj2X2

= sup
h2(Pkn�1)?:jjhjjY2=1

hT �Th; hiY2 = (�kn)
2:

Hence �n � 1
�kn
.

(2) Under the stated assumptions, for any hn 2 clspfHng, we have the alternative representation:
hn(y2) = f kn(y2)g0� =

Pkn
k=1 hhn; �1kiY2 �1k(y2).

(2.i) For any h 2 clspfHng with h 6= 0,

Tfhg(X2) = Efh(Y2)jX2g =
knX
j=1

�j


h; �1j

�
Y2
�0j(X2);

jjThjj2X2 =
knX
j=1

�2jf


h; �1j

�
Y2
g2 � �2kn

knX
j=1

f


h; �1j

�
Y2
g2 = �2kn khk

2
Y2
:

Hence

�n = sup
h2clspfHng:h 6=0

jjhjjY2
jjThjjX2

� 1

�kn
:

(2.ii) Notice that

ho(y2)� f kn(y2)g0�o =
1X

k=kn+1

hho; �1kiY2 �1k(y2):
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Hence,

Tfho � f kng0�og(x2) � E[ho(Y2)� f kn(Y2)g0�ojX2 = x2]

=

Z
(ho(y2)� f kn(y2)g0�o)

f0;X2;Y2(x2; y2)

f0;X2(x2)f0;Y2(y2)
f0;Y2(y2)dy2

=
1X

k=kn+1

hho; �1kiY2 � �k�0k(x2);

and

jjTff kng0�o � hogjj2X2 =
1X

k=kn+1

fhho; �1kiY2g
2 � �2k

� �2kn �
1X

k=kn+1

fhho; �1kiY2g
2 = �2kn � jjho � f 

kng0�ojj2Y2 :

Therefore,

jjTff kng0�o � hogjjX2 � �kn � jjho � f 
kng0�ojjY2 :

This and Result (2.i) imply Assumption 6. Q.E.D.

Proof of Theorem 3: (1) By theorem II.5.10 of Edmunds and Evans (1987, page 91), �k, the k�th
eigenvalue of (T �T )1=2 equals the k�th approximation number of (T �T )1=2. Recall that (T �T )1=2 maps
L2(Y; f0;Y2) isomorphically onto W s

2 (Y), and f0;Y2 is bounded above and bounded away from zero over its

support Y, which is a bounded interval of R. We have that the k�th approximation number of (T �T )1=2

equals the k�th approximation number of the compact embedding operator mapping from W s
2 (Y) into

L2(Y), which is k�s by theorem 3.3.4 of Edmunds and Triebel (1996, page 119, equation (2)).

(2.i) Recall that the sieve measure of ill-posedness is

�n = sup
h2clspfHng:h 6=0

jjhjjY2
jjThjjX2

= sup
h2clspfHng:h 6=0

jjhjjY2
jj(T �T )1=2hjjY2

.

Since f0;Y2 is bounded above and bounded away from zero over its support Y, which is a bounded interval
of R, by duality, we have for any h 2 clspfHng,

jjhjjY2 = sup
f2clspfHng:jjf jjY2�1

��hh; fiY2�� � sup
f2clspfHng:jjf jjY2�1

n
jjhjjW�s

2 (Y) � jjf jjW s
2 (Y)

o
:
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Since jj(T �T )1=2hjjY2 � jjhjjW�s
2 (Y), we have

�n � sup
h2clspfHng:h 6=0

jjhjjY2
jjhjjW�s

2 (Y)
� sup
f2clspfHng:jjf jjY2�1

jjf jjW s
2 (Y)

= sup
f2clspfHng

jjf jjW s
2 (Y)

jjf jjY2
� sup
f2clspfHng

jjf jjW s
2 (Y)

jjf jjL2(Y)
:

When the support Y is a bounded interval of R, the inverse inequalities (or Bernstein inequalities) hold
when the sieve space clspfHng is either wavelets with 
 > s, or B-splines with 
 > s, or cosine bases. That

is, there is a constant c > 0 such that jjf jjW s
2 (Y) � c(kn)

sjjf jjL2(Y) for all f 2 clspfHng; see, e.g., Meyer
(1992) for wavelet sieve and Schumaker (1993) for spline and cosine sieves. Therefore we obtain:

�n � sup
h2clspfHng:h 6=0

jjhjjY2
jjhjjW�s

2 (Y)
� sup
f2clspfHng

jjf jjW s
2 (Y)

jjf jjL2(Y)
� c(kn)

s:

(2.ii) Notice that

(kn)
�rm � jjTfho ��0o kngjjX2 � jj(T �T )1=2fho ��0o kngjjY2 � jjho ��0o kn jjW�s

2 (Y):

By duality, we have

jjho ��0o kn jjW�s
2 (Y) = sup

f :jjf jjWs
2 (Y)

�1

����Dho ��0o kn ; fEL2(Y)
����

= sup
f :jjf jjWs

2 (Y)
�1

����Dho ��0o kn ; f � PHnf
E
L2(Y)

����
� jjho ��0o kn jjL2(Y) � sup

f :jjf jjWs
2 (Y)

�1
jjf � PHnf jjL2(Y);

where PHn denotes the L2(Y)�orthogonal projection onto the sieve space Hn. When the support Y is a

bounded interval of R, and when the sieve space Hn is either wavelets with 
 > s, or B-splines with 
 > s,

or cosine bases, we have the approximation error: jjf � PHnf jjL2(Y) � c � (kn)�s for all f 2 W s
2 (Y) with

jjf jjW s
2 (Y) � 1, where the constant c does not depend on f ; see e.g. Meyer (1992) for wavelet sieve and

Schumaker (1993) for spline and cosine sieves. Since f0;Y2(y) is continuous, and is bounded above and below

over its support Y that is a bounded interval of R, we have jjho ��0o kn jjL2(Y) � jjho ��0o 
kn jjY2 , hence

jjTfho ��0o kngjjX2 � jjho ��0o kn jjW�s
2 (Y) � c(kn)

�s � jjho ��0o kn jjY2 :
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This and Result (2.i) imply

�n � jjTfho ��0o kngjjX2 � c� jjho ��0o kn jjY2 .

Result (2.iii) immediately follows from Results (2.i), (2.ii) and Theorem 2 (1). Q.E.D.

Proof of Theorem 4: (1) Since jj(T �T )1=2hjjY2 � cjjhjjW�s
2 (R;wa), we have

�n = sup
h2clspfHng:h 6=0

jjhjjY2
jjThjjX2

= sup
h2clspfHng:h 6=0

jjhjjY2
jj(T �T )1=2hjjY2

� sup
h2clspfHng:h 6=0

jjhjjY2
cjjhjjW�s

2 (R;wa)
.

Since f0;Y2(y) is continuous on R and f0;Y2(y) � wa(y) for large jyj, by duality theorem we have for any

h 2 clspfHng,

jjhjjY2 = sup
f2clspfHng:jjf jjY2�1

��hh; fiY2�� � const: sup
f2clspfHng:jjf jjY2�1

n
jjhjjW�s

2 (R;wa) � jjf jjW s
2 (R;wa)

o
:

Thus

�n � sup
h2clspfHng:h 6=0

jjhjjY2
cjjhjjW�s

2 (R;wa)
� const: sup

f2clspfHng:jjf jjY2�1
jjf jjW s

2 (R;wa)

= c0 sup
f2clspfHng

jjf jjW s
2 (R;wa)

jjf jjY2
= c0 sup

f2clspfHng

jjfpwajjW s
2

jjf
p
f0;Y2 jjL2

� c0 sup
f2clspfHng

jjfpwajjW s
2

jjfpwajjL2
:

Since the sieve space Hn is given in (9)-(11) with 
 > s > 0, we can apply the inverse inequality for wavelets

and B-spline wavelets spaces (see e.g. theorem 2.3 in Meyer, 1992) and obtain:

�n � c0 sup
f2clspfHng

jjfpwajjW s
2

jjfpwajjL2
� const:(kn)

s:

(2) Immediately follows from Result (1) and Theorem 2 (1). Q.E.D.

APPENDIX B: Additional Assumptions for Section 5

De�ne Dw(X;�o) = (Dw1(X;�o); Dw2;1(X;�o); :::; Dw2;L(X;�o)) where Dwj (X;�o) is given in (18) and

(19); this is a L � (1 + L) dim(X1)-matrix valued function. Recall that w1(�) and w2;l(�), l = 1; :::; L, are

L � dim(X1)-matrix valued squared integrable functions of Y2 � �(X 0
1�o1). Let w

� =
�
w�1; w�2;1; :::; w�2;L

�
where w�j(Y2 � �(X 0

1�o1)) = (w
�j
1 (Y2 � �(X 0

1�o1)),....,w
�j
dim(X1)

(Y2 � �(X 0
1�o1))) is given by

w�jk = arg inf
wjk2H�fhog

wjk 6=0

E
h
D
wjk
(X;�o)

0�(X)�1D
wjk
(X;�o)

i
for k = 1; :::;dim(X1):
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The asymptotic variance expression for V in Proposition 1 is:

(28) V �

2664
EfDw�(X;�o)0�(X)�1Dw�(X;�o)g��

EfDw�(X;�o)0�(X)�1�o(X)�(X)�1Dw�(X;�o)g
��1�

EfDw�(X;�o)0�(X)�1Dw�(X;�o)g

3775 :
Below are the additional conditions imposed for Propositions 1 - 3:

Assumption B1: E[Dw�(X;�o)0�(X)�1Dw�(X;�o)] is positive de�nite.

We note that Assumption B1 is actually a consequence of a more primitive assumption N1 stated in the

old version of this paper; see Lemma 1 in Blundell, Chen and Kristensen (2003).

Assumption B2: For all �1 within a o(n�1=4)-shrinking neighborhood of �o1 and for x1 = 0; 1, (i)

E[w�l (Y2 � �(X 0
1�1))jX1 = x1; X2 = �] belongs to �rmc (X2) for l = 1; :::; L; (ii) r kn(Y2 � �(X 0

1�1)) is

continuous in �1; (iii) E[hn(Y2 � �(X 0
1�1))jX1 = x1; X2 = �] belongs to �rmc (X2) for any hn 2 Hn.

The proofs of Propositions 1 - 3 are direct applications of the theory in Ai and Chen (2003), and can be

found in Blundell, Chen and Kristensen (2003); hence we omit them.
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1 Tables

Table 4: MC-study1: MSE of sieve IV-estimator of nonlinear h

mn=B-spline, J2n = 15 mn=B-spline, J2n = 25
� �

hn - kn 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00
P-spline - 4 2.24 2.31 1.20 1.78 1.75 2.20 2.01 1.52 1.32 1.29

0.33 0.64 1.02 1.38 1.46 0.30 0.56 0.86 1.06 1.10
MSE (10�2�) 2.56 2.95 3.00 3.16 3.21 2.50 2.57 2.38 2.38 2.39

P-spline - 6 1.84 1.72 1.43 1.66 2.86 1.76 1.31 0.95 0.98 1.04
0.40 0.85 1.59 3.11 7.52 0.36 0.73 1.27 2.18 3.04

MSE (10�2�) 2.23 2.57 3.01 4.77 10.38 2.12 2.04 2.22 3.16 4.08

B-spline - 9 0.47 1.10 1.51 1.47 0.70 0.50 0.78 0.89 0.93 0.86
0.61 1.88 5.58 11.83 39.19 0.58 1.59 3.16 4.18 5.39

MSE (10�2�) 1.09 2.98 7.09 13.30 39.89 1.08 2.37 4.05 5.11 6.25

B-spline - 14 1.75 1.62 1.50 2.13 6.45 0.54 0.85 1.02 1.16 2.14
0.40 0.90 2.29 6.79 265.54 0.63 1.73 3.85 5.99 27.16

MSE (10�2�) 2.15 2.52 3.79 8.92 271.99 1.17 2.58 4.87 7.15 29.30

Table 5: MC-study1: MSE of sieve estimators of nonlinear h.

IV-estimator, J2n = 25 LS-estimator
� �

hn - kn 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00
B-spline - 9 0.50 0.78 0.90 0.94 0.86 18.77 18.42 18.48 18.39 18.37

0.58 1.59 3.16 4.18 5.39 0.09 0.11 0.11 0.12 0.12
MSE (10�2�) 1.08 2.37 4.06 5.12 6.25 18.86 18.54 18.50 18.51 18.49

P-spline - 6 1.76 1.31 0.95 0.98 1.04 19.50 18.82 18.53 18.49 18.48
0.36 0.73 1.27 2.19 3.04 0.06 0.07 0.09 0.09 0.09

MSE (10�2�) 2.12 2.04 2.22 3.17 4.08 19.56 18.89 18.62 18.58 18.57

Notes: The three elements in each cell are, from top to bottom, integrated squared bias (10�2�), integrated
variance (10�2�) and integrated mean square error (MSE) (10�2�).
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Table 6: MC-study2: MSE of sieve IV-estimators of nonlinear h, bivariate Normal design

kn = 6, J2n = 23 hn=B-spline, mn=B-spline hn=Herm., mn=Cosine or Herm.
� �

0.40 0.10 0.01 0.001 0.00 0.40 0.10 0.01 0.001 0.00
uniform X2 mn=Cosine

Bias2 (10�2�) 0.73 0.43 0.39 0.51 0.53 1.62 0.77 0.77 0.77 0.69
Var. (10�2�) 0.18 0.32 0.47 4.71 7.06 0.27 0.73 1.02 1.48 2.35
MSE (10�2�) 0.91 0.75 0.86 5.22 7.59 1.89 1.50 1.79 2.25 3.04
normal X2 mn=Hermite

Bias2 (10�2�) 0.83 0.47 0.37 0.15 0.15 2.30 0.83 0.84 0.95 0.67
Var. (10�2�) 0.20 0.33 0.46 2.69 3.73 0.51 1.81 2.26 5.04 21.23
MSE (10�2�) 1.03 0.80 0.83 2.84 3.88 2.81 2.64 3.10 5.99 21.90

Table 7: MC-study2: MSE of sieve estimators of nonlinear h, bivariate Normal design.

kn = 9 IV-estimator, J2n = 23 LS-estimator
normal X2 � �

0.40 0.10 0.01 0.001 0.00 0.40 0.10 0.01 0.001 0.00
hn=Bspl, mn=Bspl
Bias2 (10�2�) 0.69 0.43 0.23 0.17 0.17 19.40 19.24 19.11 19.12 19.12
Var. (10�2�) 0.34 0.52 1.24 6.23 6.57 0.07 0.08 0.09 0.11 0.11
MSE (10�2�) 1.03 0.95 1.47 6.40 6.74 19.47 19.32 19.20 19.23 19.23
hn=Herm, mn=Herm
Bias2 (10�2�) 1.48 0.52 0.56 1.63 1.76 16.69 18.34 18.67 18.90 19.17
Var. (10�2�) 0.41 1.76 2.66 5.50 23.62 0.06 0.05 0.06 0.06 0.08
MSE (10�2�) 1.89 2.28 3.22 7.13 25.38 16.75 18.39 18.73 18.96 19.25
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Figure 1: MC-study1: LS- and IV-estimator of nonlinear h, kn = 9.
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Figure 2: MC-study1: LS- and IV-estimator of linear h, kn = 9.
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Figure 3: MC-study2: IV-estimator of nonlinear h, instrument X2/� (X2), kn = 6, � = 0:0.
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Figure 9: Engel curve for leisure. - - w/ children, � w/o children, ++ 95%-con�dence bands
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Footnotes
1We thank the co-editor Whitney Newey, several (at least three) anonymous referees, C. Ai, D. Andrews,

V. Chernozhukov, I. Crawford, J. Hahn, J. Hausman, B. Honore, J. Horowitz, A. Lewbel, J. Powell and

J. Robin for helpful comments. The �rst version was presented in 2001 North American Winter Meetings

of the Econometric Society in New Orleans, and the seminars at CREST, Stanford, Toulouse, UPenn,

Harvard/MIT, UCLA, Virginia, Yale and Columbia. This study is part of the program of research of the

ESRC Centre for the Microeconomic Analysis of Fiscal Policy at IFS. The authors gratefully acknowledge

�nancial supports from ESRC/UK (Blundell and Chen) and NSF/USA (Chen). The usual disclaimer applies.

2See Newey, Powell and Vella (1999) for a nonparametric CF approach and also the reviews by Blundell

and Powell (2003), Florens (2003) and Florens, Heckman, Meghir and Vytlacil (2007). Blundell, Duncan

and Pendakur (1998) allow for endogeneity of total expenditure using a parametric additive CF approach

within the context of a kernel regression framework.

3In the mathematics and statistics literature, there are many results on convergence rates for linear

ill-posed inverse problems of the form Th = g, where T is a known compact operator and g is known up to

a small additive perturbation �. See, e.g., Kress (1999), Korostelev and Tsybakov (1993), Donoho (1995),

Engl, Hanke and Neubauer (1996), Cavalier, Golubev, Picard and Tsybakov (2002) and Cohen, Ho¤mann

and Reiss (2004). However, the nonparametric IV regression in econometrics corresponds to an ill-posed

inverse problem in which both the conditional expectation operator T and the g are unknown; see Carrasco,

Florens and Renault (2006) for a recent review.

4Since budget shares should add up to one, total number of goods is actually L+ 1. Provided the same

basis functions are chosen to approximate hl(Y2i � �(X 0
1i�1)); l = 1; :::; L; the SMD estimators we propose

will be invariant to the commodity omitted.

5This is nested within the fully nonparametric speci�cation (1). Blundell, Duncan and Pendakur (1998)

compare this speci�cation (2) with the fully nonparametric alternative and �nd that it provides a good

representation of demand behavior for households in the FES.

6Let ĥj be the estimate of ho from the j�th simulated data set, and h(y) =
P100
j=1 ĥj(y)=100. The

pointwise squared bias is [h(y) � ho(y)]
2 and the pointwise variance is 100�1

P100
j=1[ĥj(y) � h(y)]2. All the

tables report the integrated squared bias as
R y
y [h(y) � ho(y)]

2dy, where y and y are respectively the 2.5th

and 97.5th empirical percentiles of Y2 from the no-kids subsample data fY2ign=628i=1 ; the reported integrated

variance and MSE are computed in a similar way. Another way to report Monte Carlo integrated squared

bias is to use 628�1
P628
i=1[h(Y2i)� ho(Y2i)]2; similarly to report the integrated variance and MSE as sample

average across the no-kids subsample data. We have tried both, although they give di¤erent numbers (the

ones computed using numerical integration against y 2 [y; y] are generally bigger), the qualitative patterns
are the same.
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7Alternatively we could �x � value but slightly increase the number of sieve terms kn in the estimation

of h using the bootstrap sample. We have tried this as well and the results are similar.

8Newey (1997) also supplies us with a consistent estimator of the asymptotic variance of bh(y2) in the
exogenous case, which can be used to construct alternative con�dence bands. Since the endogenous case

with identity weighting is simply a penalized 2SLS regression, we can easily compute an estimate of the

asymptotic variance of bh(y2) in the endogenous case, still assuming that it is asymptotically normal. This
gives con�dence bands very similar to the ones obtained by the bootstrap, both in the exogenous and

endogenous cases.

9In general, a smaller penalization is needed in the semiparametric estimation compared to the fully

nonparametric one. This owes to the fact that in the semiparametric speci�cation the same h-function

is used for both household groups, while in the non-parametric estimation a di¤erent h is used for each

group. This allows us to pool the two groups of households in the semiparametric estimation, while in the

nonparametric setting we treat the two groups separately.

10Inspection of the associated plots for the Engel curves h show that the overall shapes and turning

points are maintained for these alternative sieve basis approximations. These �ndings are consistent with

our Monte Carlo results.
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