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5.1 Introduction 

The integration of temporal information into Geographical Information Systems (GIS) 
has been the subject of extensive research for many years (Bergougnoux, 2000; 
Egenhofer and Golledge, 1998). This intense research effort stems from the inherent 
contradiction between GIS data models (be it raster or vector) and computer 
representations of dynamic processes. Due to their cartographic roots, data models in GIS 
have been designed to capture a static snapshot of reality (Albrecht, 2005). Thus, typical 
representations in GIS, where each layer is presented as a single file (such as those 
described in Tomlin, 1990), are geared towards describing the state of the study area at a 
single point in time. Over the years, representations that deal with temporal changes have 
been developed, especially within the context of spatial databases, where the changes can 
be handled at the feature level, instead of a monolithic handling of a whole layer 
(Worboys and Duckham, 2004). 

Representations have been developed for dynamic phenomena where the challenges stem 
from the rate of updates and the need to visualise changes rapidly. Indeed, many solutions 
have been devised to deal with the dynamic aspect of GIS. In the vector model, for 
example, dynamic segmentation has been developed to allow the representation of 
changing events along static vector features. This representation is especially common in 



transport applications of GIS (Longley et al., 2001). In the raster model, dynamic 
modelling capabilities have been developed and implemented within packages such as 
PCRaster (Van Deursen, 1995) or IDRISI (Park and Wagner, 1997).  

Despite these developments, the modelling of dynamic entities and processes in a GIS is 
still an active research issue (Couclelis, 2001; Laurini, 2001). The reason for this 
continued interest, as Laurini (2001) noted, is that there are many applications in which 
real-time dynamic representation is required. These applications range from 
environmental monitoring of pollutants to the management of a vehicle fleet. The recent 
advances in real-time location tracking, communication, digital mapping availability, and 
the continued increase in computing power make these types of applications feasible, at 
least technically. As the technical challenges of implementing dynamic GIS diminish, 
researchers are now free to focus on the theoretical and conceptual challenges of the 
integration of temporal and dynamic aspects within GIS in novel ways.  

This chapter focuses on Map Calculus (Haklay, 2004) and its potential applications in 
dynamic GIS. Map Calculus is an alternative to current representations in GIS, and is 
based on the use of function-based layers in a GIS (Haklay, 2004). A function-based 
layer is defined as the symbolic representation of a mathematical and spatial function. 
Map Calculus is best explained by comparing its core concepts to the current practice of 
representing surfaces in GIS in grids (rasters). The use of functional representation of 
layers existed in computer models in meteorology for many years (Goodman, 1985) and 
is being used in some global climate models, but it was not adopted in GIS and spatial 
analysis. The main strength of the new representation is the ability to treat analytical 
layers (layers that are based on manipulation of real world observations) in their symbolic 
form, in a similar way to the manipulation of mathematical functions in software 
packages such as MATLAB. This can increase the GIS analytical toolbox and open up 
new directions in spatial analysis research.  

In this chapter, the application of Map Calculus for dynamic GIS is examined and 
explained through the comparison with Tomlin’s (1990) Map Algebra and Cartographic 
Modelling. The reason for this comparison is the link between Map Calculus and Map 
Algebra at the conceptual level, as explained in Haklay (2004), and the long use of Map 
Algebra and Cartographic Modelling (Tomlin and Berry, 1979) in environmental 
modelling and in dynamic GIS. Of course, dynamic GIS can be implemented in vector-
based or object-based representations. However, the comparison of Map Calculus to 
these representations is beyond the scope of this chapter.  

This chapter opens with a general comparison of Map Calculus and Map Algebra and 
Cartographic Modelling using an interpolation function and a simplified environmental 
model. Through these examples, the main principles of Map Calculus are explained and 
clarified. The following section moves to discuss the challenges of dynamic modelling in 
GIS, exploring the ways in which it is implemented in Map Algebra (Tomlin 1990) and 
in PCRaster (Van Deursen, 1995) and outlining how such models can be implemented in 
a Map Calculus-based system. The chapter ends with conclusions and future directions 
for research. 



5.2. Comparing Map Algebra and Map Calculus 

5.2.1 Implementing spatial interpolation  

The comparison of Map Calculus with Map Algebra provides a way to explain the main 
principles of Map Calculus, by allowing the reader to contrast them with the more 
familiar procedures of Map Algebra and Cartographic Modelling. For a detailed 
conceptual outline of Map Calculus see Haklay (2004). To make the comparison 
concrete, two common procedures in GIS are used here: the creation of an interpolated 
surface, using Inverse Distance Weighted (IDW) function and the implementation of a 
spatial model through overlay functions. Naturally, these two examples do not reveal the 
full range of GIS operations that are available under Cartographic Modelling and Map 
Algebra (Tomlin, 1990) which include local, neighbourhood and zonal operations. 
However, within the confines of this chapter, the two examples set the scene for the 
discussion of dynamic models in the next section.  
 
IDW is a common interpolation method and it is used widely within GIS. Like all 
interpolation functions, IDW operates on a set of sampled points (L1,L2,…Ln) and 
calculates the value for a new location L’ by using the following equation: 

(5.1)       
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where di is the distance from L’  to the location Li, and p is a power of the distance. 
Usually, the search radius is taken as a parameter of the function to limit the influence of 
remote data points. It is noteworthy that implementation of IDW function has been used 
for GIS research since its early days (for example Shepard, 1968). 
 
In a GIS where Tomlin’s Cartographic Modelling is implemented, IDW will be 
calculated in the following way. First, the user selects the spatial extent of the area for 
interpolation. Next, the user sets the spatial resolution (pixel size) of the grid that will be 
used to store the result of the IDW function. The next stage includes the main 
computational step – for each pixel, the computer takes the co-ordinates of the centre of 
the pixel, and uses them to calculate the IDW value for the cell. This is done by selecting 
data points from the search radius and including them in the calculations. The final value 
is stored in the pixel. Once all the values for all pixels have been calculated, the system 
writes the grid file and stores it on a mass storage unit – usually a hard disk – for future 
use. This process is represented in Figure 5.1(A).  
 
In Map Calculus-enabled GIS, when the user requests the GIS to calculate the function, 
the system will register the manipulation in a symbolic form. If the point set is the layer 
“Height values”, then the system will register a new layer as: 
 

(5.2) IDW(“Height values”, P 1 ... P n) 
 



where P1 to Pn are the parameters needed for this instance of the generic IDW formula. 
These will include search radius, the number of points that can be included in the 
computation etc. The procedure for the definition of a function-based layer does not 
require any computation, but only the functionality to record the fact that the user made a 
decision to apply the function f to the data set x with parameter set p. Given the layer 
“Height values”, with the field “Z” holding the actual values, search radius of 1000 units, 
power of 2, and a maximum of 12 neighbouring points, the internal representation of the 
layer can be: 
 Function -> “IDW” 
 Layer -> “Height Values” 
 Parameters -> (“Z”,1000,12,2) 
 
The stored definition of the layer can be used in other layers which are based on it, as 
explained in the next section. The computation of the function happens when the user 
requests the GIS to visualise the layer. When this happens, the GIS will calculate the 
value of the function for each pixel on the active display area of the screen. The GIS can 
use parameters, such as screen resolution and the current scale of the map, to minimise 
the amount of calculations. For example, if a user uses a common screen resolution of 
1024x768, then the effective area of the map in a common GIS package (such as ArcGIS) 
is approximately 800x600 pixels, due to the elements of the graphical user interface 
which occupy the rest of the screen, such as the title bar, the status bar, and toolbars. The 
active area requires about 480,000 calculations – not a major load on modern central 
processing units (CPUs).  
 
Within the active area, each pixel’s location can be calculated by using the current scale 
of the map, and the area on which the user is focusing. This will provide the definitions 
for the co-ordinates of each pixel. As the user zooms out or in, the scale of the map 
changes, and new calculations for the currently displayed area are carried out. Hence, to 
the system’s user, a Map Calculus-enabled GIS behaves in the same way as any other 
GIS. This process is depicted in Figure 5.1(B). 
 



Figure 5.1 – Computation of a function in a standard GIS (A) and in a Map Calculus-enabled system (B) 
 
Another scenario for calculation occurs when the user wants to explore the grid with 
other (existing) grid layers. For this, Map Calculus-enabled GIS will have a separate 
interface that will allow the user to define the extent of the area to which the output is 
required and the resolution of the output grid. This grid will be produced in the same way 
as in standard implementations, by calculating the value for each pixel and producing a 
file.  

5.2.2 Site Suitability Analysis 

The major difference between Map Calculus and Tomlin’s representation occurs when a 
set of layers is manipulated in order to complete an analytical task. For example, assume 
the problem that the user would like to solve is to create a suitability map for the 
construction of a wind farm in a study area of 10 km by 10 km. There are three wind 
farms in a given area, as well as five farm buildings. A data set of height values for 
sample points in the study area was assembled through a field survey. The suitability 
criteria is that the location must be within 1 km of an existing farm building, but over 1.5 
km from an existing wind farm and in an area with a height over 500 m above sea level. 
The steps of the analysis are presented in Figure 2. 
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Figure 5.2 – Cartographic Modelling of Site Suitability Analysis  

 
In a standard GIS representation it is common to use Tomlin’s (1990) Map Algebra for 
such a task. Map Algebra provides a range of mathematical and spatial operations that 
can be carried out on a single layer (i.e. calculating slope) or between layers (i.e. adding 
cost surface to road network). This enables the user to construct sophisticated models by 
using these mathematical and spatial operations to merge layers. In each step of the 
process some operations are defined on grid layers, and, importantly, the output is a grid 
layer, too.  
 
Thus, in its most generic form, the manipulation of grid layers in Map Algebra operates 
in the form: 
 
 (5.3)    OutputRaster = f(InRaster 1, … InRaster n, P 1, … P n)  
 
where the function f will have 0 or more input layers (InRaster1, … InRastern) and 0 or 
more scalar parameters (P1, … Pn). In any function, there will be at least one input layer 
or parameter. The most notable aspect of this form is that each operation will result in an 
output layer which will be a grid. For example, the IDW function that was described in 
equation (5.3) can be represented in Map Algebra as: 



 
 (5.4)     IDWHeight = IDW(“Height values”, P 1 ... P n) 
 
Importantly, the difference between this form and the one presented in equation (5.2) is 
that in Map Calculus, the computation ends in the definition of the layer, whereas in Map 
Algebra, the computation ends with the production of the grid layer IDWHeight.  
 
Operationally, in Map Algebra, the analysis of the site suitability problem will require the 
creation of five or six grid layers that will be used during the process: the IDW grid, 
followed by a grid containing areas above the required height, two buffer grids and the 
final suitability grid. In some systems, Map Algebra operations are limited to binary 
operation, and thus the overlay will require two steps and a temporary grid. As noted, our 
study area is 10 km by 10 km, and, therefore, the relevant area for the analysis can be 
calculated as follows: there are 5 farm buildings, and the new wind farm can be located 
within 1 km from an existing building. Thus, the area that is potentially suitable for the 
new wind farm is 15.7 km2. Despite this, if the user selects pixel resolution of 5 m, the 
process includes up to 24,000,000 computations of which 83.3% are redundant. These 
excessive computations might lead to operational compromises such as a decision to 
increase pixel size, which reduces the overall accuracy of the model.  
 
It is also notable that, while the cost of digital storage has reduced dramatically in recent 
years, the management of multiple grid layers is still a technical and practical problem. 
While the latest version of ArcGIS has no limitations on the size of a grid layer, creating 
a grid of 23,000x23,000 cells of random floating point numbers will lead to an output file 
of 2.147 gigabytes (ESRI, 2004). Thus, a model with multiple grids can lead to very 
significant data volumes.  
 
In Map Calculus, the use of symbolic representation of the layers guarantees very 
efficient storage. In the case of the earlier analysis, the process will include only one 
output and this may be produced only at the end of the modelling process. The GIS will 
operate as follows. First, the system will record that the user requested to perform the 
function IDW over the “height points” layer, as well as the buffers. The internal 
representation may look like: 
 
 

 
As noted, each function includes reference to the input data set, and a list of parameters 
for this instance of the function. Hence, IDW holds four parameters as explained in the 
previous section. In the buffer functions, the parameter provides the distance in map units 
(metres in this case).  
 
The next stage is to create the model. This can be represented in the symbolic form: 
 

Layer ID Layer definition 
1 IDW(“Height points”,”Z”,100,12,2) 
2 Buffer(“Wind farms”, 1500) 
3 Buffer(“Farms”,1000) 



(5.5)  Locate(Value(IDW(“Height points”,“Z”,100,12,2))>500  
& Outside(Buffer(“Wind farms”, 1500)) & 
Inside(Buffer(“Farms”,1000)))  

 
where Locate is a function that locates areas; Value provides a selection of output values 
from a surface function; and Outside and Inside are the definitions of the locations 
outside or inside the defined layer.  
 
The final step is the visualisation of the map, possibly by creating an output grid file. In a 
Map Calculus-enabled GIS, the computation will include optimisation – before turning to 
calculate the more complex IDW function, the system will evaluate the other parts of the 
equation and find the area that incorporates layers 2 and 3. The resulting area will be the 
only part of the map for which IDW calculations will be carried out. The values will be 
compared to the value in the equation, and only areas above the required threshold will be 
marked on the final map.  
 
This method of computation provides more precise results than it is possible to achieve 
with typical Map Algebra implementations, because of the compromise in pixel size that 
was explained in the previous section. This is especially relevant when a complex model 
is being computed, where it is more likely that users will choose large pixel size to allow 
faster computation, as the selection of small pixel size has a knock-on effect on the whole 
process. Another problem emerges in Map Algebra when data is computed with different 
pixel sizes, or when there is some shift in the origin of the grid, and, therefore, the pixels 
from one grid do not match the pixels of the other grid accurately. In such cases, the 
binary operation needs to take into account the process of combining the two grids and 
this introduces errors into the model. All this is eliminated in Map Calculus, as the 
computation is carried out in the last step in a way that takes into account the full model 
and the specific aspects of each function that is being used in it.  

 

5.3. Dynamic modelling in Map Algebra and Map Calculus  

5.3.1 Spatio-temporal problem solving 

In their original form, Cartographic Modelling and Map Algebra did not have explicit 
dynamic capabilities. Temporal aspects of geographical problems were translated into 
static representation. For example, assume that a goods delivery company is managing a 
vehicle fleet. The location of all vehicles is known, as they are equipped with satellite 
navigation systems and radio equipment. Information about the average speed in each 
road in the study area is provided in real time via traffic monitoring. As part of the 
system, the designers want to integrate the functionality to calculate the maximum travel 
time of each vehicle back to the warehouse. In this case, the Cartographic Model shown 
in Figure 5.3 applies. 
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Figure 5.3 – Cartographic Modelling of Vehicle location analysis  

The process in Figure 5.3 uses three input data sets – the location of the warehouse, the 
location of the vehicles and a map of the roads in the area. Following Tomlin’s method 
(1990, p. 143), the first step in the computation involves reclassifying the different roads 
according to their travel speed, by associating a lower value with roads on which it is 
possible to travel fast, and vice versa. Areas that are not part of the road network are 
classified as “no data”, to indicate that they should not be part of the calculations.  
 
The map with the classified road network is then used to construct the travel-time map. 
For each location on the map, the distance from the warehouse is calculated. First, a 
network distance from the warehouse is calculated for each pixel, and information about 
the different classes of roads along the path is summarised. This information is then used 
to calculate the travel time by dividing the average speed for each type of road by the 
length of the segments belonging to this type on the path. The final value is then stored 
back in the pixel, representing the travel time from this point to the warehouse.  
 
Once the travel time has been calculated, the location of the vehicles can be taken from 
their logs. Because it is assumed that the satellite navigation co-ordinates can give an 
inaccurate location of up to 30 metres and, therefore, the location can potentially be a 
location with “no data” value, a 50-metre buffer is created around each vehicle location 
to ensure that the observation is associated with a road.   
 
The final step of the computation involves finding the pixel within the buffer with the 
highest time value. This procedure should be performed for each vehicle, and the output 
values will provide the requested answer. 
 



The Cartographic Modelling procedure requires the creation of four grid layers within the 
model. It can be assumed that there is no need to compute the road network connectivity 
model in each run of the model, but all the rest of the information should be computed in 
real time – the association of road segments with average speed, the location of the 
vehicles, and the shortest path of the vehicles to the warehouse. This is another class of 
Map Algebra functions: 
 
 (5.6)    Values = f(InRaster 1, … InRaster n, P 1, … P n)  
 
where, as in equation (5.3), the input is a set of grids and parameters, but the output is a 
set of values.  
 
In Map Calculus, the model will be constructed from a set of building blocks, all 
presented as functions. The functions will include calculating a distance over a network, 
and calculating the nearest road segment to a given point. The layer definition will be of 
the form: 
 

 (5.7)  NetworkTime(Nearest(“Vehicles”,“Roads”), 
“Warehouse”,“Roads”,“RoadTypeTable”) 

 
where NetworkTime is a function that calculates the time on the network from the 
vehicles to the warehouse, and Nearest adjusts the location of the vehicles to the nearest 
segment on the road network. NetworkTime takes four parameters: origin, destination, 
network and a lookup table that translates the identification code of each road segment to 
average speed. The lookup table can be updated continuously from real time data.  
 
The fundamental difference between this model and the wind-farms siting case is that the 
current model needs to be rerun with every new input. In such situations, processing of 
multiple grids becomes a real hurdle in the provision of a timely response to the system’s 
user. The main reason for the delay in response time is the redundant computations that 
do not contribute to the solution of the problem. This is a problem common to most Map 
Algebra and Cartographic Modelling implementations, where the algorithms perform the 
computations for all the pixels in the grid. In practice, it is unlikely that raster-based GIS 
will be used to solve this type of problem, and a vector-based GIS with a bespoke 
implementation of the Nearest function will be used instead of a generic buffering.  
 
In a Map Calculus-enabled GIS the functions Nearest and NetworkTime can be optimised 
to ensure that they are not performing any computation that does not contribute to the 
final output. In this case, the optimiser can calculate first the Nearest function, which 
provides the location of the vehicle. This information will be used to calculate 
NetworkTime not for the whole network, but just for the parts of the network that 
contribute to the shortest path calculations for each vehicle.  
 
The reason for the shortcoming of standard GIS implementations is that GIS is 
constructed as a toolbox where all operations are atomised, and, therefore, designed in a 
generic way that cannot take into account the specific context in which they are utilised. 



In Map Calculus, the final model includes all the building blocks and the system can 
understand the semantics of the model. This ability will allow the creation of an optimiser 
that will reduce the number of calculations that are required to solve a specific problem.  

5.3.2 Dynamic modelling 

The example in the previous section dealt with spatio-temporal problem solving, where 
the GIS is required to represent information about a dynamic situation in the real world. 
As explained, the main challenge for the GIS is in handling temporal inputs and the need 
to process these inputs rapidly. Yet, the final output is static – it represents reality at a 
given snapshot in time when the inputs were sampled.  
 
In contrast, in dynamic modelling within a GIS, the challenge is to represent a process in 
which both time and space influence the outcome. When such a process is modelled in a 
GIS, the ability of the GIS to integrate multiple data sources is invaluable, as it provides 
the framework for the model, such as the location of various physical features, the areas 
in which certain conditions apply etc. At the same time, the representation of dynamic 
phenomena within a GIS is especially challenging, due to the static nature of its data 
models (Albrecht, 2005).  
 
In recent years, there has been a growth in interest in the representation of dynamic 
models using Cellular Automata and Agent-Based Modelling (Albrecht, 2005; Couclelis, 
2001). However, most of these models are loosely linked to a GIS, and operate in a 
separate computing environment.  
 
Within GIS, PCRaster (Van Deursen, 1995) provides the clearest implementation of 
dynamic modelling which is tightly coupled with a fully functional GIS. PCRaster has 
been developed as a raster-based GIS with dynamic modelling capabilities and integrates 
a scripting language that was deliberately designed to allow domain experts, who are not 
necessarily GIS experts, to create their own models (Van Deursen et al., 2000). 
Noteworthy are PCRaster origins in physical geography with a focus on geomorphology 
and hydrology, although PCRaster has been used in other application areas. The system’s 
database supports dynamic modelling by providing “…time series indexed on time and 
location, and by stacks of map layers representing the status of the model at different time 
steps” (Wesseling et al., 1996). 
 
In PCRaster, a dynamic model will be programmed by setting a script that will have the 
following structure (Van Deursen 1995): 
timer BeginTime, EndTime, TimeStep; 
initial InitiateModel; 
dynamic ExecuteModel; 
 
The timer statements inform the system about the simulation step by setting values for the 
beginning of the model run and the end time for the model run (thus, timer 1 20 1 will 
mean 20 iterations through the model). The initial statement provides instructions for 



setting up the model’s environment, while the dynamic part will include the instructions 
that will be executed at each step of the model run.  
 
To compare the way in which a dynamic model can be executed in a Cartographic 
Modelling-based system and in Map Calculus, the next simple example will be used. A 
point-source pollution moves in a straight line, releasing a substance at a steady rate. The 
environment to which the pollution is released is stable and it spreads in all directions at 
the same rate. As a result, the pollutant will spread to a larger area, but at a reduced 
concentration as time passes. The model is depicted in Figure 5.4.  
 

 
Figure 5.4 – Model of a point-source pollution: the source (rectangle) moves in the direction of the arrow, 

and releases substance, spreading out as a function of time.  

 
In a system like PCRaster, the model may be implemented in the following way 
(described here as pseudo-code, and not in PCRaster language):  
timer 1, 20, 1; 
initial  
# Location – the location of the point-source 

Location = StartLocation; 
 

dynamic  
PollutGrid = Spread(PollutGrid); 
# SeedPollution – discharge at T0 
PollutGrid = PollutGrid + Location*SeedPollution; 
Report PollutGrid; 
Location = Location(x+dx,y+dy); 

 
The core of the process is implemented through a Spread function. This function takes a 
grid, in which there are several cells with a concentration of substance, and spreads the 
levels of concentration to the neighbouring cells, following predefined rules. In each step 
of the computation, the PollutGrid represents the state of the substance spread at a 
specific point in time. The last statement advances the computation to the next location of 
the pollution source.  
 
In Map Calculus, this model will be presented in the following way. The concentration of 
the pollutant at any given point can be represented in a differential equation, which 



describes the concentration of the pollutant at a given location at time T. The definition of 
the function will be in the form: 
 
 Function -> “PointsourceSpread” 
 Layer -> “Start location” 
 Parameters -> (T0, InitialConcentration, Speed, De cay) 
 
where PointsourceSpread is the generic function for the calculation of point-source 
pollution, and stores the algorithm to solve the differential equation; “Start location” 
describes the point from which the modelling will start; and the parameters describe the 
start time of the model (T0), the discharge concentration, the movement speed and the 
decay speed of the substance.  
 
When the model is executed, the user is asked to enter the time over which they would 
like to view the dispersion model. This input, together with the stored parameters, allows 
the calculation of the concentration values for any location directly from the general 
equation. This can be done because the differential equation encapsulates the temporal 
dimension of the model and, therefore, can calculate the model’s output for any unit of 
time that passed from T0.   
 
Three aspects are emerging from the comparison of the two methods. They are: the way 
in which the state of the computation is carried in the system, the handling of the 
temporal dimension and the output volume.  
 
In Cartographic Modelling, the state of the computation is stored in the grid and not as 
part of the logic of the model. The state of the system is the description of the 
environment at each time step. The computational steps of the model deal with the 
procedures that advance the system from one state to the next – adding more substance as 
the pollution source progresses, spreading the concentration and moving the source to its 
next location. These, however, do not reveal anything about the state of the 
environmental system. Indeed, the state of the system is being carried via the 
computation in the data structure PollutGrid. This grid is acting as the memory of the 
system. In Map Calculus, the state of the system is explicit. The functional representation 
holds the information about the environmental process that is being modelled, as well as 
the specific aspects of the instance – the time in which the discharge started, the level of 
concentration etc.  
 
As noted in the previous section, the majority of GIS implementations are based on 
generalised algorithms which do not take into account the specific aspects of the input or 
the operation. The ability of Map Calculus to take the function and the data set into 
account opens up the potential for more “intelligent” algorithms which “understand” the 
nature of the data and the manipulations that the user wishes to apply on them.  
 
The second difference is in the handling of time. Note that in the Cartographic Modelling 
approach, the Spread function is oblivious to the specific time step – it works by 
spreading substance concentrations across neighbouring cells using a neighbourhood 
operator which is not influenced by the temporal dimension in an explicit way. This is a 



good demonstration of Couclelis and Liu’s (2000) insight that “…models can predict the 
future to the extent that they are not about the future. We can indeed predict many aspects 
of what is to come because events are constrained by several different kinds of 
determination that are in themselves outside of time” – the implementation of Spread is 
clearly a-temporal. Because the computational steps do not encapsulate the temporal 
element, it is the data set that stores the state of the system at a given moment, as noted 
previously. Importantly, the user is forced to use a discrete view of time where the 
progression from one step to the next occurs in discrete units, each of them presented as a 
full step of computation.  
 
By contrast, in Map Calculus the temporal aspect is an integral part of the differential 
equation. Time is expressed explicitly as the difference between T0 and the current time. 
While Couclelis and Liu (2000) still holds true, as the model itself is deterministic, it is 
clearly spatio-temporal and linked directly to the mathematical description of the model. 
Here, the handling of time is as a continuous element, and the user can request the model 
to produce output for any given point in time.  
 
Finally, the difference in output is noteworthy. In Cartographic Modelling, in each 
computational step, the user must create an output grid (the Report statement in the 
script) and store it for future reference. The reason for this is that the internal 
representation of the system’s state (PollutGrid) is written over in each step, and it is 
essential to store a description of each step, as otherwise the GIS will need to repeat the 
full computation from the first step to the place that the user wants to examine (see 
Wesseling et al., 1996, for an example of such an output). In Map Calculus, the 
calculation is performed in real time, and there is no need to store it, as the system can 
always produce an output by changing the current time value. Furthermore, it is easy to 
see that in a Map Calculus-enabled GIS, the user can instruct the system to produce 
values for a specific time frame automatically and to create animations which are 
valuable in understanding dynamic processes (Peterson, 1993).  

5.4. Conclusion and Future Developments 

Map Calculus provides a different way to manipulate layers in a GIS and the comparison 
of its principles to Map Algebra and Cartographic Modelling demonstrates its advantages 
over current representations in GIS. It provides an explicit representation of the spatial 
functions and their manipulation, provides a compact storage of function-based layers, 
and enables the interrogation of function-based layers at any required resolutions. 
 
Within the context of dynamic GIS, Map Calculus allows easier linkage to rapidly 
changing inputs and the implementation of a dynamic model where the model is based on 
differential equations. These aspects will make the GIS more accessible to domain 
experts, as they can focus on the construction of the model and not on the finding of a 
way to translate the conceptual model to the constraints of the GIS. PCRaster is already 
offering such a translation (Van Deursen et al., 2000) but is limited by the structural 
constraints of Cartographic Modelling and Map Algebra. Map Calculus should be seen as 



the next step in making the GIS accessible to domain experts who are not familiar with 
GIS.  
 
It is important to remember that Map Algebra and Cartographic Modelling have their 
own advantages. Of these, the simple and accessible data mode, which is based on the 
tessellation of the study area, holds a primary position. Indeed, the grid model is now 
used widely for dynamic models, especially in Cellular Automata models (Couclelis, 
2001). Another advantage of these techniques is that the algorithms are simple to 
implement: the universal grid structure simplifies the processing and provides a clear 
conceptual framework. Even with the redundant computations, modern implementations 
provide reasonable response time and they are used for many applications of GIS.  
 
At the same time, Map Calculus poses certain challenges. These include the 
reformulation of common GIS operators, creation of a function optimiser and 
consideration of optimal visualisation methods. Once these issues have been solved, Map 
Calculus can open up new avenues for spatial analysis and applications of Geographical 
Information Science. 
 
Most importantly, Map Calculus is implemented only as a basic prototype. As such, its 
ability to handle and manipulate geographical data sets is very limited. A full evaluation 
of Map Calculus potential in geographical problem solving will be possible only through 
a full implementation of a system that will support it.  

5.5. References  

Albrecht, J. (forthcoming) ‘Dynamic GIS’, In Wilson, J. and S. Fotheringham (ed.) 
Handbook of Geographic Information Science, Blackwell publishers. 

Bergougnoux, P. (2000) ‘Editorial: A Perspective on Dynamic and Multi-Dimensional 
GIS in the 21st Century’, GeoInformatica vol. 4, no. 4, pp. 343-348. 

Couclelis, H. and Liu, X. (2000) ‘The Geography of Time and Ignorance: Dynamics and 
Uncertainty in Integrated Urban-Environmental Process Models’. In Proceedings, 
GIS/EM4 Conference: www.Colorado.edu/research/cires/Banff/upload/136. Last 
accessed: 20th June 2005. 

Couclelis, H. (2001) ‘Model Frameworks, Paradigms, and Approaches’, In Clarke, K.C. 
Parks, B.E. and Crane M.P. (ed.) Geographic Information Systems and Environmental 
Modeling, New York: Prentice Hall, pp. 34-48. 

Egenhofer, M. J. and Golledge, R. G., (1998) Spatial and Temporal Reasoning in 
Geographic Information Systems. New York: Oxford University Press. 

ESRI (2004) What is the maximum size a grid can be? 
http://support.esri.com/search/kbdocument.asp?dbid=14575 last accessed 25th November 
2004. 

Goodman, A. (1985) Surface Analysis: a Structured Bibliography, Working paper 17, 
Department of Geography, Monash University 



http://www.deakin.edu.au/~agoodman/publications/biblio/surfacebiblio.html  last 
accessed 1st August 2002. 

Haklay, M. (2004) ‘Map Calculus in GIS: a Proposal and Demonstration’, International 
Journal of Geographical Information Science (IJGIS), vol. 18,  no. 1, pp. 107-125. 

Laurini, R. (2001) ‘Real Time Spatio-Temporal Database’, Transactions in GIS, vol. 5, 
no. 2, pp. 87-97. 

Longley, P., Goodchild, M., Maguire, D. and Rhind D. (2001) Geographical Information 
Systems and Science. New York: Wiley. 

Park, S. and Wagner, D. F. (1997) ‘Incorporating Cellular Automata Simulators as 
Analytical Engines in GIS’ Transactions in GIS, vol. 2, no. 3, pp. 213-231. 

Peterson, M.P. (1993) ‘Interactive Cartographic Animation’ Cartography and 
Geographic Information Systems, vol. 20, no. 1, pp. 40-44. 

Shepard, D. (1968) ‘A Two-Dimensional Interpolation Function for Irregularly Spaced 
Data’ Proceedings 23rd ACM National Conference, pp. 517-524. 

Tomlin, C.D. and Berry, J.K. (1979) ‘A Mathematical Structure for Cartographic 
Modeling in Environmental Analysis’ Proceedings of the Annual Meeting of the 
American Congress on Surveying and Mapping and the American Society of 
Photogrammetry, Falls Church, VA. pp. 269-283 

Tomlin, D. (1990) Geographic Information Systems and Cartographic Modelling. 
Englewood Cliffs: Prentice Hall. 

Van Deursen, W.P.A. (1995) Geographical Information Systems and Dynamic Models: 
Development and Application of a Prototype Spatial Modelling Language. Doctoral 
dissertation, Utrecht University, NGS 190. 

Van Deursen, W.P.A., Wesseling, C.G. and Karssenberg, D. (2000) How do we Gain 
Control over GIS technology? Proceedings of the 4th International Conference on 
Integrating GIS and Environmental Modeling, 2–8 September, Banff, Canada. 
http://www.colorado.edu/research/cires/banff last accessed: 20th June 2005. 

Wesseling, C. G., Van Deursen, W. P. A. and Burrough, P. A. (1996) A Spatial 
Modelling Language that Unifies Dynamic Environmental Models and GIS, in 
Proceedings, Third International Conference/Workshop on Integrating GIS and 
Environmental Modeling, Santa Fe, NM, 21-26 January 1996. Santa Barbara, CA: 
National Center for Geographic Information and Analysis (CD-ROM). 

Worboys, M. and Duckham, M., 2004. GIS – A Computing Perspective, 2nd Ed., Boca 
Raton: CRC Press. 

Biography 

Dr Muki Haklay is a lecturer in Geographical Information Science in the Department of 
Geomatic Engineering at UCL. Dr Haklay holds a Ph.D. in Geography from UCL, an  
M.A. in Geography and a B.Sc. in Computer Science and Geography from the Hebrew 
University of Jerusalem. His research interests include public access to environmental 



information, Public Participation GIS, Human-Computer Interaction in GIScience, and 
Spatial database and data models. 


