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Abstract. A general method has been developed for performing self-consistent calculations 
for shallow defects or defect complexes in semiconductors. Results are given here for donor- 
acceptor pairs in GaP and a comaprison is made of the various treatments of central-cell 
corrections and the effects arising from the overlap of the donor and acceptor wavefunctions. 

Whilst no detailed refitting of host parameters is attempted, it seems likely that the current 
estimate of the bandgap (2.339 eV) is too large, and the latest estimates of the dielectric 
constant may also be inaccurate. 

1. Introduction 

One of the classes of defect central to the development of commercial electro-optic 
devices consists of donor-acceptor pair systems (eg Dean 1973). In these systems, an 
electron trapped at a donor may recombine with a hole trapped at an acceptor, giving 
luminescence with an energy E,,, approaching that of the bandgap, EGAP’ 

The donor-acceptor pairs are of great scientific interest, in addition to their techno- 
logical virtues. Extremely accurate spectroscopy is possible, giving recombination ener- 
gies and other details of the transitions as a function of the donor-acceptor separation. 
The theory of the trends with separation of the transition energy, E,,,, is the subject of 
the present paper. We shall demonstrate the use of the general computer program 
SEMELE (Stoneham and Harker 1975, to be referred to as I), comparing earlier treat- 
ments of the theory with a more accurate approach and commenting on the implications 
for the parameters of the host lattice. 

2. General 

In this section we outline previous work on donor-acceptor systems, the choice of suitable 
systems to test different aspects of the theory and the values of parameters for the various 
systems studied. 

2.1. Earlier theories 

The results which have been the mainstay of the interpretation of donor-acceptor 
recombination data are given by Hopfield (1964), whose ‘quantum chemistry’ approach 
to shallow defects is followed in the present paper. The essence of his conclusions is that 
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at large separations R ,  where the donor and acceptor wavefunctions do not overlap 

AE = EGAP - E,,, N E ,  -k E ,  - e2/ER (2.1) 
where ED is the donor ionization energy, E, the acceptor ionization energy and E the 
dielectric constant (usually taken as the static constant). At very small separations, where 
the Coulomb fields of the ionized donor and acceptor would cancel to a great extent, 
Hopfield argues: 

AE N E,,, (2.2) 
where E,,, is the exciton binding energy. 

We shall be concerned primarily with AE(R), together with the effects of central-cell 
corrections on the various energies. We shall not be discussing the many small correc- 
tions to (2.1) proposed by other workers. These include multipole corrections, elastic 
interactions, polaron effects, van der Waals terms and corrections from the wavevector 
dependence of the dielectric constant. However, it is worth stressing that the van der 
Waals terms are not important. The original discussion of this contribution (Trumbore 
and Thomas 1965) was based on empirical arguments. Revised estimates of the dielectric 
constant reduced the need for these terms. Further, quantitative estimates are possible 
(Stoneham 1975) based on the observed polarizabilities of donors and acceptors (Dean 
and Patrick 1970), which show that the van der Waals terms must be only a few per cent 
of the original estimates. The problem has been complicated by the incorrect screening 
used by many workers (including some otherwise-scrupulous analyses, for example, Vink 
et a1 1973): the van der Waals term should contain an E-, factor, not the E-’  commonly 
found (McLachlan 1965, Israelachvili 1972). In essence, the instantaneous dipole on one 
centre induces a dipole proportional to E-’  on the other and the interaction of these two 
dipoles is screened by a further E-’ factor. 

There have been four earlier calculations of the separation dependence of AE which 
go beyond (2.1). The earliest, due to Williams (1960) took into account the overlap of the 
donor and acceptor wavefunctions. This work was extended later by Mehrkam and 
Williams (1972), whose work we discuss in more detail in $3. Hopfield (1964) quotes 
otherwise-unpublished calculations in his review. His work appears to cover many of the 
aspects treated later by Mehrkam and Williams and his results have the added virtue of 
going over to (2.2) at small spacings. Bindemann and Unger (1973) adopted a strategy 
different in detail, using ‘floating’ wavefunctions centred on sites other than the donor and 
acceptor. Their method also behaves reasonably at short distances. Calculations for 
molecular H, (Hurley 1954, Rosen 1931) suggest the Bindemann-Unger treatment should 
give rather better energies than the Mehrkam-Williams method. 

2.2. Choice of system 

There are several sets of accurate data for donor-acceptor pair recombination. We shall 
discuss two systems in Gap:  the sulphur-carbon pairs and, to a lesser extent, the sulphur- 
zinc pairs. The host crystal, Gap, is convenient because of the accurate experimental data 
and because it has a rather low degree of ionicity, so that polaron effects are unlikely to be 
important. The Gap:  (Zn, S )  system has been discussed by Mehrkam and Williams and 
it is for this reason we describe briefly some calculations in $4. But the major part of the 
work ($3) is on Gap:  (S, C). The advantages of this system are that the most detailed 
experimental information is available (Dean 1973, Vink et al1973) and that the carbon is 
a very shallow acceptor for which an unsophisticated treatment of central-cell correc- 
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tions suffices. The sulphur donor is fairly deep and is suitable for comparing the merits 
of different treatments of the central-cell terms. 

2.3. Choice of parameters 

We shall need to choose values of the dielectric constant E, the effective masses m,* and 
m,!, and the band gap E,,,. In addition to these host lattice properties, the effective radii 
for the core electrons must be established for a description of the central-cell corrections 
(cf 6 3 of the preceding paper). 

We shall normally use the following parameters for Gap:  

E = 11.02 

m: = 0.33 m, 

m,! = 0.38 m, 

EGAP = 2.339 eV (Dean 1973). 

(Vink et a1 1973) 

(I. to fit effective-mass donor energy), 

(I, to fit effective-mass acceptor energy), 
(2.3) I 

Different parameters are used occasionally. In special cases, notably Gap:  (Zn, S), we 
compare results with earlier work using E = 10.75, and so we alter the dielectric constant. 
In other cases, central-cell corrections are included by modifying mf. We shall also see that 
our calculations cast doubt on the assumed values of E and EGAP. 

As described in I, the donor core can be represented by a nuclear charge Z = 5 and 
four electrons in orbitals with wavefunctions proportional to exp( - ar) and r exp( - iar) .  
The parameters a can be varied to give the correct central-cell correction. In I we needed 
to know only that the a controlled the central-cell correction. Here we need to know the 
precise relation between a and the donor binding. The results of such calculations are 
given in figure 1. All choices of basis function and all scalings are as described in I. 
However, there is one slight difference. For systems with more than one centre, as for a 
donor-acceptor pair, there are advantages in using a Gaussian basis in calculating the 
molecular integrals. These advantages are very considerable when more than two centres 
are involved. The program used has an option for expanding the Slater orbitals chosen as 
a sum of Gaussians. The approximations introduced are slight if enough Gaussians 
(typically 3 or 4) are used and arise mainly from the poor description of the cusp in the 1s 
core functions. The results in figure 1 have used an expansion in terms of three Gaussians. 
The same expansion was used in all subsequent calculations. 

I \ 
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Pigure 1. Donor ionization energies in G a P  for 
various choices of core wavefunctions. These results 
use Z = 5, and Is and 2s functions expi- rr) and 
r exp ( -  i a r )  for the four core electrons. This para- 
meterization is appropriate when each Slater function 
is fitted by three Gaussian functions. The asymptote 
is for a + x. 
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2.4. Different levels of calculation 

We have calculated the variation of the donor-acceptor pair energy with separation using 
five different levels of approximation, which we now summarize in 2.4.1-2.4.5. The 
wavefunction parameters used are listed in table 1. 

Table 1. Parameters used in various calculations for G a p :  (S, C) 

Method E m:im, m , * h  Functions Exponents (au) 

Mehrkam-Williams 

Asymmetric 

Extended asymmetric 

Full SEMELE 

Parameters used for GaPIZn. S i  

Mehrkam-Williams 
Extended asymmetric 

1075 0705 0.705 Is, 2~ (D, A) 
10.75 0.705 0,705 Is, 2p (D, A) 

0.0609 
00609 
0.0844 
0.0376 
0.0844 
0.0276 
0.0844 
0.0422 
0.0376 
00188 
0.0842 
0.0502 
0,0421 
0.0376 
00188 
0.75 
0,375 

0.0581 
0,029 

2.4.1. Coulombic form (case I). This form uses equation (2.1) and is asymptotically correct 
at large distances. But, since donor-acceptor spectra are often used to determine the 
dielectric constant E ,  the results may show unduly good agreement with experiment. In 
particular, one should note that the largest separations for which there are accurate data 
are only two or three times the effective Bohr radii: the true asymptotic regime and the 
range of spacings seen in practice do not overlap. 

2.4.2. Mehrkam- Williams form (case 11). In its most basic version, Mehrkam and Williams 
(1972) assume a total wavefunction of the form +&re - R,) ~ ) ~ ( r +  - RA), where R ,  and 
RA give the donor and acceptor positions. The one-particle functlons have the form: 

+(I) = N(1 + oPZ) exp ( - j r )  

where N(o ,  j) is a normalization and the 2 axis is the axis of the defect. This form of + 
is the simplest which shows most features of interest and it makes several major approxi- 
mations. First, all asymmetry of donor and acceptor is ignored, even if E ,  and E ,  differ. 
The parameters o and are the same for both the electron and hole. Secondly, the central- 
cell corrections are incorporated by altering the effective masses. Both electron and hole 
are assumed to have a mass m* given by 
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where E, and E!, are measured in Rydbergs. This scheme was used in Hopfield‘s earlier 
calculations. Thirdly, the exponent p was not treated as a full variation parameter. It was 
fixed by the relation: 

where a, is the Bohr radius. This value of p was held constant for a range of spacings. 
Note too that the p parameter for the 2p component of $ is the same as for the Is compo- 
nent; for the hydrogen atom, pz, is half PI,. The parameter Q is varied freely, altering the 
weights of 1s and 2p in the one-electron functions to minimize energy. Mehrkam and 
Williams call this process ‘configuration admixture’, a misleading phrase, totally different 
in meaning to the standard useage of molecular physics (eg Condon and Shortley 1935, 
Slater 1963, Coulson 1963, McWeeney and Sutcliffe 1969). 

2.4.3. Simple asymmetric form (case 111). This corresponds to  the Mehrkam-Williams 
model in all respects but one: the asymmetry of donor and acceptor is included. Instead 
of (2.5), the electron and hole masses are defined by: 

m* 
- = €’E, 
m, 

and 

where again E, and ED are measured in Rydbergs. The orbital exponents for electron 
and hole are then fixed by the relations: 

m e  p =A a, = a&E, (2.9) 
e m,* 

and 
(2.10) 

The asymmetry may be quite considerable. For the Gap:  (S, C) system, for example, p, is 
only 45% of p,. 

2.4.4. Extended basis form (case IV). This is a generalization of case 111, but with a more 
general form of the one-particle functions $. Instead of only Is and 2p functions, with 
exponents /3 defined by (2.9) or (2.10), the following set of functions is used: 

gxponent b :  1s and 2p functions 
Exponent p/2: 2s and 2p functions; 

that is, four basis functions for the donor and four different ones for the acceptor. 

2.4.5. Full central-cell approach (case V). In this form, the central-cell corrections for the 
donor are included by using a realistic core, as described in 9 2.3 of this paper and 0 3 of the 
preceding paper. Additional 2p basis functions are included, with exponents as for the 
2s functions. In the cases we shall be treating, the acceptor is treated as in case IV, namely 
by a specially-chosen effective mass. This approximation should be reasonable for the 
shallow carbon acceptor, which we discuss primarily, where the ionization energy is only 
46.4 meV. 



1114 A M Stoneham and A H Harker 

Table 2. Predictions of various models for AE, the difference between the bandgap and the 
donor-acceptor recombination energy. The difference is in meV and is positive when the 
energy of luminescence predicted is less E,,,. Spacings are in atomic units. The singlet- 
triplet splitting uses the full SEMELE method. 

Spacing Coulombic Mehrkam- Asymmetric Extended Full Singlet- 
( a 4  Williams asymmetric SEMELE triplet 

splitting 

10 -96'26 - 13.95 - 11.47 17.23 12.92 9.22 
20 27.17 34.80 37.05 40.4 1 36.79 9.30 
30 68.31 65.99 67.38 67.82 65.73 9.03 
40 88.88 85.93 86.45 86.53 85.71 6.95 
60 109.46 107.48 107.45 107.46 107.96 3.30 

3. Results for Gap: (S, C) 

The ionization energies for the two component defects are 104.2 meV (S) and 46.4 meV 
(C). Results for all five methods and spacings R = 10, 20, 30, 40 and 60 au are given in 
table 2 and shown in figure 2. With the parameters adopted, the exciton energy is 
8.6 meV (preceding paper) in the open-shell Hartree-Fock procedure used here. This is 
compatible with the observed values (albeit fortuitously so) and we shall use this value to 
obtain results for zero spacing. We shall compare the various methods in 0 5. 

3.1. Coulomb form 

As mentioned, this is asymptotically exact at large R. However, it gives a divergence at 
small R. In the present case (2.1) predicts a transition energy higher than that for the free 
exciton when R < R, 9.2 A, and results for smaller spacings will surely be unreliable. 

/?(A) 

Figure 2. Recombination energies for the Gap: ( S ,  C) 
donor-acceptor pair in various approximations: 
Curve A, Coulombic method; curve B, full SEMELE; 
curve C, extended asymmetric; the poin ts l ,  asym- 
metric; and x , Mehrkam-Williams. The experi- 
mental data (0) are taken from Deans (1973). 
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3.2. Mehrkam-Williams form 

This method also becomes unreliable at small R, overestimating the transition energy 
considerably when R 6 R,. The reason for the overestimate is the relative inflexibility 
of the choice of basis. Like all the methods described, this method should converge 
satisfactorily on the asymptote (2.1) at large spacings. But one important point emerges, 
relevant for all the methods 11-V. The effective Bohr radius is of the order of 8.7A and the 
largest spacings studied are rather less than 30.k The overlaps are still significant at 
these distances and it is not trivial to deduce values parameters like E from the experimen- 
tal data. 

The p-like admixture decreases at large separations and is listed in table 3. 

Table 3. s-p admixture on the donor in the Mehrkam-Williams and the Asymmetric cases 
for G a p :  (S, C). The values quoted are the weights of the normalized s and p functions. The 
charge density between the donor and acceptor is reduced by the admixture. Results for other 
methods show similar trends, but are more complicated because of the more extended basis 
used. 

Separation (au) 
Method 10 20 30 40 60 

Mehrkam-Williams 0.232 0.189 0.120 0.067 0,0155 
Asymmetric 0421 0246 0,140 0076 0,019 

3.3. Simple asymmetry 

As with cases I and 11, problems occur for small separations. The general features of I1 and 
I11 agree qualitatively, both as regards energies (table 2) and admixtures of p-like terms 
(table 3). The admixtures reduce the charge densities in the overlap region. Quantitatively, 
asymmetry makes a difference of more than 1 meV out to distances of order 20 A and 
differences in the donor p-admixture of more than 1 % to similar distances. 

3.4. Extended basis 

This is the simplest method which avoids problems at small spacings. The electron-hole 
recombination energy appears to converge properly onto the exciton energy at small R and 
to the asymptote at large R. 

3.5. Full central-cell approach 

Like the extended basis method, this form gives the correct asymptotic behaviour at both 
large and small R. However, there is quite a large differencein the values of the transition 
energy given by this method and the extended basis method at 10 au and 20 au separa- 
tions. Available experimental data are compatible with both ; it is not easy to decide 
which is the most successful, partly because other complications (eg multipole correc- 
tions) are significant. 

Our calculations have also been repeated for the spin triplet system, although this 
has not been observed. The singlet-triplet splittings are listed in table 2. 
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4. Results for Gap: (Zn, S) 

We have treated this system in much less detail and quote results here primarily to verify 
the Mehrkam-Williams results and to see the effects of extending the basis used without 
other sophistications. Consequently, we have used different crystal parameters, namely: 

E = 10.75 m: = mz = 0.705. (4.1) 
The effective masses and exponents p = 0.0581 au have been chosen using (2.5), (2.6) and 
the ionization energies of 104.2 meV (S) and 64 meV (Zn). 

I \ \ 

4 8 I2 16 

R (A, 
Figure 3. Recombination cnergies for the Gap: (Zn, S )  donor-acceptor pair in various 
approximations : Curve A, Coulombic; curve B, Mehrkam-Williams; and curve C, extended 
asymmetric. The experimental data (0) are taken from Dean (1973). 

The results given in table 4 were obtained with the present program. Mehrkam and 
Williams give their results in diagrammatic form only; suffice it to say that our data and 
theirs appear to agree provided one includes a constant shift of their results of the sort 
described in their paper. 

The main difference between the calculations of the Mehrkam-Williams form (case 
11) and those with a more extended basis (as for case 11, but with additional 2s and 2p 
functions with exponents p/2) is at small separations. The more extended basis avoids the 
divergence mentioned in $3. 

5. Discussion 

We now compare various aspects of the different approximations, with the aim of 
deciding which approaches can be used reliably and conveniently in calculations of 

Table 4. Predictions of A E  in meV for Gap: ( S ,  Zn) 

Separation (au) 
Method 10 20 24 30 40 

Coulombic - 84.8 41.7 62.8 83.8 104.9 
Mehrkam-Williams 0.2 46.9 60.7 77.5 97.5 
Extended basis 20.1 47.9 61.1 777 97.8 
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donor-acceptor pair spectra. Convenience is important, whilst not an overriding factor. 
Suffice it to say that we believe.the SEMELEprogram to be particularly straightforward 
to use; the calculations have been automated, and the program combines simplicity of 
use with great flexibility. 

The first point to discuss is the choice of basis functions. Can one successfully use 
just a single s and a single p function on each site? The answer seems to be no. Both the 
Mehrkam-Williams and asymmetric approaches behave very badly at small spacings R. 
Indeed, both predict the wrong sign for AE at shall R. But the other approaches (in- 
cluding that of Bindemann and Unger 1973, whose floating functions are equivalent to 
an expansion in many spherical harmonics with related radial factors) behave properly at 
small spacings. These successful approaches include the extended basis and full SEMELE 
methods. We shall return to the results at large spacings later. 

The second point concerns the way in which the central-cell corrections are included. 
Again, the small-separation cases are the strongest tests. There are effects at large spacings 
but these are masked by the purely Coulombic part of AE. Deviations from (2.1) should 
show a strong model-dependence because of the different asymptotic wavefunctions, 
but their value is a small fraction of AE at most. The results of table 2 or figure 2 show 
large differences between the two methods whose behaviour is satisfactory; that is, 
between the extended basis form and the full SEMELE form. We have not been able to 
use experiment to decide between these two, partly because the experimental data in the 
critical 10-20 au range are very incomplete. The problem is complicated further by the 
need for extra theoretical corrections at small R, like multipole corrections. But the full 
SEMELE form makes more realistic assumptions about the form of the central-cell 
corrections, so one would expect its predictions to be the most reliable. 

The third point concerns the intermediate and larger spacings. At the largest spacings, 
the Coulombic part of AE (see (2.1)) dominates, and all theories do reasonably well. 
Indeed, at these spacings it is the parameterizations of the host dielectric constant and 
bandgap which are the most important factors. The present calculations suggests that the 
standard parameters adopted (EGAP = 2.339 eV and E = 11.02) may be in error. The 
important point is that the estimates of these parameters are based on the Coulombic 
form (2.1) at the larger spacings. But the ‘large’ spacings usually used (to 70 A for Gap:  
(0, C) by Vink et al, but more commonly only 20-30 A) are only a few times larger than 
the effective Bohr radii and overlap terms are still significant. Thus the usual parameters 
EGAP and E are empirical parameters, useful only for interpolation and limited extrapola- 
tion, and not correct crystal parameters. It would be a major undertaking to repara- 
meterize the spectra and we have not done this. But the results do suggest that the band 
gap is 2 to 3 meV smaller than assumed (giving 2.336 to 2.337 eV). This new value is 
consistent with all the data with which we are familiar. It also implies a slightly lower 
exciton binding than usual, about 8 meV instead of 10 meV. This too is consistent with 
other data (see eg Czaja 1971). 

Thus, at large spacings, all the approaches work satisfactorily with a proper choice of 
parameters. The parameters differ significantly between the best fit of the Coulombic 
form (2.1) and a fit of the methods with overlap corrections. This difference in choice of 
parameters is also conspicuous at intermediate spacings, where the predictions of AE for 
all the models with overlap cross the curve for (2.1) at a spacing of two or three effective 
Bohr radii. Since the crossover appears for all models, it is unlikely to be an artefact and, 
indeed, one can make plausible arguments for the small- and large-R behaviour which 
imply a crossover. However, the crossover could be eliminated for practical purposes if 
the empirical host parameters were used for the Coulombic form (2.1) and correct host 
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parameters for the other methods. Further, if the band gap is reduced to 2.337 eV, only 
the full SEMELE approach is satisfactory at smaller R. 

Differences between the models become apparent at intermediate spacings, where all 
show trends of the right qualitative form. But, whilst the more advanced methods (ex- 
tended basis and full SEMELE) give results which lead naturally to the correct small-R 
behaviour, the two other methods (Mehrkam-Williams and asymmetric) give satisfactory 
corrections over such a small range of spacings that there is rather little advantage in 
using them. 
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