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Abstract 

Seismology is a key tool in the forecasting of volcanic eruptions. The onset of an 

eruption is often preceded and accompanied by an increase in local seismic activity, 

driven by fracturing within the edifice. For closed systems, with a repose interval of the 

order of a century or more, this fracturing must occur in order to create a pathway for 

the magma to reach the surface. Time-to-failure forecasting models have been shown to 

be consistent with seismic acceleration patterns prior to eruptions at volcanoes in 

subduction zone settings. The aim of this research is to investigate the patterns in 

seismic activity produced by a failure model based on fundamental fracture mechanics, 

applied to a volcanic setting.  In addition to the time series of earthquake activity, 

statistical measures such as seismic b-value are also analysed and compared with 

corresponding data from the field and laboratory studies. A greater understanding of the 

physical factors controlling fracture development and volcano-tectonic activity is 

required to enhance our forecasting capability.  

The one dimensional, fracture mechanics grid model developed in this work is 

consistent with the theory of growth and coalescence of multi-scale fractures as a 

controlling factor on magma ascent. The multi-scale fracture model predicts an initial 

exponential increase in the rate of seismicity, progressing to a hyperbolic increase that 

leads to eruption. The proposed model is run with variations in material and load 

properties, and produces exponential accelerations in activity with further development 

to a hyperbolic increase in some instances. In particular, the model reproduces patterns 

of acceleration in seismicity observed prior to eruptions at Mt. Pinatubo (1991) and 

Soufriere Hills (1995).  The emergence of hyperbolic activity is associated with a 

mechanism of crack growth dominated by interaction and coalescence of neighbouring 

cracks, again consistent with the multi-scale fracture model. The model can also 

produce increasing sequences of activity that do not culminate in an eruption; an 

occurrence often observed in the field.  

Scaling properties of propagating fractures are also considered. The seismic b-

value reaches a minimum at the time of failure, similar to observations from the field 

and measurements of acoustic emissions in the laboratory.  Similarly, the fractal 

dimension describing the fracture magnitude distribution follows trends consistent with 

other observations for failing materials. The spatial distribution of activity in the model 

emerges as a fractal distribution, even with an initially random location of fractures 
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along the grid.  Significant shifts in the temporal or spatial scaling parameters have been 

proposed as an indication of change in controlling factors on a volcanic system, and 

therefore represent a relatively unexplored approach in the art of eruption forecasting. 
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typical run of the one-dimensional model.  Events are grouped into nearest magnitude 

bins for the analysis in (b). 
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fault length distributions. (After Bonnet et al., 2001).  Sets with identical fractal 

dimension can exhibit very different fracture densities. 

 

Fig. 6.12 (a) Variation of the fractal dimension �� with time leading to failure, under 

increasing stress conditions.   �� will naturally tend to one as the failed cells eventually 
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exponential acceleration in event rate (b). 

 

Fig. 6.13 Box-counting results used to calculate ��.  The fractal dimension is given by 
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conditions. A sliding window of 300 events is used for each calculation, advancing 50 

events at a time.  Vertical bars indicate the standard error. 

 

Fig. 6.16 Variation of fractal dimension ��  with time, under increasing stress 

conditions. A sliding window of 300 events is used for each calculation, advancing 50 

events at a time. Events are defined as the central cell of adjacent simultaneously failing 

cells. Vertical bars indicate the standard error. 
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Fig. 6.17 Variation of fractal dimension ��  with time, under increasing stress 

conditions. A sliding window of equal time period is used for each calculation. Time 

periods of (a) 20 units and (b) 5 units advance (a) 5 and (b) 3 time steps each 

calculation. Vertical bars indicate the standard error. 

 

Fig. 6.18 Variation of fractal dimension with time, under constant stress conditions. A 

sliding window of 500 events is used for each calculation, advancing 50 events at a 

time. Events are defined as the central cell of adjacent simultaneously failing cells. 

Vertical bars indicate the standard error. 

 

Fig. 6.19 Location of events (red) in windows used for calculation of fractal dimensions 

in Figure 6.18. 

 

Fig. 6.20 Variation in correlation dimension with time (as described in (6.13)), under 

constant stress conditions. A sliding window of 300 events is used for each calculation, 

advancing 50 events at a time.  All failed cells are included as event locations. 

 

Fig. 6.21 Log-log plot of the proportion of data points within linear distance r of each 

other.  The negative gradient gives the correlation dimension. 

 

Fig. 6.22 Evolution of a one-dimensional array of 1,000 cells with time. (a) Failure is 

dominated by the growth of a single, primary fracture. (b) Multiple cracks grow 

simultaneously. 

Fig. 6.23 Variation in fractal dimension ��with time, under increasing stress conditions. 

The two data sets compare ��  for the growth of a single, dominant crack (blue 

diamonds) and multiple cracks (red squares).  Vertical bars show standard errors. 
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Fig. 6.24 Variation in fractal dimension ��  with time, under increasing stress conditions 

and a fractal geometry of initial cracks. Vertical bars show standard errors. 

 

Fig. 6.25 Log-log plot of crack length distribution in a one-dimensional array subject to 

an increasing applied stress.  N(l) is the number of cracks greater than length l.  The 

fractal dimension Dl is given by the negative gradient of the linear trend and is 

calculated over data points where linearity holds (blue diamonds).  �� � 0.99. 

Fig. 6.26 Variation in seismic b-value (blue diamonds) and fractal dimension �� (red 

squares) with time, under increasing stress conditions.  Magnitude values used to 

calculate b are derived from (a) the number of adjacent simultaneously failing cells and 

(b) the number of adjacent current and existing failed cells. Note the change in scale for 

b. 

 

Fig. 7.1 Event rate with time for a one-dimensional array subjected initially to an 

increasing stress, which is then reduced by 50% and held constant. The dashed line 

shows the point at which stress is reduced.  The event rate continues increasing until 

bulk failure of the array is reached. 

 

Fig. 7.2 Event rate with time for two separate runs of the one-dimensional model.  The 

models are subjected initially to an increasing stress, which is then reduced by 50% and 

held constant. The dashed line indicates the point at which stress is reduced.  After this 

drop, fracturing continued in one run of the model until bulk failure of the array (blue 

diamonds), while in the second run the event rate eventually died down and the model 

remained in an intact state (red triangles). 

 

Fig. 7.3 (a) Four characteristic exponential trends and (b) the frequency of exponential 

sequences from the Monte Carlo simulation described in Chapter 4 when grouped with 

the closest characteristic trend. 
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1. Introduction 

1.1 Fracturing at volcanoes 

The study of volcanoes covers a vast range of very different research fields, with work 

being done in areas from geology and chemistry, to health science and disaster 

management.  Research can be broadly divided in terms of two distinct objectives; 

understanding the mechanisms within a volcano, and identifying the impact of volcanic 

activity.  This thesis concentrates on the former problem and attempts to apply well 

developed fracture mechanics tools for this aim.  Investigations into the workings of an 

active volcano are becoming increasingly sophisticated with continuing developments 

in engineering and technological capabilities.  Drilling projects, thermal imaging, GIS 

and interferometry tools are just a few methods that have been applied in attempts to 

understand activity inside of a volcano.  With increasing computer power it is also 

possible to run increasingly complex numerical simulations of fracture or flow within 

the Earth’s crust.  Combining these models with observed field data such as seismic 

activity, gas emissions or deformation, it is possible to identify the mechanisms and 

interactions of volcanic processes; for example, the interactions between magma 

movement and rock fracture.   To fully understand the workings of a volcano it is 

necessary to develop understanding of each of these processes.  An increased 

knowledge of the processes occurring within a volcano may also consequentially 

improve the ability to forecast the onset and style of eruptive activity. 
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1.2 Volcanic hazards and forecasting eruptions 

An estimated 10% of the world’s population live within an area potentially threatened 

by a volcanic eruption (Peterson, 1986). In order for populations to be safely evacuated 

from these areas prior to an eruption, there must be a timely warning of not only the 

expected time and location of an eruption, but also the size and style of activity. Slow 

moving lava flows create a very different hazard to rapidly moving, devastating 

pyroclastic flows. 

No two volcanoes behave in the same way and even successive eruptions at the 

same volcano can exhibit very different patterns of activity. In addition, few volcanoes 

are extensively monitored and knowledge of previous eruptions often relies on 

geological evidence rather than first-hand experience.  

 Although frequently erupting basaltic volcanoes like Kilauea in the USA are 

now relatively well understood and activity can be accurately forecast, it is the less 

active volcanoes that most endanger local populations. It is not uncommon for a 

volcano to be at rest for intervals on the order of a century or more. In the case of many 

long repose volcanoes there will be little detail known of previous activity and local 

communities may not even recognise the volcano as active and as a threat. For this 

reason they are also less likely to be adequately, if at all, monitored. However, some 

significant progress has been made in the past few decades regarding eruption 

forecasting. 

 Beginning several months prior to the catastrophic May 1980 eruption at Mt. St. 

Helens in the USA there were reports of seismicity, ground deformation and steam 

emissions at the volcano. It was recognised that an eruption was both likely and 

imminent, and local residents and tourists had been warned of the risks. However, the 

suddenness and intensity of the activity on May 18th were totally unexpected and many 

important aspects of the eruption were not forecast. The extensive monitoring of 

seismicity was maintained following the first cataclysmic eruption and much of the 

continuing activity was anticipated. Several of the explosive eruptions in the summer of 

1980 were successfully forecast and the following dome building eruptions were all 

forecast within time periods ranging from just hours, up to 3 weeks prior to activity 

(Swanson et al, 1983). 
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 Lessons learned at Mt. St. Helens are thought to have played a vital role in the 

successful forecasting and evacuation of Pinatubo in the Philippines in 1991. Pinatubo 

erupted violently after around 500 years quiescence. Very little was known about the 

volcano prior to initial signs of unrest leading up to the eruption, but a timely forecast of 

expected events saved thousands and maybe even tens of thousands of lives, as well as 

allowing for the movement of millions of dollars worth of military equipment from 

nearby US airbases (Newhall and Punongbayan, 1996). There has also been forecasting 

success at volcanoes with a shorter repose time.  For example, by closely monitoring the 

activity that preceded the 2000 eruption at Mt. Usu, Japan, local experts were able to 

advise the evacuation of nearby communities in the days before the eruption.  There 

were no reported fatalities or injuries despite the damage and destruction of over 450 

homes and businesses. 

 For each success story though, there are many more examples of events that 

have not been adequately forecast, and for which the cost to human lives and property 

has been great. The largest, most destructive eruptions, such as that at Pinatubo in 1991, 

thankfully occur infrequently. This does however mean that the data and observations 

so vital for increasing understanding of such eruptions are very limited. 
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1.3 Precursory seismicity 

Seismicity is generally recognised as the most significant and reliable precursor to a 

volcanic eruption.  Some level of increased seismicity precedes almost all eruptions, 

particularly those ending a long repose interval.  Seismicity is also one of the more 

practical precursors to monitor as it can be done relatively cheaply and remotely without 

the necessity for entering potentially dangerous areas. Clearly, leveraging the 

forecasting potential of these precursors relies on the necessary monitoring equipment 

being in place, and only a third of the volcanoes that have erupted historically are 

seismically monitored to some extent (McNutt, 2000).  A network of seismometers 

placed around a volcano can record not only the frequency of events but also enables 

the location and possible source mechanism of an event to be identified. Through 

studying the frequency, type, size and migration of seismic events an image of what is 

occurring beneath the volcano can be pieced together. 

 Earthquakes observed in volcanic settings can be broadly divided into two 

different types by their frequency characterisation. Low frequency, long period events 

are typically associated with the movement or pressurisation of fluids such as magma 

and the resulting deformation (Chouet, 1996). High frequency events resemble classic 

tectonic earthquakes, in both mechanism and spectral components and are therefore 

labelled volcano-tectonic (VT) (McNutt 2000).  The shear faulting or tensile fracture of 

brittle rock provides a similar source mechanism for both tectonic and VT earthquakes, 

but for VT events this process is driven by the stresses induced by magma movement or 

overpressure rather than the movement of tectonic plates. The two also differ in their 

temporal distribution. High frequency earthquakes around a volcano tend to occur in 

swarms, increasing towards the onset of an eruption rather than the classic, well 

documented foreshock-aftershock sequences of tectonic events. 

 In practice, there exists a continuous range of events between the characteristic 

high and low frequency earthquakes. Volcanic tremor is a continuous, low frequency 

signal with a duration of minutes to days. Tremor is recorded both prior to and 

accompanying eruptions and is linked to the continuous ground movement caused by 

injection and interaction of magma with the surrounding rock (Konstantinou and 

Schlindwein, 2003).   Hybrid events contain a mixture of high and low frequency 

signals.  So-called very-long-period events have also been recorded during eruptions, 

caused by resonance of the conduit-reservoir system (Nishimura & Chouet, 2003). 
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 Identifying the source mechanism for different observed signals allows a 

sequence of seismic events to be translated into a picture of what is occurring within a 

volcano. High frequency events are often the first sign of unrest and can be recorded 

months (Pinatubo 1991) or even years (Unzen 1991) before an eruption. Stress induced 

fracturing indicates the movement of magma at depth, and the resulting VT events 

therefore have the potential to provide a relatively long-term indicator to an approaching 

eruption. Hypocentres of the high frequency events can be well distributed throughout 

and around the volcano, often with no obvious migration of events with time, as 

fracturing occurs throughout the edifice (Scandone et al., 2007). Long period and tremor 

events are more likely to appear in the days to hours before the onset of magmatic 

activity, and tend to be more spatially clustered, giving a clearer indication to the 

location and movement of fluids (e.g. Burlini et al., 2007). Tremor may therefore 

provide a useful short-term warning of rapidly approaching eruptive activity. However, 

it is unlikely to supply the required length of time to successfully evacuate a sizable 

local community. 

 Following the onset of eruptive activity, seismicity tends to be dominated by 

tremor or explosive earthquakes, depending on the nature of the eruption, with the 

frequency of VT events rapidly declining. Both the driving force of the build up of 

magma and the favourable environment for brittle rock fracture are diminished once 

magma has found a pathway to the surface.  
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1.4 Fracture mechanics 

Fracturing is the source of many dynamic processes studied in Earth and planetary 

sciences.  Earthquakes, volcanic eruptions, avalanches, landslides and ice-shelf calving 

all occur in part due to the formation and propagation of fractures.  Theoretical fracture 

mechanics can be applied to each of these materials in much the same way and therefore 

provides an essential tool in identifying conditions under which these processes may 

occur and the dynamics of their propagation.  Brittle, linear-elastic fracture mechanics 

can be applied likewise to a stressed block of rock, snow or ice.  Fracture models are 

then governed by parameters such as friction coefficients and fracture thresholds and 

can be described by local stress or strain distributions.  For example, Åström and 

Timonen (2001) used a statistical fracture mechanics approach in exploring the potential 

of forecasting avalanches.  Petley (2004) analysed the relationship between stresses and 

strains to understand the formation and the propagation of fractures in a slope causing 

large landslides.  Sammis (2001) provides an insight into the applications of material 

science to the mechanisms of earthquakes and faulting within the crust.  Fracture 

mechanics has also been applied to crustal faulting on Venus (Balme et al., 2004), 

where a model was produced to estimate the temperature and stress conditions 

necessary to produce observed parallel fractures.  Rist et al. (2002) incorporated both 

experimental and modelling work to investigate effects of material properties and 

temperature on the stability of ice crevasses.  Fracture mechanics is a useful tool in both 

calculating local environmental conditions such as stress or temperature and also in 

predicting future behaviour of a body of material.  An additional advantage of the 

approach is the ability to produce data in laboratory experiments that can then be 

applied to field based models. 

 Due to its vital role in structural engineering, the field of fracture mechanics is 

well advanced with analytical and numerical results.  High temperature and pressure 

work carried out in laboratories has also supported much of the theory in applications of 

fracture within the Earth’s crust (e.g. Rocchi et al., 2003; Tuffen et al., 2008).  Applying 

theoretical models to observable processes can greatly improve the understanding of the 

physical mechanisms behind it.  For example, the theory of creep mechanisms has been 

used to provide physical meaning to empirical constants in laws describing the rates of 

earthquake foreshocks and aftershocks (Main, 2000).  Starting from a fracture 

mechanics approach can lead to a greater understanding of the physical processes 

producing the observations.  
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1.5 Mathematical approach 

Probabilistic and statistical tools are an important feature in forecasting natural hazards.  

Whether looking at mean recurrence times of earthquakes or the increased probability of 

an eruption following a significant stress trigger, many forecasts have to be worded in 

terms of probability rather than certainty.  Woo (1999) describes how natural 

phenomena from volcanic eruptions to floods can be described using theoretical 

concepts such as Poisson or Markov processes. 

 Over recent decades Earth scientists have also increasingly turned to new 

theoretical, mathematical concepts in an attempt to describe and explain the apparent 

disorder of nature. The theories of fractals, percolation and networks, and terms such as 

self-similarity, scale invariance and power-law are now often to be found in geological 

literature.  These concepts are described briefly below. 

 Although others before him had touched on the subject, Mandelbrot was the first 

to formally identify, and name, the geometric object known as a fractal. He recognised 

the need for a descriptive tool for the shapes and forms abundantly seen in nature that 

are too irregular to be illustrated by traditional Euclidean geometry: 

Clouds are not spheres, mountains are not cones, coastlines are 

not circles, and bark is not smooth, nor does lightning travel in 

a straight line. 

Mandelbrot, The fractal geometry of nature 1982 

Mandelbrot defined a fractal to be a set with Hausdorff dimension strictly greater than 

its topological dimension.  A more familiar perception is that of a self-similar object 

with a fine structure at increasingly small scales (Falconer 1990).  A geometrical 

example is the Sierpiński triangle (Fig. 1.1). The property of self-similarity describes an 

object whose form as a whole is repeated as one or more parts of the whole, and it is 

this characteristic of the same shape being observed on all scales that is the image so 

often recognised in nature. Indeed it is this attribute that necessitates the use of a scale 

reference in many geological photographs.  In recent years fractal distributions have 

been identified in phenomena such as fracture networks within the crust (Bonnet et al., 

2001), earthquake epicentres and recurrence times (Saichev & Sornette, 2007) and size 

of pyroclastic fragments (Kueppers et al., 2006).  Identifying a fractal processes can 

provide information on the state of a system, as described below, and offers forecasting 
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capabilities such as potential fluid flow through a network, earthquake statistics or 

explosivity of a volcanic eruption. 

 

 

 

 Fig. 1.1 Sierpiński triangle. A fractal 
formed by the iterative removal of 
triangles. 

 

  

 Fractals commonly identified in nature, for example mountain ranges, river 

networks and fault systems, are all approximate as their self-similarity exists over only a 

finite, all be it an extensive, scale range. For example the scale of the repeating pattern 

observed in a mountain range cannot extend above the dimensions of the Earth itself or 

below the grain size of the rock making up the Earth’s crust. 

 Scale invariance is a more exact form of self-similarity. An object or relation 

that remains unchanged in form and statistically identical under magnification is said to 

be scale invariant. One of the most widely cited examples of scale invariance in Earth 

sciences is the empirical Gutenberg-Richter law for the frequency-magnitude 

distribution of earthquakes: 

 

� � 10����  

 

N is the number of earthquakes with a magnitude greater than M, and the exponent b, 

known as the seismic b-value, is an indicator of the relative frequency of large to small 

earthquakes.  Scale invariance yields a power law relationship, another ubiquitous form 

found in nature.  In addition to the obvious use of the Gutenberg-Richter law in 

estimating the frequency of damaging earthquakes, the b-value itself has proved a useful 
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tool in seismic analysis.  For example, changes in local b-value have been suggested as 

an indication of the onset of volcanic activity (e.g. McNutt, 2005). 

 In addition to the obvious illustrations seen all around us in nature, fractal theory 

was also advanced through its emergence in the area of statistical mechanics and the 

self-organised criticality of dynamical systems. Self-organised criticality is a 

phenomenon identified by Bak et al. (1987) around the same time as the advent of 

fractal geometry, and formally describes the property of a dynamical system that has a 

critical point as an attractor. A critical point in a system represents a significant change 

in structure or state and a self-organised system will always naturally evolve to this 

point no matter what its initial state. Much of the original study into such systems 

focused on a sandpile model. Adding an extra grain of sand can cause an avalanche of a 

range of scales from no grains to the entire sandpile. The frequency distribution of these 

avalanches shows fractal, power law properties. Independent of the starting size of the 

sandpile, or the number of grains added, the pile will always be attracted to and evolve 

back to a stationary critical point. 

 Self-organised criticality has been proposed as a procedure creating complexity 

in nature.  The Earth’s crust and the seismicity produced by tectonic stresses have been 

modelled as a self-organised, critical process (Chen et al, 1991; Barriere and Turcotte, 

1994). The fractal nature of several seismic and eruptive processes at Vesuvius has been 

cited as an indication of a self-organised, critical system (Luongo et al., 1996). 

 Percolation theory is another increasingly popular branch of statistical 

mechanics and dynamical systems. The classic idea of percolation is that of a fluid 

passing through a medium via interconnected channels. An open network is formed 

once a continuous pathway is created form one side of the medium to the other. At the 

critical threshold where this fully connected channel is created there is again a change of 

structure, or state of the system.  Networks of fractures within the Earth form a fractal 

distribution (Hirata 1989). The networks will have a self-similar appearance whether 

viewed on a micrometre scale, as an arrangement of microcracks in a rock sample or on 

a kilometre scale, as a network of faults in the Earth’s crust. Fracture networks and even 

the distribution and clustering of earthquakes have been linked to percolation networks 

(Sahimi, 1994). 

 Recent research into the form of fracture networks themselves suggests they can 

be represented by a class of networks known as small-world networks (Valentini et al., 
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2007).  Watts and Strogatz (1998) have identified many examples of small-world 

networks in nature and society. In the classical view of networks containing a number of 

nodes, each of which can be connected to any number of other nodes, a small-world 

network is identified as one in which most nodes are not directly connected to each 

other, but conversely most nodes can be reached from every other node in a relatively 

small number of steps via intermediary nodes.  An important feature of small-world 

networks is that their degree distribution, where the degree of a node is the number of 

connections going into that node, fits a power law. These types of networks are 

therefore also scale invariant networks and have the same statistical properties 

regardless of the size of the network. 

 Significant advances have been made in the field of seismology under the study 

of frequency-magnitude b-values and the self-organised criticality of faults.  Applying 

the theories of percolation and networks, fractal and power law distributions, scale 

invariance and self-organised criticality, introduces many powerful, theoretical tools for 

analysing the complex processes and interactions occurring within the Earth’s crust. 
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1.6 Aims of research 

The ultimate aim of this research is to improve the basic, physical understanding of 

precursory patterns of seismicity observed prior to volcanic eruptions. A greater 

understanding of the physical processes producing such observations will aid the 

analysis and interpretation of seismic sequences and ultimately the probabilistic 

assessment of an onset of eruptive activity. 

 The research concentrates on the role of rock fracturing within volcanic systems 

and therefore focuses on long repose volcanoes where a certain degree of fracturing will 

be necessary to create a pathway to the surface for magma. A percolation fracture model 

is used, similar to the cellular automata style model developed by Henderson and Main 

(1992) to observe the evolution of scaling and fractal parameters with failure.  This 

model is based on fundamental fracture mechanics results and recreates aspects of crack 

interaction.  Beginning with a simple model can highlight the importance of basic 

physical principles on the observations recorded at a volcano.  Further complexities can 

then be introduced where necessary, and this process allows for a greater appreciation of 

the main factors controlling edifice failure and eruptions.  Initially material properties, 

crack density and surrounding stress conditions are varied, with their effect on the 

failure process measured by the seismic sequences produced.  This will allow different 

volcanic and geological settings to be correlated with differences in observable seismic 

activity. 

 Numerous simulations of the model can be used to identify additional potential 

forecasting methods.  Parameters such as seismic b-value, fractal dimension of 

percolation thresholds can be calculated to look for distinct pre-failure trends or 

significant changes at the point of failure.  Where an observable parameter is used, such 

as b-value, this would lead directly to a useful forecasting tool.  In the case of a non-

observable parameter, a failure indication may still point to an underlying cause that 

may itself be monitorable, or at the very least would improve understanding of the 

failure process. 

 In attempting to explain the mechanisms for failure in a volcano, it is also 

essential to address the question of why failure doesn’t always occur and therefore why 

a volcano doesn’t erupt.  False alarms of volcanic activity can cause serious problems 

for scientists and civil authorities.  Seismic unrest at volcanoes does not always result in 

an eruption and it is of vital importance to be able to distinguish between an isolated 
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seismic swarm and precursory seismic activity.  By focusing this research on the 

fundamental physics of the fracturing process, it is hoped that it may also identify and 

address this issue of the arrest of fractures and failure. 

 Little field data exists for seismic precursors to eruptions at long repose 

volcanoes. It is impossible to know whether the examples already observed represent 

the typical pattern that will always be produced, or are merely one type out of many 

possibilities. If a model based on fundamental, physical rules can reproduce the patterns 

already observed before eruptions it may also explain why these particular sequences 

have been produced as well as identifying others which could be expected at future 

eruptions. 

  



34 

 

1.7 Thesis outline 

Following the introduction this thesis contains seven chapters covering the following: 

• A brief introduction to the fracture mechanics of rocks and applications to 

research into the Earth’s crust. 

• A description of field observations of fracture, and a literature review of the 

current models of fracturing at volcanoes. 

• A description of and observations from a one-dimensional model of rock 

fracture and pre-eruptive seismicity. 

• A discussion of the observed accelerations to failure in the 1-dimensional model 

and in the field, and the role of crack interaction in the failure of rock. 

• A discussion of the statistics of the spatial and temporal distribution of 

seismicity produced by the 1-dimensonal model and in the field. 

• A discussion of the ability to produce and explain precursory seismicity through 

a simple fracture mechanics model, applications to forecasting and decision 

making, as well as conclusions and thoughts for future research. 
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2. Fracture mechanics 

2.1 Introduction to the theory of fracture mechanics 

Volcano tectonic earthquakes provide one of the best potential tools for medium to long 

term forecasts of approaching eruptions.  These events are generally produced by a 

similar mechanism to tectonic earthquakes, by brittle shear failure or slip on fault, or as 

has recently been shown, by the shear failure of magma in the conduit (McNutt, 2005; 

Tuffen et al., 2008).  An application of fracture mechanics is therefore of benefit to 

consider the processes producing the signals in addition to the resulting patterns of 

seismic sequences observed.  

For an eruption to occur a magma body must find an open network of fractures 

to the surface.  Although many fractures will already exist throughout the volcano, it is 

likely that a significant amount of further fracturing will be required to create a fully 

open pathway, particularly in the case of long repose volcanoes.  During the weeks to 

days before an eruption high-frequency earthquakes are typically detected throughout 

the edifice, with no obvious migration with time (Kilburn, 2003; Scandone, 2007).  This 

supports the assumption that these brittle, stress-induced events create an open network 

eventually linking magma at depth to the surface, rather than a single, magma-filled 

crack forcing its way through the host rock.  Fracturing of the surrounding volcanic 

edifice therefore provides a control on the movement and ascent of magma (Kilburn, 

2003).  Fracture mechanics applies the physics of stress and strain to predict when 

fractured solids will fail, and as a result can be used to explore the necessary conditions 

for a connected conduit to form in a tensile stress-field within a volcanic edifice 

(Kilburn & Sammonds, 2005). 
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2.1.1 Stress and strain 

From a start point of the analysis of stress and strain (Sneddon, 1958), stress, σ, is the 

measure per unit area of a force applied to a body: 

 

 � � �� 
(2.1) 

 

� is the force applied over a cross-sectional area �.  Stress is commonly described by 

two components, one acting normal to the surface of the body and one acting parallel.   

Normal stresses change the volume of the body they are acting on; compressive stress 

reduces the volume while tensile stress increases the volume.  Parallel or shear stresses 

change the shape of the body.  Strain, �, is the measure of the resulting change in shape 

or volume of the loaded body and is defined as the ratio between the change in 

dimensions,  ! and the original dimensions !": 

 

 � �  !!"  
(2.2) 

 

Hooke’s law describes the approximately linear relationship between applied stress and 

resulting strain observed when a material deforms elastically: 

 

 � � #� (2.3) 

 

# is known as the Young’s modulus and is a measure of the stiffness of a material. The 

rheological behaviour of rock can vary between elastic and plastic deformation 

depending on temperature, pressure and strain rate as well as the rock type (Rudnicki & 

Rice, 1975). However, for modelling the interior of a volcano it is often assumed that 

rocks will deform and fail following an elastic-brittle regime (Kilburn & Voight, 1998; 

Pinel & Jaupart, 2003). Results from laboratory rock fracture experiments carried out at 
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a range of temperatures and confining pressures support this assumption (Rocchi et al., 

2003; Smith, 2007). 

2.1.2 Fracture criterion 

Griffith Energy Balance 

Much of today’s theory on the fracture of solids stems from the pioneering work of 

Griffith in the 1920s on the stress and strain of brittle materials.  Griffith observed that 

under loading, elastic materials rarely reached even close to their theoretical strength of 

#/10 before failing, where # is the Young’s modulus of the material. The true critical 

strength of loaded specimens could be as much as 1,000 times less than the value 

predicted by theory.  Prior to Griffith’s work, Inglis (1913) had recognised the 

damaging effect of flaws in a solid body and calculated the distribution of stresses in a 

uniformly stressed plate containing an elliptical hole. Inglis showed that a remotely 

applied stress could be magnified several times over at the sharp notch of a thin ellipse. 

A crack can be modelled as an increasingly narrow ellipse, and Inglis’ work 

demonstrates how any stress applied to a cracked body will be concentrated around the 

tips of the crack.  Griffith (1920) hypothesised that this concentration of stress around 

sharp cracks was the physical explanation for the decreased critical strength of 

materials.  He argued that loaded specimens would contain numerous flaws or cracks 

and that even the smallest microcrack could sufficiently enhance local stresses to cause 

a material to fail far below the anticipated strength. Although this explained the 

apparent discrepancy between the actual and theoretical strength of a brittle solid, there 

remained the problem of adequately predicting under what conditions it would fail. 
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Griffith proposed a theoretical criterion of rupture (1920) that was based on the 

total change of energy in a cracked body as the crack length increases. He viewed the 

cracked body as a reversible thermodynamic system and using the first law of 

thermodynamics described a balance between a crack driving force, resulting from the 

applied load and strain potential energy stored in the body, and a crack resisting force, 

due to the free surface energy %& required to create a new crack surface. The total 

energy % of the system is the sum of these opposing forces: 

 

 % � %' � %& (2.4) 

 

%' is the mechanical energy provided by the work of the load and the strain potential 

energy and will decrease as the crack extends. The surface energy %&  will increase with 

crack length �. At equilibrium, the driving and resistive forces will exactly balance: 

 

 (%(� � 0 
(2.5) 

 

For the case of a thin plate under a constant load, the mechanical energy per unit width 

of a crack length �, can be calculated using the strain energy per volume %) (Lawn & 

Wilshaw, 1975) yielding: 

 

 %' � *%) � *+���,�4#  
(2.6) 

 

where �, is the remote stress applied normal to the crack surface.   

 

 



39 

 

Taking into account each surface of the crack, the surface energy per unit thickness is 

given by (Griffith, 1920): 

 

 %& � 2�. (2.7) 

 

Substituting (2.6) and (2.7) into (2.4) and applying the equilibrium condition gives a 

critical failure stress for the applied load �,: 

 

 �, � /4#.+� 0� �1
 

(2.8) 

 

Griffith supported his theoretical findings with convincing experimental results 

on the failure strength of glass. He had therefore not only shown that the presence of 

cracks could drastically reduce the critical strength of a body to an extent dependent on 

the crack length itself, but had provided a new theory of fracture criterion.  For a given 

crack length, in a given material, Griffith’s criterion predicts a critical stress level which 

if exceeded allows the crack to propagate freely. 

 Griffith’s energy balance theory has since provided the basis for much work into 

the brittle fracture of solids. However, the theory only considers the energy change as a 

crack grows and therefore accounts only for the initial and resulting state of a system 

rather than the fracture process itself. For example, a stressed body may contain a flaw 

that under Griffith’s theory would be energetically favourable to extend, but if the tip of 

the flaw is not sharp enough to concentrate the applied stress and exceed the fracture 

strength of the material the atomic bonds at the tip will not be broken and the flaw will 

not propagate. As a result Griffith’s ideas provide a necessary but not a sufficient 

condition for fracturing. 

Stress Intensity Factor 

Sneddon (1946) and Irwin (1958) produced further work on stress concentration and the 

stress field around a crack tip in an elastic body under load.  The stress close to a crack 
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tip is a function of θ and 2�� �1  where 2 and θ are the angular coordinates from an origin 

at the crack tip, and a scaling factor 3. 

 

 �45 � 362+27� �1 845697 
(2.9) 

 

�45 is the stress acting on the : plane in the ; direction. This produces a stress singularity 

at the crack tip (2 � 0), which highlights the breakdown of linear elastic behaviour in 

this area and the transition to plastic deformation (Irwin 1958). Provided this plastic 

zone remains small relative to the crack length, the approximation to a linear elastic 

body is satisfactory.  Irwin formalised the concept of the scaling parameter 3 as a stress 

intensity factor, which depends on the crack geometry and loading conditions. Loading 

can be one of three basic modes, or a mixture of the three; mode I fracturing describes 

an opening or tensional action, mode II in-plane shear or sliding, and mode III describes 

anti-plane shearing or tearing.  Under a homogeneous load, the general form for 3 in 

the vicinity of a crack tip is: 

 3 � �,6+�7� �1  (2.10) 

 

The stress intensity factor is a measure of the stress singularity at a crack tip and 

provides a necessary and sufficient criterion for fracture propagation.  Unstable crack 

propagation will occur if 3 � 3< where 3<   is the critical stress intensity value, known 

as the fracture toughness of a material. 

 

The stress based parameter 3 can be linked with Griffith’s energy based argument via 

the strain energy release rate =. From (2.6): 

 

 = � (%)(� � +��,�2#  
(2.11) 
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Comparing (2.10) and (2.11), the point at which the stress intensity factor attains the 

critical value 3<  can be associated with a critical strain energy release rate =<: 

 

 3< � 6#=<7� �1  (2.12) 

 

Rice’s J-Integral (1968) bridges the thermodynamic and mechanistic approaches 

and accounts for the crack-tip plastic region. The J-Integral is a path independent line 

integral surrounding the crack tip and represents the averaged strain energy release rate. 

>< defines a critical point at which plastic yielding will occur and is analogous to =< for 

linear elastic materials.  This approach deals neatly with the problem of the crack-tip 

stress singularity arising from assuming purely linear deformation but again it only 

holds if the plastic region surrounding the crack tip is small relative to the crack size.  It 

also loses any detail of the actual fracture mechanism at work, looking only at energy 

available for propagation.  Advances in technology have allowed the development of 

many numerical techniques for modelling crack tip stress fields and crack propagation.  

Approaches using finite element and boundary element methods can deal with 

difficulties such as crack-tip stress concentrations, crack propagation and the opening or 

closing of fractures (e.g. Chan et al., 1989).  

 The linear elastic, stress intensity approach allows insight to the actual 

mechanisms for the propagation of a crack, taking into account the surrounding stress 

field, crack geometry and material properties. Considering fracture networks within a 

volcano, it is necessary to understand something of the distribution, direction and 

connectivity of individual cracks as well the overall energy state and fracture potential 

of the system.  While rock under high temperature and confining pressure surrounding a 

magma chamber or along conduit walls may exhibit brittle-ductile behaviour, it is 

reasonable to assume that the condition of a small plastic region relative to fracture 

length will still largely hold. The source mechanism of high-frequency earthquakes 

recorded at volcanoes suggests that they are largely produced by brittle failure of rock.   
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2.2 Fracturing of the Earth’s crust 

While much of the early fracture mechanics theory was developed to predict the 

behaviour and failure of metals, glass or other commonly used engineering materials, 

the same ideas can be applied to the largely elastic, brittle rock making up the Earth’s 

crust.  Forces resulting from tectonic movement or the flow of fluids and gases beneath 

the ground exert a stress on the crust.  The distribution of fractures throughout the crust 

can relieve or concentrate these stresses in much the same way as a scratch on the 

surface of a glass rod or metal plate in the lab. 

 However, the scale of fracture processes within the crust is vastly different to 

anything that can be reproduced in the laboratory under experimental conditions. This 

includes temperature and pressure conditions as well as large-scale faults, or low strain 

rates and long time-scales.  In addition experiments will often be conducted under 

homogeneous loading conditions, whereas the stress conditions in the field will not be 

so uniform. With the difficulty of observing any crustal fracture process directly, 

scaling up results produced in the lab is nevertheless a useful insight into how stresses 

and strains are distributed throughout the crust to cause large scale failure and 

deformation.  The benefit in the application of fracture mechanics to geological 

processes is the simple fracture criteria available, allowing for an understanding of the 

necessary conditions for the propagation of cracks. 

 Faulting associated with seismic activity is thought to involve mainly shearing 

processes.  However, shear faulting on the macroscopic scale is the result of incremental 

tensile action at the microscopic scale of the fault tip and a tensile stress field can exist 

even if all principal external loads are compressive (Cox & Scholz, 1988).  Mode I 

fracture is therefore often assumed for the determination of critical stress intensity and 

strain energy release parameters. In addition to stress-dependent faulting, time-

dependent fracture and creep are also important aspects in the failure of rock and 

mechanism of earthquakes. Costin (1983) describes both time-independent and time-

dependent crack growth in rock samples in the laboratory.  Subcritical crack growth 

describes the propagation of a crack tip at a stress intensity below its critical value.  

Subcritical crack growth in the Earth’s crust is associated with long-term loading, or 

fatigue, and the corrosive effects of chemicals and fluids (Atkinson, 1984).  Rudnicki 

(1980) gives a detailed review of the use as well as the limitations of fracture mechanics 

for research into fault propagation.  Failure within the crust occurs on a vast range of 
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scales, from the microscopic to rupture of faults thousands of kilometres in length (e.g. 

Nalbant et al., 2005).  Measures of the distribution of failure magnitudes, such as 

seismic b-value, can be related to fracture mechanics parameters, such as energy release 

rate (Main et al., 1993).  The magnitude of events above a certain threshold can be 

monitored both in the field, and in the laboratory by means of acoustic emissions, and 

therefore provides information on the fracture mechanisms occurring within the crust, or 

rock sample. 

 The ascent pathway of magma through a volcanic edifice will also be controlled 

somewhat by the regional tectonic stresses.  Geological features of a volcano can serve 

as an indication to the ambient, tectonic stress field (Shaw, 1980).  Magmatic 

overpressure provides another loading source in a volcano and the magma chamber 

itself can act as a stress concentrator. Anderson (1936) used stress trajectories and the 

idea of effective stress (the total stress minus pore fluid pressure) to describe the 

conditions under which magma intrusion from a chamber will form cone-sheets or ring-

dykes. Gudmundsson (1990) described criteria for the rupture of a magma chamber and 

injection of a dyke based too on the magma pressure within the chamber and the local 

principal stresses, and also the tensile strength of the surrounding rock.  Fracture models 

often idealise the crust as a homogeneous and isotropic material.  While a general idea 

of a stress field distribution can be achieved, fracture criteria depend on material 

properties. Gudmundsson (2006) also studied dyke emplacement and arrest in a 

heterogeneous, anisotropic volcanic setting.  

 Kilburn (2003) considered the mechanical effects of a fluctuating stress field in a 

closed, but pre-fractured volcanic edifice and applied a time-dependent, energy based 

argument for propagation and coalescence of cracks.  Similarly to Griffith’s energy 

balance theory this approach has the advantage that for a given population of cracks 

only the proportion supplied with sufficient energy for propagation is required rather 

than detailed knowledge of the fracture mechanism at each crack tip.  However, this 

model therefore describes only the growth of a population of cracks as a whole without 

providing any criteria for the coalescence of a network and therefore for the creation of 

an open pathway for ascending magma. 

 An accurate description of fracture and faulting within a volcanic system 

requires input factors such as magmatic and non-magmatic loadings, the geometric 

distribution of pre-existing cracks, and material and environmental properties of the 
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rock.  At each given volcano these parameters can be described in terms of probabilistic 

distributions, based on prior knowledge from field or experimental data.  Analytical 

results for stress concentrations and propagation exist for only specific geometrical 

configurations of cracks, and beyond this scope models must incorporate numerical 

techniques.  Confining the model to a regular geometry allows the application of 

fundamental fracture mechanics and can highlight aspects of failure at volcanoes that 

either have a significant effect on the process or that are particularly sensitive to an 

input factor, or similarly any interactions that may exist.  It can then be investigated 

whether adding further complexities to the model in order to more accurately represent 

these factors would significantly improve the model’s utility.  Cause and effect, 

interactions and relationships can be identified much more readily in a model based on 

fundamental physical equations, whereas complex numerical models can become 

something of a black-box in terms of correlating inputs to observed results. 
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3 Fracture mechanics as a forecasting tool for volcanic 

eruptions 

3.1 Field observations of fracture 

While faults are often observed at the surface of volcanoes (Gudmundsson et al., 1997; 

Corazzato & Tibaldi, 2006), it is clearly difficult to directly observe fracturing within a 

volcanic edifice.  However, by considering the waveform and frequencies of detected 

seismicity and results from fracture experiments in the laboratory it is possible to infer 

some facts and characteristics about the failure process which must occur for a volcano 

to erupt. 

 Direct evidence of fracturing is occasionally seen due to erosion or collapse of 

the edifice (Fig. 3.1), or in erupted material.  Exposed dykes can reveal information 

about the mechanical properties of host rock, for example in regard to layers that the 

dyke has propagated through or where it has become arrested at the boundary 

(Gudmundsson, 2006).  In addition to fracturing of country rock there is also evidence 

for the brittle failure of lava flows (Rocchi et al., 2003) and viscous magma in the 

conduit (Dingwell, 1996).  Tuffen et al. (2003) identified evidence of repeated failure 

and healing in an exposed rhyolite conduit in Torfajökull, Iceland.  This process is 

described as repeated tectonic-like shear fracture and then subsequent healing of rising 

viscous magma, and shows similarities with other seismogenic faults in the crust 

(Tuffen et al., 2003; Tuffen and Dingwell, 2005).  The shear fracture of magma 

produces sequences of long-period and hybrid earthquakes, concentrated along the 

conduit walls (Tuffen and Dingwell, 2005).  Deformation at the surface has also been 

used to infer shear stresses along the walls of the conduit at Soufrière Hills, Montserrat 

(Green et al., 2006).  Green at al. (2006) develop a numerical model based on realistic 

stress and material parameters from the volcano, which reproduces the observed 

deformation.  A combination of field observations and the scaling up of laboratory 

results can be used to both develop and test models of fracturing within a volcano. 
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Fig. 3.1 An exposed, terminated dyke in the Reykjanes Peninsula, 
Iceland.  The dyke tip becomes arrested as it approaches the boundary 
between a tuff layer and lava flow (Gudmundsson & Loetveit, 2005).    
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3.2 Models of fracturing at volcanoes 

Factors such as tectonic setting, past activity and repose interval mean that each volcano 

is very different in terms of the distribution of stress and the level of fracturing within 

its edifice and the surrounding crust.   However despite these differences the failure 

mechanisms within the volcano that will precede an eruption are the same, and can be 

modelled by linear elastic fracture mechanics.  Varying stress conditions or the degree 

of initial damage in such a model may then highlight differences in the precursory 

activity that may be expected at different volcanoes.  Long repose volcanoes in a 

subduction zone setting, such as Mt. Pinatubo in the Philippines and Mt. Fuji in Japan, 

will provide a relatively un-fractured body of rock for magma to ascend through 

(Kilburn, 2003; Scandone, 2007) in a largely compressional field.   In addition, distinct 

patterns of precursory seismicity have been previously identified at subduction zone 

volcanoes (Kilburn & Sammonds, 2005).  This setting therefore provides good potential 

for the use of fracturing to forecast eruptions. 

 Faulting and fracturing within a volcano may occur through the combination of 

stress induced by magma intrusion exceeding the strength of surrounding host rock, and 

time-dependent weakening of the host rock. In the limiting cases, once a magma 

chamber has ruptured, it is either magma overpressure and rheology or weakening of 

rock that controls the ascent of magma through a volcano.  Magma may ascend either 

by following cracks and faults already formed through the edifice, or as a magma-driven 

extension fracture. In the latter case, a migration of seismic activity would be expected, 

which followed the propagation of magma. If fracturing was solely occurring ahead of a 

propagating magma intrusion then seismic activity would be expected to show a 

systematic migration with the movement of this failure zone.  However, observations 

show no such pattern.  Roman and Cashman (2006) study a number of eruptions, 

several of which follow a long repose interval, and the spatial distribution of their 

precursory, volcano-tectonic seismicity.  A random pattern is observed prior to the 

eruptions at Soufrière Hills, Mt. Unzen and Mt. St Helens.  The lack of migration of 

events suggests either that failure throughout the edifice has occurred prior to the ascent 

of magma, or in the event of a magma-driven fracture, that this is not the direct cause of 

high-frequency seismicity recorded prior to eruptions. The overpressure causing the 

injection of magma from a chamber can also lead to shear faulting throughout the 

edifice, which although may not be an ascent path for magma still represents a 

progressive failure of the edifice. For either scenario of the formation of an open 
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conduit for magma ascent, or the progressive failure of the edifice in the form of shear 

faulting due to magmatic pressures,  the process can be modelled through the use of 

fracture mechanics, crack propagation and crack interaction. 

The slow fracture hypothesis is supported by the period of time over which 

precursory seismicity is observed and the spatial distribution of activity.  Volcano-

tectonic events have been recorded months (eg. Mt. St. Helens; Malone, 1983) to years 

(eg. Unzen; Umakoshi et al., 2001) before the onset of activity, apparently independent 

of the size of the eruption (Scandone, 2007).  Rock weakening and slow fracture as a 

control on magma ascent would also explain the observation of eruptions beginning 

some weeks to months after the detection of magma near the surface of a volcano 

(McGuire & Kilburn, 1997). 

3.2.1 Failure forecasting method 

McGuire and Kilburn (1997) suggest that the injection of new magma has two effects 

on the surrounding edifice.  Initially, deformation will relieve the resulting stress to 

some extent, leaving a constant level of stress causing gradual deformation and failure 

prior to eruption.  Assuming a constant load and temperature, Voight’s relation for rate-

dependent material failure (1989) can be applied to the stressed crust surrounding a 

magma source.  The empirical formula: 

 

 /(Ω(@ 0�A (�Ω(@� * � � 0 (3.1) 

 

was first recognised by Fukuzono (1985) in a study of large scale slope failure. C and � 

are empirical constants and Ω represents an observable quantity such as fault slip, strain 

or energy release, whose rate (Ω (@⁄  can be described in terms of the change in that 

rate, (�Ω (@�⁄ .  For positive constants C and �, this relationship implies an acceleration 

of the deformation process measured by Ω, and if a failure rate, 6(Ω (@⁄ 7E is defined, 

yields a time of failure of the material, @E: 
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 @E * @" � 1�6C * 17 F/(Ω(@ 0"
��A * /(Ω(@ 0E

��AG 
(3.2) 

 

where 6(Ω (@⁄ 7"  is the rate at time @".  To explore its function in eruption forecasting, 

the relationship in (3.1) has been applied to various precursors such as tilt 

measurements at Mt. St. Helens (Voight, 1988), cumulative strain release at 

Bezymyanny Volcano (Voight, 1988), seismic event rate at Soufriere Hills (Kilburn & 

Voight, 1998) and line measurements at Colima (Murray & Ramirez Ruiz, 2002). 

 In applications the value of the constant α has generally been found to lie 

between the limits 1 H C H 2, often closer to 2 (Voight, 1989; Cornelius & Scott, 

1993). Although values outside of this range are also possible, the clustering of these 

values suggests a physical interpretation of the parameter, which keeps it within these 

limits. The special case of C � 1 reduces (3.1) to a linear differential equation, resulting 

in the simple exponential relationship: 

 

 

 (Ω(@ � /(Ω(@ 0" IJ6K�KL7 (3.3) 

 

Alternatively C � 2 gives a hyperbolic increase where the exponent of increase of the 

process is now the value of the process itself: 

 

 (Ω(@ � IJΩ 
(3.4) 

 

This leads to a linear decrease of the inverse rate with time: 
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 /(Ω(@ 0�� � /(Ω(@ 0"
�� * �6@ * @"7 

(3.5) 

 

As a forecasting tool, a linear relationship has the advantage of being easy to identify 

and extrapolate.  Despite the numerous studies showing good agreement, Voight’s 

material failure relationship can only be used as a successful forecasting tool with prior 

knowledge of the value of C and therefore of the nature of the acceleration to failure.  In 

order to be able to make real-time forecasts a link must be developed between this 

empirical parameter and measurable physical quantities. 

A link was formally made between subcritical crack growth and the material 

failure relationship by Cornelius & Scott (1993) and Main (1999).  Under a constant 

load, Charles’ Law for sub-critical crack growth (Charles, 1958) can be reduced to an 

equation of the form: 

 

 Ω � � � M N1 * @@EO'
 

(3.6) 

 

 

where in this case Ω represents crack length and the time of failure, @E is defined at the 

point Ω6@7 P  ∞ (Main, 1999). Equation (3.6) provides a finite failure time only when 


 H 0.  The exponent 
 is related to the stress corrosion index R by R �
 26
 * 17 
⁄ , implying that a finite value for @E exists when R � 2.  Similarly to C in 

(3.1), R is a measure of the non-linearity of the crack growth rate in Charles’ Law. 

Voight’s relationship can also be written in the form of (3.6) where Ω is now the 

measure of deformation being observed and 
 is related to C in (3.1) by C �
 6
 * 27 6
 * 17⁄ .  This provides the finite failure time requirement of 1 H C H 2 

which is the range found by application to field and laboratory data.  Cornelius and 

Scott (1993) used the direct relationship between the material failure and stress 

corrosion parameters, C � 62R * 27 R⁄  and experimental results for typical values of R 

to produce the expected range of values 1.92 H C H 1.99.  This fits within the finite 
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failure time limits and shows good agreement with many of the hind cast applications 

(Voight, 1989; Kilburn & Voight, 1998). 

 Charles’ Law for subcritical crack growth incorporates the stress intensity factor 

at the crack tip and therefore relates the empirical quantity C to a theoretical fracture 

mechanics process and provides a physical meaning to the parameter. However, 

Charles’ Law is still semi-empirical, incorporating an experimentally determined barrier 

to crack growth (Cornelius & Scott, 1993).  Main (1999) also arrived at an equation of 

the form (3.6) describing the non-linear behaviour of the size of connected clusters in a 

simple percolation model. 

 Voight’s failure forecasting relation applied to seismic event rate prior to 

eruptions following long repose (Kilburn & Voight, 1998; Kilburn & Sammonds 2005), 

finds acceleration parameters consistent with slow fracture under a constant load 

(McGuire & Kilburn, 1997), and provides well-constrained forecast windows (Kilburn, 

2003; De la Cruz-Reyna & Reyes-Davila, 2001).  This method of time-to-failure 

analysis is less well defined for non-constant stress or dynamic fracture (Smith et al., 

2007). 

 All forecasting potential of the material time-to-failure model depends on prior 

knowledge of the parameter C and there are very few cases of the material time-to-

failure model being used to issue a real-time forecast (De la Cruz-Reyna & Reyes-

Davila, 2001). Introducing subcritical crack growth relates Voight’s failure forecasting 

model to deterministic fracturing laws, however this considers only the growth of a 

single, isolated crack.  In the heavily fractured crust surrounding a volcano there will be 

many cracks, on multiple scales, growing simultaneously.  Even under the conditions of 

a constant load, proximity of neighbouring fractures will alter the stress field around a 

growing crack, to either enhance or diminish the likelihood of further propagation.  

Modelling crack growth and failure as an isolated process is therefore discounting a 

potentially influential variable in the development of bulk failure. 

3.2.2 Multi-scale crack interaction 

The failure forecasting relation (3.1) has also been applied to a population of cracks. 

Under a constant load the nature of deformation within a fractured body will evolve 

from the initial increase of newly active cracks within a fixed volume, to the extension 

of a fixed number of active cracks (McGuire & Kilburn, 1997).  In terms of Voight’s 
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material failure relation, this corresponds to the acceleration parameter increasing from 

C � 1 to C � 2 as the dominant mode of failure progresses from crack initiation to 

crack propagation (Kilburn & Voight, 1998; McGuire & Kilburn, 1997).  Growth and 

coalescence of fractures will prevail during the final stages of bulk failure and therefore 

an increase towards C � 2 is expected in the days prior to an eruption. 

 Kilburn (2003) considered the growth, interaction and coalescence of fractures 

on multiple scales, equating a step increase in crack length with a seismic event.  The 

entire process of growth and coalescence of cracks on one scale can be viewed as the 

extension of a crack on a larger scale, which on extending and joining up with 

neighbouring cracks will constitute the extension of a fracture on an even greater scale, 

and so on.  While remaining consistent with Voight’s material failure model, this multi-

scale fracture model forecasts an C � 2 acceleration for peak seismic event rate, with 

intermediary, non-peak events representing fracturing on a smaller scale.  Again 

assuming a constant far-field load, Kilburn (2003) considered the role of random energy 

fluctuations on a population of multi-scale cracks.  A statistical physics approach means 

that only the distribution of energy among a population of cracks needs to be 

considered, rather than the energy supplied to each individual crack.  Following similar 

analysis to Boltzmann’s work on the movement of gas molecules (Ruhla, 1992), the 

distribution of energy states describes the probability of cracks being supplied with 

sufficient energy for propagation.  This leads to an expression for the expected rate of 

cracking, and therefore seismicity: 

 

 (�(@ S I�TU (3.7) 

 

with �4 the extra energy required by crack : for propagation.  The rate of cracking is 

directly dependent on the energy supplied and following the Boltzmann distribution for 

statistical equilibrium (Ruhla, 1992; Kilburn, 2003) there is a much greater probability 

of a small amount of energy being supplied than a large amount.  From (3.7), as the 

energy required for propagation decreases linearly the probability of that energy being 

supplied, and therefore the crack rate, increases exponentially.   
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The energy required for crack propagation is the difference between the energy required 

to create new crack surfaces and the strain energy released by surrounding rock by the 

process of propagation (Griffith, 1920).  This can be written in terms of an initial crack 

length �" and increase in crack length per fracture step ∆� and decreases linearly with 

the number � of previous fracture steps: 

 

 � � � * M �"∆� * M� (3.8) 

 

where constants � and M are functions of the surface energy and strain energy for crack 

extension ∆� and total internal energy (Kilburn, 2003).  Substituting the above energy 

equation into the expected crack rate (3.7) gives Voight’s material failure relation for 

the special case of C � 2: 

 

 (�(@ S IW 
(3.9) 

 

 The multi-scale fracture model again gives physical reasons for the empirical 

laws based on observed patterns before eruptions at long repose volcanoes.  Although 

this method has never been used in a real time forecasting situation, the model produces 

relatively well-constrained forecasts for and is consistent with precursory seismicity to 

the eruptions at Pinatubo in 1991 and Soufrière Hills in 1995.  As the model itself 

predicts a value for the acceleration parameter C, a forecast only requires sufficient data 

points to identify a linear inverse trend. The statistical approach requires no detailed 

knowledge of the stress field or level of fracture damage in the crust.  However, due to 

the infrequent occurrence of eruptions at long repose volcanoes, precursory seismic data 

prior to these eruptions is very scarce.  While the hyperbolic acceleration to failure is 

consistent with data sets currently available, there is no way to know if this same trend 

is always to be expected or is just one pattern out of many possibilities. 
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 Fig. 3.2 (a) Seismic event rate, per 4 hours, prior to the 1991 eruption at Pinatubo. Filled 
triangles highlight the peaks in event rate, associated with failure on the largest scale in 
Kilburn’s multiscale fracture model (Kilburn, 2003).  The linear trend produced by the 
inverse of event rate peaks (b) is used to produce a failure forecast time, with failure 
expected when the trend equals zero.  The arrow indicates time of eruption. 
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 Fig. 3.3 (a) Daily seismic event rate prior to the 1995 eruption at Soufrière Hills. Filled 
triangles highlight the peaks in event rate, associated with failure on the largest scale in 
Kilburn’s multiscale fracture model (Kilburn, 2003).  The linear trend produced by the 
inverse of event rate peaks (b) is used to produce a failure forecast time, with failure 
expected when the trend equals zero.  The arrow indicates time of eruption. 
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volcanoes or evidence of intruded dykes that never reach the surface (Pinel & Jaupart, 

2000).  Gudmundsson (2006; 2002) and Gudmundsson and Loetveit (2005) address this 

issue with a deterministic view of dyke propagation and arrest. 

 Gudmundsson and Loetveit (2005) considered dyke injection and dyke fed 

eruptions in rift zones and found that mechanically soft layers of pyroclastic material at 

shallow depth favour the arrest of propagating dykes.  Extensional dyke formation is not 

confined to rift zones but can occur even in a compressional setting, where dykes will 

form parallel to the maximum and normal to the minimum compressional stresses.  

Equally, the action of layers of unfavourable stress conditions acting as barriers to the 

propagation of extensional dykes applies in various volcanic settings (Gudmundsson, 

2002; Gudmundsson, 2006).  However, the successive emplacement of arrested dykes 

gradually homogenises the crust between a magma chamber and the surface, making 

conditions for eruption more favourable (Gudmundsson, 2002).  The relative favouring 

of dyke propagation or arrest depends only on the mechanical properties of the host rock 

and the necessary conditions for chamber rupture being supplied by the local stress 

field, whether this is dominated by the far-field tectonic regime or local effects of 

magma-induced loading. This mechanism for dyke arrest should therefore apply equally 

well to any volcanic setting (Gudmundsson, 2006).  These models consider the 

propagation of a magma filled dyke and not the formation and propagation of fractures 

due to rock weakening and crack interaction, as addressed in this research.  However, it 

is instructive to consider the mechanisms proposed for the suppression of a fracturing 

process to understand how an accelerating seismic swarm may pass without bulk failure 

and eruption.  The simulation of a layered material made up of varying critical 

toughness is a simple concept to build into a fracture model based on material 

properties, and also reproduces an important aspect of a volcanic edifice. 

 A molten magma chamber can be modelled as a cavity or hole in an elastic solid 

that disturbs the remote stress field, such that stress concentrates around the magma 

chamber.  Analytical models exist for the behaviour of such a magma chamber in a 

homogeneous, isotropic crust (Pinel & Jaupart, 2003).  Similarly to the runaway, slow 

fracturing process, injected dykes in a homogeneous model will meet little resistance 

and will generally propagate to the surface (Gudmundsson, 2006).  Typically however, 

the crust surrounding a magma chamber will be highly heterogeneous and anisotropic 

and simple, analytical solutions of stress field perturbation are not accurate. Composite 

volcanoes especially, will often be made of alternating layers of stiff lava flows and soft 
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pyroclastic material (Gudmundsson, 2006).  Gudmundsson (2006) models the effects of 

layering in the crust on the trajectories of principal compressive stresses, which depend 

also on the depth, size and geometry of the magma chamber.  Boundaries between 

layers can cause the trajectory of maximum compressive stress to become horizontal, 

favouring dyke arrest over further propagation.  This layering is therefore one possible 

mechanism to explain the prevalence of injected dykes that never reach the surface. 

 The dyke propagation model considers only an isolated, magma filled fracture 

and the effects of the mechanical properties of host rock on the growth of this fracture.  

Just as stress will concentrate around the magma chamber itself, other faults and 

fractures within the crust will also alter the local stress field.  The magnitude of 

magmatic pressure decreases with distance from the magma chamber, and at distances 

on the order of the chamber diameter becomes negligible (Gudmundsson, 2006), but 

slow fracturing can occur even under a constant load due to rock weakening (McGuire 

& Kilburn, 1997).  The distribution of pre-eruptive, fracture induced seismicity suggests 

scattered failure rather than a purely magma-driven fracturing.     

 Gudmundsson’s dyke emplacement model and Kilburn’s slow fracture model 

need not be mutually exclusive, but can describe the effects of stress concentrations 

around cracks, holes or inclusions both immediately surrounding a magma chamber, 

and throughout the surrounding host rock. Gudmundsson’s model also predicts the 

gradual homogenisation of the crust (Gudmundsson, 2002) and therefore an evolution 

towards conditions under which Kilburn’s multi-scale fracture process explains the rock 

weakening generated, seismic acceleration to failure and eruption.  Gargani et al. (2006) 

combine the theories of magma-driven failure and fault interaction. They use Coulomb 

stress change in a finite element model to identify the effect of magma-induced stress 

perturbations around a molten chamber on pre-existing faults throughout the edifice.  

Local stresses may create further fracturing of the host rock that in turn influences the 

magma’s pathway from the chamber to the surface.  This style of interaction between 

local stresses and developing fracture networks is one of the key focuses of this 

research.  The finite element model produces surface deformation consistent with field 

observations, and also indicates regions where seismogenic faulting is most likely to 

occur.  However Coulomb stress transfer shows only where the probability of, or 

proximity to failure has increased or decreased.  With a strict failure criterion it is 

possible to model directly the formation of a network of fractures and also to 

incorporate into the model the effects of material properties.  
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3.3 Fracture mechanics and crack interaction model 

In the previous chapter Griffith’s energy balance was seen to provide a necessary 

criterion for fracture, while a critical crack tip stress intensity factor was both a 

necessary and sufficient condition for crack propagation.  The model developed here 

will represent the evolution of a fractured rock mass and will require the deterministic 

approach of crack tip characterisation, rather than an energy based structure.  The aim is 

a model based on fundamental fracture mechanics results that will produce an 

observable output for forecasting purposes.  Gudmundsson’s deterministic model is 

based on stress field analysis but offers no observational forecasting tool.  An accurate 

forecast of dyke propagation and arrest requires detailed knowledge of local loading and 

geometrical form of the volcanic system.  Voight’s failure forecasting method on the 

other hand is developed directly from observations.  However, in this case producing a 

forecast requires knowledge of, or an assumption of the value for acceleration parameter 

C.  Kilburn (2003) derived specific values of this parameter that should be expected if 

failure occurs by slow, multi-scale fracturing under a constant load, and which is 

consistent with observations.  This offers a physical explanation of observable 

precursors, but has the limitation that it offers no insight into any other mechanisms of 

pre-eruptive fracturing (Smith et al., 2007), or into different observations that may occur 

in the future. 

 The prospective approach taken here requires no prior assumption on the style of 

fracture rate or acceleration, and therefore places no explicit restriction on the patterns 

of fracture rate observed, although implicit restrictions may exist due to the very nature 

of the process being modelled.  As well as potentially highlighting any alternative 

precursory sequences to those that have previously been analysed and modelled, this 

may also demonstrate necessary conditions under which particular sequences are 

observed.  In addition, the model will not be limited to accelerating sequences only and 

may therefore be able to reproduce, and hence underline possible causes of seismic 

swarms that do not result in bulk failure and eruption.   In terms of a recordable 

observation, rates of fracturing in the crust can be correlated with high frequency 

seismicity, similarly to acoustic emissions measured during fracture experiments in the 

laboratory (Lockner et al., 1991).  Long period or hybrid events may also represent 

fracture processes within a volcano (Tuffen & Dingwell, 2005; Tuffen et al., 2003).  

However, these are thought to be produced by fracturing of conduit walls and magma 

rather than in the process of edifice failure and conduit formation, and the majority of 



59 

 

long period signals are related to the movement of fluids (McNutt, 2005).  The bulk of 

pre-eruptive, conduit forming failure will occur in the brittle elastic regime and allows 

reasonable use of well established linear elastic fracture results. 

 Fracture mechanisms can be affected by numerous factors such as pressure, 

temperature, humidity and material properties.  The model produced here will attempt to 

capture the most important of these factors on the parameters of interest, namely crack 

propagation and coalescence.  The mechanical properties of host rock have been shown 

to have significant consequences when the same fracture processes have been modelled 

in a homogeneous and heterogeneous setting (Gudmundsson, 2006; Liu et al., 2007).  A 

heterogeneous crust can present stress barriers or areas of weakness that will have a 

considerable effect on the growth and coalescence of a population of cracks.  The 

interaction of cracks on a stressed body has also been highlighted as a crucial element of 

failure.  Laboratory experiments suggest that coalescence of micro-cracks is the major 

process leading to eventual bulk failure of a sample (Amitrano, 2006; Tang, 1997).  

Ashby and Hallam (1986) described the significance of crack interaction in the 

fracturing and failing of a brittle material loaded in compression.  Crack interaction 

affects the stress field surrounding close neighbouring cracks and therefore plays an 

important role in evaluating crack tip characterisation (Lam & Phua, 1991) and 

subcritical crack growth (Kamaya & Totsuka, 2002).  As a result, it is important to 

consider a population of cracks as a whole rather than just the combined contributions 

of each individual fracture. 
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3.4 Chapter summary 

Fracture mechanics and failure forecasting have been successfully applied to various 

areas of volcanology as well as Earth Sciences as a whole.  A model of failure 

mechanisms within a volcanic edifice must incorporate variations in material properties 

and damage of rock, two important characteristics of individual volcanoes that have a 

significant effect on fracturing.  Even in the absence of precise data it is possible to 

describe the influence of factors such as remotely applied load, crack geometry, crack 

interaction and host rock heterogeneity on the development of a fracture network.  Both 

a constant applied load, assuming rock weakening as the sole controlling factor on 

fracture and magma ascent, and a variable remote stress, due to failure related processes 

such as deformation or magma degassing can be modelled. Comparison of these results 

along with those from different distributions for host rock fracture toughness and initial 

crack network geometry can give indication to the relative importance of these variables 

on the outcome of a loaded, fractured volcanic edifice. 
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4.  One dimensional model of pre-eruptive seismicity 

4.1 Introduction 

As described in the previous chapter, evidence for fracturing at volcanoes exists in the 

form of direct field observations and the development of seismic activity throughout the 

surrounding crust.  The model developed here is based on failure mechanisms preceding 

an eruption at a long repose volcano and therefore assumes a closed system in which 

rock weakening is the driving force behind fracturing. 

 The effects on a volcanic system of rock mechanical properties and the 

surrounding stress field are described by a one-dimensional array representing the 

progression of failure throughout a volcano. The initial, intact structure is made up of a 

number of individual cells, which fail if the local stress intensity exceeds their critical 

fracture toughness.  Stress intensity is a function of neighbouring crack geometry, as 

well as applied stresses.  Cells exist in one of two states, either intact or failed, and once 

a cell has failed it remains in that state.  The number of adjacent failed cells corresponds 

to the crack length.  A connected network of failed cells, extending through the full 

height of the array, represents a fully connected conduit (Fig. 4.1).  A one-dimensional 

representation is clearly a highly simplified view of the process of crack extension and 

interaction. Cracks are unlikely to extend and coalesce in a purely tip-to-tip nature, but 

instead will join through the formation of shear cracks between non-aligned sub-vertical 

cracks or in some cases will tend to avoid neighbouring cracks leading to arrest of 

propagation. For this simplified 1D representation, this process has essentially been 

collapsed down to allow failure in one direction only. For the model it is therefore 

assumed that cracks will tend to propagate in a tensile mode, in a plane perpendicular to 

applied stress. In this representation shear stresses cannot exist. Crack arrest can still 

occur within this model, by the propagation of the crack into an area of greater fracture 

thoughness. 
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Fig. 4.1 One dimensional 
array representing a 
potential pathway  to the 
surface. The array contains 
a fixed number of cells, 
each assigned a fracture 
toughness value. Stress is 
applied to the array and 
each cell experinces a stress 
intensity dependent on the 
applied stress and location 
of surrounding cracks. Cells 
fail once the stress intensity 
exceeds its fracture 
toughness. The failure of 
cells corresponds to seismic 
events. Grey cells are intact, 
red cells have failed. 

 

4.2 Physical basis of model 

As significant factors in the fracture process, heterogeneous mechanical properties of 

the host rock and crack interaction are both incorporated into the model.  It is assumed 

that conditions controlling micro-fracturing observed in the laboratory can be applied to 

macroscopic failure of the scale occurring within the Earth’s crust.  Statistics of acoustic 

emissions and scaling parameters from laboratory experiments on rock samples show 

similarities to those observed in a natural setting.  Behaviour of fractures also shows 

self-similarity over a range of scales (Lockner & Madden, 1991; Xie, 1993).  Therefore 

it is assumed reasonable to apply fracture mechanisms at multiple scales.  

4.2.1 Fracture toughness 

Heterogeneity of the fracture toughness of rock between a magma chamber and the 

surface can be introduced into the model using a statistical approach.  The Weibull 

distribution is widely used for representing the distribution of strengths and lifetimes 

(Weibull, 1951; Tang, 1997; Abaimov et al., 2007).   The distribution is based on the 

concept of a weakest link, and uses the multiplication of the probability of failure of 

single elements to model failure of the whole (Weibull, 1951).  The basic distribution 

function has the form: 

 

Failed 

Intact 
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 �6�7 � 1 * I�<XY
 (4.1) 

 

where � and . are scale and shape parameters respectively.  The Weibull distribution is 

an extreme value distribution, with the shape parameter . controlling the tail of the 

distribution. Its utility also stems from its flexibility.  The Weibull distribution 

approximates a normal distribution when the parameter . � 3.4, and reduces to an 

exponential distribution when . � 1. 

 Although the strength and toughness of a material are two different parameters, 

under various distributions, including Weibull, they may both be described by the same 

statistical distribution (Xing et al., 1993; Emmerich, 2007).  However, it has been 

suggested that the theoretical basis for the use of the Weibull distribution no longer 

holds when considering a material’s resistance to crack propagation, and that fracture 

toughness data exhibits a systematic deviation from what is otherwise a reasonable fit 

by the distribution (Neville & Knott, 1986). Neville (1987) suggests an alternative 

distribution, based on the theory of stress concentration at crack tips: 

 

 �6[7 � 6[ M⁄ 7\
1 � 6[ M⁄ 7\ 

(4.2) 

 

“Sampling” [ is defined as a power of the stress intensity factor,  [ � 3], M is the scale 

parameter and � is the shape parameter.  Hazzard et al. (2000) assign bond strengths 

following a Gaussian distribution in their micromechanical rock failure model, using the 

variance to control the degree of heterogeneity.  Due to its flexibility a Weibull 

distribution is used to assign cell fracture toughness in the one-dimensional model. By 

varied selection of parameters, alternative proposed distributions, such as Gaussian can 

also be accounted for. 

 Spatial distribution and variability of fracture toughness must also be 

considered, as along with the statistical distribution, they determine the degree of 

heterogeneity in the model.  A random spatial design can be achieved through a random 

walk process.  A random walk is a sequence of discrete steps, with the magnitude and 

direction of each step being selected at random from the specified distribution.   
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Henderson and Main (1992) refer to the abundance of examples of random walks in 

nature and assign toughness values to their fracture model using a random walk on a 

Gaussian distribution.  A layered structure can represent heterogeneous strata making up 

a volcanic edifice whilst assuming broad homogeneity of mechanical properties within 

these strata (Gudmundsson, 2005).  For any statistical distribution selected, appropriate 

experimental data can provide suitable range limits or scale parameter values.  In the 

one-dimensional model both random and layered distributions are applied. 

 Experimental data exists for fracture toughness measurements over a variety of 

temperature and pressure conditions for both intrusive and extrusive rock.  Meredith and 

Atkinson (1985) measured the fracture toughness for intrusive rocks, at temperatures 

from 20 to 400°C and found values between 1.7 and 3.1 MPa√m for Westerly granite 

and Black gabbro.  Balme et al (2004) conducted high-pressure and high-temperature 

experiments on Icelandic, Vesuvian and Etnean basalts and measured fracture toughness 

values between 1.4 and 3.8 MPa√m.  In laboratory experiments, Smith (2007) measured 

fracture toughness at pressure and temperature conditions consistent with different 

regions within a volcano, including material close to a conduit, close to a magma 

source, and rock at depths of 1.5-2.5 km beneath the summit of a volcano.  Experiments 

were carried out on ancestral Mt Shasta andesite and over the various conditions the 

fracture toughness measured remained consistent around 2.5±0.5 MPa√m. 

4.2.2 Flaw distribution 

Applied stress will concentrate at crack tips and therefore the number, location and size 

of initial cracks will also affect the progression of the model.  In assigning a geometry 

for initial flaws, both crack length distribution and crack density must be considered.  

Steacy and Sammis (1992) assume a fractal distribution for starter flaws in their damage 

mechanics model.  Under this assumption, crack size frequency will follow a power law 

relation between limits of a maximum and a minimum flaw size, where the latter may 

be dependent on the observation scale, and for modelling will be limited by grid size.  

Power law trends have been found for crack length populations from the laboratory 

scale to the field scale (Wong et al., 2006; Hatton et al., 1993). 

 Renshaw and Pollard (1994) use a uniform probability distribution to assign 

initial flaw geometry in their numerical fracture set model.  Altering the critical 

probability value in their model, above which a network node fails, creates different 
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starting distributions.  On comparison of the numerical fracture sets with experimental 

results, “invisible” flaws were added to the numerical distribution to allow for the 

growth of cracks initially smaller than the model grid size.  In the model presented here, 

the initial location of cracks or flaws can be related to the specified fracture toughness 

distribution.  Fracture toughness measures resistance to propagation of an existing crack 

and therefore a low value of this property at the grid scale can be associated with the 

presence of a microcrack at the smaller, invisible scale.  In other words, as soon as 

stress is applied to the model, the weakest areas will fail first, producing an initial 

distribution of cracks in a similar fashion to the critical probability threshold described 

above.  The spatial and statistical distributions of fracture toughness can then also 

control the initial crack length statistics. 

 The pre-existing distribution of flaws or cracks within the crust is highly 

heterogeneous, depending greatly on the rock and stress history (Wong et al., 2006; 

Kranz, 1983).  Even in the case of a long repose volcano, host rock within and below a 

volcanic edifice may be heavily fractured (Kilburn, 2003; Scandone et al., 2007) and it 

will therefore be instructive to also consider the effects of larger scale faults and cracks 

within an interacting fracture network. 

4.2.3 Stress field 

In addition to the regional stress field within which a volcano lies, the local stress field 

can also be affected by topographic loading, and magma and hydrothermal processes 

(Roman et al., 2004).  Topographic loading of the crust has been identified as a major 

influence on the stress field and resulting seismicity at Mt. Spurr, Alaska and Mt. 

Vesuvius, Italy (Jolly et al., 1994; De Natale et al., 2000).   Roman et al. have looked at 

the evolution of local stress fields both before and during eruptions at Mt. Spurr (2004) 

and episodes during the ongoing activity at Soufrière Hills, Montserrat (2008), using 

detailed analysis of seismic data.  Analysis of fault plane solutions of VT events in the 

weeks to days prior to renewed activity at Soufrière Hills, suggests that the local stress-

field undergoes a 90° reorientation during this period.  This is correlated with the 

inflation of a dyke located beneath the vent, and is proposed as a forecasting tool for 

future activity.  However, few sufficiently detailed earthquake data sets exist to enable 

this method to be used to provide a general picture of local stress fields within a 

volcano. 
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 Experimental data is largely produced under constant strain rate or constant load 

testing, modelling rock deformation response to either a regional strain or fixed stress 

field (e.g. Mavko et al., 1998). The influence of both constant and variable stress 

conditions on the development of fracture networks has been highlighted by numerical 

models (Renshaw & Pollard, 1994; Tuckwell, 2003), and fracture patterns in geological 

materials can be used to interpret the local stress history.  In particular, failure of the 

crust has been modelled under both constant and increasing stresses.  Modelling 

earthquake recurrence times, Main (1988) considered a time dependent remote stress 

with a constant load rate �̀: 

 

 �6@7 � �" � �@̀ (4.3) 

 

De la Cruz-Reyna and Reyes-Davila (2001) developed a visco-elastic model for 

material failure, with applications to eruption forecasting, and considered a constant 

load, a linearly increasing load, and an initially increasing load which is then held 

constant at �" after time @<: 

 

 �6@7 � �"@< @a6@< * @7 � �"a6@ * @<7 (4.4) 

 

Non-linear increases in stress have generally been associated with magma induced 

pressure changes, for example in relation to lava-dome eruptions (Sparks, 1997). 

 The time scale involved when considering medium-term precursory activity is 

relatively short compared with that for magma induced pressure changes.  The lack of 

migration of VT seismicity prior to eruption suggests that magma intrusion is not a 

source of stress variation during this process.  Slow rock fracture as a control on magma 

ascent also requires no magma generated increase in pressure (Kilburn & Voight, 1998).  

Therefore in the one-dimensional model of precursory fracture, an assumption of a 

temporally constant local stress field is also a reasonable model parameter.   
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4.2.4 Stress intensity 

Stress applied to a body will concentrate at the tips of cracks and flaws within the 

material, as described in Chapter 2.  The remote stress applied to the model is adjusted 

locally according to the geometry of surrounding cracks.  For an isolated, two-

dimensional crack the stress intensity factor at each of its tip is given by: 

 

 3 � �√+� (4.5) 

 

where � is the crack semi-length and � the applied stress (Lawn & Wilshaw, 1975).  In 

the crack tip region, stresses decrease with the inverse square root of distance from the 

crack tip (Atkinson, 1987).  The stress intensity factor deals with the magnitude of 

crack-tip stress concentration and the likelihood of a fracture to propagate.  Here it is 

also assumed that the stress intensity factor determines the extent of crack propagation. 

The greater the crack length, the greater the degree of stress concentration, and the 

greater the expected increase in crack length (Tuckwell et al., 2003).  The crack-tip 

stress intensity is reduced with distance from the crack, within the range of half the 

crack length.  The extent of propagation will then depend on both crack length and local 

fracture toughness, with failure occurring a distance � from an isolated crack if local 

toughness is exceeded by: 

 

 3 � �b+��  
(4.6) 

  

As cracks form closer together they will interact mechanically and therefore no longer 

act as isolated cracks.  Tuckwell et al. (2003) allow for crack interaction by defining a 

non-linear process zone around propagating crack tips, the extent of which is dependent 

on the crack tip stress intensity. Neighbouring cracks will join up if their respective 

process zones overlap.  This method allows only for the coalescence of cracks due to 

mechanical interaction and not individual crack growth as a result of stress intensity 

increase in the presence of a neighbouring crack (Sammonds & Ohnaka, 1998).  

Kachanov (1987) proposes a superposition technique for approximating linear elastic 

stress fields surrounding an arbitrary distribution of cracks.  The integral based 
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technique produces good approximations to known analytical results until the distance 

between cracks becomes small relative to crack length, in which case the effects of 

crack interaction are underestimated.   

 

 

 

 Fig. 4.2 Crack length and spacing measurements used in Rudnicki and 
Kanamori’s stress intensity calculations for an infinite array. 

 

 

 

Analytical solutions for crack-tip stress fields exist for only a small number of, 

generally uniform, geometries of neighbouring, interacting cracks (Tada et al., 1973). 

As described by Rudnicki and Kanamori (1981), the crack-tip stress intensity factor for an 

infinite periodic array of cracks is: 

 

 3 � � c� tan g+�� hi� �⁄
 

(4.7) 

 

where � is the distance from one crack centre to the next (Fig. 4.2).  When cracks are a 

great enough distance apart to behave as isolated cracks, Equation (4.7) reduces to (4.6) 

by the property tan 9 j 9 for small values of 9. Following Henderson and Main (1992), 

the effects of crack interaction on stress intensity at crack tips and the region between 

neighbouring cracks is assigned using Equation (4.7), adjusted to allow for unequal 

crack lengths and inter-crack distances.  For a cell in the one-dimensional array, a 

distance �� and �� respectively from adjacent cracks of length 2�� and 2��, the stress 

intensity is calculated by summing the effects of each crack interacting with a notional 

crack of the same size.  This sum is adjusted by a factor dependent on the crack lengths 

2�4 and the point’s distance from each crack �4, also allowing for attenuation of the 

concentration away from crack-tips:    
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 3 � 8k�4, �4m � n o�4 tan /+�4�4 0p� �⁄
4q�,�

 
(4.8) 

 

 8 � 1� r1 *  45s �4�5t�5  
(4.9) 

 

� is the actual centre to centre distance, while �4 represents the centre to centre distance 

between crack : and the notional crack of the same length (Fig. 4.3).   45 is the 

Kronecker delta function. 

 

 

 

 

 

 

Fig. 4.3  The stress intensity at a distance �� from a crack of 
length 2��, and distance �� from a crack of length 2�� (top), 
is calculated by summing the effects of each of the two cracks 
interacting with a notional crack of equal length (grey cracks), 
as described in Equation (4.8). The distance between the 
modeled and notional cracks is the same as that between the 
original cracks (i.e. ��  �  ��). The centre-to-centre distances 
between the two modeled cracks and the modeled and 
notional cracks are given by �, �� and �� respectively, and are 
related by 2� �  ��  �  ��. 

 

 

Again, this term for stress intensity concentration tends back to (4.6) when the inter-

crack distance is large.  For example, when two identical cracks are separated by a 

distance equal to their length, the effect of interaction on the crack tips increases the 

stress intensity by just 10% (Rudnicki & Kanamori, 1981). 
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 This interaction effect creates a positive feedback process.  As cracks form close 

together the surrounding stress intensity is increased, causing new cracks to form, which 

further increases the stress; thus, under certain conditions, a runaway fracturing process 

is established, and the system rapidly runs to failure.   
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4.3 Description of model 

4.3.1 Initial conditions 

In the one dimensional array, a fully connected pathway can arise only when all cells 

have failed.  Model sizes up to 7,000 cells were tested.  Results remained statistically 

consistent for sizes above 1,000 cells and therefore model sizes of 1,000 - 2,000 cells 

were generally used, in order to reduce long computational running times. 

 Following the discussion in Section 4.2.1, a fracture toughness value is assigned 

to each cell by generating a random walk on a Weibull distribution. Initially the shape 

parameter of the Weibull distribution has a normal distribution with mean 3.4.  Values 

are arranged spatially according to the number of homogeneous layers to be modelled, 

and the degree of local homogeneity within these layers.  For example, for complete 

heterogeneity a number of layers equal to the number of cells can be selected.  The 

series of fracture toughness values produced by the random walk process are sorted into 

ascending order and distributed over the cells according to the number of layers and 

homogeneity within each layer. For a homogeneous layer, consecutive values from the 

ordered list are selected. For a layer with a greater degree of heterongeneity, values are 

selected from a larger range within the list of toughness values.  

As described in Section 4.2.2, flaws are naturally introduced into the array when 

the initial stress is applied and cells with a fracture toughness value less than the applied 

stress fail immediately. For model runs where a specified distribution of flaws is being 

tested, for example a set of cracks with a power law frequency-length distribution, this 

distribution is then also assigned.  If a greater number of initial flaws are required than 

those that naturally fail due their fracture toughness, these extra flaws are added by 

randomly selecting intact cells and assigning a state of failure. Table 4.1 contains each 

of the input parameters and their respective ranges. 

 

 

 

 

 



72 

 

Input parameter Distribution/Range 

Fracture toughness Weibullk�, um 
� ~ N [3.4, 1], u ~ N [1, 1] 

Number of layers for fracture 

toughness homogeneity 

R [1, w] (w = number of cells) 

 

Homogeneity within layers R[0, 1] (a value of 0 implies toughness values are 

assigned at random within the layer, a value of 1 

implies toughness values are assigned in numerical 

order within the layer. 

Number of initial flaws R[0, w/50] (w = number of cells) 

 

Table 4.1 Distributions for input parameters to the one-dimensional model. 

4.3.2 Running the model 

An initial stress is applied uniformly to the model and a stress intensity value is 

calculated for each cell, dependent on the geometry of neighbouring flaws, by Equations 

(4.6) and (4.8).  After checking for failing cells the stress intensity values are then re-

calculated, taking into account any newly failed cells and adjustment of the remote 

stress level.  Cells are then again checked for failure.  These iterations continue until 

either all cells have failed and a connected pathway is formed, or until no further 

failures will occur under the prescribed loading conditions.  The model is generally run 

under one of two conditions: constant stress or constant load rate. 

 Under constant stress, the remotely applied stress remains the same during each 

iteration of the model and changes to stress intensity arise solely due to the failure of 

new cells.  The model need not always fail under this condition, but can instead reach a 

state of stability where no further cells are caused to fail.  To simulate a constant load 

rate, some measure of time must be introduced into the model.  Each iteration in the 

running of the model provides a natural measurement of time, as the static stress 

transfer involved can generally be assumed to occur on a time-scale independent of the 

size or location of the failure event.  A constant load rate is therefore modelled by a 

regular increase in the remote stress with each iteration of the model. 
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4.3.3 Seismic event rate 

The failure of a cell is considered as representing a seismic event and the event rate is 

therefore simply the number of cells failing during each iteration of the model.  This is 

recorded along with the location of events, to enable a picture of the spatial 

development of cracks.  An approximate magnitude of events is measured by the length 

x of adjacent cells failing simultaneously, via a logarithmic relation:  

 

 
 � 4 * w log x (4.10) 

 

The constant w takes a value between 3 and 4 (Kanamori & Anderson, 1975) and � is 

selected to scale the magnitude. For example, if w �  4 and � �  10 the failure of a 

single isolated cell will produce a magnitude zero event. If w �  3, � �  10 results in a 

single failure producing a magnitude one event. 

 By altering the initial variables in the model it is possible to investigate the 

effects of mechanical inhomogeneities, the extent of damage, and the local stress 

conditions on the development of a fracture network.         

        

  



74 

 

4.4 Observations and sensitivity analysis 

4.4.1 Exponential acceleration and linear inverse trend 

When run under constant stress or constant load rate, with input parameters taken 

randomly from the distributions described in Table 4.1, the prevailing patterns of 

seismic event rate observed are comprised of exponential increase with time, and linear 

inverse event rate with time.  A linear inverse rate can be extrapolated towards a 

singularity point of infinite event rate and describes hyperbolic growth.  A continuous 

exponential growth or an initial exponential growth that becomes hyperbolic prior to 

failure, are patterns observed in the model.  Representative results are shown in this 

section, and are typical of the output distibutions produced by random simulations of 

the one-dimensional model. Figure 4.4 contains two examples of model outputs, 

showing a good fit (	� � 0.9) to each of these growth patterns respectively.  Figure 4.5 

shows the progression of the array for each example. 

 A drop-off in the event rate is often seen immediately prior to failure.  In the 

case where this coincides with the time of failure, as in the example in Figure 4.4a, it is 

assumed that this is due to the closed nature of a one dimensional model.  During the 

final loop of the process, there will be a limited number of cells that remain intact and 

are subsequently available to fail and produce a seismic event. 
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 Fig. 4.4  Typical outputs from the one dimensional model under a 
constant stress, showing seismic event rate with time.  (a) 
Exponential growth is often recorded. Inset shows the natural log of 
event rate, with a good linear fit (	� � 0.99). A drop-off in event 
rate is often seen immediately prior to failure due to a limited 
number of cells remaining intact. (b) A trend which becomes 
hyperbolic is also observed. Inset shows the initial linear log event 
rate (	� � 0.99), followed by a linear inverse rate, signifying the 
onset of hyperbolic growth (	� � 0.99). 
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Fig. 4.5 Progression of 
the one dimensional array 
with time. Intact cells are 
grey, failed cells red. (a) 
Failure dominated by one 
primary fracture produced 
the exponential trend in 
seismicity shown in Fig. 
4.4a.  (b) Event rate 
produced is exponential 
initially, but becomes 
hyperbolic prior to failure 
(Fig. 4.4b). Results 
represent typical 
examples from multiple 
runs of the model. 

 

 Figure 4.6 shows an additional example of the progression of the model array, 

and the resulting linear inverse event rate.  In this particular case a greater number of 

primary cracks grow throughout the model, allowing for greater crack interaction 

effects. 

 

 

Intact 

Time 

Failed 

a) b) 
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 Fig. 4.6 Progression of one-dimensional array with time, 
showing simultaneous growth and interaction of multiple 
cracks, and the resulting event-rate and inverse-rate trends. This 
represents a typical such result from multiple runs of the model. 

 

 

4.4.2 Effect of fracture distribution 

To gain some understanding of the influence or importance of the distribution of initial 

cracks on the evolution of failure, the model was run three times, with the same 

distribution of fracture toughness but different arrangements of initial cracks.  In each 

case 20 out of 1,000 cells were assigned a starting state of failure.  In each of the three 

cases, these 20 cells were arranged as 10 uniformly separated cracks of length two, one 

single, central crack of length 20, and completely at random throughout the array.  

When subjected to a uniform load each case produced a seismic event rate with a good 

fit to an exponential curve (	� � 0.94).  The magnitude of the applied stress was 
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chosen to be the minimum value that would lead to complete failure.  The rate of 

exponential growth was slower in the case with one single crack, with a rate constant of 

0.16, compared to values of 0.31 and 0.25 in the uniform and random case respectively.  

This may be due to the activity being driven by the growth of a single crack. If multiple 

cracks exist, interaction between these cracks further increases stress intensity, and the 

coalescence of cracks provides a mechanism for rapid crack growth. 

Despite cells having the same fracture toughness value in all three cases, 

extensive failure initiates in different regions in each run (Fig. 4.7), implying that low 

fracture toughness alone does not determine which areas will fail most readily.  The 

location of fractures is also important in determining the evolution of a fracture 

network. 

 

 

 

 

 Fig. 4.7 Progression of cracks with time for three simulations of the one-dimensional 
model, with identical fracture toughness distribution. Each run has 20 initially failed cells, 
with a different spatial distribution of the failed cells in each case. (a) Failed cells are 

 

Failed 
Intact 

Time 



79 

 

distributed uniformally along the array, as 10 cracks of length 2 with an inter-crack 
distance of 98 cells. (b) Failed cells produce one single, central crack of length 20. (c) 
Failed cells are distributed at random along the array. 

  

4.4.3   Effect of fracture toughness distribution 

Given uniform fracture toughness, the event rate will be controlled by the stress 

intensity distribution and the location of initial cracks.  Aside from interaction effects, 

two cracks of the same length will extend at the same rate.  Under a constant load, the 

model will fail if the remotely applied stress is greater than that necessary to cause the 

largest crack to extend, as there will be no region of greater fracture toughness to halt 

crack growth.  This crack, or multiple cracks if there are several of the same length, can 

then freely extend throughout the entire array (Fig. 4.8). 

 

 

Fig. 4.8 Progression of a one 
dimensional array with uniform 
fracture toughness. The largest 
initial crack dominates activity 
entirely and growth spreads 
evenly while the model 
boundaries allow. Growth rate 
slows slightly once the 
dominating crack can grow in 
one direction only.  
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Under uniform fracture toughness, the model again provides a good fit to 

exponential growth in seismic event rate. When the model is run with the same initial 

cracks and the minimum stress that produces failure, but with an entirely random 

fracture toughness, exponential growth is still observed but the rate constant is generally 

lower, with exact magnitudes dependent on the distribution.  In other words, the 

variable fracture toughness acts to slow down the process somewhat.  Once a variable 

fracture toughness is introduced, rather than the pure extension of existing cracks, 

cracks tend to grow by the development of smaller cracks around its tip, which then 

coalesce to create extension of the original crack.  This process leads to a damage zone 

around an advancing fracture. 
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Fig. 4.9 Event rate and log 
event rate with time for 
four runs of the model 
with an identical 
distribution of initial 
flaws, and fracture 
toughness values assigned 
from different 
distributions. Fracture 
toughness values are 
selected at random from a 
rectangular distribution 
with a range of (a) 5 (b) 20 
and (c) 10 units. Values 
are assigned randomly 
along the array. (d) The 
final run has toughness 
values selected at random 
from a rectangular 
distribution with a range 
of 20 units, which are 
applied to the array with 
clusters of similar 
magnitude values. All runs 
produce a roughly 
exponential increase in 
event rate. The 
exponential rate constant 
reduces with the increase 
in range of the fracture 
toughness distribution, λ = 
0.4, 0.24, 0.28 
respectively for ranges 5, 
20 and 10 (Figs. (a) to (c)) 
respectively.   A clustered 
distribution produced the 
rate λ = 0.39. For the case 
of a constant fracture 
toughness (Fig. 4.8) λ = 
0.57. 
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The effect of the degree of variability in fracture toughness can also be 

considered.  The model was run four times, each time with the same initial failures and 

the minimum load necessary to ensure failure.  A random fracture toughness 

distribution is assigned with a range of 5, 10 and 20 units for the first three runs 

respectively.  Values are selected from a rectangular distribution with ranges described 

above.  These values are then distributed randomly over the cells. All three distributions 

are centred about the same mean, and the increase in range equates to over a 400% 

increase in the standard deviation from 1.4 to 5.8.  As the variability increases, the 

exponential rate constant decreases (Fig. 4.9).  For the final run of the model, a 

variability range of 20 is again used, but the values are clustered spatially. For example, 

cells with a high fracture toughness are more likely to be surrounded by other cells with 

a high fracture toughness.  This has the effect of increasing the exponential rate of 

growth.  

4.4.4 Monte Carlo sampling 

The range of outputs from the model can be seen to be simultaneously dependent on the 

distribution of fractures, the distribution and variability of fracture toughness and the 

loading conditions.  A Monte Carlo method was used to explore the outcomes of 

repeated samplings for combinations of these factors.  Clearly a large degree of 

uncertainty exists concerning the appropriate inputs to use for any specific volcano 

under study.  A Monte Carlo simulation provides not only a useful means of assessing 

how a variety of conditions may affect seismic event rate, but also the range of 

observations which might be expected prior to an eruption. 

A separate simulation was run for constant load and constant load rate as the 

disparate time scales for these conditions makes comparison difficult.  In each case, the 

model was run numerous times with different initial conditions chosen at random for 

each separate run.  The variables selected are the shape and scale parameters used to 

describe the Weibull distribution of the fracture toughness values; the number, 

respective size and variability of layers for the fracture toughness values; and the 

number, length-frequency distribution and the degree of randomness or uniformity to 

the location of initially failed cells. 
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 Fig. 4.10 Event rate with time for 200 individual runs 
of the one dimensional model under increasing stress. 
Input parameters are chosen at random from the 
distributions described in Table 4.1.  Time is measured 
from the start of each model run. 

 

 

 Under constant loading rate, the same stress increase of 0.1 MPa/unit time was 

used in 200 separate runs (Fig. 4.10).  This was a value found to be generally large 

enough to induce further fracturing, but sufficiently small to allow gradual rather than 

large scale failure.  Of 200 outputs, 138 showed a significant fit (	� � 0.9) to a 

continuous exponential trend and 4 produced a better fit to an exponential growth that 

became hyperbolic prior to failure.  The exponential rate constants and inverse gradients 

for these observations were also recorded (Fig. 4.11).  The exponential constants range 

from 0.24 to 3.38, with approximately 80% of the trends having a rate constant less than 

0.8. The 4 trends showing hyperbolic growth have inverse gradients of 62.0, 4.17 |
10�}. 
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Fig. 4.11 Cumulative 
probability function for 
(a) the exponential rate 
constants from 138 
Monte Carlo runs 
producing an expoential 
increase in event rate, 
and (b) the gradient of 
inverse seismic event 
rate for the 4 Monte 
Carlo runs producing an 
exponential followed by 
hyperbolic increase in 
event rate. The peak 
event distributions 
describe the exponential 
rate constants and 
inverse gradients for the 
Monte Carlo runs when 
only the local peaks in 
event rate were used in 
analysis, as described in 
Section 3.2.2. When 
only peak events are 
included, 29 of the 
Monte Carlo runs 
produce an exponential 
event rate that becomes 
hyperbolic prior to 
failure (b), and 7 
produce a purely 
hyperbolic increase. 
Figure (c) shows the 
cumulative probability 
function for the gradient 
of the inverse event rate 
in these 7 cases. Event 
rate trends are the 
output from 200 
individual runs of the 
one dimensional model 
subjected to increasing 
stress. 

  

Many of the observed event rate patterns show an overall exponential or hyperbolic 

growth, but due to a greater degree or variability within this trend do not give a 

statistically significant fit.  To look at the extent of these general trends, a similar 

analysis was done for the peak event rates only.  Kilburn (2003) demonstrated that the 

failure forecast method could be applied to activity occurring on different scales at 

Pinatubo and Soufrière Hills.  Using only peaks in the model event rate, the 200 runs 

produce 133 continuous exponential trends, 29 exponential to hyperbolic trends and 7 
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showing just the hyperbolic section of growth.  Exponential rate constants are similarly 

distributed as in the case of all events.  However, inverse gradients for the purely 

hyperbolic growth are in general an order of magnitude greater than those trends that 

become hyperbolic following an exponential increase.  These purely hyperbolic cases 

are, by definition, examples which show rapid growth immediately and this is likely to 

occur when the selection of parameters gives relatively homogeneous and low fracture 

toughness values.  Combined with a distribution of initial flaws that optimises 

interaction, this will lead to very rapid bulk failure, with little to slow the process.  The 

small number of such cases in the simulation suggests that this combination of factors is 

statistically uncommon.   

 

 

 

 Fig. 4.12 Event rate with time for 100 individual runs of the 
one dimensional model under constant load. Input 
parameters are chosen at random from a range of possible 
values and distributions.  Time is measured from the start of 
each model run. 

 

 

 Figure 4.12 shows the results of 100 runs of the model under constant load, 

where the level of stress chosen was the minimum required to produce complete failure.  

The average failure time under constant stress is longer than that with increasing stress.  

Stress intensity is an increasing function of crack length, proximity to a crack and also 

external stress.  With all factors equal, an array that is subjected to a higher applied 

stress will fail more rapidly than that subjected to a lower stress. From the 100 runs, 

there were 77 significant (	� � 0.9) continuous exponential trends, and 9 that became 
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hyperbolic after an initial exponential increase.  The number of significant exponential 

to hyperbolic trends increased to 27 when only peak events were considered, with 71 

following continuous exponential growth.  Exponential rate constants are significantly 

lower on average than for the increasing stress case, with values in the range of 0.03 to 

0.7 (Fig. 4.13a).  Inverse gradients have a similar lower limit to the increasing stress 

case, but increase to a lesser maximum of  2.0 | 10�} (Fig. 4.13b), again with the peak 

event cases showing a wider range of values.  

 Looking directly at the initial conditions for the different runs, those that 

produce an exponential developing into hyperbolic trend appear to have a generally 

more homogeneous fracture toughness distribution, and initial flaws that are more 

clustered. As described in Section 4.2.1, the shape parameter u of the Weibull 

distribution controls the shape of distribution. The mean value for this parameter from 

the Monte Carlo runs producing an exponential trend was 1.7. For the exponential to 

hyperbolic trends the mean value was 0.8. Lower values of u produce a distribution 

closer to an exponential distribution, with a smaller range, and therefore more similar 

values than a normal distribution, which is more closely resembled with larger values of 

u. Both the exponential and exponential to hyperbolic trends had similar initial 

conditions in terms of crack length distribution, with average mean lengths of 1.5 and 

1.4 respectively. However, a greater difference was observed in the initial inter-crack 

distance distribution. A mean value of 134 was recorded for the runs producing 

exponential trends, and 94 for those that progressed into hyperbolic trends. 
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 Fig. 4.13 Cumulative probability function for (a) the exponential rate 
constant from the 77 Monte Carlo runs producing an exponential 
increase in event rate prior to failure, and (b) the gradient of inverse 
number of events with time for the 9 Monte Carlo runs producing an 
exponential trend that becomes hyperbolic prior to failure. The peak 
event distributions describe the exponential rate constants and inverse 
gradients for the Monte Carlo runs when only the local peaks in event 
rate were used in analysis, as described in Section 3.2.2. When only 
peak events are included, 27 of the Monte Carlo runs produce an 
exponential event rate that becomes hyperbolic prior to failure (b). 
Event rate trends are the output from 100 individual runs of the one 
dimensional model under constant load. 

 

 

 These two types of trend, namely exponential and exponential to hyperbolic, 

clearly provide a good description for the majority of outputs from the one dimensional 

model, especially when run under a constant stress.  In the constant load simulation they 

account for 86% of outputs, rising to 98% when only peak events are considered, 

compared to values of 71% and 85% respectively when run under an increasing stress.  

These two trends are discussed in more detail in Chapter 5. Figure 4.14 shows two 

examples of typical alternative outputs that do not fit either of these trends.  Some such 

outputs show a marked increase in event rate leading up to failure, but a long tail of 
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much steadier increase prior to this prevents the growth from being described as 

exponential or hyperbolic (Fig. 4.14a).  Another relatively common pattern is periods of 

exponential growth within a more disordered overall trend (Fig. 4.14b). 

 

 

 Fig. 4.14 Examples of alternative event rate trends, produced 
by the Monte Carlo run, which do not show an exponential or 
hyperbolic growth. 

 

 

 For completeness, a sampling of 550 runs where loading conditions also differed 

was performed (Fig. 4.15).  Within each run of the model, the time between successive 

stress changes, and the extent of that change was non-uniform. However, to ensure that 

the model would always eventually progress to failure, no negative stress changes were 

applied.  The time scale of failure covers a large range, with some cases in which arrays 

failed almost instantly and therefore with very high event rate, or a much longer failure 

time associated with a lower general event rate.  However, even in these longer, drawn 

out trends some degree of increase in event rate can still be seen prior to failure.    These 
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two extremes in output data may be due to the coupling of relatively homogeneous 

fracture toughness and a significant increase in stress for early, rapid failure, and diverse 

fracture toughness under a constant or very steadily increasing load, leading to the more 

gradual development of failure.  The model has the same number of cells in each run 

and therefore in general, the shorter failure times will be associated with the larger event 

rates. 

 

 

 Fig. 4.15 Event rate with time for 550 individual runs of 
the one dimensional model. Varying input parameters are 
fracture toughness and initial flaw distributions, as well as 
external loading conditions.  
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4.5 Chapter summary 

The one-dimensional model is based on physical principles of the concentration of 

stress due to the presence of cracks in a material.  Mechanical properties of the host 

rock making up a volcanic edifice can be varied within the model, as well as the 

surrounding stress field.  The distribution of initial cracks in the array, and the 

variability of fracture toughness of cells, both affect the failure rate of the model.  The 

model produces exponential accelerations of failure rate, which in some cases become 

hyperbolic prior to bulk failure of the array.  A Monte Carlo simulation highlights the 

relative probability of each style of precursor as well as providing a possible range of 

parameter values. 
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5. Analysis and discussion from 1D model: Accelerations of 

seismicity 

5.1 Introduction 

The Monte Carlo simulation described in the previous chapter showed that, when run 

from a suitable range of initial conditions, the one dimensional model will produce a 

definite, quantifiable pattern of precursory events.  This chapter will consider in more 

detail the two predominant trends identified, exponential and hyperbolic, and the 

processes that may be responsible for these trends.  The precursory sequences are 

consistent with the material failure forecast model (Voight, 1988) and crack interaction 

model (Kilburn and Voight, 1998) described in Chapter 3, as well as field data and 

laboratory observations.    

Exponential rates of failure are commonly observed at volcanoes (e.g. Bell, 

2008; Kilburn, 2003), and also in compression tests in the laboratory (e.g. Meredith et 

al., 1990).  In addition, for both field and laboratory data, the emergence of subsequent 

faster than exponential trends have also been observed.  Field observations from 

subduction zone volcanoes show a hyperbolic acceleration in seismicity in the final 

weeks prior to eruption (e.g. Kilburn & Voight, 1998; Kilburn, 2003).  Tests in the 

laboratory show step increases in acoustic emission rates immediately prior to failure 

(Meredith et al., 1990).  Similarly, the most common trend emerging from the one-

dimensional model is an exponential rate of failure.  Under certain conditions, this 

exponential trend then switches to become hyperbolic before bulk failure of the array. 

In the following sections the exponential and hyperbolic sequences produced by 

the one-dimensional model are analysed in an attempt to understand further the 

processes creating these particular styles of precursory activity, and the emergence of a 

faster than exponential sequence.  Aspects of the precursory trend such as duration and 

rate are considered, as well as the mechanisms and properties of failure and crack 

growth creating the trends. 

 In the remainder of this chapter, precursory trends produced by the model that 

remain exponential to failure are described as Type I trends.  Exponential sequences that 

become hyperbolic prior to failure are described as Type II trends.  Representative 

examples of each of these cases are used to illustrate the various analyses described in 

the chapter.  
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5.2 Controls on seismic event rate: constraints from field data 

Predominantly exponential increases in seismic event rate (Type I) have been observed 

weeks to months before magmatic events at basaltic volcanoes, notably at Kilauea and 

Mauna Loa, Hawaii, and at Mt. Etna in Italy (Bell, 2007). Intrusive events at the same 

volcanoes have shown similar exponential seismic precursors (Bell, 2007), a feature that 

will be discussed in Chapter 8. In both cases, any faster-than-exponential trends appear 

as step-like increases in seismic event rate that continue for about a day or less. 

 More generally, exponential trends are observed in many natural processes that 

evolve through a mechanism of self-propagation. Applied to fracture growth, self-

propagation is favoured because the stress intensity ahead of a crack increases with 

crack length. Thus, as a crack grows, the stress intensity at its tips becomes 

progressively larger, so favouring further growth. Once a crack begins to extend, 

therefore, the positive feedback between crack length and stress intensity will encourage 

an accelerating rate of growth. This behaviour may be altered by interactions with other 

cracks, or by the extending crack entering a region of unbroken material with 

mechanical properties, such as toughness, that vary significantly from those of the 

material through which the crack has just propagated. Such conditions may operate to 

increase (e.g., entrance into weaker rock) or to decrease (e.g., entrance into stronger 

rock) the observed rate of growth compared with that expected from the ideal model of 

a single crack growing in a homogeneous medium.  Hence, given the heterogeneous 

nature of natural rock, it is remarkable that exponential increases in fracture event rate 

are commonly observed. It thus appears that most natural heterogeneities in rock have a 

secondary influence on rates of fracture propagation. Such a conclusion appears to 

contradict the discussion in Section 3.2.3 that fractures can be arrested by local rock 

structures. This contradiction can be resolved if the conditions arresting a fracture 

involve heterogeneities of a larger length scale or of a greater contrast in mechanical 

properties than those prevailing throughout most of a rock mass. 

 In contrast to precursors at basaltic volcanoes, pre-eruptive seismic trends at 

subduction-zone volcanoes may evolve from an exponential to hyperbolic (faster-than-

exponential) increase with time (Type II trend; Kilburn & Voight, 1998; Kilburn, 2003; 

Kilburn & Sammonds, 2006).  The hyperbolic trend evolves over days and has been 

interpreted to reflect the increasing rate of coalescence of fractures into a magmatic 

pathway (Kilburn, 2003). Because the hyperbolic trend has to date only been recognised 
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before andesitic-dacitic eruptions at subduction-zone volcanoes, it is possible that it 

reflects the influence of a compressional regional stress field, compared with the 

extensional regional stress field typical at basaltic volcanoes. However, no such 

constraints have been applied to the 1-D model. Hence, the fact that the 1-D model can 

produce both Type I and Type II trends suggests that, even if it should favour a 

particular sequence of precursors, the external stress field cannot guarantee that such a 

sequence will be observed. 

5.2.1 Characteristic time scale of exponential trends 

By definition, exponential changes with time are defined by a characteristic timescale 

that describes the specific shape of the exponential trend. In terms of physical processes, 

the characteristic timescale describes the time over which the controlling self-

propagating mechanism becomes significant. Thus, similar characteristic timescales 

suggest a similar controlling mechanism, whereas significantly different timescales 

suggest that more than one mechanism may be important. 

 The characteristic timescales (equivalent to 1 �⁄  for the exponential limit of 

Voight's relation; Eq. (3.3)) for the 86 trends produced in the constant-stress Monte 

Carlo simulations (Chapter 4) yielded values of 0.04 – 0.66 for Type I precursors and 

0.28 – 0.76 for the exponential portions of the Type II trends (77 and 9 runs, 

respectively; Fig. 5.1). A Mann Whitney Test was performed to assess whether the two 

sets of constants come from the same distribution. Both are assumed to follow a normal 

distribution.  The results give a statistic value of  ~ � *2.89.  This lies outside the 

critical value of ~<,4K � *2.58 at the 0.1% level, leading to rejection of the null 

hypothesis that the two samples are drawn from a single distribution.  However it 

should be noted that the relatively small size of the Type II data set means that the 

approximation to a normal distribution is less robust, and the fact that all observations 

were produced by the same numerical model means the sample sets may not be strictly 

independent.  Hence, although the preliminary analysis suggests that the Type II trend 

tends to have larger characteristic exponential timescales than the Type I trend, further 

analysis is required to confirm the distinction. In any case, as is clear from Fig. 5.1, 

even if the distributions are different, they are close enough to provide a major overlap 

in characteristic timescale. Hence, unless the timescales are extremely high or low, it 

may not be possible to use their value to distinguish between Type I and II behaviour. In 
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practical terms, the characteristic exponential timescale cannot yet be used to anticipate 

whether a hyperbolic final trend will be observed. 

 

 

 

 

  

Fig. 5.1 Exponential rate constant for 77 Type I (blue diamonds) and 8 Type II 
(red squares) exponential trends recorded in 100 runs of the 1D model, for 
varying distributions of fracture toughness and initial flaws (Table 4.1). 

 

 

  

 

The exponential precursory trend can be expressed in terms of the cumulative 

number of events �: 

  

 � � �"I6K�KL7 �⁄  (5.1) 

 

where �" is the number of events recorded at time @" and represents the background rate 

of seismicity in the field or the number of initially failed cells in the one –dimensional 

model, and � � 1 �⁄  is the characteristic timescale.  Therefore a greater magnitude 

exponential rate corresponds to a shorter characteristic timescale of precursory trend.  

Setting @" � 0 and defining @E to be the time of failure, and therefore the duration of the 

exponential sequence, (5.1) gives an expression for the total number of events by the 
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end of the sequence, �E.  Rearranging this expression gives a relationship describing the 

increase of an exponential sequence duration with the characteristic timescale: 

 

 @E � � ln /�E�"0 
(5.2) 

   

 

 The relationship between sequence duration and characteristic timescale in (5.2) 

is clearly visible in the Monte Carlo output plots in Chapter 4 (Fig. 4.15).   In contrast to 

the hyperbolic relation, for which the infinite event rate provides a well-defined time to 

failure, values for @E are theoretically unconstrained for the exponential trend. In 

practice, it is possible to assume a nominal upper limit for the ratio �E �"⁄ , based on 

physical constraints of the problem and properties of rock failure.  Bell and Kilburn (in 

press) argue that for bulk failure from initially unbroken rock, �E �"⁄  is expected not to 

exceed ~102 – 103, or ln �E �"⁄  between 4.6 and 6.9.  Observations from the field of 

cumulative seismic events in the days to weeks leading up to an eruption are consistent 

with this range of 10�- 10} (Bell and Kilburn, in press). 

 For model simulations yielding Type I exponential sequences, the durations of 

the increase are constrained by the size of array. The total number of events is fixed, as 

well as the relative, initial material damage, and therefore the ratio of duration to 

characteristic timescale, @E �⁄ , will necessarily be constant.  However, when the 

simulations produce a Type II trend, showing a progression from exponential to 

hyperbolic increase, the duration of the exponential sequence is constrained instead by 

attainment of the critical condition necessary for a transition to hyperbolic growth.  The 

results in the second case can therefore be used to investigate the relation between 

duration and characteristic timescale for exponential increases in VT event number.   
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Fig. 5.2 Duration against characteristic timescale of Type II exponential 
sequences produced in Monte Carlo simulation.  

 

 

 The data from the nine recorded sequences show an approximately linear trend 

between duration and τ, with a gradient, equal to lnr�E �"⁄ s, of 5.8 (Fig. 5.2). This 

value lies within the range proposed for the duration-τ trend among exponential 

sequences for failure from initially unbroken rock.  Here the duration, tf, is defined by 

the transition from exponential to hyperbolic increases in event rate, rather than by the 

end of the experiment. The full range of the exponential trend is therefore not limited by 

model constraints on the size of the model array.  
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Fig. 5.3   Duration of exponential sequence tf normalised against total length of pre-
failure sequence, T, for Type I sequences produced by the Monte Carlo run, as a function 
of characteristic timescale. 

 

 

   When normalised against the duration of the entire pre-failure sequence, T (Fig. 

5.3), the time of transition relative to the duration appears to be independent of the 

characteristic timescale, confirming that the characteristic timescale is not related to the 

duration of the experiment.  One data point lies away from the main trend, at a 

proportional time of about 0.3, and represents both the shortest time scale and relative 

transition time.  In this run there is a distinct scale change between the exponential and 

hyperbolic sections of the trend.  The initial conditions of the array represent an extreme 

of the statistical possibilities, with a distinct layering of high and low fracture 

toughness.  The initial exponential increase represents failure within the regions of low 

fracture toughness, which make up a relatively small proportion of the array.  The 

hyperbolic portion of the sequence corresponds to the subsequent failure of the areas of 

a greater toughness.   

 The model conditions consider the development of a continuous fracture from 

the starting point of unbroken rock. In reality, a volcanic edifice will contain some 

fractures before the sequence of events that potentially leads to eruption.  The greater 

the amount of initial fracturing, the shorter will be the time until bulk failure. 

Accordingly, observed values of ln �E �"⁄  are expected to be less than the ideal values 

0

0.3

0.6

0.9

0 1 2 3 4

Pr
op

or
tio

na
l T

im
e 

of
 S

w
itc

h 
(t

f/T
)

Characteristic Timescale (τ)



98 

 

of between 4.6 and 6 starting from unbroken rock.  Indeed, data from Hawaii indicate 

values of  ln �E �" � 1.5⁄  (Bell, 2007; Fig. 5.4).  If such empirical limits are available 

for ln �E �"⁄  at a particular volcano, then the characteristic timescale can be multiplied 

by this limit to estimate the time of bulk rock failure; if they are not available, then the 

ideal limits for ln �E �"⁄  can be used to estimate the maximum time expected before 

bulk failure.  

 

  

 

 

  

Fig. 5.4 Duration against characteristic timescale for 21 sequences prior to 
eruptions or intrusions at Mauna Loa, Kilauea and Mt. Etna (Bell, 2007). 
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5.3 Crack growth properties 

Analysis of the characteristic timescales and rate parameters of precursory trends is 

important for identifying not only the time to bulk failure, or eruption, but also in 

attempting to establish any critical criteria for the transition of an exponential sequence 

to hyperbolic growth.  Analysis of field and laboratory data is broadly restricted to 

evaluating these parameters.    However, using the one dimensional numerical model it 

is possible to look in more depth at the physical processes causing the observed 

characteristic parameters, and the conditions for exponential or hyperbolic growth of 

seismic activity.  In the field, features such as crack length distributions or the number 

of active cracks will be affected by an area much greater than that eventually forming 

the open conduit, and even if such parameters were measurable the existence of 

surrounding faults and fractures in an edifice would create very noisy data.  By looking 

at these features in a one-dimensional array it may be possible to understand the cause 

of the observed trends; such understanding, in turn, may give some ideas of the 

controlling mechanisms that operate in a larger, more realistic setting.  This section 

looks at a variety of crack growth properties, comparing observations from typical 

model outputs for precursory trends of both types I and II, for representative examples 

of each type of trend. 

5.3.1 Active cracks 

Detected seismicity is determined by the activation and growth of faults. Here, 

activation refers to when conditions around a fault first become favourable to allowing 

that fault to move, and growth refers to repeated movements along the same fault. At a 

molecular scale, the mechanism of creating a completely new discontinuity also 

becomes important, but such a process cannot be detected directly in the field. 

 As discussed in Section 3.2.2, the activation of new faults is expected to favour 

an exponential increase in event rate with time, whereas the growth and coalescence of 

faults is expected to yield a hyperbolic trend. Although the association is empirical, it is 

consistent with observations in the field (McGuire & Kilburn, 1997; Kilburn & Voight, 

1998; Kilburn, 2003) and laboratory (Lockner et al., 1991; Main & Meredith, 1991). 

Thus the approach to bulk failure is expected to be dominated first by fault activation 

(yielding an exponential trend with time) and then by fault growth and coalescence 

(yielding a faster-than-exponential trend). Increasing beyond a critical number of faults 
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per unit volume is one possible condition that determines the change from activation-

dominant to growth-dominant conditions (Kilburn & Sammonds, 2006). Such a 

possibility is investigated here by analysing the distribution of cracks at different stages 

within the model simulations. 

 In each simulation, the first cracks to become activated will be those in regions 

of lower general toughness.  Additional cracks then become activated as either the 

applied stress increases, or local stress intensity increases due to growth of existing 

cracks. Two classes of new crack can be identified: (1) a newly activated crack, which 

appears as a failed cell, or collection of adjacent cells, that is isolated from any existing 

failed cells, and (2) a crack that occurs in a cell close to an existing crack and which can 

be related to crack growth. 

 Figures 5.5 and 5.6 show the number of newly-activated cracks as the model 

progresses for Type I and Type II precursory trends, model run 1 and run 2 respectively. 

In both cases, the rate of activation increases exponentially, before a significant drop 

occurs immediately before failure. The drop is favoured by the coalescence of cracks 

and, also, by the model constraint that as more of the cells in the array fail, so the 

opportunity decreases for new, isolated cracks to appear.  At the present stage of 

development, it is not possible to distinguish the primary cause for the final drop-off in 

the 1D model. However, such a distinction might be possible in the future by 

implementing a two- or three-dimensional array, or incorporating a buffer zone into the 

one-dimensional model. 
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Fig. 5.5 Number of newly activated cracks per time step for model run 1 (a) and 
run 2 (b), Type I and Type II precursory trends respectively. The dashed lines 
show the best-fit exponential trends prior to the observed drop-off, and the arrow 
indicates the point at which the Type II trend becomes hyperbolic. 
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Fig. 5.6 Log plot of the number of newly activated cracks, before the pre-failure 
drop-off. Both Type I (red and black squares) and Type II (blue and grey 
diamonds) precursors show mean exponential activation rates, although each type 
may show second-order fluctuations about the mean (red squares and grey 
diamonds). The rate constants for both types cover a similar range of values (0.31 
and 0.18 for blue and grey diamonds; 0.29 and 0.22 for black and red squares). 
The red squares and blue diamonds correspond to model runs 1 and 2 
respectively, shown in Fig 5.5.  The second Type I (black squares) and Type II 
(grey diamonds) trends were produced from model runs 3 and 4 respectively. 
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Fig. 5.7 (a) Number of active existing cracks (blue diamonds) and the resulting total 
number of cracks (red squares) with time, for a Type I trend (model run 1). An active 
existing crack is one that grows during a time step, but has also been active during the 
previous time step. The total number of cracks includes those that are present in the array 
but have not yet grown. (b)  The proportion of the total number of cracks that grow during 
a time step. 
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formed. At longer times, however, the number of newly activated cracks becomes a 

significant proportion of the total number; at this stage the total number may increase 

(Fig. 5.7a) or begin to decrease (Fig. 5.8a). In the latter case, the increase in number of 

activated cracks is being offset by a decrease in total number due to the coalescence of 

existing cracks. Eventually, the effect of coalescence dominates until, just before bulk 

failure, the experimental array consists of only a small number of large cracks.  

 In the Type II examples (Figs 5.8 & 5.9), the transition from exponential to 

hyperbolic increases in event rate coincides with the onset of a sustained decrease in the 

total number of cracks. As expected, therefore, the hyperbolic sequence is characterised 

by the emerging dominance of crack growth and coalescence over crack activation. 
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 Fig. 5.8 (a) Number active existing cracks (blue diamonds) and the resulting total 
number of cracks (red squares) with time, for a Type II trend (model run 2). An 
active existing crack is one that grows during a time step, but has also been active 
during the previous time step. The total number of cracks includes those that are 
present in the array but have not yet grown. (b)  The proportion of the total number 
of cracks that grow during a time step.  Arrow indicates the point at which the 
event rate trend becomes hyperbolic. 
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Fig. 5.9 Total number of cracks for model runs 3 (blue diamonds) and 4 (red squares), 
Type I and Type II precursory trends respectively. Arrow indicates the point at which the 
Type II trend becomes hyperbolic. 

 

 

 The change from activation-dominant to growth-dominant conditions may occur 

when the number density of cracks exceeds a critical value (Kilburn & Sammonds, 

2006). The model results can be used to test this hypothesis because the number density 

of cracks is represented by the cumulative number of events.  Due to the bounded nature 

of the model, the array must progress through the same density changes, resulting in 

100% failure, whatever the pattern of event rate produced. The proportion of failed 

cells, or density of cracks, in the nine runs for which the exponential-hyperbolic 

transition occurred ranges from 4-70%.  The single case below 10% corresponds to the 

outlier highlighted in Figure 5.3.  The remaining, more representative, cases still cover a 

range of over 40%.  This suggests that the actual density of cracks cannot by itself 

determine the mode of acceleration of seismic event rate, or certainly not one that can 

be identified from a closed model.  

 

0

30

60

90

120

0 5 10 15 20 25 30

N
um

be
r 

of
 C

ra
ck

s

Time



107 

 

 

 

 

  

Fig. 5.10 Proportion of cells that have failed at the point of exponential-
hyperbolic transition in nine runs from the Monte Carlo simulation. 

 

 

5.3.2 Inter-crack distance 

In the 1D model, interaction between cracks occurs once the inter-crack distance is on 

the order of the crack length.  The interaction, in turn, governs the rate at which 

neighbouring cracks join up.  The mechanism of crack coalescence is therefore 

dependent on crack length and inter-crack distance.  In understanding the transition to 

this mechanism of failure it would be useful to identify any corresponding transitions in 

the geometry of cracks.  As the model evolves, the distribution of crack lengths will 

naturally progress from numerous smaller cracks into, eventually, one large model-

spanning crack at the point of bulk failure.  Figure 5.11 shows the progression of mean 

crack length in the array for model runs 1 and 2 described in the previous section, 

producing Type I and II precursory trends.  The model begins with almost entirely 

single cell cracks and progresses to a 2,000-cell crack that spans the array at the point of 

failure. The mean length in Type I event rate increases almost exponentially during the 

middle section of the model run.  This precedes a rapid increase in the mean length in 

the final stages of the model as failed cells join up to form very large scale cracks (Fig. 

5.11).  The hyperbolic case appears to follow a similar trend (Fig. 5.11).   Figure 5.12 

shows the inverse mean crack length for the same two examples.  Both inverse trends 

tend towards zero, corresponding to an infinitely long crack at the point of failure. 
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Fig. 5.11 Mean crack length with time, normalised for maximum length (equal to 
array size) and sequence duration respectively.  The two cases show Type I (blue 
diamonds) and Type II (red squares) precursory trends.  Arrow indicates the 
point at which the event rate trend becomes hyperbolic.  Note the logarithmic 
scale for the vertical axis. 

 

  

0.0001

0.001

0.01

0.1

1

0 0.2 0.4 0.6 0.8 1

M
ea

n 
L

en
gt

h/
M

ax
im

um
 L

en
gt

h

Time/Sequence Duration



109 

 

 

 

 

   

 

 

 

  

Fig. 5.12 Inverse mean crack length with time, for model runs 1 (a) and 2 (b), 
producing Type I and Type II precursory trends respectively. 

 

 

 Introducing the distribution of inter-crack distance allows for not only the 

magnitude but also the geometry of cracks to be considered.  The idea of clustering, or 

avoidance within a set of cracks is discussed further in Chapter 6.  The development of 

a fracture network will depend on whether cracks are more likely to grow where 

previous cracks exist or in isolation. The mean inter-crack distance decreases very 

gradually in the early stage of the model (Fig. 5.13).  However, as the cracks grow in 

length and occupy a greater proportion of the array, the relative change in the mean with 

each incremental decrease in inter-crack distance will become greater. 
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Fig. 5.13 Mean inter-crack distance with time, normalised for initial mean inter-
crack distance and duration of sequence respectively.  The two examples show a 
Type I (blue diamonds) and Type II (red squares) precursory trend.  Arrow 
indicates the point at which the Type II trend becomes hyperbolic. 

 

  

 Both the Type I and II event-rate trends show a similar variation in mean inter-

crack distance with time (Fig. 5.13).  After a gradual decrease to about 75% of the 

starting mean distance after about 70% of the total duration, the rate of decrease 

becomes faster until a crack extends across the whole array (zero inter-crack distance) at 

bulk failure.  The rate of decrease in the inter-crack distance is not affected by whether 

the event rate increases exponentially or hyperbolically, suggesting that the locality of 

fracturing is not dependent on the rate of fracturing.  However, the initial mean value 

for the inter-crack distance in model run 1 was twice that for model run 2.  The fact that 

initial cracks in the array for the Type II run have a shorter distance between them may 

lead to interaction between cracks occurring earlier in the model than in the Type I 

example.  If this interaction is a mechanism that leads to hyperbolic growth in event 

rate, this would suggest that model size may be a limiting factor on the appearance of a 

hyperbolic trend, and that in many cases the model has reached bulk failure before the 

transition is made.  However, the analysis of a greater number of both types of trend is 

necessary to investigate this idea further. 
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Fig. 5.14 Cumulative distribution function for the inter-crack distance at the (a) outset 
of the model run and (b) approximately three quarters through the total run time of the 
model for Type I (blue diamonds) Type II event-rate trends (red squares).  

 

 

 From Figure 5.14a it can be seen that initially the Type I and II examples have 

maximum inter-crack distances of a similar scale and that the smaller mean distance, in 
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supports the theory that interaction between neighbouring cracks may be the trigger for 
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model respectively (5.14b).    By this stage both cases have a similar proportion of 

cracks within 20 cells of a neighbour. 

 Figure 5.15 illustrates one of the model runs that produced an event rate moving 

from exponential to hyperbolic prior to failure, model run five. Initially, the array breaks 

along isolated cells. As cracking proceeds, the originally isolated cracks grow and 

merge into two principal cracks that extend towards each other.  The associated event 

rate changes from exponential to hyperbolic when the regions of influence ahead of 

each crack begin to overlap (Fig. 5.15).  The process is highlighted when only changes 

in the number of newly failed cells at each time step are considered (Fig. 5.16).   In this 

case, activity is clearly confined to an area surrounding the advancing main cracks. 



 

 

 

  

Fig. 5.15 Snapshots of the array 
II trend (model run 5).  
hyperbolic trend emerged at t = 15.

 

 The range of the active areas ahead of the crack tips appears to

exponentially from t ~ 10

emerged at t = 15.  This emergence of an exponential increase in the active area would 

explain the exponential event

trend may be caused by a change in the density of failures within the active region. 

However, from Figure 5.18

of cracks within the regions of activity.  

the upper and lower 

Snapshots of the array at progressive time steps, from a model producing a T
II trend (model run 5).  Cells that have failed are coloured red, intact cells are black
hyperbolic trend emerged at t = 15. 

The range of the active areas ahead of the crack tips appears to

from t ~ 10-12 to failure at t = 18 (Fig. 5.17).  

emerged at t = 15.  This emergence of an exponential increase in the active area would 

explain the exponential event-rate trend, and the switch to a faster than expo

trend may be caused by a change in the density of failures within the active region. 

However, from Figure 5.18 it is difficult to define any consistent increase in the density 

of cracks within the regions of activity.  A slight jump in the density

 sections at the emergence of the hyperbolic event rate.  However,
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teps, from a model producing a Type 
Cells that have failed are coloured red, intact cells are black.  The 

 

The range of the active areas ahead of the crack tips appears to grow 

  The hyperbolic trend 

emerged at t = 15.  This emergence of an exponential increase in the active area would 

rate trend, and the switch to a faster than exponential 

trend may be caused by a change in the density of failures within the active region.  

it is difficult to define any consistent increase in the density 

jump in the density is seen in the both 

ce of the hyperbolic event rate.  However, 



 

this is only temporary and in fact the density fluctuates around a mean value for much 

of the run time of the model.

 

 

  

Fig. 5.16 New failures at progressive time steps in model run 
failed during the previous time step are coloured yellow
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 Fig. 5.17 Length of the active region ahead of advancing crack tips for model run 5, as 
shown in Figures 5.15 and 5.16.  Length is measured as the total number of cells 
spanned.  Plot (a) describes the upper region in Figure 5.16, 500 < cells < 1,000; plot (b) 
describes the lower region, 0 < cells < 500.  Note the logarithmic scale for the vertical 
axis.  Arrows indicate the point at which the event-rate trend becomes hyperbolic. 
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 Fig. 5.18 Density of failed cells in the regions of activity ahead of advancing 
cracks for model run 5, as described in Figures 5.15 – 5.17.  Plot (a) describes the 
upper region in Figure 5.16, 500 < cells < 1,000; plot (b) describes the lower 
region 0 < cells < 500. 
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5.4 Stress distribution 

As the dominant failure mechanism changes from fault activation to fault growth, the 

relative influence of the remote and local stresses may change in the model.   Initially 

failure is driven by the level of remotely applied stress and cells throughout the array 

would be equally likely to fail, dependent only their assigned fracture toughness.  As the 

mechanism becomes dominated by crack growth, the concentration of stress around the 

larger cracks would exert a greater influence on the stress field and favour failure in 

already highly fractured areas.  This assumption can be tested by looking at the 

distribution of stress intensity across the array as the model progresses.  As described in 

Chapter 4, the stress intensity increases in cells around the tip of a crack depending on 

its length and the proximity of neighbouring cracks.  The density distribution of stress 

intensity magnitude across the array is therefore an alternative measure of the variable 

geometry of cracks. 

 Figure 5.19 shows how the cumulative distribution function of stress intensity 

magnitude varies as the model evolves.  For cells located outside the range of influence 

of failed cells, the stress intensity is just the remotely applied stress.  Initially, there are 

relatively few cracks in the array and therefore this applies to the majority of cells (Fig. 

5.19a).  Initially, in both the Type I and Type II examples, over 80% of cells have this 

minimum magnitude of stress intensity, equal to the remotely applied stress.  This 

minimum point is highlighted for each example in Figure 5.19 by a dashed line.  As the 

model evolves and more cracks appear along the array, a greater number of cells will be 

within the range of influence of these cracks.  This will cause the range of stress 

intensity magnitudes across the intact cells to increase.  At two thirds through the 

duration of the model run, the isolated cells still account for the greatest proportion of 

stress intensity frequencies (Fig. 5.19b), and there are a high percentage of cells that 

remain isolated right up until the final stages of failure.  This effect is more pronounced 

in the Type I event-rate case.  The Type II example shows a faster decrease in the 

proportion of cells that are not affected by any neighbouring cracks.  In other words, 

cells fall into the range of influence of cracks more quickly in this second case.  This 

would be expected if the failure mechanism was dominated by the interaction and 

coalescence of exiting cracks, over the activation of new, isolated cracks. 
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Fig. 5.19 Cumulative distribution function F for stress intensity factor, 
normalised for maximum stress intensity, over all cells at (a) the start of the 
model run and (b) approximately two thirds through the total run time of the 
model. F(K/Kmax) describes the probability that the normalised stress intensity is 
less than or equal to the specified ratio. The two examples shown are for model 
run 1 (blue diamonds) and model run 2 (red squares), producing Type I and Type 
II event-rate trends respectively.  Plot (b) shows F at the point at which the Type 
II trend becomes hyperbolic. The dashed lines show the value of the remotely 
applied stress, normalised for maximum stress intensity, and therefore represent 
the minimum stress intensity for each example. Note the logarithmic scale for the 
horizontal axis in plot (b). 
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5.4.1 Proximity to failure 

The failure of cells in the array is controlled not only by stress intensity but also by the 

distribution of fracture toughness.  The ratio of stress intensity to fracture toughness 

gives a measure of a cell's proximity to failure, with the limiting values of 0 and 1 

corresponding to the conditions of no potential for failure and of imminent failure.  

Changes in the overall distribution of proximity to failure can highlight differences in 

the mechanism of failure Figure 5.20 shows the distribution function for this 

measure of proximity to failure at different stages throughout the run time of the 

example models 1 and 2.  Figure 5.19a showed a near constant distribution of stress 

intensity at the start of the model runs.  Due to the randomness of the fracture toughness 

across the array’s cells, the initial distribution function shows more variety than the 

approximate step function that would otherwise be expected (Fig. 5.20a).  However, 

with over 60% of intact cells having a ratio value between 0.3 and 0.5, there is still 

some regularity in the likelihood of failure across the array in both examples.  As the 

model evolves there is a tendency to a more linear trend in the distribution function, 

highlighting a much greater difference in the proximity to failure across the remaining 

intact cells.  The linearity is especially pronounced in the Type II example, with a fit of 

	� � 0.99 for the range of K/Toughness from 0.4 to 0.8. For the Type I example, the 

range from 0.7 – 1 also provides a linear fit with 	� � 0.99. 
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Fig. 5.20 Cumulative distribution function for the ratio of stress intensity to 
fracture toughness over all intact cells of the one-dimensional array for model 
runs 1 (blue diamonds) and two (red squares), producing Type I and Type II 
event-rate trends respectively.  The distribution function is shown at: (a) the start 
of the run, (b) approximately two thirds through the total run time of the model, 
and (c) approximately 85% through the total run time of the model. Dashed lines 
show the range of linearity of the cumulative distribution function for each 
example.  Plot (b) shows the point at which the Type II example switches to a 
hyperbolic event rate. 
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5.5 Alternative precursory trends 

The Monte Carlo simulation of the one-dimensional model captures the common 

behaviour of exponential and hyperbolic event-rate trends in the field.  The simulations 

also produce alternative, less frequent trends, in which the faster than exponential 

sequence appears as a step like increase (Fig. 5.21).  In the model this style of activity 

appears to correspond to a relatively homogeneous distribution of fracture toughness.  

At one extreme, with a low value of both the mean and variance of fracture toughness, a 

large number of cells fail almost instantly when stress is applied to the array (shown by 

the red squares in Figure 5.21).  Remaining intact cells then tend to fail in quick 

succession due to the large number of surrounding cracks.  At the other extreme, where 

fracture toughness again has a small variance but now with a much larger mean value, 

the model progresses with very few failing cells at each time step, creating a low 

background level of activity, and only once the applied stress has reached a critical 

point does the same effect occur of multiple cells, with similar fracture toughness 

values, failing simultaneously (blue diamonds in Figure 5.21).  Although within the 

Monte Carlo simulation these two cases are seen as opposite extreme cases, they are in 

fact recording the same process.  Whether stress has built up gradually or there is a 

rapid step like increase, the outcome of a large number of cells suddenly failing is the 

same. 

 

 

 

 

  

Fig. 5.21 Event rate plots from two model runs showing faster than exponential, 
step like increases in rate prior to failure. 
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 An interesting future direction for this research would be to investigate the 

occurrence of these step-like increases in precursory activity in the field.  A sharp 

increase in seismic energy and earthquake event rate was observed prior to the 1956 

eruption of Bezymianny, Kamchatka (Tokarev, 1985), (Fig. 5.22).  This explosive 

eruption followed 1,000 years quiescence, with a noticeable increase in seismic activity 

beginning approximately a month before the eruption.  However, no further analysis on 

the nature of this trend was provided by the author, and it should be noted that activity 

leading up to the eruption may have been missed through lack of monitoring.  A very 

sharp increase in earthquake numbers was also seen in the days prior to explosive dome 

eruptions in 1959 and 1960.  Similar rapid increases in event rate were recorded prior to 

the 1964 eruption at Sheveluch, which ended 15 years of quiescence, and again prior to 

a later paroxysmal dome explosion in 1993 (Tokarev, 1985).  In both cases seismic 

unrest was noted several weeks prior to eruption. 

 

 

 

 

 Fig. 5.22 The intensity of earthquakes per day prior to eruption (tu) at 
Shiveluch, 1964 (1), Bezymianny, 1956 (2), and Mt. St. Helens, 1980 (3) 
(Tokarev, 1985). Intensity is measured as the average number of daily 
earthquakes. 

 

 

The appearance of faster than exponential, step-like trends in the literature suggests that 

the one-dimensional model may also be utilised to anticipate alternative precursors in 

the future.  In addition, occurrences in the field of a step increase in seismicity may be 

caused by a similar process to the model, implying the presence of a relatively 

homogeneous edifice. 
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5.6 Chapter summary 

Exponential trends are commonly produced by the one-dimensional model, similarly to 

observations in the field and laboratory.  In all three situations, examples of the 

emergence of a faster-than-exponential trend are also observed. Properties of crack 

growth in the model support the theory of a switch in dominating failure mechanism 

producing the two different trends.  The exponential sequence is associated with the 

activation of new cracks. Once growth and coalescence of existing cracks becomes the 

favoured failure mechanism, the hyperbolic trend emerges.  A second faster-than-

exponential precursor is produced by the model, in the form of a step increase in 

seismicity.  This type of activity has also been recorded prior to eruptions. 

 The exponential sequences produce a characteristic timescale for the precursory 

activity.  This timescale can be related to the expected duration of the sequence, and 

therefore with the time to failure and eruption. 
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6. Spatial and temporal distribution of seismicity 

6.1 Earthquake statistics 

The statistics of earthquake magnitude distribution have been extensively studied.  A 

key property is the frequency magnitude relation, because this describes the relative 

occurrence and expected recurrence time of earthquakes of different magnitudes.  

Additional information about the nature of the pressure source driving fracturing and 

the factors controlling fracture interaction can also be found from the statistics of the 

spatial distributions of seismicity.  Spatial clustering can be measured by calculating a 

fractal dimension for earthquake hypocentres. 

6.1.1 Earthquake magnitude 

The magnitude of an earthquake has been measured both in terms of the maximum 

seismic wave amplitude and the energy released (Richter, 1935; Gutenberg & Richter, 

1956; Hanks & Kanamori, 1979). In particular, Kanamori and Anderson (1975) 

described the relationship between earthquake magnitude and seismic moment, which is 

a measure of the energy released (Hanks & Kanamori, 1979) and depends on the area of 

the ruptured fault.  The empirical relation between seismic energy # and fault area � is 

described by  # S  �} �⁄  (Kanamori & Anderson, 1975).  Following this relation the 

magnitude of events in the model, 
 �  log #, is calculated as proportional to the 

logarithm of the failed area �: 

 

 
 S log � (6.1) 

 

 In the one-dimensional case failure occurs along a length only.  However, due to 

the logarithmic relation in 6.1, the length of a fault is a still a suitable measure of 

magnitude.  When failure occurs in the model, both the total length and additional 

length of the activated crack are recorded.   Constants of proportionality were chosen 

such that the minimum possible area of a single cell failing corresponds to a magnitude 


 � 1 event. 
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6.1.2 Magnitude distribution: The Gutenberg-Richter Law 

The frequency magnitude distribution for earthquakes has proven to be one of the most 

important statistics in the analysis of seismic activity.  The distribution, which was first 

described by Ishimoto and Iida in Japan (Ishimoto and Iida, 1939) and then by 

Gutenberg and Richter in California (Gutenberg & Richter, 1944), is described by the 

relation: 

 

 log � � � * u
 (6.2) 

 

where � is the number of earthquakes with magnitude greater than or equal to 
.  The 

gradient u is known as the seismic b-value.  This power law relation between the size 

and frequency of seismic events has become known as the Gutenberg-Richter Law.  

Figure 6.1 shows magnitudes and frequencies for earthquakes worldwide during 2007 

(USGS, 2007).   The cumulative number of earthquakes � can also be written in terms 

of seismic energy #, as � S #<.  The exponent � is a function of the seismic b-value.   

 

 

 Fig. 6.1 Frequencies of global earthquakes in 2007 
(www.usgs.com). N is the number of events with a 
magnitude greater than m. The linear log relationship for 
 � 5 is that described by the Gutenberg-Richter Law.  
Below 
 � 5 the catalogue of earthquakes is incomplete as 
the magnitudes become too low for observation. 
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 Fig. 6.2 Typical frequency-magnitude distribution for the 
one-dimensional model.  N is the number of events with a 
magnitude greater than m. Lower magnitudes provide a good 
fit to the Gutenberg-Richter Law, with a deviation from a 
linear fit for 
 � 1.7. 

 

 

 The expression (6.2) describes a self-similar relationship and has been shown to 

describe both global and regional earthquake catalogues, as well as acoustic emissions 

produced by compressional rock fracture experiments in the laboratory (Scholz, 1968).  

Further supporting the universality of this relationship, the seismic b-value, shown as 

the linear slope of the logarithmic graph (Fig. 6.1) is typically found to be close to one 

at all scales of observation. 

 As with other examples of self-similarity in nature, limits of dimension prevent 

true scale invariance.  In the case of earthquake magnitude, a finite limit to fault size 

provides an upper limit to possible earthquake magnitudes. Gutenberg and Richter 

(1949) observed a lack of events of magnitude 8 and greater. A deviation from large 

amplitude events in the laboratory has also been recorded (Scholz, 1968), as sample 

dimensions provide a limit to potential fracture size.  A drop-off in the frequency-

magnitude relation observed in volcanic settings (Qamar et al., 1983) has been 

attributed to inhomogeneous stress conditions.  Observation becomes a problem at the 

lower scale range with events becoming too small for monitoring equipment to detect.  

There is therefore often a drop off away from the linear trend toward smaller magnitude 

values, which can be observed in the earthquake catalogue in Figure 6.1.  The lower 

limit to the power law relation is defined as the magnitude of completeness 
<. 

 Figure 6.2 is a typical output from the one-dimensional model, run under 

constant stress, where magnitudes are recorded by the number of simultaneously failing 
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adjacent cells.  The frequency-magnitude distribution provides a good fit to the 

Gutenberg-Richter Law, particularly at lower magnitudes.  The fall-off from the linear 

trend at higher magnitudes implies a lack of large scale events.  Similarly to the 

dimension limits in the laboratory, the number of cells in the model provides a 

theoretical upper limit to the possible event size.  Previously failed cells distributed 

throughout the model restrict the potential length of adjacent simultaneous failures, 

leading to a much lower limit in practice. 

 The seismic b-value is inversely proportional to the mean magnitude. Therefore 

any variation in space or time of the b-value is also highlighting a variation in the mean 

magnitude.  The measurement of magnitude can vary from location to location 

depending on coverage, instrumentation and analysis techniques.  The seismic b-value 

therefore provides a more objective method of comparing magnitude distributions.    

6.1.3 Seismic b-value 

 The Gutenberg-Richter Law is assumed to hold over all magnitudes where data 

are complete.  However, it has been observed that the frequency-magnitude distribution 

can deviate from this linearity within the completeness range (Urbancic et al., 1992; 

Rydelek & Sacks, 1989; Taylor et al., 1990).  This has been particularly noted in 

volcanic regions (Main, 1987).  Earthquake swarms produced by magma movement 

may increase the number of small events or more importantly events of a similar 

magnitude and therefore create a bimodal frequency-magnitude distribution (Wiemer & 

Wyss, 2002).  The b-value is a measure of the relative numbers of large and small 

magnitude events.  A larger value describes a relative increase in the number of small 

events, and a smaller value a relative increase in the number of large events. Although  

b is generally found to lie close to one in the crust, it has often been observed closer to 

two and three, beneath volcanoes (Power et al., 1998; Wyss et al., 2001; Wiemer & 

McNutt, 1997).  High b-values have been attributed to increased material heterogeneity 

(Mogi, 1962), increased local stress (Scholz, 1968; Huang & Turcotte, 1988), high pore 

pressure (Wyss, 1973), and large temperature gradients (Warren & Latham, 1970).  

 All of these properties can be associated with the presence of magma and high b-

value anomalies at volcanoes have been used to provide constraints on the possible 

location of magma reservoirs or intrusions (e.g. Pinatubo, Sanchez et al., 2004; 

Makushin, Bridges & Gao, 2006; Etna, Murru et al., 2007).  Fracturing around a body 
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of magma will lead to greater heterogeneity of the host rock, while interaction between 

magma and groundwater can lead to increased pore pressure (Wiemer & McNutt, 1997).  

An increase in pore pressure reduces effective stress, allowing for more slip on existing 

fractures, rather than the creation of new fractures (Murru et al., 2007).  This creates a 

larger proportion of small events, leading to an increase in b-value.  Larger events are 

more easily sustained in cooler, less fractured rock away from intruded regions (Power 

et al., 1998).  Hence higher temperatures will favour a relative decrease in the number 

of larger events, so also producing an increase in b-value (Sánchez et al., 2004).   

Spatial variations 

Spatial variations in the seismic b-value have been studied at numerous volcanoes 

(McNutt, 2005).  Studies show a high degree of spatial variation, with areas close to a 

normal value of u~1 occurring adjacent to areas with anomalously high values in the 

range 1.5 H u H 3.  It is therefore now suggested that rather than volcanic regions as a 

whole having a high b-value, it may be more the case that pockets of high b-values exist 

in crustal rock producing otherwise normal or even low b-values (Wiemer & Wyss, 

2002).  The high anomaly values tend to occur at depths of less than 7km and are 

assumed to relate to the presence of magma bodies (McNutt, 2005).  Weimer and Wyss 

(2002) suggest that a high b-value anomaly is a necessary but not sufficient condition 

for the presence of magma.  Difficulties in building a clear representation of a spatial 

variation in b beneath a volcano are due to the high number of low magnitude events.  

Fewer are recorded, and therefore a large area or volume must be sampled in order to 

contain a large enough number of events to be statistically significant.  Resolution may 

become too low, and any variation lost (Wiemer & Wyss, 2002). 

 At Montserrat a high b-value anomaly was found in the region about 2 km 

below the active crater area.  During the period over which the study was conducted, 

increased fumarolic activity and ground cracks were observed in this region, suggesting 

again that increased heterogeneity or temperature may have caused the increase (Power 

et al., 1998).  Two regions of high b-value at Pinatubo were situated next to the inferred 

location of a magma body derived from P-wave velocity analysis (Sánchez et al., 2004). 

 A high b-value anomaly beneath Mt. St. Helens was again found to correlate 

with an inferred shallow magma reservoir (Wiemer & McNutt, 1997).  Areas of high b-

value also coincided with regions of an increase in total number of events, and a 
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maximum magnitude approximately one unit smaller than surrounding areas with 

normal b-values. 

 The South flank of Kilauea is slipping seaward on a decollement plane.  High b-

values beneath the flank are recorded at a depth of approximately 6 km, decreasing to 

anomalously low values of u � 0.4 at depths greater than 8 km depth (Wyss et al., 

2001). The high values are again associated with the presence of a magma body beneath 

the East Rift zone, whereas the low value at greater depth is thought to be an indication 

of the relatively homogeneous nature of the decollement plane and the potential for 

larger slips or ruptures (Wyss et al., 2001). 

Temporal variations 

Studying a temporal change in b in the field is inherently more difficult as consistent 

data sets are often not available. Any change in instrumentation or analysis procedures 

may influence the magnitude distribution and hence the b-value (Zuniga and Wyss, 

1995).  Hypocentre migration with time also makes temporal variation analysis difficult.  

A temporal shift can also coincide with a spatial shift, making it difficult to ascertain 

whether b is varying with time, space or both (Murru et al., 2007; McNutt, 2005). 

 A significant increase, followed by a sharp decrease in b is reported prior to two 

eruptions at Mt. Etna (Gresta & Patanè, 1983a; 1983b).  An increase followed by a drop 

in b-value has also been observed leading up to large earthquakes (Smith, 1981).  Under 

the stress regime hypothesis, this decrease would correspond to an increase in local 

stress leading up to an eruption.  A sharp peak followed by a dip in b-value was 

observed before a phreatic eruption preceding the 18th May explosive eruption at Mt. St. 

Helens in 1980 (Main, 1987).  However, no definitive precursory trend was noted 

leading up to the main 18th May eruption (Qamar, 1983).  Similarly, no significant 

temporal change in b was found before or after the 1991 Pinatubo eruption (Sanchez et 

al., 2004). 

 As a precursory tool a similar problem exists as with measuring spatial variation 

in b. The resolution of time interval that must be sampled in order to include sufficient 

events for a statistically significant measurement may conceal any short-term variation 

in the b-value (Main, 1987).  

Laboratory tests 
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Acoustic emissions produced during tensile fracture tests in the laboratory have 

amplitude correlated with crack length growth in a similar relation to earthquake source 

and magnitude (Lockner, 1993).  Acoustic emissions during compression tests are 

linked to the propagation and interaction of microcrack arrays.  Scholz (1968) 

demonstrated that microfracture events during rock deformation experiments also 

follow the Gutenberg-Richter Law and that b decreased as stress was increased.  This 

relationship can be described by a statistical model of fracture growth (Scholz, 1968).  

A decrease in b is often observed before failure in both tension and compression tests in 

laboratory rock fracture experiments.  It has been shown that the b-value is linearly 

related to stress intensity factor 3: 

 

 u � R * �3 (6.3) 

  

where R and � are constants (Meredith & Atkinson, 1983).  Meredith et al. (1990) used 

relation (6.3) to explain and predict the decreases in b-value recorded prior to failure, 

which have been linked to an increase in stress intensity (Main et al., 1992; Sammonds 

et al., 1992).  Stress intensity increases with fracture length, and therefore decreases in 

b-value arise when fractures lengthen and unite.  This occurs just before bulk failure.   

 Compression tests carried out at temperatures up to 900°c and 50MPa confining 

pressure found a minimum in b coincident with macroscopic failure (Smith, 2006).   
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6.1.4 Evolution of seismic b-value in the 1D model 

Calculation of b-value 

Given that the seismic b-value is such a widely analysed earthquake statistic, the 

methods used to estimate b are also important to consider.  A simple least squares 

method can be used to calculate the slope of the linear relation (6.2).  However, this 

method assumes a Gaussian distribution for residuals that leads to a disproportionate 

influence on the result by the few larger magnitude events (Page, 1968).  Many studies 

therefore use a maximum likelihood estimate of b, as derived by Page (1968): 

 

 u � log I F
� * 
'4� * 
'�XI��6'����'�U�7
1 * I��6'����'�U�7 G��

 
(6.4) 

 

where � � u ln 10, 
�  is the mean magnitude and 
'4� and 
'�X are the minimum 

and maximum magnitudes respectively.  Equation (6.4) can be solved numerically for u. 

Alternatively, if the magnitude range is sufficiently large, for example 
'�X * 
'4� �
2 (Page, 1968), it can be approximated by (Aki, 1965): 

 

 u � log I
� * 
'4� 
(6.5) 

 

Due to the logarithmic form of the length to magnitude relation and the scale of the one-

dimensional model, the model data will not cover a sufficiently large range of 

magnitudes.  The minimum magnitude event, corresponding to the failure of a single 

cell, is 
 � 1.  Occurrence of a 
 � 3 event requires the simultaneous failure of 100 

adjacent cells.  Damage zones around extending cracks and the distribution of 

microcracks throughout the model make this scale of event very improbable, as there is 

unlikely to be a fully intact section of this length.  The lack of larger events results in a 

considerably high b-value.  However, a comparison of values and overall trends can still 

provide a useful analysis, without concern of the absolute figures.  It should also be 

noted that large magnitude events are in any case rarely observed in volcanic regions, 
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and due to factors previously discussed, b-values can be higher than average.  In the 

model, b-values were calculated originally using a bisection method on Equation (6.4) 

to numerically solve for b.  When derived to within a tolerance of 0.01 magnitude units, 

results were consistent with those produced by the approximation formula (6.5).  For 

ease of computation, therefore, this approximation was used throughout. 

 The derivation of the maximum likelihood estimate also assumes a continuous 

range of magnitudes.  As magnitude values correspond to the number of failed cells in 

the model, there is a discrete distribution of values.  However, this is similar to the 

grouping of earthquake magnitudes in the field and for a group width, or resolution, of 

less than 0.1 magnitude units Equation (6.4) remains a good approximation (Bender, 

1983).  Due to the logarithmic relation in (6.2), magnitude group widths in the model 

are not equal, but become smaller with increasing magnitude, which makes the use of 

maximum likelihood estimates for grouped data inappropriate (Bender, 1983; Palacios 

et al., 2006).  Because the group width is a maximum of 0.3, and rapidly falls below 0.1 

units, Aki’s continuous formula is used. 

 The minimum recorded magnitude in the model, 
'4�, is the failure of a single 

cell and corresponds to 
 � 1.   The minimum magnitude used in calculating b should 

be the minimum value in the corresponding magnitude group (Palacios et al., 2006).  

Using 
'4� � 1 in calculating b may lead to considerably larger values, as the 

denominator in Equation (6.5) can be of the order of 10-2.  As with field data, and in 

accordance with the assumption of a continuous range of magnitudes, it is assumed that 


 � 1 is the midpoint of a magnitude group, and that 
'4� H 1.  The group width is 

taken to be equal to the difference between the first two discrete magnitude values 

observed in the model, giving  
'4� � 1 * ��� �� ~0.85.  Choice of 
'4� modifies the 

scale of the b-value distribution but has no effect on the overall trend of the variation. 
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A least squares value was also estimated for each b-value calculation.  Where no 

inconsistency was observed between the two estimators, the maximum likelihood 

estimate was the value reported.  The standard error of b is calculated using the method 

of Shi and Bolt (1982). For a large sample size w, the standard error � is given by: 

 

 � � u�
log I �∑6
4 * 
�7�

w6w * 17  
(6.6) 

 

 To produce a statistically significant b-value, the number of events in the 

catalogue used must be sufficiently large (e.g. w � 100, Wiemer & McNutt, 1997; 

Power et al., 1998).  Events are selected within a moving window over time or space, 

with an overlap of events between successive windows. 

Temporal variation  

The variation of b-value with time was studied for both constant and increasing stress.  

A sliding window of 300-1,000 events was used, progressing by 50 events with each 

calculation. Event counts produced by the model provide a discrete rather than 

continuous time series, with no meaningful ordering of events within each time step.  It 

was therefore important to include sufficient events in each calculation to avoid an 

arbitrary proportion of events within one time step creating an individual grouping of 

events.  A minimum window size of 300 events was chosen as a good balance between 

exceeding the maximum number of events in one time step and producing enough b-

values for a non-trivial analysis.  To further mitigate the effect of a discrete time series, 

b-values were also calculated from data sets in which the order of events within each 

time step had been randomised.  No significant variation in the results was observed.  

Using windows of equal time period also eliminated this problem.  However, as event 

rate typically changes significantly during an individual run of the model, this leads to a 

considerable variation in the number of events per calculation.  The same time interval 

towards the start of the model run will contain much fewer events than an equal time 

interval towards the end of the run.  Nevertheless, consistency of results under different 

sampling techniques provides a useful test (Sanchez et al., 1994), and when this equal 

time window method was tested, again little qualitative difference was seen in the 

resulting b-value trend.  
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 Fig. 6.3 Variation of b-value with time, under increasing 
stress conditions.  A sliding window of 500 events is used 
for each calculation, advancing 50 events at a time.  Vertical 
bars indicate the standard error. 

 

 

 Figure 6.3 shows a typical b-value trend with time until failure from a model run 

under increasing stress.  The value tends to decline gradually over the entire time 

period, although fluctuations are also observed as seen in Figure 6.4, showing a model 

run under constant stress.  However, independent of the style of decrease the b-value 

reaches a minimum at the point of failure.  Both a gradual decrease and a minimum 

value at failure are consistent with deformation studies in the laboratory (e.g. Meredith 

& Atkinson, 1983; Smith, 2006; Scholz, 1968; Main et al., 1989).  
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 Fig. 6.4 Variation of b-value with time, under constant stress 
conditions. A sliding window of 500 events is used for each 
calculation, advancing 50 events at a time.  Vertical bars 
indicate the standard error.  Fluctuations occur in the gradual 
decline of b-value with time. 

 

 

 

 Fig. 6.5 Variation of b-value with time (blue diamonds) 
under increasing stress conditions.  Red triangles show the 
average stress intensity over all intact cells, normalised for 
fracture toughness. 

 

 

 Figure 6.5 shows b-values for the same data set as used in Figure 6.3, but here 

each window contains 1,000 events.  The triangles represent the average stress intensity 

factor over all intact cells in the model, normalised with fracture toughness at each cell.   

A gradual decrease can still be seen for the b-value, although some variation has been 

lost at this lower resolution.  The decreasing b-value corresponds to a steadily 
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increasing value of 3 3<⁄ . The later section of the plot shows a quasi-linear relation 

between b-value and stress intensity, of the nature described by Main et al. (1989) in 

expression (6.3).  However, the first three pairs of data points show a similar scale of 

decrease in b accompanied by first a large then very minor increase in stress intensity.  

This suggests that stress intensity may not be the sole factor affecting b-value variation. 

 The range of magnitudes produced by the model is small compared with 

earthquake catalogues from the field.  Larger magnitude events in the model are rare 

partly due to the damage that builds up around extending fractures.  The distribution of 

existing small cracks in these regions prevents a significant number of adjacent cells 

failing simultaneously.  For example, while a major crack may appear to propagate a 

length on the order of 100 cells in a single iteration, producing a 
 � 3 event, this will 

in fact have been made up of numerous much smaller events linking up failed cells in 

the region around the tip of the major crack.  However, this may be a similar mechanism 

to that which contributes to the b-value in volcanic settings higher than the expected 

u~1 for tectonic earthquakes.  Highly fractured material is likely at volcanoes due to 

the many processes occurring (Sánchez et al., 2004) and therefore in the same fashion, 

the host rock is not capable of sustaining a large event but instead produces many 

smaller events (Wiemer & McNutt, 1997). 

 

 

 Fig. 6.6 Variation of b-value (blue diamonds) with time 
under constant stress conditions. 500 events were used for 
each calculation. The maximum (red squares) and minimum 
(red triangles) recorded magnitude for each window of 
events is also shown. Magnitudes are calculated using the 
total length of active cracks. 
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 A second measure of magnitude is introduced that records the extension of a 

crack by the coalescence of numerous smaller cracks as a single event.  A consequence 

of this method of measurement is the occurrence of larger magnitude events than were 

previously possible, the array dimensions providing the only limit on size.  Figure 6.6 

shows a typical b-value distribution calculated for this magnitude range, under constant 

stress conditions.  The existence of larger magnitude events reduces b, but the overall 

trend of the distribution remains the same.  A gradual decrease is observed, with the 

minimum b-value occurring at the time of failure.  Whether it is assumed that 

magnitude measurements represent the joining together of adjacent fractures, or the 

extension of a single, major fracture, the b-value still decreases with time to a minimum 

before failure.  Figure 6.6 also shows the maximum and minimum magnitudes observed 

in each window of events.  From Equation (6.4), b is dependent on the mean magnitude 

rather than the spread, or range.  This is highlighted by the continuing decrease in b-

value, while the magnitude range remains constant. 

 

 

  Fig. 6.7 Variation of b-value (blue diamonds) with time.  Re 
triangles show applied stress, normalised by the maximum 
applied stress.  The model reached equilibrium after the drop 
in stress with intact cells remaining. 

 

  

 No significant difference is seen in the b-value under constant or increasing 

stress.  The range of b and the decrease with time are also consistent over different 

trends for event rate with time (e.g. Figs. 6.4 & 6.6).  The resolution issue of including a 

sufficient number of events in each calculation window may mask any variations with 

different event rate trends.  However the consistency in results implies that while the 

number of events may increase at various rates, the distribution of magnitudes of those 
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events does not change.  Figure 6.7 shows that a similar trend is also seen when, after a 

drop in applied stress, the model does not fail, but reaches equilibrium with cells still 

intact.  A significant reduction in applied stress appears to have no immediate effect on 

b, implying a greater dependence on fracture geometry rather than on background stress.  

Once fractures have formed in the model, they do not heal in the event of a stress drop.  

If the b-value depends on the size-frequency distribution of fractures then it would be 

expected for b to remain the same.  The similarity of the trend observed when the model 

did not run to failure (Fig. 6.7) with those that did, implies a difficulty in using this as a 

method to forecast model behaviour. 

 While the observations from the model for temporal b-value variation are 

consistent with those produced in laboratory experiments and seen in field data, they 

suggest a limited useful function as a forecasting tool.   Failure is generally coincident 

with a minimum in b.  However, in real time analysis there would be no way to 

distinguish this data point from each previous minimum, without a known critical value 

for b (Main et al., 1993).   

Spatial variation 

For completeness, the spatial variation of the seismic b-value was also calculated.  It has 

been suggested that regions of high b-value in volcanic regions correspond to the 

location of magma bodies.  Processes caused by magma intrusions create greater 

material heterogeneity than in surrounding regions.  In the model, a uniform remote 

stress is applied and the fracture mechanism is the same throughout the array.   

 Figure 6.8a shows the spatial variation of b calculated from windows of 300 

events, with an overlap of 250 events, under increasing stress conditions.  The location 

of an event is taken as the centre of adjacent failing cells.  Magnitudes are measured 

using the length of new failing cells only.  The slight increase in b-value toward the 

higher numbered cells may be due the greater extent of damage that builds up in this 

area before bulk failure.  This can be seen as the increased density of red within grey 

cells on the right hand side of Figure 6.8b.  The later fail time of the right hand region 

means that there is a greater opportunity for small cracks to form before bulk failure 

occurs.  The numerous microcracks prevent larger magnitude events from occurring, 

and subsequently lead to a higher b-value.  The observed increase in b-value is a 

consequence of the initial distribution of fractures. 
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 Fig. 6.8 (a) Spatial variation in b-value over an array of 
2,000 cells, under increasing stress conditions. Vertical bars 
show the standard error. (b) Evolution of the array with time. 

 

  

 Figures 6.9a and 6.9b show the same results from a model run under constant 

stress.  The values are consistently higher than for the increasing stress model in Figure 

6.8.  A higher b-value implies relatively fewer large magnitude events or more small 

magnitude events.  When run under constant stress, a remote stress is applied that is just 

great enough to lead to failure of the model.  Under increasing stress, applied stress 

exceeds this minimum level and therefore relatively larger magnitude events may be 

anticipated.  Under constant stress, slow fracture is favoured and allows damage to build 

up around cracks before bulk failure occurs.  Increased damage leads to an increased 

proportion of smaller events to large events and hence an increase in b. 
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 Fig. 6.9 (a) Spatial variation in b-value over an array of 
2,000 cells, under constant stress conditions. Vertical bars 
show the standard error. (b) Evolution of the array with time. 

 

  

 There is no clear correlation between the calculated b-values and failure of the 

array in the constant stress example (Fig. 6.9).  The relative increase in b at the end 

points of the array may be due in part to boundary effects preventing larger magnitude 

events.  However, in the case of increasing stress, where the same effects would have 

been present, the end point b-values show a decrease. Both increasing (Fig. 6.8) and 

decreasing (Fig. 6.9) b-value trends are observed along a propagating fracture.  The 

application of spatial analysis of b-values in the model appears to offer little potential in 

forecasting failure activity across the array.   
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6.1.5 Inter-occurrence statistics  

The Gutenberg-Richter law can be written as a density function of the magnitude of 

events: 

 

 86
7 � �I��6'�'�U�7 (6.7) 

 

thereby describing a very complex process by a simple statistical distribution.  By 

describing the relative frequencies of different magnitude events, the Gutenberg-Richter 

law also tells us something of the expected recurrence time between events of a similar 

scale.  The inter-event time of successive earthquakes in a region have been reported to 

follow universal scaling-laws (e.g. Saichev & Sornette, 2007; Corral, 2004) and have 

also been described by Poisson, power law and gamma distributions (Parsons, 2008; 

Bak et al., 2002; Corral, 2006).  A Poisson distribution implies independence of the 

timing of an event with respect to previous events.  Clustering of activity in time 

suggests a temporal correlation of events and a departure from independence.  An 

established law for the expected inter-occurrence interval for certain magnitude events 

is valuable as a tool for forecasting anticipated frequencies of large scale earthquakes.  

Here, inter-event times between equal magnitude events are calculated to compare the 

statistics of events produced in the model with natural earthquake statistics.  
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 Fig. 6.10 (a)Average time interval between successive events 
of equal magnitude, for a typical run of the one-dimensional 
model.  Events are grouped into nearest magnitude bins for 
the analysis in (b). 

 

 

 Mean inter-occurrence times were calculated for events in a model of 5,000 cells run 

under constant stress conditions.  Figure 6.10a presents an expected time for each 

recorded magnitude, showing a large degree of scatter around a clear trend of increasing 

interval time with magnitude.  Mean values for the larger magnitude events are 

necessarily based on fewer recorded inter-event times and therefore have a larger error 

associated with these expected intervals.  In Figure 6.10b, the events have been placed 

in magnitude bins, incorporating much of the scatter.  The discrete nature of time in the 

model again makes analysis of the series of events difficult.  For example, many events 

of equal magnitude can occur at each time step but are not included in the calculation of 

inter-event time. 

  

0

20

40

60

80

1 1.5 2 2.5 3

E
(I

nt
er

-e
ve

nt
  t

im
e)

Magnitude

0

4

8

12

16

1 1.5 2 2.5 3

E
(I

nt
er

-e
ve

nt
  t

im
e)

Magnitude Group

(a) 

(b) 



144 

 

6.2 Fractal dimension  

6.2.1 Fractals in nature 

The scale invariance, or more accurately self-similarity, of nature has long been 

recognised and is exemplified by the need for a scale item in geological pictures.  Self-

similarity is a common characteristic of a fractal object.  A coastline is a frequently used 

example of fractal geometry in nature which typifies this self-similarity.  The observed 

length of a coastline will depend on the scale used to measure it.  The smaller the 

measuring scale, the more fine detail of the coastline will be included in the 

measurement, and the longer the total length will become.  Importantly, the measured 

length will increase without bound, rather than tending to a limit as would be expected 

for a Euclidean curve (Mandelbrot, 1977).  The length of coastline increases as the 

measuring scale decreases, and can be described by: 

 

 �4 � �24\ 
(6.8) 

 

where �4 is the length when measured by the characteristic linear dimension 24, � is a 

constant and � is the fractal dimension.  More generally, a fractal set is one made up of 

�4 objects of characteristic dimension 24 that follows the power law relation (6.8).  Fault 

patterns also exhibit self-similarity and studies have explored the fractal nature of fault 

lengths (Hatton et al., 1993), geometry (King, 1983) and displacement (Walsh et al., 

1991). 

 A fractal dimension can be calculated as a measure for the clustering of fractures 

in either space or time with a decreasing value indicating a move towards a more 

clustered structure.  Therefore a significant shift in scaling parameter may indicate a 

change in controlling factors on a physical process (Caruso et al., 2006).  Fractal 

analysis has been applied to various aspects of fracturing in the crust.  The dimension �� 
associated with the distribution of crack lengths is related to earthquake size and 

therefore to the b-value (e.g. Henderson et al., 1992).  This relation is described in 

further detail in Section 6.3.2.  Henderson et al. (1992) considered the distribution of 

earthquake epicentres, here described by exponent �� .  The variation in spatial 



145 

 

distribution of tectonic earthquakes was also studied by Hirata (1989), by estimating the 

fractal dimension of locations of earthquake epicentres in Japan over a period of 

approximately 40 years. This study also considered scaling exponents for fault surface 

traces, where fractal distributions were found over scale ranges of 2-20 km for areas of 

Japan and 1-100 km over the San Andreas fault (Aviles et al., 1987).  This dimension, 

�� is again measuring a different aspect of fracturing and seismicity.  In a study of the 

seismicity in the Parkfield region of California, Henderson and Main (1992) developed 

a model that monitored the evolution of the b-value and fractal dimension of the fault 

trace, as single fault line fractures. Persistence is a measure of the similarity of future 

behaviour to current behaviour.  Persistence is described by the Hurst exponent a.  a 

lies between 0 and 1, with a � 1 2⁄  indicating a persistent process, where future 

behaviour is more likely to be similar to current and past behaviour, and a H 1 2⁄  

implies anti-persistent behaviour (e.g. Telesca et al., 2002).  Henderson and Main 

(1992) used the evolution of the b-value and fractal parameters monitored to distinguish 

between persistent and anti-persistent geometries of failure. They found a negative 

correlation between fractal dimension and b-value as the model advanced and 

neighbouring fractures coalesced.   

 Focusing on volcanic seismicity, Vinciguerra et al. (2001) calculated both the 

spatial and temporal fractal dimension for seismicity during periods before and after a 

major eruptive period at Mt Etna (1983-1988 and 1993-1996 respectively). They found 

a rise in temporal dimension, but a fall in spatial dimension between the two periods.  

This implies that the rate of seismic activity became less clustered, but that the activity 

occurred in more concentrated areas.  Altering stress conditions within the volcano were 

proposed as the cause of the change in parameters. Vinciguerra (2002) also investigated 

the change in �, the scaling exponent measuring the relative proportions of small and 

large cracks, driving the seismic activity on Etna leading up to the 1989 flank eruption.  

Over several months prior to the eruption, the value of the exponent decreased.  This 

was interpreted as evidence of a positive feedback process that favoured growth and 

coalescence of existing fractures over the nucleation of new cracks, thus increasing the 

number of fractures of greater length.  Statistics of fracture length distributions are 

discussed in further detail in Section 6.3.2. 
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 Fig. 6.11 Fracture networks with equal fractal dimension 
(� � 2), but with different fault length distributions. (After 
Bonnet et al., 2001).  Sets with identical fractal dimension 
can exhibit very different fracture densities. 

 

 

 Caruso et al. (2006) looked at multifractal clustering of seismicity during dome 

building eruptions at Mt. St. Helens.  Multifractal analysis allows for multiple scaling 

exponents, which may be necessary to fully characterise a fractal object.  As seen in 

Figure 6.11, two sets with identical fractal dimension can have very different properties, 

and information such as density and orientation are also necessary to completely define 

a set (Sornette et al., 1993).  Multifractal dimensions �� can allow for this extra 

characterisation and are defined by: 

 

 �� � limTP"
1� * 1 lnr∑ R4�6�7W4q� sln �  

(6.9) 

 

for *∞ H � H ∞ and partition size �.  R46�7 can be thought of as a probability.  If the 

fractal set contains � points, and the space occupied by the set is divided into � 

partitions of size �: 

 

 R46�7 � �46�7�  
(6.10) 

 

where �46�7 is the number of points in partition :.  Objects may be monofractal, in 

which case �� is equal for all values of �.  �" gives the capacity dimension, which is 

the classic definition of a fractal described by (6.8), �� the information dimension, and 

�� the correlation dimension (Telesca et al., 2002).  Multifractal analysis of seismic 
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activity during the eruptive period (1980-1986) at Mt. St. Helens shows �� decreasing 

from 1 to 0.36 as � increases (Caruso et al., 2006).  This implies clustering of seismic 

activity with time, but with different densities of activity in different regions.  During 

non-eruptive periods, an almost constant value of ��~1 was calculated.  The value of 1 

indicates a random rather than clustered distribution of activity.  When analysed 

spatially, decreases in the fractal dimension occurred at relatively smaller depths and 

may have been caused by magma intrusions in the shallow crust (Caruso et al., 2006). 

6.2.2 Dimension measurements 

The classical method for measuring the fractal dimension described by (6.8) is a box-

counting technique (e.g. Bonnet et al., 2001).  The numbers �6x7, of boxes of length x 
needed to cover the fractal set are counted.  The fractal dimension � is then defined by: 

 

 � � * lim�P"
ln �6x7ln x  

(6.11) 

 

In practice, � can be calculated from the negative gradient of the log-log plot of number 

against size of boxes.  An equivalent and often more straight forward method is to cover 

the area containing the fractal set � with a mesh of squares with side length  .  Then, 

 

 � � * lim�P"
ln ��6�7ln   

(6.12) 

 

where ��6�7 is the number of  -mesh partitions which contain or intersect � (Falconer, 

1990).  Again, � can be calculated from the gradient of the relevant log-log plot.  This 

method of calculation can be derived from the multifractal definition (6.9) when � � 0.  

This provides a more simple calculation than (6.11) as it is not necessary to identify the 

optimal covering of boxes. 
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 The correlation dimension was introduced by Grassberger and Procaccia (1983) 

and shown to be a good estimate for the fractal dimension D but with the advantage of a 

comparatively easy calculation. For a fractal distribution the relationship: 

 

 �627 � �627w6w * 17 
(6.13) 

 

where �627 is the number of data points a distance less than 2 apart, and w the total 

number of points, scales with 2 as 2\.  This dimension is equivalent to (6.9) when 

� � 2. 

 Theoretically, fractal sets can be produced which remain self-similar over a large 

scale range.  However, when observed in the field or laboratory the range over which a 

set exhibits fractal characteristics is generally very much reduced (Hamburger et al., 

1996).  When viewing data over less than one order of magnitude, distributions other 

than a power law, for example exponential, can appear linear on a log-log plot (Bonnet 

et al., 2001), which would result in classification of a Poisson process as fractal.  

Hamburger et al. (1996), showed that purely random distributions can appear fractal 

when observed over a limited range, similar to that often used in experimental 

measurements.  In practice, obtaining a statistically large enough range can be difficult 

due to sampling difficulties at both upper and lower limits of scale.  As always, the 

number of data points is also an issue in producing a statistically significant 

measurement.  For example a minimum of 200 faults has been a suggested requirement 

for analysis of spatial and length distributions of fracture networks (e.g. Priest & 

Hudson, 1976; Bonnet et al., 2001). 
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6.3 Fractal analysis and fault statistics for one-dimensional model 

6.3.1 Fractal and correlation dimensions 

The spatial and temporal variations in fractal dimension were calculated for the model 

run under both increasing and constant stress conditions.  Both a standard box-counting 

method and the mesh-cover method were used with no differences observed in the 

results.  The outputs shown here were calculated by the box-counting method.  As the 

model evolves there are two different patterns and fractal dimensions that may be 

considered, �� and �� .  First is the distribution of all failed cells, which creates a fault 

trace pattern.  Clearly, in the one-dimensional model this will always result in a single 

continuous line if the model fails.  Second is the distribution of current failures or 

events with time.  This is therefore looking at hypocentre location and represents a 

snapshot in time rather than the whole history of the model. 
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  Fig. 6.12 (a) Variation of the fractal dimension �� with time 
leading to failure, under increasing stress conditions.   �� 
will naturally tend to one as the failed cells eventually form a 
continuous line.  The acceleration in �� shortly before 
failure correlates with the exponential acceleration in event 
rate (b). 

 

 

 Calculating the fractal dimension of a continuous straight line will give �� � 1.  

Figure 6.12a shows the trend towards this value when the fractal dimension was 

calculated over all failed cells with time.  The increase in �� becomes sharper once the 

event rate begins to accelerate (Fig. 6.12b), which may be due to the proportional 

increase in steps towards a continuous line which occurs once an increasing number of 
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cells are failing.  The total number of failed cells increases monotonically and therefore 

the size of the fractal set, or the number of objects being analysed, will increase with 

time.  Initially only 50 cells have failed, which is only 2.5% of the number at failure.  

This makes a direct comparison of the measured �� values difficult.  It is however 

constructive to observe the linearity and range of linearity of the box-counting 

calculations used to measure ��.  Figure 6.13 shows an example for the fractal 

dimension calculation at @@8 � 7, at the start of the acceleration in event rate.  At this 

stage 22% of cells have failed (Fig. 6.14).  Although there is a slight deviation at the 

lower scale range, the linear trend covers at least one order of magnitude.  

 

 Fig. 6.13 Box-counting results used to calculate ��.  The 
fractal dimension is given by the negative gradient of the log-
log plot of the number N(l) of boxes of size l needed to cover 
all failed cells. 
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 The distribution of events, or currently failing cells, provides analysis of the 

spatial location of seismic activity.  The associated fractal dimension is defined as �� .  

Event locations can be defined in several ways.  Two methods were used to identify 

locations. Namely, each individual failing cell included as an event, regardless of any 

adjacent failures, and the central cell of adjacent failing cells only.  In both cases 

moving windows of an equal number of events were used, with an overlap of events 

between consecutive windows.  Similarly to the calculation of b-values, effects of the 

discrete time scale were checked by randomising events in a time step that was split 

between windows.  This had no apparent influence on the calculated value of the 

dimension.    

 

 

Failed 
Intact 

Fig. 6.14 Distribution of failed 
cells (red) used in the box-
counting calculation plotted in 
figure 6.13. This shows a clear 
variety of crack densities along the 
array. 



153 

 

Figure 6.15 shows a typical trend of fractal dimension with time for a model run 

under increasing stress conditions.  Error bars show the standard error for the slope of a 

least squares fit (e.g. Rice, 1995): 

 

 � � � 1w * 2 ∑ 6�4 * ��47��4q�∑ 6�4 * ��7��4q�  
(6.14) 

 

 

 Fig. 6.15 Variation of fractal dimension �� with time, under 
increasing stress conditions. A sliding window of 300 events 
is used for each calculation, advancing 50 events at a time.  
Vertical bars indicate the standard error. 

 

 

 The general increase in fractal dimension implies that events become less 

clustered with time, with values ��~1 signifying a random distribution of event 

locations.  A lower initial applied stress, in addition to fewer failed cells causing stress 

concentrations, may result in more localised and clustered failures around the tips of 

existing cracks.  As the stress and number of cracks increases, events become more 

widespread along the array, tending to a random uniform distribution.  Leading up to 

failure, when event counts have become relatively large, the number of adjacent cells 

failing simultaneously is likely to increase.  This leads to a larger proportion of 

continuous line segments, with a fractal dimension of one, making up the set of events.  

Taking only the central adjacently failing cells as event locations limits each element of 

the set to an equal size of one cell and prevents the occurrence of a continuous line.  
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However, when ��   was calculated for this alternative definition of location 

distribution, no significant difference was seen, especially in overall trend (Fig. 6.16). 

 

 

 Fig. 6.16 Variation of fractal dimension �� with time, under 
increasing stress conditions. A sliding window of 300 events 
is used for each calculation, advancing 50 events at a time. 
Events are defined as the central cell of adjacent 
simultaneously failing cells. Vertical bars indicate the 
standard error. 

 

 

  As with the calculation of b, the trade off between windows of a sufficient number of 

events for a significant value of �� , and short enough time period to observe any 

variation presents a problem in this analysis.  During the early stages of fracture there 

are very few events and a large time period must be incorporated to provide a set for 

testing which is of equal size to just a single time step much closer to failure.  Therefore 

any temporal variation that may exist during this initial period is lost.  When a sliding 

window of equal time period is used for the same data set, a much lower initial fractal 

dimension is observed (Fig. 6.17a).  However the vast difference in set size makes 

comparison of the calculated dimension values difficult.  The first window contains just 

48 event locations while the final window contains over 1,700.  This represents 85% of 

the entire array and will therefore naturally produce a very high fractal dimension as the 

set tends towards a continuous line.  A smaller time window reduces this problem at the 

later time scale but reduces the number of events in early time windows even further.  

The first fractal dimension in Figure 6.17b is calculated from only 6 events.  When a 

very small number of events is used, the possible range of cover numbers N(l) in the 

box-counting calculation will be reduced, leading to less variation as box size l changes 

and hence a very low value for D.  Although the range of fractal dimensions varies 
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considerably between the various methods of calculation (Figs. 6.15 – 6.17), the trend 

of an increasing D and a shift towards a random uniform distribution remains consistent 

across all cases. 

 

 

 

 Fig. 6.17 Variation of fractal dimension �� with time, under 
increasing stress conditions. A sliding window of equal time 
period is used for each calculation. Time periods of (a) 20 
units and (b) 5 units advance (a) 5 and (b) 3 time steps each 
calculation. Vertical bars indicate the standard error. 

 

  

 The gradual increase in fractal dimension is generally less evident when models 

are run under constant stress conditions.  The more typical trend in this case is a 

relatively consistent high D-value, showing small fluctuations with time (Fig. 6.18).  

This high measurement of ��  again closely approximates the non-fractal condition 

� � 1.  Figure 6.19 shows the distribution of events in each window used to calculate 

the fractal dimensions.  The active area shifts with time, but within this area the degree 

of clustering appears to remain the same.  The concentration of events into localised 
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areas of activity, rather than distributed throughout the array, can result in a very dense 

distribution tending towards a continuous line and high fractal dimension. 

 

 Fig. 6.18 Variation of fractal dimension with time, under constant 
stress conditions. A sliding window of 500 events is used for each 
calculation, advancing 50 events at a time. Events are defined as 
the central cell of adjacent simultaneously failing cells. Vertical 
bars indicate the standard error. 
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 As would be expected for a non-fractal distribution, the correlation dimension 

also remains high (Fig 6.20).  The correlation dimension is calculated as the negative 

gradient of the log-log plot of �627 against length scale 2 as defined in Equation (6.12).  

An example of this linear log-log plot, for the D-values in Figure 6.20 is shown in 

Figure 6.21.  A good linear fit is observed, however limitations due to the model size 

restrict this analysis to only one order of magnitude of length scale 2.  

 

 

 Fig. 6.20 Variation in correlation dimension with time (as 
described in (6.13)), under constant stress conditions. A sliding 
window of 300 events is used for each calculation, advancing 50 
events at a time.  All failed cells are included as event locations. 
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 Fig. 6.21 Log-log plot of the proportion of data points within linear 
distance r of each other.  The negative gradient gives the 
correlation dimension. 

 

 

 The evolution of events in Figure 6.19 appears to follow the trend of an 

advancing crack and this is frequently seen in the model.  Assessing the effect of this 

migration of events on fractal dimension, ��  was calculated for two different cases; 

fracturing dominated by the growth of a single primary crack (Fig. 6.22a), and the 

development of multiple cracks throughout the array (Fig. 6.22b), which can also be 

observed in the model.  Figure 6.23 shows the variation in fractal dimension for the two 

cases shown in 6.22.  Both follow a similar, gradual increase to failure in �� , but the 

values for the single crack growth are consistently greater than in the multiple crack 

case.  This fits with the hypothesis that high fractal dimensions may be produced by the 

concentration of events around an advancing crack.  However, the fact that both cases 

show values close to one implies approximately non-fractal distributions. 
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 Fig. 6.22 Evolution of a one-dimensional array of 1,000 cells with time. (a) 
Failure is dominated by the growth of a single, primary fracture. (b) Multiple 
cracks grow simultaneously.  

 

 

 

 Fig. 6.23 Variation in fractal dimension ��with time, under 
increasing stress conditions. The two data sets compare �� 
for the growth of a single, dominant crack (blue diamonds) 
and multiple cracks (red squares).  Vertical bars show 
standard errors. 
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 The location of events will also clearly be affected by the geometry of initial 

cracks in the model.  This can differ through the number, length distribution and 

location of failed cells.  The results shown so far are from models with a random 

distribution of initial cracks.  To assess the effect of this on the apparent trend of 

random uniform spatial distribution of events, D was also calculated for an initial array 

containing a fractal geometry of failed cells.  Cracks were located using a Cantor dust 

set, which is developed through continually removing the middle third of a line segment 

(e.g. Falconer, 1990).  This set, and therefore the initial trace of cracks in the model, has 

a fractal dimension of ln 2 ln 3⁄ , approximately 0.63.  The fractal dimensions recorded 

remain high, generally in the range 0.7 – 1.0 (Fig. 6.24).  A general increase in D 

leading up to failure is also often observed. 

 

  Fig. 6.24 Variation in fractal dimension �� with time, under 
increasing stress conditions and a fractal geometry of initial 
cracks. Vertical bars show standard errors. 

 

 

 In addition to analysis of the spatial distribution of seismic events, studies have 

looked at the temporal clustering of earthquakes (e.g. Vinciguerra et al., 2001).  

Occurrence of data in discrete time periods prevents this type of analysis for the one-

dimensional model, because there is no distinction of time lapse between individual 

events. 

6.3.2 Fault length 

As well as investigating the distribution of seismic events, many studies have also 

examined the geometry of fault lengths. Bonnet et al. (2001) contains a review of 

numerous experimental, numerical and field studies.  Various factors have been 
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identified as affecting the distribution of lengths.  In experiments, Krantz (1983) 

showed that an increase in applied stress increased the proportion of longer 

microcracks.  The presence of fluid in specimens can also influence microcrack lengths 

(Hatton et al., 1993) with a higher fluid content leading to relatively more small cracks.  

Davy et al. (1995) found an exponential distribution of lengths in experiments where 

deformation was distributed uniformly, and power law during localised deformation.  In 

numerical simulations an exponential distribution was observed during early 

deformation, becoming power law once fractures began to interact (Cowie et al., 1993).  

Power law distributions of fault lengths have also been observed in the field, including 

those from a fissure swarm in Iceland (Gudmundsson, 1987), and active surface faults 

in the United States (Hatton et al., 1993).  

 A power law fault length distribution can be described by: 

 

 �6x7 S x�\�  (6.15) 

 

where �6x7 is the number of faults of length greater than x.  Fault length or area is 

related to seismic moment and magnitude (Kanamori & Anderson, 1975).  Therefore 

this fractal dimension �� for fault lengths can be related to the magnitude dependent b-

value (e.g. King, 1983; Main 1988): 

 

 �� � 3u�  
(6.16) 

    

� is a constant, usually given by � � 3 2⁄  for tectonic events or � � 3 for small events 

such as acoustic emissions in the laboratory (Kanamori & Anderson, 1975).  Main 

(1988) describes the reduction of �� to a critical value of �� � 1 as a method for failure 

forecast.  A drop in the exponent is due to the natural tendency for larger cracks to grow 

more rapidly and have less chance of arrest.  By Equation (6.16), this correlates with the 

drop in b-value reported before failure. 
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 Crack length distribution was recorded in the model for both constant and 

increasing stress conditions, with similar results observed in both cases.  Again, the 

geometry of initial cracks assigned in the model will have an effect on the development 

of the distribution.  Figure 6.25 shows a typical log-log plot of the number of cracks 

�6x7 of length at least x, used for the calculation of fractal dimension ��.  Linearity 

generally holds over at least one order of magnitude even when the initially failed cells 

are assigned entirely at random.  Relatively fast growing primary fractures may account 

for the departure from a linear trend at upper length scales although limits of scale in the 

model will ultimately restrict the number and magnitude of cracks of a medium to long 

length.  Boundary problems are also an issue for fault length distributions studied in the 

field where the margins of a sampled region are more likely to intersect longer fault 

lines, causing censoring effects, or a biased choice of sample region in order to include 

or exclude large faults (Bonnet et al., 2001).    

 

 

 Fig. 6.25 Log-log plot of crack length distribution in a one-
dimensional array subject to an increasing applied stress.  N(l) is the 
number of cracks greater than length l.  The fractal dimension Dl is 
given by the negative gradient of the linear trend and is calculated 
over data points where linearity holds (blue diamonds).  �� � 0.99. 

 

 

 For the one-dimensional model, �� was compared to the seismic b-value (Fig. 

6.26), which was calculated for magnitudes measured both by the length of adjacent 

simultaneously failing cells and the length of adjacent current and existing failures, as 

described in Section 6.1.1.  The length distribution exponent �� appears to follow a 

general decreasing trend with time, falling to ��~1 just prior to failure.  Where b is 
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measured by the length of adjacent failing cells (Fig. 6.26a), the two parameters vary in 

proportion, as Equation (6.16), until �� shows a more marked decrease prior to failure.  

However, the constant of proportionality gives a value � ~ 6 in (6.16), significantly 

greater than the expected value of � ~ 3.  A larger value of � reflects a relatively high b 

compared to field and laboratory values.  �� is calculated for all cracks in the model and 

therefore incorporates the entire history of activity as well as current failures while the 

b-value is measured for current events only.  By corresponding magnitude values to the 

length of current failing cells adjacently linked by existing failures, this encompasses a 

measure of previous activity into the b-value and the two parameters b and �� become 

more comparable.  Prior to the pre-failure drop-off in the length dimension, ��~u as 

proposed for small scale faulting (Kanamori & Anderson, 1975). 
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 Fig. 6.26 Variation in seismic b-value (blue diamonds) and 
fractal dimension �� (red squares) with time, under 
increasing stress conditions.  Magnitude values used to 
calculate b are derived from (a) the number of adjacent 
simultaneously failing cells and (b) the number of adjacent 
current and existing failed cells. Note the change in scale for 
b. 
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6.4 Chapter Summary 

The seismic b-value associated with tectonic earthquakes is generally found to lie close 

to one.  The parameter is often observed to be greater than this, b ~ 2 or 3, in areas 

surrounding volcanoes.  High material heterogeneity and high local stress may 

contribute to the anomalously high b-values.  A minimum in b-value has been observed 

prior to failure at volcanoes and in fracture tests in the laboratory.  In the one-

dimensional model, b lies in the range 1 < b < 3, and decreases towards the point of 

failure.  A similar trend is observed for both increasing and constant stress conditions.  

Further work to identify a critical lower limit is necessary to fully utilise the b-value as 

a forecasting tool. 

Fractal analysis is used to quantify the distribution of fault lengths or earthquake 

locations in the field.  In the one-dimensional model a fractal dimension describing the 

location of all failed cells in the array, and a fractal dimension associated with the 

location of events with time were calculated.  The former naturally tends to one at the 

point of failure.  The latter also appears to increase towards a value of one prior to 

failure, although the trend can also start from a value as high as ��~ 0.9.  The log-log 

plots used to calculate the dimensions show a good linear fit in all cases.  The 

distribution of crack lengths in the model also follows a power-law relationship.  The 

associated fractal dimension is proportional to the seismic b-value over a varying time 

interval in the model run.  However, the constant of proportionality is greater than that 

expected from theoretical results.      
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7. Discussion and conclusions 

The aim of this research was to improve understanding of the fracture processes 

occurring within a volcano and, thereby, to provide a physical basis for patterns of 

accelerating volcano-tectonic seismicity before eruptions.  During an interval of weeks 

or more, the rate of VT events is commonly observed to increase exponentially with 

time and, at least at subduction-zone volcanoes reawakening after centuries of repose, 

this increase may evolve into a hyperbolic (faster-than-exponential) increase about two 

weeks before eruption (Kilburn, 2003; Kilburn & Sammonds, 2006).  The prevalence of 

only two trends suggests that rates of crustal fracturing may occur under a small range 

of conditions and, consequently, may be amenable to analysis using a model that 

requires only a small number of key conditions to be satisfied. 

As a result, a numerical model has been developed for which cracking is driven 

purely by stress concentration at crack tips, and interaction between neighbouring 

cracks. Different external loading conditions were considered, predominantly a constant 

applied load and a load that increased gradually with time. In addition, the material 

properties of the simulated rock mass could be considered as initially homogeneous or 

heterogeneous. Importantly, none of the simulations was required to end in bulk failure. 

The simulation has been developed in a simple 1D setting. However, this simple 

model manages to capture the essential features of rock cracking and so remained the 

focus of this study. 

Key results of the 1D simulation are that: 

1. Event rates tend initially to increase exponentially with time. 

2. Exponential increases in event rate can evolve into hyperbolic trends.  

3. Exponential trends are controlled by the activation of an increasing number of 

cracks, whereas hyperbolic trends are determined by the interaction of major 

cracks that merge together.  

4. Hyperbolic trends tend to emerge from a model with initial flaws more closely 

spaced than those that produce a purely exponential trend. 

5. The preferred precursory trends remain the same, independent of loading 

conditions.  

6. The magnitude-frequency distributions of model events follow a power-law 

relation, consistent with the Gutenberg-Richter law. 
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7. Event rates tend to decrease immediately prior to failure, due to limitations on 

remaining intact cells in the array. 

8. A small proportion of simulated trends show precursory patterns that differ from 

the expected combination of exponential and hyperbolic increases.   

 

The first six results are consistent with the common patterns of VT precursors 

observed in the field (Voight, 1988; McNutt, 2005). The agreement between model and 

field data supports the view that precursory VT event rates are determined by a 

combination of fault activation and of fault growth and linkage (Kilburn, 2003).  It also 

suggests that the 1D simulation yields realistic results.  Accordingly, the final two 

results, of a pre-failure drop in event-rate and alternative precursory trends, might yield 

insights into additional processes that may be occurring among potential VT precursors 

to eruption.  Such processes are discussed below, together with their implications for 

making decisions during volcanic emergencies.  
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7.1 Model limitations 

The 1D model itself has been subjected to a relatively broad sensitivity analysis.  

A large-scale analysis would require many more simulations of the model, and was 

therefore deemed too computationally expensive.  Further work into establishing 

properties such as the linearity of output variables or the interaction of input factors may 

highlight possible interesting areas for further investigation.  Identifying the most 

important factors is useful for establishing which commonalities between volcanoes 

may lead to similar precursory trends as well as the extent of these similarities.   

Information obtained on the sensitivity of the model to the various inputs will improve 

with the number of runs made.  A Monte Carlo simulation would ideally involve 

running a model on the order of 104 - 106 times.  Again however, in this case the model 

was too computationally expensive to produce such a large amount of data.  

The discretisation involved in using a grid-based model for the fracture process 

is also an issue that arose in various parts of this research.  Continuous modelling 

methods such as finite element analysis have seen wide applications across both 

engineering and geology problems (e.g. Manconi et al., 2007; Parsons et al., 2006).  

This type of approach brings with it numerous other complexities though and again a 

balance must be reached between the degree of accuracy required from a model and the 

relative simplicity.  For the purpose of the research carried out here it was not necessary 

to produce an extremely accurate representation of the propagation of a crack, but more 

to establish the effects of interaction between two neighbouring cracks and the 

subsequent effect of this on an entire population of cracks.  The discrete growth of 

cracks within the model also affected the analysis of seismic event magnitude 

distributions.  A more varied distribution of magnitudes could be attained by dividing 

cells into smaller segments, and introducing a stochastic element of how many of these 

segments are to be used for a magnitude calculation.  However, even though it gives a 

limited range, it is useful to have a measure of magnitude that can be directly linked to a 

physical parameter in the model.  In addition, the grouping of recorded magnitudes in 

the field also leads to a discrete range of values. 

The one-dimensional array used to represent the progressive failure of the 

edifice is of course a vast simplification of the modelled process. As described in 

Chapter 4, the interaction and coalescence of fractures and faults within host rock of a 

volcano will occur by shear faulting between neighbouring, non-aligned fractures rather 
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than simple tip-to-tip extension. Accordingly the model represents the development of 

failure within the edifice rather than the formation of a purely extensional fracture. The 

model assumes magma ascent as a passive action once the edifice is sufficiently 

fractured so as to no longer create a limitation on the movement of magma. However, 

little mention has been made of the proposed subsequent ascent of magma to the 

surface, and a much greater understanding of this must be developed in order to present 

a complete model of eruption mechanics. In particular, the feedback process between 

the propagating magma and host rock deformation is an important factor in the physics 

of magma ascent. Once magma begins its ascent, pressure in the magma chamber would 

be expected to fall. As a source of loading on the surrounding host rock, this may in turn 

lead to a reduction in the rate of cracking and seismicity. This drop-off in seismicity 

prior to eruption is observed in the field and is represented in the model by a 

redistribution, or loss of stress due to a limit on the number of remaining intact cells.   

This model of edifice failure and magma ascent assumes that once a connected 

network of faults and cracks has formed, magma will follow its course to the surface. 

The creation of a fully connected conduit, linking a magma chamber to the surface is 

again a highly simplistic concept. Field observations suggest that magma-driven cracks 

propagate in a direction of principal stress and do not necessarily follow cracks and 

faults that already exist within the edifice. It must therefore be noted that while the 1D 

model reproduces recorded precursory seismicity by focusing on the interactions of a 

network of cracks, it cannot necessarily be assumed that this process leads directly to 

the creation of a conduit for magma ascent. Feedback and interplay between the two 

processes may instead be considered.  Shear faulting and the coalescence of fracture 

networks may occur radially throughout the edifice, around a central axis of 

deformation, due to the loadings described previously. The 1D model then still 

represents a progression towards, and a measure of failure. However, the failure is 

representative of, rather than a direct cause of the creation of a pathway for magma 

ascent. Once the magma chamber ruptures, propagation of a magma-filled crack may 

still cause shear faulting or cracking within the surrounding rock due to redistribution of 

pressure or of geothermal fluids and volatiles. The interaction between fluid movement 

and fracturing is discussed in further detail in Section 7.2.3. Eventually this type of 

cracking and faulting, and therefore the related high-frequency earthquakes, falls away 

as pressure is released and the seismicity observed becomes lower in frequency, 

representative of the movement of magma through the volcano.  
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Further studies are required to explore this idea in more depth and would need to 

focus on details such as the utilisation of accurate location and source mechanisms of 

precursory volcano-tectonic earthquakes, and field, experimental and modelling 

approaches to understanding the interplay between faults and dykes within volcanoes. 
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7.2 Applications of the model to investigating the behaviour of 

volcanoes 

The results of the 1D model are consistent with field observations that volcanic 

eruptions are commonly preceded by exponential increases in VT event rate with time. 

They also show that exponential trends can evolve naturally into hyperbolic increases in 

VT event rate. Such agreement between field and model results suggests that the model 

has captured the essential features of fracturing at volcanoes.  An immediate practical 

implication is that the model supports interpretations of VT eruption precursors in terms 

of the activation and interaction of a population of fractures in subvolcanic crust and 

volcanic edifices.  Two further implications are (1) that the less-common variations in 

model event rate that do not follow exponential or hyperbolic trends may also have 

analogues among the full spectrum of field precursors, and (2) that the model may be 

extended to investigate conditions for non-eruptive fracturing at volcanoes. The last two 

implications are of special interest at volcanoes that show unrest after long repose, 

because these are the volcanoes for which the least field data are available. 

Consequently, it is possible that some of the less-common trends in the model have yet 

to be identified in the field. The following sections therefore discuss how the numerical 

model might be used to guide future investigations into patterns of volcanic unrest. 

7.2.1 Decreases in event rate before eruptions 

A recurring feature in the model is the drop-off in event rate observed immediately prior 

to bulk failure.  This has been attributed to the limit on remaining intact cells once the 

whole array is nearing failure.  However, it is interesting to consider whether this kind 

of effect may be related to physical processes occurring in the field, due to release of 

magmatic pressures, either before eruptions or during false alarms.  This section 

addresses pre-eruptive decreases; false alarms are considered in Section 7.1.2. 

The 2000 eruption of Usu in Japan (Zobin et al., 2005) and the 1994 eruption at 

Popocatepetl in Mexico (De la Cruz-Reyna et al., 2008) provide two examples of pre-

eruptive decreases in VT event rate. At Mt Usu, following an acceleration in seismic 

event rateover a period of approximately three days, the rate then began to decline, with 

the onset of eruptive activity occurring more than 12 hours after the peak in seismicity 

(Zobin et al., 2005).  The model developed here presents the ascent of magma as an 

entirely passive process once an open pathway has been created.  In addition to the 
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limits on intact cells, it is therefore also possible to imagine a time-lag between the 

formation of this open fracture network and the first emergence of magma at the surface 

determined by the rate of magma ascent.  The failure forecasting methods described 

throughout this thesis suggest that the onset of activity coincides with the peak point of 

the observed precursor.  However, it is also possible to imagine and to explain a 

scenario where although the forecasting method may correctly predict the time of 

failure, a decrease in the precursor may be observed prior to this. 

A longer period between a swarm of seismic activity and the onset of eruption 

has been observed in the field.  De la Cruz-Reyna et al. (2008) describe four phases of 

activity leading up the eruption of Popocatepetl in 1994, activity that followed almost 

70 years of rest at the volcano.  The increase in seismicity recorded in the years to 

months before the eruption are attributed to a series of magmatic injections, thermally-

induced cracking and volumetric increase in the density of cracks and fractures caused 

by a concentration of stress.  This latter process produced the type of acceleration in 

volcano tectonic activity analysed in this research.  Extrapolation of a hyperbolic fit to 

the seismic energy released during the first three phases of activity provides a good 

forecast to the onset of the eruption.  However, the observed acceleration in seismic 

activity shows a significant decline in the months prior to the eruption and the 

distribution of hypocentres becomes much more greatly dispersed.   De la Cruz-Reyna 

et al. (2008) speculate that this final stage of activity may be indicative of a 

redistribution of built up stress throughout a greater volume of host rock as the 

effectively closed volume experiencing the acceleration in seismicity and fracturing is 

no longer able to maintain it.  In essence this is similar to the process causing a drop in 

event rate in the one- and two-dimensional models, where there is a limit in the ability 

of the array to maintain the level of failing cells.  

7.2.2 False alarms 

The growth of cracks in the one-dimensional array, as well as in rock in the laboratory 

and field, creates a positive feedback.  Stress intensity at the crack tip is an increasing 

function of the size of the crack.  Therefore with nothing to prevent further growth, once 

a crack begins to extend, it grows rapidly until the entire array, block of material or 

volcanic edifice has failed.  In nature however, this is clearly not the case.  There are 

many more intrusion episodes at volcanoes that do not lead to the eruption of magma at 

the surface, than those that do (e.g. Gudmundsson and Philipp, 2006).  Therefore for a 
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model to accurately describe the failure mechanism that occurs within a volcano, it must 

be possible for an extending crack to arrest before bulk failure is reached.  This model 

may then help to explain the still poorly understood mechanism creating false alarms at 

volcanoes. 

 

 

 

 

 Fig. 7.1 Event rate with time for a one-dimensional array subjected initially to 
an increasing stress, which is then reduced by 50% and held constant. The 
dashed line shows the point at which stress is reduced.  The event rate 
continues increasing until bulk failure of the array is reached. 

 

 

Results shown in the thesis so far have focused on those cases when the model 

array fails.  In the case of an increasing stress this will always eventually occur.  For 

constant stress conditions, whether or not the array fails will depend on the chosen level 

of applied stress.  In terms of improving understanding of false alarms at volcanoes, the 

cases when the model does not fail can also be of interest.  In many cases, the location 

of initial cracks within areas of relatively high fracture toughness and a low level of 

applied stress results in a cessation of activity in just a few time steps.  Under a 

randomly distributed fracture toughness, it was also observed that once a relatively large 

proportion of the cells had failed, it was likely that the array would progress to failure.  

Often, even if a drop in the applied stress was introduced, the density of fractures was 

sufficient to maintain the necessary degree of stress concentration at crack tips and to 

sustain the positive feedback of crack growth (Fig. 7.1).  However, there are also a few 

cases when the event rate does die down after a drop in the applied stress.  Figure 7.2 

shows an example of two different model runs in which the applied stress is decreased 
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at the point indicated.  In one case the model continued fracturing until the entire array 

had failed.  In the second case, after an initial continuation of failing the event rate died 

down and finally stopped, with intact cells still remaining in the array.  The similarity of 

the two trends, before one goes on to fail and one returns to equilibrium highlights the 

potential difficulty of distinguishing between these scenarios in the field.  If the primary 

source of stressing in a volcano is the overpressure of a magma reservoir, the release of 

some of this pressure, for example in the form of an intrusion event, may lead to a 

relaxation, or at least redistribution of the regional stress. The one-dimensional model 

demonstrates that in such a scenario, increased seismic activity may eventually die 

down without the emergence of magma at the surface. 

 

 

 

 

 

 Fig. 7.2 Event rate with time for two separate runs of the one-dimensional 
model.  The models are subjected initially to an increasing stress, which is then 
reduced by 50% and held constant. The dashed line indicates the point at which 
stress is reduced.  After this drop, fracturing continued in one run of the model 
until bulk failure of the array (blue diamonds), while in the second run the event 
rate eventually died down and the model remained in an intact state (red 
triangles). 

 

  

 As well as a reduction in stress and therefore stress intensity, the second factor 

that may lead to the arrest of a propagating network is an increase of critical fracture 

toughness.  A random fracture toughness distribution means that even if a propagating 

crack runs into a region of relatively high fracture toughness, it is likely that this region 
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will cover no more than one or two cells distance from the crack and therefore if the 

crack is long enough its range of influence may also reach to the less resistant cells 

beyond.  Therefore once longer cracks have formed it is very difficult to prevent failure 

of the entire array.  While mechanical properties of rock making up a volcano are likely 

to be highly heterogeneous, with stiffness of different rocks ranging over four or five 

orders of magnitude (Gudmundsson & Philipp, 2006), it is also reasonable to imagine 

that there will be some degree of local homogeneity in the layers making up the edifice.   

Gudmundsson and Philipp (2006) found that a dyke intrusion leads to an eruption only 

if a homogeneous stress field exists through the edifice.  They used finite element 

analysis to investigate the effect of layers with various mechanical properties on the 

propagation of a dyke and found that while stiff layers favoured propagation, soft layers 

tended to arrest the dyke.  Generally, a dyke reaches the surface by stress-field 

homogenisation, a process that reduces the stress difference between layers of host rock.  

When a dyke reaches the contact between adjacent layers it may become arrested or 

spread laterally to form a sill before either arresting or continuing its vertical 

propagation (Gudmundsson, 2003). 

 A layering of fracture toughness is a very simple constraint to build into the 

existing crack interaction model.  In the one-dimensional case, the only option for a 

crack approaching a contact between two layers is to arrest or continue vertical 

propagation.  However in two dimensions, with an adjustment of propagation rules 

within the array it would be possible to allow for horizontal spreading of a crack.  In the 

case of a fluid filled crack, discussed below, this would then form a sill that in turn 

would alter the surrounding stress field further.  This type of layered model could be 

developed into a stochastic tool for forecasting the proportion of intrusive to eruptive 

episodes at a volcano.  Running numerous simulations, varying the distribution of initial 

cracks or external stress conditions provides a count of how many instances the array 

progresses to failure and how many times a swarm of activity occurs but then dies down 

without bulk failure.  This type of study would give an indication of how often non-

eruptive swarms might be expected at a volcano.  It is also essential to be able to 

identify which these swarms are.  Analysis of observable parameters such as earthquake 

locations or event rate trends may identify potential tools for such a forecasting 

capability.  For example, with the potential for accurate event location it may be 

possible to identify a switch of location of concentrated activity as a major propagating 

crack becomes arrested. 
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7.2.3 Modelling intrusions 

Failure of the one-dimensional model is based solely on fracture mechanics of a brittle 

material and assumes that it is this failure of a volcanic edifice that is the controlling 

factor on the ascent of magma to the surface (Kilburn, 2003).  As discussed in Section 

7.1, an interesting further development of the model would be to consider the effects of 

magma movement on the fracture network, once created, whether within or removed 

from the network. It is widely accepted that there are significantly more intrusion events 

at volcanoes, involving the propagation of a magma-filled dyke, than there are 

eruptions.  This is therefore an important area of research and many numerical, 

empirical and theoretical studies have been carried out on the dynamics of fluid filled 

cracks and of dyke propagation. This section looks at the role of fluid within the 

fracture network, although this may be geothermal fluids rather than magma.   

Allowing for fluid movement within the model is likely to introduce complex 

interactions with seismic activity.  Rivalta and Dahm (2004) describe this interaction in 

a heavily fractured edifice.  Dyke intrusion causes further cracking of the host rock, 

which in turn becomes weakened allowing for further propagation of the dyke.  This 

type of positive feedback, leading eventually to bulk failure, has been previously 

described in terms of crack length dependent stress intensity factors.  The effect of a 

propagating dyke on surrounding cracks is also akin to the interaction effects in the one- 

and two-dimensional models.  Reaction of surrounding material to a fluid filled crack 

will depend on properties of both agents, such as the mechanical properties of the host 

rock and the buoyancy or volatile content of the magma.  Roper and Lister (2007) 

described a fracture toughness parameter that incorporates the resistance to viscous flow 

as well as fracture.  Along the length of a dyke, away from the tip, induced strains are 

on the order of the dyke’s width to length ratio and are therefore generally small (Rubin, 

1995). 

If an intrusion of magma does not lead to enhanced fracturing of the host rock, it 

will still cause an increase in size of the channel it enters and can therefore result in 

observable ground deformation at the surface (Rubin, 1995).  Two dimensions allow a 

factor of area change to be incorporated into the model, which can be extrapolated to 

look at volume change and deformation associated with failure in the edifice.  Along 

with seismic activity, ground deformation is another promising tool for eruption 

forecasting and when taken in partnership with seismicity can help to create a clearer 

picture of activity beneath and surrounding a volcano.  Technological advances in this 
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area have been great over the past few decades with many studies on volcanoes now 

using techniques involving InSAR (Interferometric Synthetic Aperture Radar) or GPS 

(e.g. Baer et al., 2008; Palano et al., 2008).  Ground deformation studies can be useful in 

forecasting eruptions, identifying dyke intrusions and also for monitoring magma 

movement during an eruption (Kohno Y. et al., 2008). 

Pressure source models translate volumetric change observed on the surface to 

sub-surface changes within the Earth’s crust.  Mogi’s (Mogi, 1958) magma intrusion 

model is often used to correlate a volume change in a magma chamber to ground 

deformation.  This model assumes a spherical magma body at depth, within an elastic 

body of country rock.  It has also been suggested that mechanical properties of rock 

have a significant effect on displacements and deformation and that therefore 

heterogeneity is an important factor to allow in such a model (Manconi et al., 2007).  

The two-dimensional model described in chapter 7 was developed to consider the 

percolation of a damaged array and the properties of the resulting network.  However, 

this model could be expanded further to also incorporate intrusions of magma into the 

fracture network and the subsequent increase in area of the array.  The simplicity of the 

grid-like model allows for features such variation in area change with material 

properties.  Clearly further complexities would also be necessary within such a model to 

incorporate local stress variation due to intrusions and pressure sources (Gudmundsson, 

2002), and the effects of an expanding grid space.  Intrusions may also have a more 

global effect across the grid.  Toda et al. (2002) suggested a linear relationship between 

stressing rate induced by an intrusion event and remote seismic activity.  A separate 

study on the same intrusion event in the Izu Islands, Japan uses this relationship to 

propose a method for establishing whether dyke expansion is occurring as a passive 

reaction to fracturing or due to the intrusion of magma (Rivalt & Dahm, 2004). 

Modelling a fluid flow involves a much greater degree of complexity than is 

currently built into the fracture model.  However, just by introducing additional stress 

perturbations brought about by magmatic intrusions and allowing these effects to 

propagate in such a way as to be representative of a viscous flow, the first order effects 

of dyke intrusions on a fracture network can be approximated.  Allowing for volume 

change in the model as these intrusions occur could also be useful in providing a basic 

link between observed ground deformation and seismicity with activity caused by 

magma movement within a volcano. 
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7.2.4 Time-dependent rock failure 

Greater complexity may also be built into the model by considering a time-dependent 

element, within the discrete time steps of stress redistribution.  Currently each cell can 

exist in one of only two states, failed or intact.  In theory a cell can remain at a very low 

level of stress right up until the time step during which it fails, as a major crack extends 

close enough to significantly increase the stress intensity of the cell.  Alternatively, a 

cell adjacent to a crack tip may have a fracture toughness great enough to prevent the 

crack propagating until either an increase in remotely applied stress or a neighbouring 

crack advances close enough to cause interaction effects.  In the latter case, although the 

cell does not fail immediately, it is nevertheless subject to a force that it would not feel 

if were completely isolated.  Attempting to model if and when this cell may fail, and the 

crack propagate involves may introduce the concept of sub-critical crack propagation or 

use of a damage parameter.  Sub-critical crack growth describes the extension of a crack 

at a stress intensity below its critical value and can be influenced by factors such as 

temperature, pressure as the presence of corrosive fluids (Atkinson, 1984), all of which 

can apply to a volcanic setting.   Introducing the theory of damage mechanics allows the 

fracture of rock to be dealt with in a framework of continuum mechanics.   

Main (2000) uses the concept of damage mechanics to look at time-dependent 

stages of creep in the Earth’s crust, and to explain the foreshock and aftershock 

sequences of earthquakes described by Omori’s law.  Based on the constitutive 

equations of time-dependent crack growth, Main’s model incorporates both a positive 

and negative feedback on rock failure, where local negative feedback occurs through 

strain hardening mechanisms.  The occurrence of stress shadows will be discussed again 

in the following section.  These various concepts of time-dependence can be built into 

the model by recording in essence a damage parameter for each intact cell.  This may 

incorporate the number of time steps a cell is exposed to a stress intensity greater than 

the background remote stress, which would allow only cells surrounding a crack tip to 

experience any extent of damage, or a function of the ratio of stress intensity to fracture 

toughness thereby affecting all intact cells.  

Modelling the host rock as a visco-elastic material would also create time 

dependent failure.  The fracture mechanics currently applied to the model assumes 

brittle failure of rock is producing the volcano tectonic events recorded prior to 

eruption.  Long period seismicity that becomes more common after the onset of 

eruption is associated with the movement of magma rather than brittle failure.  Recent 
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studies suggest however that fracturing may not be confined to cool, brittle rock only.  

Tuffen at al. (2008) carried out high temperature fracture tests on lavas to investigate 

the possibility of seismogenic faulting along conduit walls, and within lava domes and 

erupting magma.  Waveforms produced by the laboratory experiments showed both 

similar onset patterns and frequency content to volcano tectonic earthquakes.  Looking 

instead at long period events, Neuberg et al. (2006) model the brittle-ductile transition 

of magma within the conduit where the low frequency seismicity is caused by the build 

up of shear stresses along the conduit wall as the magma ascends.   

Seismogenic faulting of magma at shallow depths, either along the conduit walls 

or in lava domes, will generally only occur once a pathway to the surface has been 

largely created.  It is therefore still reasonable to suppose that seismic activity used in 

the failure forecast methods described in this thesis can be assumed to come from the 

failure of host rock and the opening of a new fracture network.  However as discussed 

above, the one-dimensional model of precursory seismicity produces a fall in volcano 

tectonic style events immediately prior to failure, and any attempts to improve the 

representation of the fracture and faulting development during this interval should take 

into account the possibility of high-frequency swarms produced by ascending magma 

itself.  The effects of temperature on the fracture process at greater depths can also be 

incorporated into the existing model framework by looking at the effect of temperature 

change on fracture toughness. 

It should also be noted at this point that many potential additions to the fracture 

model may become irrelevant when considering its ultimate function.  The failure 

forecast method looks at the change in event rate and therefore requires data such as the 

number of events per hour or per day.  Equally field data will often be presented in this 

way.  Therefore the ability to model the time of events to a greater and greater accuracy 

becomes irrelevant.  The discrete time scale used in the one-dimensional model 

reproduces observed data and is therefore essentially fit for purpose.  Adding further 

complexities may not necessarily add any further utility to the model. 
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7.3 Modelling rapid changes in loading conditions  

The fracture model has thus far been run under conditions of either a constant applied 

stress, using only the positive feedback created by the extension of cracks to induce 

further failure in the array, or a gradually increasing remote stress.  When considering 

the mechanisms behind arrested failure and false alarms, a sudden decrease in stress was 

also applied.  An area of potential future work would be to look at the application of a 

sudden, relatively large increase in ambient stress.  Stress within a volcano is generally 

assumed to build up gradually by processes such as the increase in pressure within a 

magma chamber, or the exsolution of gases from ascending fluids. However, volcanoes 

can also react to dynamic and particularly static stress changes brought about by 

tectonic earthquakes.  In recent years the idea of the transfer of stress during 

earthquakes, and the potential for the triggering of a volcanic eruption has been well 

publicised.  It has been suggested that such triggering can cover time intervals from 

seconds to decades and distances from metres to thousands of kilometres (e.g. Freed, 

2005).  Static stress changes can lead to a triggered earthquake weeks or even years 

following an initial event.  Effects diminish with distance from the slipped fault by 

some inverse function (Steacy et al., 2005).  The one-dimensional model already 

incorporates a triggering mechanism in the sense that interaction between cracks can 

adjust local stress intensity.  It is also possible to investigate the potential for interaction 

effects on a much larger scale.  

It is very difficult to identify a definite causal relationship between a tectonic 

event and a subsequent volcanic eruption.  There are several cases reported however 

where some correlation has been suggested between tectonic and volcanic activity (e.g. 

Cerro Negro, Nicaragua, La Femina et al., 2004; Vesuvius, Italy, Marzocchi et al., 

1993; Merapi, Indonesia, Walter et al., 2007 ).  A volcanic eruption may be induced by 

a variety of changes in the magma reservoir or conduit with, for example, both 

compression or dilation of a magma chamber capable of initiating volcanic unrest 

(Selva et al., 2004).  

Coulomb stress transfer is often used as a measure of the increase or decrease in 

proximity to failure of a fault, following a change in regional stress (Toda et al., 1998).  

Studies using Coulomb stress change have been used to highlight potential risk areas for 

future earthquakes.  McCloskey et al. (2005) calculated stress changes brought about by 

the magnitude 9.1 Sumatra-Andaman earthquake in December 2004.  They highlighted 
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the contiguous Sunda trench as a real risk for future slip, with stress on the northern part 

of this segment calculated to have increased by 5 bars.   Indeed this section did rupture 

in March 2005, creating a magnitude 8.7 earthquake and claiming the lives of about 

2,000 people (Nalbant et al., 2005).  This highlights the potential of stress triggering and 

in particular Coulomb stress forecasts in the area of seismic risk analysis.  A similar 

style of forecasting tool, applicable to the effects of a tectonic earthquake on the 

increased probability of eruption at a volcano, would be a useful aid in disaster 

management. 

Within the one-dimensional fracture interaction model it is possible to represent 

a step increase or decrease in the applied stress to represent a static stress change.  

Applying a Monte Carlo method, with parameters for mechanical properties suitable for 

the volcano in question, it is possible to model the conditions under which an 

earthquake may trigger an eruption, and the probability of this occurrence.  With a more 

complex version of the model allowing for incorporation of magma and fluid 

movements, the effect of dynamic or static stress changes on the magma reservoir can 

also be modelled. 
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7.4 Decision-making during volcanic emergencies 

A second aspect of the fracture model that could be developed is the investigation of 

potential warning times before an eruption.  This would incorporate existing work on 

the characteristic time scales of exponential trends, the emergence of hyperbolic trends, 

and the relative probabilities of an eruption or false alarm. An important application is 

in the decision making procedure for civil authorities in the event of a volcanic crisis.  

Probability plays a major role in eruption forecasting.  This role has often 

proved to be quite controversial in terms of disaster mitigation and management.  First 

is the problem of translating data such as observed precursors, historical knowledge and 

expert opinion into one figure representing the likelihood of the nature, location or time 

of the onset of activity.  Once armed with this information, the next problem is what to 

do with it.  For example, how high should the probability of activity be before an 

evacuation is called?  This choice is ultimately weighted against the problem of how 

long a time interval is required for evacuation.  If a large population lives on or around a 

volcano, it is vital that sufficient warning be given to allow a full and orderly 

evacuation.  The overall decision in calling for an evacuation is therefore a trade-off 

between the relative certainty of an eruption occurring, and the time needed for a 

complete evacuation.  Often this decision is made on a subjective basis, during the 

developing volcanic crisis.  Such decisions may be aided by prior knowledge of the 

expected time scale of precursory activity. 

Marzocchi and Woo (2007) proposed a probabilistic, cost-benefit strategy to 

provide a quantitative decision framework in a volcanic crisis.  They look at a case 

study of an eruption at Vesuvius, Italy and the risk posed to the highly populated Bay of 

Naples, and the cost of mitigation measures against an acceptable level of risk for 

society.  The decision is basically to evacuate or not to evacuate.  In this economical 

framework this decision is made taking into account the potential cost of each action.   

The discrete decision-making applied in this study assumes that sufficient time 

will be available to perform a full evacuation.  An added complexity to the model is the 

more realistic continuous relationship between the loss risk and the time available for 

evacuation.   A concept of the probable time frame available for evacuation is clearly 

also an important factor in the decision making process.  Using theoretical models of 

time to failure forecasts can provide an upper limit on the potential time available for 

evacuation.  If a hyperbolic increase is expected in precursory seismic event rate, an 
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upper and lower limit for time to failure is given by the proposed range in gradient 

limits, derived from physical and mechanical properties of a volcanic edifice.  However, 

clearly this time interval must then be adjusted for the time already elapsed from the 

start of the increasing event rate to the point at which the trend is recognised.  Similarly, 

the concept of the characteristic timescale in an exponentially increasing event rate can 

provide an estimate of time to eruption, again shortened by the time taken to identify the 

event rate trend and timescale.  For the purpose of creating a decision making tool 

before the event of a potential crisis, it is useful to have some information on the 

probable chances of the various different timescales proposed by the theoretical models, 

and previous records of activity. 

A Monte Carlo simulation of possible precursory activity would provide just 

that.  The simulation of 300 runs described in Chapter 4 shows the range in output 

distributions from a variation in several different input factors.  By allowing for 

different distributions of the various input factors, this type of simulation can be made 

as general or specific as required, and can show the potential variation in output trends 

even for a relatively constrained problem.  As well as providing a range, the large 

number of runs also provides a valuable indication to the relative likelihood of 

occurrence of each of the outputs (Fig. 7.3).  In particular, it can provide a probability 

distribution of the time to failure and this information could then be used to augment the 

respective cost and benefit associated with decision-making in the time of a crisis. 
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 Fig. 7.3 (a) Four characteristic exponential trends and (b) the 
frequency of exponential sequences from the Monte Carlo simulation 
described in Chapter 4 when grouped with the closest characteristic 
trend. 
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7.5 Alternative methods for forecasting eruptions 

Alternative forecasting methods can also be incorporated to aid in identifying between 

precursory accelerations in seismicity and non-eruptive swarms.  In the event of an 

approaching volcanic crisis, applying a suite of techniques to accumulating observations 

will inevitably provide more information on which to base forecasts and decisions.  In 

addition to seismic event rate, various other methods built from failure of the volcano 

have been developed.  For example, the volume of rock that must be fractured for an 

eruption to occur can provide a characteristic threshold for the seismic energy released 

(De la Cruz-Reyna, 2008). Cumulative Benioff strain was used to forecast eruptions at 

Mount St. Helens following the cataclysmic May 1980 eruption (Malone et al., 1983).  

The longer the inter-eruption interval, the longer the precursory increase in seismic 

energy release.  This relation was therefore suggested as a method for forecasting the 

time of approaching eruptions. Zobin and Jiménez (2008) suggested a relationship 

between the length of precursory seismicity and the magnitude of the eruption at 

volcanoes erupting after more than 100 years quiescence.  A longer period of seismicity 

was associated with a lower VEI index at six different volcanoes studied. 

Many methods that appear to provide a promising tool have only been tested in 

producing hindcasts, with few reports of successful, true forecasts of the onset of 

volcanic activity.  It has also been suggested that in a time of crisis it would be very 

difficult to distinguish between the type of seismic signals incorporated into the failure 

forecast methods.  By their very nature eruptions following a long repose interval 

happen relatively rarely.  Their activity is often explosive in nature, producing eruptions 

of VEI � 5.  Eruptions of VEI 5 are expected roughly once a decade, while those with 

VEI 6 only slightly more often than once a century (Woo, 1999).  Therefore there is a 

lack of field data to test such forecasting tools against and in this situation the use of 

empirical and numerical models, such as that developed here, becomes vital in order to 

identify the most plausible models to apply in forecasting these relatively infrequent, 

but highly hazardous eruptions. 
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7.6 Conclusions 

The one-dimensional crack model is based on a fracture mechanics representation of 

failure within a volcano.  It produces results consistent with field observations, 

especially before eruptions at subduction-zone volcanoes reawakening after long repose.  

Accordingly, the model supports interpretations of VT eruption precursors in terms of 

the activation and interaction of a population of fractures in subvolcanic crust and 

volcanic edifices.  In particular, the model suggests that:  

 

• Exponential trends are controlled by the activation of an increasing number of 

cracks, whereas hyperbolic trends are determined by the interaction of major 

cracks that merge together.  

• Variations in the application of a remote stress field have a lesser effect on 

failure rate than the local ratios of stress intensity to fracture toughness. 

• Failed eruptions may be caused by a redistribution of stresses, or by a 

heterogeneous edifice. 

• Characteristic timescales associated with failure rate are indicative of the volume 

of rock to fracture.  In the absence of definite criteria for failure forecasting, the 

characteristic timescale can provide a limit on the expected time to failure. 

• A Monte Carlo simulation of the failure of a volcanic edifice can provide 

probabilistic data for an expected time to failure, as well as highlighting possible 

precursory trends to be observed before future eruptions.  

 

To build on these results, future studies can extend the model to two and three 

dimensions, develop analyses of non-eruptive accelerations in VT event rate, and 

investigate the behaviour of deformation parameters in addition to event rate alone.  In 

combination, such studies will help to improve interpretations of volcanic unrest and, as 

a result, will also enhance decision-making procedures during volcanic emergencies.  
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Appendices 

Mathematica code to run 1D model of crack interaction: 

<< Statistics`DescriptiveStatistics` 

<< Statistics`ContinuousDistributions` 

gaussdist = NormalDistribution[0, 1]; 

 

(* user input for length of array *) 

n = Input["Enter number of elements"]; 

 

(* user input for initial stress and stress increase *) 

initApp = Input["Enter initial value of remote applied stress"]; 

appStep = Input["Enter increment value for applied stress per step"]; 

 

(* user input for the area of each cell as used in the magnitude 

calculations *) 

area = Input["Enter the area of each element. Area of  

    1/10,000 corresponds to the failure of a single element being a 

zero magnitude event"]; 

 

(* Creates Random Walk of n elements *) 

strengthinit = {}; 

For[i = 1, i ≤ n, i++, 

     AppendTo[strengthinit, Apply[Plus, Table[Random[gaussdist], 

{n}]]]; 

 ]; 

(*Shift values to make all toughnesses initially positive*) 

strengthinit = strengthinit - Floor[Min[strengthinit]] + 1; 

(* produces stiff and soft layers *) 

(*topStiff = Take[Sort[strengthinit], -100]; 

  topSoft = Take[Sort[strengthinit], 50]; 

  For[i = 6, i ≤ 9, i++, 

     strengthinit =  

      ReplacePart[strengthinit, topStiff, Table[{x}, {x, i*100 +  

      1, i*100 + 80}], Table[{Random[Integer, {1, 100}]}, {80}]]; 

     strengthinit = ReplacePart[strengthinit, topSoft, Table[{ 

            x}, {x, i*100 + 81, (i + 1)*100}], Table[{ 

          Random[Integer, {1, 50}]}, {20}]]; 

  ];*) 

 

bvalEvolve = {}; 

dEvolve = {}; 

dErr = {}; 

maxScale = {}; 

dEvolveMesh = {}; 

dErrMesh = {}; 

maxScaleMesh = {}; 

eventEvolve = {}; 

eventEvolveEpicentre = {}; 

invEventEvolve = {}; 

crackEvolve = {}; 

eventListBnk = {}; 

eventListBnkJoin = {}; 

magLst = {}; 

magLstJoin = {}; 

magLoc = {}; 

magLocJoin = {}; 

newFailedLst = {}; 

lgthLst = {}; 

stressIntensityTipEvolve = {}; 

stressToughTipEvolve = {}; 
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stressIntensityEvolve = {}; 

stressToughEvolve = {}; 

faultTrace = {}; 

 

time = 1; 

 

(* module records length and mid - point of adjacent failed cells for 

calculations *) 

(* returns lists (lgth of new failures + midpoint, lgth of connected 

new failures + midpoint, lgths of all failed cells *) 

crackSites[{x_, y_}] := Module[{newFailed}, 

       newFailed = x; 

       newFailedJoin = x; 

       allFailed = y; 

       allFailedCalc = y; 

       totList = {}; 

       totListJoin = {}; 

       totListAll = {}; 

       

       crackSt = Min[Position[newFailed, 0]]; 

       relLoc = crackSt; 

       For[i = 0, crackSt ≠ Infinity, i++, 

          newFailed = Drop[newFailed, crackSt - 1]; 

          crackEnd = If[Min[Position[newFailed, 1]] == 

Infinity, Length[newFailed] + 1, Min[Position[newFailed, 1]]]; 

          crackLgth = crackEnd - 1; 

          AppendTo[totList, {crackLgth, relLoc + (crackLgth - 

1)*0.5}]; 

          newFailed = Drop[newFailed, crackLgth]; 

          crackSt = Min[Position[newFailed, 0]]; 

          relLoc = relLoc + crackLgth - 1 + crackSt; 

         ]; 

       

       (* includes length of original crack if both tips 

propagate, rather than two new growths *) 

       crackStJoin = Min[Position[newFailedJoin, 0]]; 

       relLocJoin = crackStJoin; 

       For[i = 0, crackStJoin ≠ Infinity, i++, 

          newFailedJoin = Drop[newFailedJoin, crackStJoin - 

1]; 

          allFailed = Drop[allFailed, crackStJoin - 1]; 

          crackEndJoin = If[Min[Position[newFailedJoin, 

         1]] == Infinity, Length[newFailedJoin] + 1, 

Min[Position[newFailedJoin, 1]]]; 

          crackLgthTemp = crackEndJoin - 1; 

          newFailedJoin = Drop[newFailedJoin, crackLgthTemp]; 

          allFailed = Drop[allFailed, crackLgthTemp]; 

          endAll = If[Min[Position[allFailed, 1]] == Infinity, 

Length[allFailed], Min[Position[allFailed, 1]]]; 

          newFailedCovered = Max[Position[Take[newFailedJoin, 

endAll], 0]]; 

          If[newFailedCovered == -Infinity, 

             crackLgthJoin = crackLgthTemp;, 

             crackLgthJoin = crackLgthTemp + 

newFailedCovered; 

             newFailedJoin = Drop[newFailedJoin, 

newFailedCovered]; 

             allFailed = Drop[allFailed, newFailedCovered]; 

            ]; 

          AppendTo[totListJoin, {crackLgthJoin, relLocJoin + 

(crackLgthJoin - 1)*0.5}]; 

          crackStJoin = Min[Position[newFailedJoin, 0]]; 

          relLocJoin = relLocJoin + crackLgthJoin - 1 + 

crackStJoin; 
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         ]; 

       

       (* records all crack lengths *) 

       crackStAll = Min[Position[allFailedCalc, 0]]; 

       For[i = 0, crackStAll ≠ Infinity, i++, 

          allFailedCalc = Drop[allFailedCalc, crackStAll - 1]; 

          allFailedEnd = If[Min[Position[allFailedCalc, 1]] ==  

        Infinity, Length[allFailedCalc] + 1,in[Position[allFailedCalc, 

1]]]; 

          crackLgthAll = allFailedEnd - 1; 

          AppendTo[totListAll, crackLgthAll]; 

          allFailedCalc = Drop[allFailedCalc, crackLgthAll]; 

          crackStAll = Min[Position[allFailedCalc, 0]]; 

         ]; 

        

       Return[{totList, totListJoin, totListAll}] 

      ]; 

 

 

(* module adjusts stress intensity around crack tips according to 

crack length and distribution of surrounding cracks *) 

(* returns (state, stress intensity, tghness) data with stress 

intensity adjusted around crack tips *) 

kfacInt[x__] := Module[{j, jBnk, lgth}, 

       data = x; 

       For[s = 1, s ≤ n, s++, 

          AppendTo[data[[s]], {{}, {}}]; 

          data[[s]] = Flatten[data[[s]], 1]; 

         ]; 

       j = 0; 

       jBnk = {}; 

       lgth = 1; 

       For[l = 1, Min[Position[Drop[data, Min[j + lgth - 1, n]], 

{0, _, _, _, _}]] ≠ Infinity, l++, 

          j = j + lgth - 1 + Min[Position[Drop[data, j + lgth 

- 1], {0, _, _, _, _}]]; 

          If[MemberQ[jBnk, j], jInd = 1, jInd = 0]; 

          lgth = 1; 

          For[i = 1, j + i ≤ n && MatchQ[data[[j + i]], {0, _, 

_, _, _}] && i < n, i++, 

             lgth = lgth + 1; 

            ]; 

         

          (* adds distance and length to all cells within half 

- crack - length distance below current tip *) 

          For[k = 1, k ≤ Floor[lgth/2] + 1 && jInd == 0, k++, 

             If[j - k > 0, 

                  If[data[[j - k, 1]] ≠ 0, 

                       AppendTo[data[[j - k, 

4]], {k, lgth}]; 

                      ]; 

                 ]; 

            ]; 

          (* adds distance and length to all cells within half 

- crack - distance above current tip *) 

          For[m = 1, m ≤ Floor[lgth/2] + 1 && jInd == 0, m++, 

             If[j + lgth - 1 + m ≤ n, 

                  If[data[[j + lgth - 1 + m, 1]] ≠ 

0,AppendTo[data[[j + lgth - 1 + m, 5]], {m, lgth}]; 

                      ]; 

                 ]; 

            ]; 

         ]; 
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       (* adjusts stress intensity at intact cells *) 

       For[u = 1, u ≤ n, u++, 

          Which[Length[data[[u, 4]]] ≥ 1 && Length[data[[u, 

5]]] ≥ 1, 

           (* within affected range of cracks above and below, 

interaction formula applies *) 

             allCks = Flatten[{data[[u, 4]], data[[u, 5]]}, 

1]; 

             data[[u, 2]] = 0; 

             For[v = 1, v ≤ Length[allCks], v++, 

                data[[u, 2]] = data[[u, 2]] + 

remStress*Sqrt[((allCks[[v, 1]] + allCks[[v, 2]])/allCks[[v, 

1]])*Tan[Pi*allCks[[v, 2]]/(2*Apply[Plus, allCks[[v]]])]]; 

               ]; 

             data[[u, 2]] = 0.7*data[[u, 2]];, 

             Length[data[[u, 4]]] ≥ 1, 

             (* affected by crack above *) 

             data[[u, 2]] = 0; 

             For[v = 1, v ≤ Length[data[[u, 4]]], v++, 

                data[[u, 2]] = data[[u, 2]] + 

remStress*Sqrt[Pi*data[[u, 4, v, 2]]/(2*data[[u, 4, v, 1]])]; 

               ];, 

             Length[data[[u, 5]]] ≥ 1, 

             (* affected by crack below *) 

             data[[u, 2]] = 0; 

             For[v = 1, v ≤ Length[data[[u, 5]]], v++, 

                

                       data[[u, 2]] = data[[u, 2]] + 

remStress*Sqrt[Pi*data[[u, 5, v, 2]]/(2*data[[u, 5, v, 1]])]; 

               ];, 

             True, 

             data[[u, 2]] = remStress; 

            ]; 

          data[[u]] = Drop[data[[u]], -2]; 

         ]; 

       Return[data] 

      ]; 

 

(*checks for sites whose toughness is exceeded by remote applied 

stress*) 

failCheck[{1, a_, b_}] := {0, a, b} /; a ≥ b; 

failCheck[{a_, b_, c_}] := {a, b, c}; 

 

(* builds initial (state,stress, fracture toughness) data, and checks 

for initial failures *) 

initData = Table[{1, initApp, strengthinit[[i]]}, {i, 1, n}]; 

initData = Map[failCheck, initData]; 

(* sets maximum of 20 or n/100 cells to failed *) 

initData = If[Count[initData, {0, _, _}] < 20, ReplacePart[initData, 

0, Table[{Random[Integer, {1, n}], 1}, {Max[Floor[n/100], 20] - 

(Count[initData, {0, _, _}])}]], initData]; 

 

(* creates a fractal distribution of failed cells *) 

(*fractalLst = Table[0, {n/3}]; 

sectionsLst = {{1, Length[fractalLst]}}; 

omitLgth = Floor[(sectionsLst[[1, 2]] - sectionsLst[[1, 1]] + 1)/3]; 

   

While[omitLgth ≥ 1, 

     fractalLst = ReplacePart[fractalLst, 1, Partition[Table[x, {x,  

sectionsLst[[1, 1]] + omitLgth, sectionsLst[[1, 2]] - omitLgth}], 1]]; 

     AppendTo[sectionsLst, {sectionsLst[[1, 1]], sectionsLst[[1, 1]] 

+ omitLgth - 1}]; 

     AppendTo[sectionsLst, {sectionsLst[[1,2]] - omitLgth + 1, 

sectionsLst[[1, 2]]}]; 
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     sectionsLst = Delete[sectionsLst, 1]; 

     omitLgth = Floor[(sectionsLst[[1, 2]] - sectionsLst[[1, 1]] + 

1)/3]; 

    ]; 

 

  initData = Table[{fractalLst[[If[Mod[xx, Length[fractalLst]] == 0, 

Length[fractalLst], Mod[xx, Length[fractalLst]]]]], initData[[xx, 2]],  

initData[[xx, 3]]}, {xx, n}];*) 

 

 

AppendTo[crackEvolve, Flatten[Take[initData, n, 1]]]; 

remStress = initApp; 

crackForm = initData; 

intactSite = Count[initData, {1, _, _}]; 

 

(* loop continues until no intact cells remain *) 

For[loop = 1, intactSite ≠ 0, loop++, 

     numFailed = 1; 

    

(* loop continues until no further failures occur at current stress, 

or until no intact cells remain *) 

(* remove (* *) for constant stress conditions *) 

     (*For[k = 0, numFailed ≠ 0 && intactSite ≠ 0, k++,*) 

      eventList = {}; 

      eventListJoin = {}; 

     

(* adjusts stress intensity around crack tips and checks for failures 

*) 

 

      initData = kfacInt[crackForm]; 

      failedElements = Flatten[Position[initData, {0, __}]]; 

     

      stressIntensityTip = {}; 

      stressIntensity = {}; 

      stressToughTip = {}; 

      stressTough = {}; 

     

 (* records stress intensity and stress intensity/toughness at cells 

adjacent to crack tip *) 

      For[ij = 1, ij ≤ Length[failedElements], ij++, 

         If[failedElements[[ij]] == 1, 

           (* remove (* *) for periodic boundaries *) 

             

(*If[FreeQ[failedElements, n],                  

 AppendTo[stressIntensityTip, initData[[n, 2]]]; 

    

                         

 AppendTo[stressToughTip, Min[initData[[n, 2]]/initData[[n, 3]], 

1]]; 

                  ];*), 

      

                     If[FreeQ[failedElements, 

failedElements[[ij]] - 

1],AppendTo[stressIntensityTip,initData[[failedElements[[ij]]  

- 1, 2]]]; 

            AppendTo[stressToughTip,Min[initData[[failedElements[[ij]] 

- 1, 2]]/initData[[failedElements[[ij]] - 1, 3]], 1]]; 

                ]; 

           ]; 

       If[failedElements[[ij]] == n, 

         (* remove (* *) for periodic boundaries *) 

         (*If[FreeQ[failedElements, 1],               

   AppendTo[stressIntensityTip, initData[[1, 2]]]; 
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         AppendTo[stressToughTip, 

Min[initData[[1,2]]/initData[[1, 

                       3]], 1]]; 

                ];*), 

           If[FreeQ[failedElements, failedElements[[ij]] 

+ 1], 

              AppendTo[stressIntensityTip, 

initData[[failedElements[[ij]] + 1, 2]]]; 

              AppendTo[stressToughTip, 

Min[initData[[failedElements[[ij]] + 1, 

2]]/initData[[failedElements[[ij]] + 1, 3]], 1]]; 

                ]; 

           ]; 

        ]; 

     

      AppendTo[stressIntensityTipEvolve, stressIntensityTip]; 

      AppendTo[stressToughTipEvolve, stressToughTip]; 

     

(* records stress intensity and stress intensity/toughness at all 

intact cells *) 

      For[ij = 1, ij ≤ n, ij++, 

         If[FreeQ[failedElements, ij], 

              AppendTo[stressIntensity, initData[[ij, 

2]]]; 

              AppendTo[stressTough, Min[initData[[ij, 

2]]/initData[[ij, 3]], 1]]; 

             ]; 

        ]; 

     

      AppendTo[stressIntensityEvolve, stressIntensity]; 

      AppendTo[stressToughEvolve, stressTough]; 

     

      (* checks for new failures *) 

      crackForm = Map[failCheck, initData]; 

            newFailed = Flatten[Take[crackForm, n, 1]] - Flatten[ 

      Take[initData, n, 1]] + 1; 

      allFailed = Flatten[Take[crackForm, n, 1]]; 

      AppendTo[newFailedLst, newFailed]; 

      numFailed = Count[newFailed, 0]; 

     

      (* records new crack lengths and total crack lengths *) 

      bValLgths = crackSites[{newFailed, allFailed}]; 

      eventList = Flatten[AppendTo[eventList, bValLgths[[1]]], 

1]; 

      eventListJoin = Flatten[AppendTo[eventListJoin, 

bValLgths[[2]]], 1]; 

      AppendTo[lgthLst, bValLgths[[3]]]; 

     

      (* records state of each cell, failed or intact *) 

      AppendTo[crackEvolve, Flatten[Take[crackForm, n, 1]]]; 

      eventCount = Apply[Plus, eventList[[All, 1]]]; 

      AppendTo[eventEvolve, eventCount]; 

      invEventEvolve = If[eventCount == 0, invEventEvolve, 

AppendTo[invEventEvolve, 1/eventCount]]; 

      epicentreNew = {}; 

      eventLocs = Position[Flatten[newFailed], 0]; 

     

      (* records central location of adjacent failing cells *) 

      For[jkl = 1, Length[eventLocs] > 0, jkl++, 

         endLoc = 0; 

         For[klm = 2, endLoc ≠ 1 && Length[eventLocs] > 

klm - 1, klm++, 

          If[eventLocs[[klm]] == eventLocs[[klm - 1]] + 1, 

                 endLoc = 0;, 
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                 endLoc = 1; 

                ]; 

           ]; 

         If[Length[eventLocs] == klm - 1 && endLoc == 

0, 

            klm = klm + 1; 

           ]; 

         allLoc = Take[eventLocs, klm - 2]; 

         epicentre = 

allLoc[[Ceiling[Length[allLoc]/2]]]; 

         AppendTo[epicentreNew, epicentre]; 

         eventLocs = Drop[eventLocs, klm - 2]; 

        ]; 

       

      AppendTo[eventEvolveEpicentre, Length[epicentreNew]]; 

     

   (* increases time and returns stress intensity to remote stress *) 

      time = time + 1; 

     

      For[i = 1, i ≤ n, i++, 

         crackForm[[i, 2]] = remStress; 

        ]; 

     

      (* calculates the magnitude of events *) 

      mags = Table[N[Log[10, eventList[[x, 1]]*area] + 4], {x, 

1,Length[eventList]}]; 

      mags = Delete[mags, Position[mags, 0]]; 

      AppendTo[magLst, mags]; 

      AppendTo[magLoc,Table[{mags[[y]], eventList[[y, 2]]}, {y, 

1, Length[eventList]}]]; 

      magsJoin = Table[N[Log[10, eventListJoin[[x, 1]]*area] +  

          4], {x, 1, Length[eventListJoin]}]; 

      magsJoin = Delete[magsJoin, Position[magsJoin, 0]]; 

      AppendTo[magLstJoin, magsJoin]; 

      AppendTo[magLocJoin, Table[{magsJoin[[y]], 

eventListJoin[[y, 2]]}, {y,1, Length[eventListJoin]}]]; 

     

      (* counts the number of cells remaining intact *) 

      intactSite = Count[crackForm, {1, _, _}]; 

     (*];*) 

     

     (*calculates fractal dimension *) 

     dimPos = 1 - Flatten[Take[crackForm, n, 1]]; 

     AppendTo[faultTrace, dimPos]; 

     dimPosBnk = dimPos; 

     

     (*fractal dimension*) 

     dimLstLgth = {}; 

     state = dimPos[[1]]; 

     stateEnd = state*Min[Position[dimPos, 0]] + (1 - state)* 

            Min[Position[dimPos, 1]]; 

     

     For[i = 0, stateEnd ≠ Infinity, i++, 

        stateLgth = stateEnd - 1; 

        AppendTo[dimLstLgth, {state, stateLgth}]; 

        dimPos = Drop[dimPos, stateLgth]; 

        state = dimPos[[1]]; 

        stateEnd = state*Min[Position[dimPos, 0]] + (1 - 

state)*Min[Position[dimPos, 1]]; 

       ]; 

     

     dimLstLgth = AppendTo[dimLstLgth, {state, Length[dimPos]}]; 

     fractalDim = {}; 

     fractalDimMesh = {}; 
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     For[k = 1, k ≤ 250, k += 1, 

        countBox = 0; 

        dimLst = dimLstLgth; 

        startBox = Min[Position[dimLst, {1, _}]] - 1; 

       

        For[i = 0,startBox≠Infinity&&dimLst[[1,2]] > 0, i++, 

           dimLst = Drop[dimLst, startBox]; 

           boxSize = k - dimLst[[1, 2]]; 

         

           For[j = 0,boxSize≥0&& Length[dimLst] > 1, j++, 

              dimLst = Drop[dimLst, 1]; 

              boxSize = boxSize - dimLst[[1, 2]]; 

             ]; 

         

           countBox = countBox + 1; 

           dimLst[[1, 2]] = -boxSize; 

           startBox = Min[Position[dimLst, {1, _}]] - 1; 

          ]; 

       

        AppendTo[fractalDim, {k, countBox}]; 

        meshCover = Partition[dimPosBnk, k]; 

        If[Mod[Length[dimPosBnk], k] ≠ 0, 

           AppendTo[meshCover, Take[dimPosBnk, -

Mod[Length[dimPosBnk], k]]]; 

          ]; 

        coverCheck = Table[If[MemberQ[meshCover[[x]], 1], 1, 

0], {x, Length[meshCover]}]; 

        countBoxMesh = Apply[Plus, coverCheck]; 

        AppendTo[fractalDimMesh, {k, countBoxMesh}]; 

       ]; 

     

     For[m = 1, m ≤ Length[fractalDim], m++, 

        ind = 0; 

       

        For[p = 1, p < m, p++, 

           If[fractalDim[[m, 2]] == fractalDim[[p, 2]], 

                ind = 1; 

                Break[]; 

               ]; 

          ]; 

       

        If[ind == 1, 

           fractalDim[[m, 1]] = 0; 

          ]; 

       ]; 

     

     For[m = 1, m ≤ Length[fractalDimMesh], m++, 

        ind = 0; 

       

        For[p = 1, p < m, p++, 

           If[fractalDimMesh[[m, 2]] == 

fractalDimMesh[[p, 2]], 

                ind = 1; 

                Break[]; 

               ]; 

          ]; 

       

        If[ind == 1, 

           fractalDimMesh[[m, 1]] = 0; 

          ]; 

       ]; 

     

     fractalDim = Delete[fractalDim, Position[fractalDim, {0, _}]]; 



195 

 

     fractalDim = Log[10, fractalDim]; 

     fractalDimMesh = Delete[fractalDimMesh, Position[fractalDimMesh, 

{0, _}]]; 

     fractalDimMesh = Log[10, fractalDimMesh]; 

     fractalDimTemp = fractalDim; 

     goodFit = 0; 

     While[Length[fractalDimTemp] > 2 && Abs[goodFit] < 0.9, 

        Clear[x]; 

        interp = Fit[fractalDimTemp, {1, x}, x]; 

        sigX = Apply[Plus, fractalDimTemp[[All, 1]]]; 

        sigXSq = Apply[Plus, fractalDimTemp[[All, 1]]^2]; 

        sigY = Apply[Plus, fractalDimTemp[[All, 2]]]; 

        sigYSq = Apply[Plus, fractalDimTemp[[All, 2]]^2]; 

        sigXY = Apply[Plus,fractalDimTemp[[All, 

1]]*fractalDimTemp[[All, 2]]]; 

        noData = Length[fractalDimTemp]; 

        goodFit =  

        N[(noData*sigXY - sigX*sigY)/Sqrt[(noData*sigXSq - 

sigX^2)*(noData*sigYSq - sigY^2)]]; 

        fractalDimTemp = Drop[fractalDimTemp, -1]; 

       ]; 

     If[Abs[goodFit] > 0.9, 

       

 AppendTo[fractalDimTemp,fractalDim[[Length[fractalDimTemp] + 

1]]]; 

        errD = noData*sigXSq - sigX^2; 

        calcY = {}; 

       

        For[y = 1, y ≤ Length[fractalDimTemp], y++, 

           AppendTo[calcY, Coefficient[interp, x, 

           0] + Coefficient[interp, x, 1]*fractalDimTemp[[y, 1]]]; 

          ]; 

        sumRes = Apply[Plus, (fractalDimTemp[[All, 2]] - 

calcY)^2]; 

        sdError = Sqrt[(sumRes/(noData - 2))*noData/errD]; 

        AppendTo[maxScale, 10^fractalDimTemp[[-1, 1]]]; 

        dvalue = -Coefficient[interp, x]; 

        If[Length[dEvolve] > 0, 

           If[dvalue ≠ dEvolve[[Length[dEvolve], 2]], 

                AppendTo[dEvolve, {remStress, 

N[dvalue]}]; 

                AppendTo[dErr, sdError]; 

               ];, 

           AppendTo[dEvolve, {remStress, N[dvalue]}]; 

           AppendTo[dErr, sdError]; 

          ]; 

       ]; 

      

     fractalDimTempMesh = fractalDimMesh; 

     goodFit = 0; 

     While[Length[fractalDimTempMesh] > 2 && Abs[goodFit] < 0.9, 

        Clear[x]; 

        interp = Fit[fractalDimTempMesh, {1, x}, x]; 

        sigX = Apply[Plus, fractalDimTempMesh[[All, 1]]]; 

        sigXSq = Apply[Plus, fractalDimTempMesh[[All, 

1]]^2]; 

        sigY = Apply[Plus, fractalDimTempMesh[[All, 2]]]; 

        sigYSq = Apply[Plus, fractalDimTempMesh[[All, 

2]]^2]; 

        sigXY = Apply[Plus, fractalDimTempMesh[[All, 

1]]*fractalDimTempMesh[[All, 2]]]; 

        noData = Length[fractalDimTempMesh]; 

        goodFit = N[(noData*sigXY - sigX*sigY)/Sqrt[(noData* 

              sigXSq - sigX^2)*(noData*sigYSq - sigY^2)]]; 
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        fractalDimTempMesh = Drop[fractalDimTempMesh, -1]; 

       ]; 

     If[Abs[goodFit] > 0.9, 

        AppendTo[fractalDimTempMesh, 

fractalDimMesh[[Length[fractalDimTempMesh] + 1]]]; 

        errD = noData*sigXSq - sigX^2; 

        calcY = {}; 

       

        For[y = 1, y ≤ Length[fractalDimTempMesh], y++, 

           AppendTo[calcY, Coefficient[interp, x, 0] + 

Coefficient[interp,x, 1]*fractalDimTempMesh[[y, 1]]]; 

          ]; 

       

        sumRes = Apply[Plus,(fractalDimTempMesh[[All,2]] - 

calcY)^2]; 

        sdError = Sqrt[(sumRes/(noData - 2))*noData/errD]; 

        AppendTo[maxScaleMesh, 10^fractalDimTempMesh[[-1, 

1]]]; 

        dvalue = -Coefficient[interp, x]; 

        If[Length[dEvolveMesh] > 0, 

           If[dvalue ≠ dEvolveMesh[[Length[dEvolveMesh], 

2]], 

                AppendTo[dEvolveMesh, {remStress, 

N[dvalue]}]; 

                AppendTo[dErrMesh, sdError]; 

               ];, 

           AppendTo[dEvolveMesh, {remStress, N[dvalue]}]; 

           AppendTo[dErrMesh, sdError]; 

          ]; 

       ]; 

      

  (*increases applied stress by increment value *) 

     If[numFailed == 0, 

        nearFail = Min[Max[stressToughEvolve[[-1]]], 1]; 

        remStress = remStress + 

Ceiling[nearFail/appStep]*appStep; 

        time = time + Ceiling[nearFail/appStep] - 1;, 

        remStress = remStress + appStep; 

       ]; 

     

     For[i = 1, i ≤ n, i++, 

        crackForm[[i, 2]] = remStress; 

       ]; 

      

    ]; 

 

(* calculates b values *) 

magLst = Flatten[magLst]; 

magLstJoin = Flatten[magLstJoin]; 

numEvents = Length[magLst]; 

numEventsJoin = Length[magLstJoin]; 

window = 300; 

overlap = 100; 

bValLst = {}; 

bValLstCut = {}; 

bValLstJoin = {}; 

bValLstJoinCut = {}; 

 

For[i = 1, Length[magLst] ≥ window, i++, 

     currWindow = Take[magLst, {1, window}]; 

     avgMag = Apply[Plus, currWindow]/Length[currWindow]; 

     currB = N[Log[10, E]/avgMag]; 

     currBCut = If[avgMag - Log[10, area] + 4 == 0, Infinity, N[Log[ 

                10, E]/(avgMag - (Log[10, area] + 4))]]; 
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     bValLst = AppendTo[bValLst, currB]; 

     bValLstCut = AppendTo[bValLstCut, currBCut]; 

     magLst = Drop[magLst, window - overlap]; 

    ]; 

 

bValLst = If[Length[ 

      magLst] == 0, bValLst, AppendTo[bValLst, N[Log[ 

        10, E]/(Apply[Plus, magLst]/Length[magLst])]]]; 

bValLstCut = If[Length[magLst] == 0, bValLstCut, AppendTo[bValLstCut, 

N[Log[10, E]/(Apply[Plus, magLst]/Length[magLst] - (Log[10, area] + 

4))]]]; 

 

For[i = 1, Length[magLstJoin] ≥ window, i++, 

     currWindowJoin = Take[magLstJoin, {1, window}]; 

     avgMagJoin = Apply[Plus, currWindowJoin]/Length[currWindowJoin]; 

     currBJoin = N[Log[10, E]/avgMagJoin]; 

     currBCutJoin = If[avgMagJoin - Log[10, area] + 4 == 0, Infinity, 

N[Log[10, E]/(avgMagJoin - (Log[10, area] + 4))]]; 

     bValLstJoin = AppendTo[bValLstJoin, currBJoin]; 

     bValLstJoinCut = AppendTo[bValLstJoinCut, currBCutJoin]; 

     magLstJoin = Drop[magLstJoin, window - overlap]; 

    ]; 

 

bValLstJoin =  

              If[Length[magLstJoin] == 0, bValLstJoin, 

AppendTo[bValLstJoin, N[Log[10, E]/(Apply[Plus, 

magLstJoin]/Length[magLstJoin])]]]; 

bValLstJoinCut = If[Length[magLstJoin] == 0, bValLstJoinCut,  

AppendTo[bValLstJoinCut, N[Log[10, E]/(Apply[Plus, 

magLstJoin]/Length[magLstJoin] - (Log[10, area] + 4))]]]; 

 

For[i = 1, i ≤ Length[newFailedLst], i++, 

     locs = Flatten[Position[newFailedLst[[i]], 0]]; 

     newFailedLst[[i]] = locs; 

    ]; 
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