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ABSTRACT

Elastic scattering spectroscopy (ESS), is a non-invasive and real-time in vivo

optical diagnosis technique sensitive to changes in the physical properties of human

tissue, and thus able to detect early cancer and precancerous changes. This thesis

focuses on the statistical issue on how to eliminate irrelevant variations in the high-

dimensional ESS spectra and extract the most useful information to enable the

classification of tissue as normal or abnormal.

Multivariate statistical methods have been used to tackle the problems, among

which principal component discriminant analysis and partial least squares

discriminant analysis are the most explored throughout the thesis as general tools for

supervised dimension reduction and classification. Customized multivariate methods

are proposed in the specific context of ESS.

When ESS spectra are measured in vivo by a hand-held optical probe, differences

in the angle and pressure of the probe are a major source of variability between the

spectra from replicate measurements. A customized spectral pre-treatment called error

removal by orthogonal subtraction (EROS) is designed to ameliorate the effect of this

variability. This pre-treatment reduces the complexity and increases both the accuracy

and interpretability of the subsequent classification models when applied to early

detection of cancer risk in Barrett’s oesophagus.

For the application of ESS to diagnosis of sentinel lymph node metastases in

breast cancer, an automated ESS scanner was developed to take measurements from a

larger area of tissue to produce ESS images for cancer diagnosis. Problems arise due

to the existence of background area in the image with considerable between-node

variation and no training data available. A partially supervised Bayesian multivariate

finite mixture classification model with a Markov random field spatial prior in a

reduced dimensional space is proposed to recognise the background area

automatically at the same time as distinguishing normal from metastatic tissue.
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CHAPTER 1

INTRODUCTION

This chapter gives an overview of the logical structure of the thesis by introducing the

background to this work, describing the major problems studied, and presenting the

statistical methodologies used and the proposed solutions to the problems.

1.1 Context

This thesis is based on a joint project by National Medical Laser Centre and Statistical

Science Department of UCL to examine the problem of medical diagnosis using high-

dimensional elastic scattering spectroscopic (ESS) data. The aim of the project is to

use elastic scattering spectroscopy to detect pre-cancerous and early cancerous

changes in human tissue, with current application in Barrett’s oesophagus, colon

lesions and sentinel lymph nodes. In ESS a lamp delivers to the tissue light spanning a

broad range of wavelengths. There is evidence that normal and abnormal tissue have

different patterns of scattering and absorbance. It should be possible to use measured

scattering and absorbance spectra to classify an area of tissue as normal or abnormal,

or even to grade the level of abnormality.

Although the ESS measurement is simple to perform, ESS spectra often contain

major sources of variation that are of little or no predictive value for the property of

interest and thus can hinder the recognition of normal or abnormal tissue. The main

statistical issue of this project is how to eliminate the irrelevant variations and extract
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the most useful information from high-dimensional spectroscopic data for

classification and clinical diagnostic purposes. This is a challenging problem.

The overall aims of this research are twofold: a) to find approaches to tackle the

problems in ESS clinical applications described above and contribute to patient care,

and (b) to make some methodological contributions to the area of classification with

high-dimensional data as a whole, in the following areas: spectral pre-treatment,

dimension reduction, classification and discrimination, and image analysis.

1.2 Optical diagnosis and elastic scattering spectroscopy

There is little doubt that detection of early cancer or pre-cancerous change is of

crucial importance for achieving a positive outcome for cancer therapy. The

conventional clinical diagnosis procedure of diagnosing certain types of cancer by

taking biopsies from the patient is time consuming, labour intensive and has a low

detection rate for some high risk cancers. The challenge for clinicians and scientists is

to develop new technologies for detecting patients at high risk of progression to

cancer. Ideally this would be accurate, easy to use, inexpensive, and provide results

rapidly, preferably without the need to remove tissue.

The application of optical technology to problems in clinical diagnosis is a

rapidly growing field. In a diagnostic application, the goal is to learn something about

the physiology or pathology of the tissue through its interaction with light. For

example, the light reflected by tissue after absorption and scattering is characteristic

of its chemical and morphological composition which, in turn, can depend on the

nature and stage of certain diseases such as cancer. Absorption and scattering are two

of the fundamental optical processes that can be exploited for diagnostic information.

This thesis focuses on elastic scattering spectroscopy (ESS), also known as

diffuse reflectance spectroscopy, measured in the visible and near-infrared ranges of

the electromagnetic spectrum, which is a cheap, fast and simple-to-use tool compared

with other spectroscopic techniques. ESS, a novel optical diagnostic technique, is
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sensitive to the changes in the physical properties of tissue such as nuclear size,

density and changes in the nucleus. Since these physical properties change with

dysplasia, this technique could be used as a noninvasive and real-time in vivo test for

early cancer or for precancerous detection. More details about the technical aspects of

elastic scattering spectroscopy and its interaction with human tissues are presented in

Chapter 2.

1.3 Statistical aspects of ESS

1.3.1 Multivariate methods for ESS

From physical and chemical points of view, the ESS spectrum, as a visible and NIR

spectrum from a diffuse measurement, is a mixture of several physical effects (the

strong dependence of reflectance on the scattering properties of the tissue sample,

particularly on the particle size) and chemical effects (absorbances by molecular

bonds) resulting in many overlapping and often broad peaks which are the product of

complex patterns of scattering and absorption by numerous structural and biochemical

components. These spectra are difficult or impossible to interpret using univariate

methods. In most applications of ESS technology the number of variables

(wavelengths) p of the spectral matrix is usually much larger than the number of

observations (samples or subjects) n. A typical study includes variables from 1800

dimensions for only 300 spectra. These variables are collinear since there are high

correlations and near linear relations among them. Investigating the association of

spectral absorption and scattering properties with specific clinical outcomes from such

high-dimensional data is a difficult and challenging task.

This thesis focuses on the analysis of ESS spectra, applying dimension reduction

techniques as well as supervised and partially supervised classification. Most of the

topics of multivariate statistics relevant to this thesis, regarding spectral pretreatment,

dimension reduction, classification and discrimination, feature extraction, wavelength

selection, etc., are reviewed in Chapter 3.
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Among all these multivariate techniques, principal component discriminant

analysis (PCDA) and partial least squares discriminant analysis (PLSDA) are the most

explored as tools for dimension reduction and supervised classification. Both methods

project the high-dimensional spectral variables onto a low-dimensional space spanned

by components constructed as linear combinations of the original variables. The linear

coefficients (loadings) are potentially interpretable for the intensity contribution to the

classification at each wavelength. Both methods are described in Chapter 3 and are

exploited in Chapter 4 with applications to detection of cancer or pre-cancerous

change in Barrett’s esophagus and colon lesions.

1.3.2 Spectral pretreatments for ESS

When ESS spectra are used for quantitative or qualitative analysis, data pre-treatment

can be an important step in the construction of an effective regression or classification

model.

When ESS spectra are measured in vivo by an optical probe in physical contact

with human tissue, although the taking of each measurement is very simple to perform,

ESS spectral acquisition under accurate control is very difficult in the clinical setting,

even for experienced endoscopists. Therefore ESS spectra often contain major sources

of variations caused by small changes in the angle and pressure of the probe used to

acquire the spectra. These factors cause considerable measurement variability between

replicated spectra taken at the same site, and can hinder the development of a

diagnostic model for cancer risk. A customised pretreatment called error removal by

orthogonal subtraction (EROS) is proposed in Chapter 4 to model the measurement

variability and ameliorate the effects of it on the spectra as a pre-treatment step. Two

applications of this method to the clinical diagnosis of colon lesions and high grade

dysplasia or cancer in Barrett’s oesophagus are presented in Chapter 4. For the

purpose of model interpretation, an experiment was designed to find how pressure and

angle of the probe influence the variations in measured spectral data collected under

controlled conditions and to explain the measurement variability removed by EROS.
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1.3.3 ESS images

For the application of ESS to the diagnosis of sentinel lymph node metastases in

breast cancer, an automated two-dimensional ESS scanning device was developed to

take measurements from the entire cut surface of the excised nodes. Instead of

determining whether an individual point of tissue is abnormal or not, the ESS scanner

examines a larger area of tissue by taking measurements at 400 points (pixels) in a

2020 grid, and has the ability to produce diagnostic images to assess the cancer risk.

Although using the ESS scanner avoids experimental variation caused by angle or

pressure of a hand-held probe and produces much more information, additional

problems arise in the analysis and interpretation of the ESS scanning data. There is no

reference pathology available for individual pixels in the image, which causes

problems in deriving an algorithm to classify pixels. We do have manual

measurements on other nodes taken at an earlier stage of this research, where we do

have reference pathology for spectra from normal and metastatic tissue. The obvious

approach is to use the manual measurement data to train a classification algorithm for

use with the scanning data, though it is possible that the manually measured points are

not completely representative of the data obtained in the scans. A further difficulty

comes from the existence of a third group in the scanning data, which is a non-nodal

group from a background area, possibly contaminated by blood or lipid. No training

data are available for this non-nodal group and these background areas are very

variable from node to node.

One opportunity also arises in the ESS scanning data analysis. The scanner

generates a spectral image, and it should therefore be possible to use smoothness

assumptions to improve the classification of individual pixels.

In Chapter 5, two different options for dimension reduction (for both manual and

scanning data) are explored before constructing a classification model. One uses PCA

on individual nodes, the other includes a common dimension, the canonical variable

from a linear discriminant analysis on the manual data. A partially supervised image
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classification algorithm employing a Bayesian multivariate finite mixture model is

then developed on the low-dimensional data to model three unknown groups (normal,

metastatic and non-nodal) in the images from scanned measurements. Prior

distributions for the parameters of the normal and metastatic groups are derived from

the manually measured data.

In Chapter 6 we take into consideration the spatial correlation between adjacent

pixels of image and a Markov random field (MRF) spatial prior is then incorporated

into the model proposed in Chapter 5 in order to represent the continuity of the image.

An implementation of the whole model system for a rapid intraoperative sentinel

lymph node diagnosis is presented and discussed in Chapter 7.
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CHAPTER 2

ELASTIC SCATTERING SPECTROSCOPY

This chapter gives a brief description of the basics of elastic scattering spectroscopy

(ESS). It describes the light absorption and scattering properties of materials and in

particular biological tissues, and the practical aspects of ESS. In the applications

studied in this thesis, ESS is employed as an in vivo point measurement and an ex vivo

imaging system for detection of early cancer and pre-cancerous changes in human

tissues. The background provided in this chapter can be used for further physical

understanding and interpretation of spectral features in the rest of the thesis.

2.1 Visible and NIR radiation

The discovery of invisible radiation was made by Herschel in 1800 when he observed

that the relative heating effect of different portions of the spectrum of sunlight

generated by a prism continued to increase when he placed a thermometer beyond the

red end of the visible spectrum. The existence of near infrared (NIR) energy was

proved by this classic experiment and subsequent discoveries led to the idea of the

continuous electromagnetic spectrum. The NIR region spanning from 780 to 2500nm

(nanometers) has become divided into two sub-regions mainly due to instrumental

considerations: 780~1100nm and 1100~2500nm. The second region has been widely

used in a variety of applications. However, there is increasing interest in the first

subregion which is sometimes called the Herschel region in honour of its discover.
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The spectra in this thesis range from 300 to 920 nm covering some of the ultraviolet

(UV), the visible (Vis) and some of the near infrared (NIR) regions, the positions of

which in the electromagnetic spectrum are shown in Figure 2.1. Among these regions,

only a narrow band from about 400 to 750nm is visible to the human eye. The NIR

region of the electromagnetic spectrum was little used in spectroscopy until the late

1950’s when visible region spectrometers extended their range into the NIR region.

Figure 2. 1: Electromagnetic spectrum. (1meter = 910 nanometer)

2.2 Elastic scattering of light and its interaction with

tissue

2.2.1 Mie theory and elastic scattering

Scattering is the process by which small particles suspended in a medium of a

different refractive index diffuse incident radiation in all directions.

Mie theory is a mathematical theory of the scattering of electromagnetic radiation

by homogeneous spherical particles, developed by Gustav Mie in 1908. Mie theory

applies to scattering by particles of a size comparable to the wavelength of the light

being scattered. A particle, for the purposes of elastic scattering, can be defined as an

aggregation of material that has a different refractive index to its surroundings. This is

the appropriate theory for the scattering of light by the organelles of living cells. The
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shorter the wavelength of light, the greater the degree of scatter. For example blue

light is scattered more than red by particles in the earth’s stratosphere. Therefore, red

light (especially when the sun is low in the sky) is seen to be coming directly from the

sun, whereas blue light is scattered in all directions and make the whole sky blue on a

sunny day.

In biomedical optics, scattering of photons is an important event and potentially

has diagnostic value. The light scattered by a tissue has interacted with its

ultrastructure which encompasses membranes and collagen fibers through to nuclei

and cellular components.

Elastic scattering spectroscopy is a measure of both the elastic scattering of light

via Mie theory and the absorptive components of tissue. In elastic scattering, there is

no energy transfer and no change in the wavelength of the light; there is only a change

in the spatial distribution of the radiation. The total intensity of the scattered light

remains comparable to that of the incident light, reduced only by light that has been

absorbed. In contrast, with the various forms of inelastic scattering, such as

fluorescence and Raman spectroscopy (Bigio and Mourant 1997), light is absorbed at

the incident wavelength and re-emitted at a different wavelength. Thus, the use of

elastic rather than inelastic scattering allows for a large optical signal, approximately

100 times stronger than fluorescence and 1000 probably more like 10,000 times

greater than Raman scattering.

The beauty of elastic scattering is its simplicity compared with other optical

spectroscopic techniques. A pulse of white light is shone into the tissue, and this light

is scattered by the tissue components (see Figure 2.2). The elastic scatter signal that is

detected is due to light that has entered the tissue, been scattered one or more times,

and exited nearby on the same side of the tissue. The degree of light scatter at each

wavelength is dependent on the size of cellular organelles and the density of cellular

packing. Only light that has undergone a 180o turn due to multiple scattering events is

detected by the detection fiber.

Elastic scattering spectroscopy uses a white light source, so spectral analysis of
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the light scattered back from tissue can include all wavelengths from the blue to the

near infrared part of the spectrum. This gives a great deal of information about the

tissue up to about 1 mm from where the probe is touching the surface of the tissue

being interrogated. Elastic scattering spectroscopy (ESS) (Lovat and Bown 2004) is

also known as diffuse reflectance spectroscopy (Georgakoudi et al. 2001). For

simplicity these phenomena will be referred to collectively as ESS from now on.

Figure 2.2: Schematic representation of elastic scattering spectroscopy probe. (Lovat and

Bown 2004)

2.2.2 ESS instrumentation system and operations in practice

The ESS system used to make the measurements studied in this thesis consists of

a pulsed xenon arc lamp, an optical probe, a spectrometer, and a computer to control

various components and record the spectra (Figure 2.3). The arc lamp, spectrometer

and their power supply are mounted in a briefcase size unit which is portable and can

be easily connected to a laptop computer (Figure 2.4).

Tissue

Fiber Probe

Xenon

Lamp
Spectrometer
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Figure 2.3: Schematic diagram of elastic scattering spectroscopy (ESS) system.

Figure 2.4: Picture of the ESS System.

In operation, short pulses of white light (320-920 nm) from the xenon arc lamp

are directed through a flexible optical fibre (400m diameter) which is gently placed

in contact with the tissue under examination. For safety reasons ultraviolet B & C

(100-315nm) light is filtered out to avoid the risk to patients. A collection fibre

(200m diameter) collects the light back-scattered from the upper layers of the tissue.

These two fibres are encased in an outer sheath (outer diameter 2.0mm) and the fibres

are separated by a distance of 50m with a fixed centre-centre separation distance of

350 m (Figure 2.5). This makes it convenient to place the optic fibre down the

biopsy channel of a standard endoscope if the technique is to be used during
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endoscopy. It has been shown that the smaller the optical fibre separation the greater

the sensitivity of ESS to the size of scatterers in the tissue (Mourant et al. 1997). The

light is propagated into the spectrometer by the collection optical fibre and the output

spectrum of light is recorded in a laptop computer for further analysis. In total each

reading (collection and recording of a single spectrum) takes less than 200

milliseconds to perform. The fibre can be cleaned with the endoscope.

Before any tissue spectra are taken, a white reference spectrum is recorded from

the flat surface of a Spectralon standard, whose elastic scattering is spectrally flat

between 250 and 1000nm, allowing the system to account for spectral variations in

the light source, spectrometer, fibre transmission, and fibre coupling. Each tissue

spectrum is divided by this standard reference to give the system-independent

spectrum of the site being investigated prior to any statistical processing.

Figure 2.5: Picture of optical fibre (400-200m) with calibration pot and schematic cross-

section.

Immediately prior to (100 milliseconds before) any spectral measurement

(Spectralon or tissue), the automated system records a “dark” spectrum (without

triggering the lamp), which is subtracted from the spectrum (with lamp) that follows.

Thus, the tissue spectrum that is stored and displayed is determined by the expression

refref

tissuetissue

DS

DS




,
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where ref indicates a measurement with the Spectralon reference material, S indicates

a spectrum recorded with the lamp triggered and D indicates a dark recording without

the lamp. In this manner, the site-specific ambient light at the moment of

measurement and detector dark current are accounted for.

What the reference measurement cannot correct for are changes in the angle and

pressure of the probe in contact with the tissue. This problem will be discussed and

solved from statistical point of view in Chapter 4.

2.2.3 Light interaction with tissue

In ESS light interaction with tissue involves scattering and absorption. Incident light

is delivered to the tissue surface, part of which is absorbed in the tissue, whereas the

non-absorbed part is subject to multiple elastic scattering and eventually emerges

from the surface as diffuse reflectance carrying quantitative information about tissue

structure and composition. A certain fraction of this emerging light is collected by the

probe, whereas the remaining part escapes undetected. The amount of the light

collected depends on the optical properties of scattering and absorption coefficients,

as well as on the probe radius.

The absorption coefficient is directly related to the concentration of

physiologically relevant absorbers in the tissue, which include oxygenated and

deoxygenated haemoglobin. The scattering coefficient reflects information on the size

and density of scattering centers in tissue, such as cells and nuclei, which is a very

important factor that changes when cells become malignant (Webb and Jones 2004).

At wavelengths shorter than 600nm (in the UV and visible region) light is

strongly attenuated in tissue due to absorption and therefore fails to penetrate more

than approximately 1mm of tissue. However in the 600~800 nm range (in the NIR

region) the absorption of light is significantly lower and scattering plays a key role in

the spectral features. Below 370nm the xenon arc lamp has a low light output, causing

very low signal to noise ratio of the spectra, thus only the window between 370 and

890 nm is explored in the ESS analysis here.
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2.2.3.1 ESS and light absorption in tissues

Light from 350nm-450nm (in the UV region) has been shown to be mainly absorbed

by haemoglobin. This absorption feature, which dominates the spectrum of light at

these wavelengths, has been called the Soret band, with peak absorption at 414nm.

In the visible spectrum region (450nm-700nm) oxy- and deoxyhaemoglobin have

been described as the biggest absorbers of light in biological tissue. This absorption

occurs between 500-630nm with the peak for oxyhaemoglobin (HbO) and

deoxyhaemoglobin (Hb) at 542nm, and a second peak for oxyhaemoglobin at 577nm.

These absorption features have been termed the Q Bands of haemoglobin. Again, up

to 630nm, haemoglobin has a smaller but significant effect on the ESS spectra. The

relative absorption strengths of these chromophores and other principal tissue

chromophores have been compiled in Figure 2.6. In the near infrared region, when

wavelength is above 900nm, the absorption by water is the strongest contributor to

tissue absorption with an increase in its absorption exceeding haemoglobin above

930nm with a small peak at 976nm (VandenBerg and Spekreijse 1997) as shown in

Figure 2.6. Realistically, the ESS system is limited to a maximum wavelength of

1100nm because of very intense water absorption above this wavelength.

Figure 2.6: Compilation of absorption spectra of principle chromophores in tissue. (Hale and

Querry 1973, VandenBerg and Spekreijse 1997, Zijlistra et al. 2000)
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An example ESS spectrum measured in vivo using our ESS system from a patient

with Barrett’s esophagus is given in Figure 2.7. It shows that haemoglobin has a

marked effect on the ESS spectrum with strong presence of the Soret band and Q

bands of oxy- and deoxyhaemoglobin. The strong absorption of haemoglobin in the

visible wavelengths of blue and green light is the reason that blood appears as a vivid

red colour. More interpretations on absorption are addressed in Chapter 4 and 5 with

applications to Barrett’s oesophagus and sentinel lymph node for diagnostic purposes.
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Figure 2.7: An example ESS Spectrum with the Soret and Q bands marked.

2.2.3.2 ESS and light scattering in tissues

One of the principal cellular scatterers for ESS is the nucleus. Several properties of

the nucleus are known to change the pattern of elastic scattering. The first and

potentially simplest to measure is nuclear size which particularly affects high angle

scattering (Mourant et al. 2000). Secondly, nuclear density has also been shown to

change the ESS spectra (Zonios et al. 1999) and nuclear chromatin content has been

shown to affect the spectra of scattered light (Backman et al. 2000, Mourant et al.

2000). Finally, the nucleus:cytoplasmic ratio, along with other intracellular changes,

has been shown to have a significant effect on scattering in Monte Carlo modeling

(Drezek et al. 1999).
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Increased noise of
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Another group of principle scatterers in cells, the mitochondria, and the cellular

packing density have also been shown to change the elastic scattering of light in ESS

(Mourant et al. 2000, Wallace et al. 2000).

2.3 ESS and early-cancerous and pre-cancerous changes

in tissue

As described above ESS is sensitive to the changes in the physical properties of

biological tissue. Some clinical pilot studies show that these physical properties do

change with premalignant or malignant conditions, which suggests that ESS can be

used as an non-invasive and real-time in vivo test to detect early cancer or

precancerous change in human tissues.
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Figure 2.8: Representative spectra from patients with Barrett’s oesophagus.

In diagnosing high grade dysplasia (HGD) in Barrett’s oesophagus (BE) (which is

the current most robust predictor of future cancer risk in patients with BE and is

described in Chapter 4), nuclear size has been shown to change by up to 50% in HGD

compared to low grade dysplasia (LGD) nuclei (Polkowski et al. 1998). Cellular

packing and nucleus:cytoplasmic ratio are also used as criteria by histologists for the

definition of HGD. Representative spectra from BE data are shown in Figure 2.8. The
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absolute values in the ultraviolet (reflecting haemoglobin absorption peaks) and the

relative gradient (reflecting some scattering effect) in the red and near-infra-red parts

of the spectrum discriminate between nondysplastic and HGD Barrett’s mucosa.

Histological findings are correlated with the spectral patterns. A comprehensive study

on diagnosis of HGD in BE using ESS is explored in Chapter 4.

2.4 ESS as a point or imaging measurement for cancer

detection

With the advantages of being cheap, simple-to-use, robust, with minimal and

uncomplicated calibration, and fast in measurement acquisition, ESS is currently

usable in the endoscopy room. For any optical diagnostic test used endoscopically,

one of the important issues is whether this technique looks at a single point of tissue

(an “optical biopsy”) or whether it can survey the whole lining of the gastrointestinal

tract, as an endoscope does. ESS, in its present form, is only a point measurement as

an in vivo optical biopsy technique, but preliminary work shows that it may be

possible to develop this concept to a field imaging detection technique. Although

simple in principle, this requires the capability to image at many wavelengths

simultaneously (or rapidly in succession) over a fairly wide spectral range and to do

this fast enough and at low enough cost to be clinically acceptable. If this proves

possible in practice, the technique may become an invaluable tool to endoscopists.

In this thesis, ESS is first employed as an in vivo manual point measurement in

Chapter 4 for clinical diagnosis in Barrett’s esophagus. ESS is then studied as an ex

vivo imaging system using an ESS scanner in Chapters 5-7 for sentinel lymph node

metastases diagnosis in breast cancer. Although the ESS scanner still uses point

measurement technology in a somewhat crude fashion, the imaging analysis method

developed for that may become a very useful statistical software solution for later use

for ESS in vivo field detection device technology.
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CHAPTER 3

MULTIVARIATE METHODS FOR ESS

This chapter gives a review of the multivariate statistical methods used in this thesis

for ESS spectral data analysis. The methods of smoothing, scattering correction and

normalization are applied in Chapter 4 and Chapter 7 as standard tools for spectral

pretreatments. The methods of principal component discriminant analysis and partial

least squares discriminant analysis are used in Chapter 4 as general tools for

supervised dimension reduction and classification, and also provide a basis for the

partially supervised dimension reduction method developed in Chapters 5, 6 and 7.

The methods of data validation and assessment are applied throughout the thesis as

criteria for choosing models and assessing classification performance. This chapter is

intended not only to provide background knowledge for the following chapters, but

also to give a self-contained if brief overview of these interesting fields of research.

3.1 Need for multivariate methods for ESS

As described in Chapter 2, elastic scattering spectroscopy (ESS) measures a mixture

of several physical and chemical effects. These effects result in spectra with many

overlapping and often broad peaks which are the product of complex patterns of

scattering and absorption by numerous structural and biochemical components. It is

difficult or impossible to interpret these spectra using univariate methods. Use of

multivariate methods is therefore necessary to reveal specific and useful information
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from ESS spectra. Investigating the association of spectral absorption and scattering

properties with specific clinical outcomes from such high-dimensional data for

qualitative and quantitative assessment of human tissue is a difficult and challenging

task.

3.2 Spectral pre-treatment

Spectral pre-treatment is an essential step for success before constructing an effective

regression or classification model. This is especially true in biomedical studies where

the material, e.g. human tissue, under study with very complex structures often gives

spectra containing much variability that is of little or no predictive value for the

property of interest. This section reviews some widely used spectral pre-treatment

methods, with a focus on scattering correction and smoothing, aimed at removing

noise and other non-useful spectral variation.

3.2.1 Scatter corrections

Diffuse reflectance spectra typically show the sort of variability seen in Figure 3.1

(top panel). There are small differences in shape between the spectra and large

differences in level and slope. In most applications the latter variations carry little

useful information, and a range of so-called scatter corrections have been designed to

remove them. Of course there is always the risk of removing signal rather than noise,

but even in this application, where the general level of scattering may be informative,

their use appears to be beneficial.

3.2.1.1 Multiplicative scatter correction (MSC)

The multiplicative scatter correction (MSC) method (Geladi et al. 1985) corrects

differences between samples due to multiplicative and additive effect of light scatter

by fitting a linear regression to the relationship between the spectrum of interest and

an average spectrum. For different samples different regression lines are interpreted as
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differences due to scatter effects while the deviations from the regression lines are

interpreted as the chemical information in the spectra. The MSC model for each

individual spectrum is

iiii xbax  (3.1)

where ix is the 1p spectral vector of sample i, the scalars ia and ib represent the

additive effect and multiplicative effect for sample i, x , 1p , is the mean of the set

of spectra, and the error vector, i , corresponds to all spectral effects in the sample i

that cannot be modeled by an additive and multiplicative constant.

By using MSC transform, the corrected spectral vector *
ix of sample i is

expressed as below:

iii
*
i b̂/)âx(x  (3.2)

where iâ , ib̂ are estimated by least squares, and most of the dominating additive and

multiplicative effects have been eliminated.

3.2.1.2 Standard normal variate (SNV)

The standard normal variate (SNV) method, described by Barnes et al. (1989), is a

mathematical transformation method of the spectra used to put spectra on a common

scale. Each spectrum is corrected individually by first centring the spectral values (i.e.

subtracting the mean intensity value of the whole spectrum from intensity value at

each wavelength) and then scaling the centred spectra by dividing by the standard

deviation calculated from the individual spectral values. The transformed value is

iii
*
i s/)mx(x  (3.3)

where ix is the p-dimensional spectral vector of sample i, im is the mean of the p

spectral measurements for sample i and is is the standard deviation of the same p

measurements. The effect of the SNV transform is that, on the vertical scale, each

spectrum is centered on zero and varies roughly from -2 to +2.
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Figure 3.1: Top: the colon spectra before scatter correction; middle: the colon spectra after

SNV transform; bottom: the colon spectra after MSC transform.
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To compare the effects of these different scatter correction methods, some typical

spectra are selected from the colon data that will be described later in Chapter 4. As

presented in Figure 3.1 (top), the blue and green spectra are from two different sites of

hyperplastic polyps; the red and orange spectra are from adenomatous polyps. The

corresponding effects of SNV transform and MSC transform are illustrated in Figure

3.1 (middle and bottom). As can be seen SNV has an effect very much like that of

MSC apart from the different scaling. Most of the variation among the spectra is

eliminated after transform, i.e. the dominating additive and multiplicative effects have

been removed. The main practical difference is that SNV standardizes each spectrum

using only the data from that spectrum while MSC uses the mean of a set of spectra.

As already noted, there is a risk in using such pre-treatments that we will remove

useful information. However, inspection of spectra shows that they contain

considerable variability of the sort removed by these pre-treatments, and that this

variability appears to be unrelated to the diagnosis of the tissue. For the reasons of

normalizing the scale, throughout the thesis we use SNV as a spectral normalization

step.

3.2.2 Derivatives

Spectral derivatives are widely used to remove variable baselines and slopes from

spectra. The first derivative spectrum is the slope at each point of the original

spectrum. It has peaks where the original has maximum slope, and crosses zero at

peaks in the original. The second derivative is the slope of the first derivative. It is

more similar to the original in some ways, having peaks in roughly the same places,

although they are inverted in direction. It is a measure of the curvature in the original

spectrum at each point. Taking the first derivative removes an additive baseline. The

spectra parallel to each other but shifted upwards or downwards would have the same

first derivative spectrum since the slope would be the same everywhere. Taking a

second derivative removes a linear baseline.

As the measured spectrum is not a continuous mathematical curve, but a series of
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measurements at equally spaced discrete points, the obvious way to calculate

derivatives with such data would be to use differences between the values at adjacent

points. In practice it is almost always necessary to incorporate some smoothing (for

instance, Savitzky Golay smoothing described below) into the derivative calculation.

3.2.3 Smoothing

Savitzky Golay smoothing, described by Savitzky and Golay (1964), essentially

performs a local polynomial regression of degree k on at least k+1 equally spaced

points to determine the smoothed value for each point. It is also used to compute

smoothed first and second derivatives.

A narrow window (say 7 to 20 points) is taken centred at the wavelength of

interest and a low-order polynomial is fitted to the data points in the window using

least squares. The choice of window size (or fitted length) involves a trade-off

between noise reduction or smoothing (for which we want as wide a window as

possible) and distortion of the curve (which will happen if the window is too wide).

The effect of using too wide a window is to round off the peaks and troughs. One way

to find a suitable width is to start with three points and increase the window width

until the smoothed (fitted) spectra are not visibly noisy. The smoothed value or

derivative is then computed from the polynomial.

The Savitzky-Golay approach is preferable to the use of simple moving averages,

tending to preserve features of the spectra such as relative maxima, minima and width.

If the two methods are compared on artificial examples it is clear that Savitzky-Golay

gives a less distorted estimate of the original spectra.

3.3 Dimension reduction

Dimension reduction plays a key role in constructing a multivariate

classification/dicrimination model by reducing a large number of spectroscopic

variables, say 1800, to, a small number of variables, say 10, with little or no loss of
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information. Using linear discriminant analysis (LDA), p+1 samples can be classified

by p variables perfectly into two groups. However, for ESS spectra the number of

variables (wavelengths) of the spectral matrix X often exceeds the number of samples.

Directly applying LDA to the spectral data causes an exact collinearity problem. Even

if the number of samples exceeds the number of variables there is still a serious

problem: the same or similar spectral information may be reflected at different

wavelengths, which means some of the variables can be written approximately as

linear functions of other variables. All these lead to exact and near collinearity among

the variables in the matrix X and LDA runs into the same problem as multiple

regression in this situation. Directly employing the unreduced spectral data in LDA

allows too much scope for discrimination to be achieved by chance, in directions that

mainly represent noise. Overfitting thus happens easily and prediction performance

may be unstable and poor.

Two kinds of approaches of solving the collinearity problem are commonly used

to reduce the dimensions of the spectral data. They are the methods using regression

or classification for a few selected variables, and the methods constructing new

components and factors by a few linear combinations of the original variables in the

matrix X. Throughout the thesis the latter kind of dimension reduction methods is

most explored for tackling the collinear problem in high-dimensional spectral data.

The former kind of dimension reduction method by wavelength selection is mentioned

with an example in Section 4.8.4 of Chapter 4.

3.3.1 Principal component analysis (PCA)

Principal component analysis (PCA) is the most common dimension reduction

technique. From a large number of variables measured on a given set of samples, it

extracts a small to moderate number of new variables which account for most of the

variability between samples. The new variables, called principal components, are

linear combinations of all the original spectral measurements and are uncorrelated to

each other. The first principal component captures as much as possible of the
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variability in all the original ones, and each successive principal component accounts

for as much of the remaining variability as possible. A very large of proportion of the

variability in high-dimensional data may often be described with a modest number, a,

of these new variables. Mathematically, PCA relies on an eigenvector decomposition

of the covariance matrix of the original data matrix. The eigenvectors then become

the weight vectors for construction of the new variables, and the corresponding

eigenvalues tell how much of the original variance has been captured in each new

variable. The decomposition of spectral matrix X by PCA can be written as

X
T ÊP̂T̂X  (3.5)

where T̂ is score matrix whose columns are the a most dominating principal

component scores of X, P̂ is the corresponding matrix of loadings and residual matrix

XÊ is the unexplained part of X . P̂ is an orthogonal matrix whose columns are the

unit length eigenvectors of the matrix XX T , ordered according to the magnitude

(value) of the corresponding eigenvalues. The scores matrix T̂ can easily be found by

P̂XT̂  . More details on PCA can be found in Mardia et al. (1979).

PCA often works well in spectral analysis. However there is no guarantee that the

scores with large variance are necessarily the best new variables for classification. In

ESS spectroscopy it might well be that the large variation is due to scatter that reflects

measurement artefacts rather than the variation of variable of interest. Large variation

due to measurement variability may lead to principal component scores that are poor

classifiers. This is studied in Chapter 4 with applications to early cancer and

precancerous detection in Barrett’s esophagus and colon lesions.

3.3.2 Partial least squares (PLS)

Partial least squares (PLS) (Martens and Næs 1998) is a dimension reduction

technique that seeks to find a small to modest number of latent variables that

maximize the covariance between these new spectral variables and the response

variable y. Each latent variable is obtained by maximizing the covariance between y
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and all possible linear functions of X , which leads to variables more directly related

to variability in y than the principal components.

PLS decomposes X and y into the form

X
T EPTX ˆˆˆ  (3.6)

YEqTy ˆˆˆ  (3.7)

where T̂ is a matrix of the extracted a score vectors, P̂ is a loading matrix, q̂ is a

loading vector, and XÊ and YÊ are residual matrices. The direction of the first PLS

component denoted by 1ŵ (with unit length and called the first loading weight vector)

is obtained by maximizing the covariance criterion. The scores along this axis are

computed as 11 ŵXt̂  . By regressing X on 1t̂ and y on 1t̂ the loading vector 1p̂ and

the regression coefficient 1q̂ can be obtained. The product of 1t̂ and 1p̂ is then

subtracted from X , and 11q̂t̂ is subtracted from y. The second direction is found in the

same way as the first, but using the residuals Tp̂t̂X 11 instead of the original data X .

The process is continued in the same way until the desired number of components, a,

has been extracted.

The Equations (3.6)-(3.7) are sometimes called bilinear since they are linear in

both loadings and scores. The estimated parameters in both (3.6) and (3.7) can be

combined into the regression vector to be used in the PLS prediction equation

b̂Xb̂ŷ  0 (3.8)

where the intercept 0b̂ becomes equal to y when using mean-centred X variables, b̂

represents the regression coefficient vector, which is given by

q̂)ŴP̂(Ŵb̂ T 1 (3.9)

where the Ŵ is the matrix of loading weights.

Using factors (PLS components) determined by employing both X and y in the

estimation directly, PLS avoids the dilemma in PCA of deciding which components to

later use in regression or classification.
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3.4 Multivariate classification

As described in Section 2.4, ESS is sensitive to the changes in the physical properties

of tissue such as scatter that reflects nuclear size, density and changes in the nucleus

and to the chemistry of hemoglobin. Since these properties change with dysplasia, and

there is evidence that normal and abnormal tissue show different spectral patterns of

scattering and absorbance, reference pathologies (for normal or abnormal tissues) are

found to correlate with the spectra. Appropriate multivariate analysis enables ESS to

be a useful tool for early cancer or precancerous detection, by investigating the

association of spectral absorption and scattering properties with specific clinical

outcomes. Qualitative classification is explored in this thesis since the quantity

(reference pathology) to be predicted is not a continuous measurement value, but a

categorical group variable. The problem studied in this thesis is to assign samples to

classes or groups on the basis of spectral measurements taken on the samples. It

means deciding whether a particular sample tissue is normal or abnormal using a

spectral measurement. Two different types of classification are addressed in this

chapter: supervised and unsupervised classification. Supervised classification is

applied in Chapter 4 for clinical diagnosis of cancer or pre-cancerous change in

Barrett’s esophagus and colon lesions. A partially supervised method developed from

both supervised and unsupervised classification models is introduced in Chapter 5-6

and are exploited in Chapter 7 with an application to sentinel lymph node diagnosis.

General knowledge on multivariate classification can be found in textbooks by Næs,

Isaksson, Fearn and Davies (2002), McLachlan (1992), Ripley (1996) and Mardia et

al. (1979).

3.4.1 Supervised classification/ Discrimination

Supervised classification, also known under the name of discriminant analysis or

supervised pattern recognition, is a class of methods primarily used to learn

classification rules from training data belonging to known groups. These rules are
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later used on test data to assign new and unknown samples to the most probable

groups.

3.4.1.1 Linear discriminant analysis (LDA)

The classical method of linear discriminant analysis (LDA), described by Fisher for

two classes and extended to more by Rao, is called Fisher’s linear discriminant

analysis or canonical variate analysis (CVA). It seeks a linear combination aX ˆ of the

spectral variables which maximizes the ratio of between-group variance to within-

group variance, which is equivalent to finding a direction defined by the vector â in

multivariate space, that maximises the quantity

aWaaBa TT ˆˆ/ˆˆ (3.10)

where W is the within-group sum of squares and products (SSP) matrix, and B is the

between-group SSP matrix, defined by
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where jX is the pn  spectral matrix for samples from group j, jx is the average

spectrum for samples from group j, x is the average spectrum for the whole dataset,

jN is the sample size of group j ( 



G

j

jNN
1

), and 1 is an 1n vector of 1’s. The W

and B matrices are proportional to the within-group and between-group variance

matrices, the proportionality constant having no effect on the solution of Equation

(3.10).

The definition of B in Equation (3.12) weights the groups by their size jN in the

training set. An alternative is to weight the samples in group j by jN , where j is a

prior probability of group j, in forming B, W and x .

The vector a can be found as the eigenvector of BW 1 which corresponds to the

largest eigenvalue, called the first canonical variate (CV). When there are more than
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two groups, we need more than one discriminant axis (canonical variate) to

discriminate between them. In the general case, to discriminate between G groups, we

normally need G-1 canonical variates which correspond to the successive

eigenvectors of BW 1 .

The value of the new variable, the canonical variate, aXz ˆ can then be

calculated and used for assigning samples to groups. A cutoff point is needed by the

discriminant rule. The obvious choice is the value of z midway between the two mean

z values for the two groups case. Other choices of cutoff can be set to favour either

higher specificity or higher sensitivity in some specific clinical diagnosis situations, as

is the case in the application of Barrett’s data and colon data in Chapter 4.

An alternative approach to develop a discriminant rule is by use of Bayes’ rule.

Based on the normal distribution assumption with identical covariance matrices of the

two (or more) groups, the Bayes’ rule derived from the posterior probability of the

groups is to allocate a new sample with measured vector x to the group j with the

smallest value of

jj
T

jj xxxxxjpL log2)(ˆ)()|(log2 1   (3.13)

where jx is the sample mean vector for group j, j is the prior probability for group j,

and ̂ is the pooled within-groups sample covariance matrix. The first term on the

right of Equation (3.13) is known as the Mahalanobis distance from x to the group

mean. It can be seen that the difference kj LL  (for groups j and k) can be reduced to

a linear function of x, that is, in the two groups case the allocation rule is indicated by

a straight line separating the two groups, which gives the name LDA.

When the covariance matrices j̂ are different for different groups, Bayes’ rule is

to allocate a new sample x to the group for which

jjjj
T

jj xxxxxjpL log2ˆlog)(ˆ)()|(log2 1   (3.14)

is the smallest. This is called quadratic discriminant analysis (QDA), because we now

have a quadratic function of x for the difference kj LL  . Thus curved lines in the

multivariate space are used to separate the groups of samples.
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It can be shown that using LDA based on Bayes’ rule by jL in (3.13) to assign to

groups is equivalent (when the prior probabilities are equal) to using the canonical

variable z with a cutoff midway between the scores of the two group means when they

are projected onto the CV. Thus LDA based on Bayes’ rule gives another derivation of

what is the same way of assigning to groups as Fisher’s LDA. Using the pooled

covariance matrix, LDA often gives robust and reliable, though not always optimal,

classification results, even for training data sets with moderate sample size and

covariance matrices that may not be equal. In this thesis the discriminant analyses are

based on Fisher’s LDA which is available in R.

3.4.1.2 Principal component discriminant analysis (PCDA)

Principal component discriminant analysis (PCDA) is used for classification on the

spectroscopic data with large numbers of variables. This involves a PCA on the

spectral data as a data reduction step followed by a LDA as a classification step

(McLachlan 1992). Using PCA the variance in the original high-dimensional spectral

variables can be effectively captured in 10 or 20 PCs with little or no loss of

information. Using the scores on these 10 or 20 PCs as the raw data for input to a

discriminant analysis, we find canonical variates to display the data and use

discriminant functions to assign new samples. PCA projects the raw data onto a low

dimensional space composed of 10-20 principal components capturing a mixture of

between- and within-group variance. The data separation along individual PCs might

be very poor unless this combined variation is dominated by the variation between

groups. LDA projects the data onto the axis of canonical variate, along which the

separation reaches its optimum by maximizing the ratio of between-group to within-

group variance.

The PC scores are linear combinations of the original spectral variables via the

loading matrix P̂ , and the canonical variate scores are, in turn, linear combinations of

the PC scores defined by the vector â in Equation (3.10), so that by combining the

loadings from the two steps we can find the effective loading, aP ˆˆ , called the LDA
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loading here, of each of the original spectral variables in constructing a canonical

variable.

3.4.1.3 Partial least squares discriminant analysis (PLSDA)

An alternative approach is partial least squares discriminant analysis (PLSDA)

(Barker and Rayens 2003). This involves a PLS regression on the spectral data using

as y a dummy variable, typically coded as 0/1 in the two-group case. This

preliminary data reduction step is followed by LDA, taking the scores on the PLS

factors as input to the LDA.

In the same way as for the PCDA loading, combining the loadings from the PLS

regression and LDA gives the PLSDA loading of the original variables in constructing

a canonical variate. Both PLSDA and PCDA loadings show the contribution of each

wavelength to the classification and may enable the interpretation of the canonical

variate.

Though PCDA is better understood than PLSDA, PLSDA sometimes appears to

do a better job than PCDA (though the difference is not usually large), giving

comparable prediction results but using fewer optimal number of components in

constructing the canonical variate. However, when the difference between two groups

is subtle and there are large variabilities existing within the groups, PLSDA is not

necessarily better than PCDA. Examples and comparisons will be given in Chapter 4.

3.4.2 Unsupervised classification

Unsupervised classification, also known as cluster analysis, is a class of methods used

to identify groups from spectral patterns of the samples without the knowledge of

group assignments of samples and possibly even without knowing the number of

groups.

The aim of this technique is to find or identify tendencies of samples to cluster in

subgroups, which may be very useful at an early stage of an investigation. It uses

distances between the objects to identify samples that are close to each other. Before
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the actual computation of distances PCA is often performed for visual inspection and

understanding of the group structure. A more comprehensive and general description

of cluster analysis can be found in Kaufman and Rousseeuw (1990) and Mardia et al.

(1979).

An alternative approach to unsupervised classification is based on parametric

mixture models (Titterington et al. 1985, McLachlan and Peel 2000, Fraley and

Raftery 2002). The idea is to model the distribution of the diagnostic variables by a

mixture of parametric distributions, simultaneously estimating with the parameters of

the distributions and the group membership of the samples. More details on finite

mixture model are addressed in Chapter 5 with applications to sentinel lymph node

diagnosis given in Chapter 7.

3.5 Validation and assessment

When doing classification and prediction, the performance of a rule or formula is

typically estimated using subsampling (sample-reuse) techniques when the sample

sizes are not large enough to use a separate withheld test set. Such methods include k-

fold cross-validation, leave-one-out cross-validation, bootstrap methods and repeated

holdout (Dudoit et al. 2002, Braga-Neto and Dougherty 2004, Molinaro 2005). The

estimates of the performance are then used for model selection, parameter tuning,

feature selection, or performance evaluation in empirical comparisons of

discrimination methods.

3.5.1 Repeated holdout

Repeat holdout, also known as random splitting, isolates a proportion a of the data

into the test set and uses the remaining proportion 1-a of the data for training. The

commonly used technique is to choose 1/3 as proportion for a. To ensure statistical

robustness, that is to say, to ensure that the results obtained are not training-set

specific and to lower the variance of area under the curve (AUC) described in Section
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3.5.3, this process is repeated a large number of times with different randomly

selected training and test sets. The final estimate is calculated by averaging the

estimates from different runs. To reduce the bias, stratified repeated holdout is

suggested to sample independently from each of the classes in the test sets using the

proportion as close as possible to the overall class proportions. In our implementation,

the holdout method used in Chapter 4 divides the data into two sets: 80% of the total

amount of data is used for training and the remaining 20% is used for testing, with 50

replications.

3.5.2 Cross-Validation

Two kinds of cross-validation are commonly used: they are k-fold cross-validation

and leave-one-out cross-validation (Stone 1974).

In k-fold cross-validation the whole set of dataset X is randomly or systematically

divided into k subsets 1X , 2X ,…, kX . After the division each subset in turn is used

for testing and the remaining subsets are combined and used for training. This means

that in k-fold cross-validation the training and testing is repeated k times. Final

estimation, in our case a measurement of classification accuracy, is calculated by

averaging the estimates from each of the training and testing runs. To guarantee that

each class is properly represented in both training and testing sets, we use stratified k-

fold cross-validation which means that the division into k subsets takes the classes of

samples into account. In our case, each cross-validation subset contains the same

proportion of samples from different classes as the original data set.

Leave-one-out cross-validation (LOOCV), also known as complete cross-

validation, can be represented as n-fold cross-validation where n is the total number of

all samples in the original data set. Leave-one-out cross-validation does not use

random splitting of the whole dataset because all of the samples are used alternately

for testing and the remaining for training. A problem with the method is its time
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consumption. The computational costs may become large, if complete cross-

validation is applied to large datasets.

In this thesis LOOCV are used in Chapter 4.

3.5.3 ROC curve and AUC

For comparing and assessing the performance of classification algorithms, the

receiver operating characteristic curve (ROC) and the associated area under the ROC

curve (AUC) are frequently used measures of performance.

The ROC shows the trade-off between sensitivity and specificity for a two-class

classifier or diagnostic system by generating a plot of the true positive rate (sensitivity)

against the false positive rate (1-specificity) for the different possible cutoffs of a

diagnostic test. It has long been used in medical diagnosis (Swets 1988) and has

become widely used in evaluating machine learning algorithms.

The AUC (Bradley 1997, Hanley and McNeil 1982) summarises the ROC and

provides a single measure of the performance of a classifier and the discriminability

of a model: a random model has an AUC of 0.5 and a perfectly discriminable model

has AUC of 1.0. The AUC has an important statistical property: the AUC of a

classifier is equivalent to the probability that the classifier will rank a randomly

chosen positive instance higher than a randomly chosen negative instance. This is

equivalent to the Wilcoxon test of ranks (Hanley and McNeil 1982).

When combining the results of the replicates of a validation procedure to compute

an overall estimate of the ROC curve or AUC, there are two main approaches: the

pooling and averaging strategies (Swets and Pickets 1982, Bradley 1997, Fawcett

2004, Witten and Frank 2005).

The pooling strategy involves collecting the classifier scoring outputs determined

on each test set，and a series of sensitivities and specificities are found with varying

cut off scores to generate a ROC curve and then calculate the AUC. Here the pooling

strategy for the ROC curve and the AUC calculation assumes that the classifier

outputs across all the replicates are comparable and thus can be globally ordered, this
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is often not the case and can lead to test samples in different replicates being ranked in

the wrong order. The pooling strategy is often used in cross validation, and

particularly for LOOCV it is the only method of measuring the AUC and calculating

the ROC curve.

In the averaging strategy, for each replicate a series of sensitivities and

specificities for each cut off canonical score are used to trace a ROC curve. A separate

AUC is computed for each test set, and the mean of these AUCs over all the replicates

is calculated with its standard deviation; for each replicate the cut off score

discriminating two classes from test set can be adjusted to meet the same criteria

(either giving a balanced sensitivity and specificity, or favoring a fixed value of

sensitivity or specificity). Averaging sensitivity and specificity from all the replicates

gives the mean sensitivity and the mean specificity with its standard deviation. The

mean sensitivity, mean specificity and the average AUC are then used as

measurements to assess the performance of the classification. The problem with this

averaging approach is that it does not give an average ROC curve. The averaging

strategy is often used in repeated holdout validation.

Both strategies are used in practice and the current literature is equivocal about

which approach is to be recommended. Both approaches are described as valid

estimates of AUC and ROC curves (Witten and Frank 2005, Fawcett 2004, Flach

2004). Witten and Frank (2005) noted that the pooling strategy has the advantage that

it is easier to implement. Also, it is expected to have a lower variance assuming that

the results of each replicate are samples from the same population (Swets and Pickets

1982). However in practice, this assumption is generally not valid for cross-validation

and can lead to large pessimistic biases.
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CHAPTER 4

SPECTRAL PRETREATMENT

4.1 Introduction

This Chapter is based on the paper “Error removal by orthogonal subtraction (EROS):

a customised pre-treatment for spectroscopic data” (Zhu, Fearn et al. 2008).

When reflectance spectra are used for quantitative analysis, data pre-treatment

can be an important step in the construction of an effective regression or classification

model. The ESS spectra often contain major sources of variation that are of little or no

predictive value for the property of interest and may thus hinder the development of a

diagnostic model. An appropriate pre-treatment can help to reduce this variability.

For example, when diffuse reflectance spectra are measured on powdered or ground

samples, the variability in the spectra between samples is typically dominated by

scatter effects caused by variations in particle size. Pre-treatments such as

multiplicative scatter correction (MSC) (Geladi et al. 1985, Næs et al. 2002) are

commonly applied to the spectra to reduce this variability. This allows the spectral

variability due to differences in the chemical composition of the samples, which is

usually of primary interest, to be seen more easily, both by eye and by the

chemometric approaches commonly used for calibration in these situations.

Although off-the-shelf pre-treatments such as MSC are very useful, there may be

situations where it is desirable to construct a pre-treatment that is tailored to remove

variability from a specific identified source. The work described here was motivated
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by the variability observed in ESS spectra measured using a probe in physical contact

with human tissue. When the measurements were replicated by removing and then

replacing the probe in an attempt to take a spectrum at exactly the same point there

was considerable variability between the replicate spectra. Small changes in angle and

pressure are amongst the possible causes of this variability.

In this chapter a customized pre-treatment called EROS, for Error Removal by

Orthogonal Subtraction, was constructed to remove this measurement variability

before the development of a diagnostic model. The approach was explored in two

applications involving in vivo measurement of dysplasia in Barrett’s oesophagus and

in vivo measurement of polyps in the human colon. To understand the measurement

variability removed by EROS, an experiment was carried out to find how pressure and

angle of the probe influence the variations in measured spectral data collected under

controlled conditions. An independent dataset was also used to test the model

prediction performance.

4.2 Measurement variability

Two major potential sources of measurement variability when collecting data in vivo

include differences in pressure of the probe on the tissue and the angle at which the

probe is held to the tissue. The importance of pressure applied and the angle of

approach to the in vivo BE have been noted before (Gonzalez-Correa et al. 2000). As

pressure and angle of the probe are difficult to control by hand and even small

changes of these factors may have a big influence on the spectra, it may be beneficial

to remove or at least reduce this influence with a pre-treatment.

4.3 Spectral pretreatment method

To ameliorate the effects of measurement variability, a customised spectral pre-

treatment method called error removal by orthogonal subtraction (EROS) is proposed

here. EROS projects the spectra onto a subspace orthogonal to the subspace in which
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most of the measurement variability occurs, so that the subsequent classification step

is robust to this measurement variability.

4.3.1 Orthogonal projection

The orthogonal projection used by EROS to subtract interfering variability works as

follows. Let X be an n × p matrix whose rows are the spectra of n samples, and let P

be a p × k matrix whose columns are mutually orthogonal vectors of unit length. Then

T( )X X I PP  , (4.1)

where I is the identity matrix, is the projection of X onto the kp  dimensional

subspace orthogonal to the columns of P. Writing this as PX X X  where

T
PX XPP emphasizes that this is a subtraction from X of the part PX that lies in the

subspace defined by P.

A number of existing approaches employ this simple method of subtracting

variability, the differences between them being in the way P is chosen. It is useful to

distinguish between methods that use the dependent variable y in the construction of P

and those that do not. The former are an integral part of the calibration process, with

important implications for validation, while the latter can be regarded as pre-

treatments.

4.3.1.1 Approaches that use y

The original method of this type is orthogonal signal correction (OSC), which was

introduced by Wold et al. (1998) and developed by Sjöblom et al. (1998), Fearn

(2000), Westerhuis et al. (2001) and Trygg and Wold (2002) among others. The idea

of OSC and related methods is to construct factors that account for a large amount of

spectral variation whilst being uncorrelated with the dependent variable y. The

loadings for these factors form the columns of P, and this variability is subtracted

from X. The details vary, and some of the procedures involve the sequential

subtraction of single dimensions, but the basic idea of subtracting directions
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uncorrelated with y is common to all these approaches. The involvement of y means

that OSC, in all its versions, is part of the calibration process, as indeed it is explicitly

presented in the OPLS method of Trygg and Wold (2002). One important

consequence is that it is vital that the construction and subtraction of OSC factors

needs to be included in any cross-validation procedure, and not done outside the loop,

or there is a risk of overfitting. The main advantage usually claimed for OSC is that its

use with PLS improves the interpretability of the PLS model, because the PLS factors

do not need to account for the interfering variability that has been subtracted.

4.3.1.2 Approaches that do not use y

A very different way of selecting directions to subtract from X is used by independent

interference reduction (IIR), Hansen (2001), and external parameter orthogonalization

(EPO), Roger et al. (2003). Both IIR and EPO use spectra from a set of dedicated

experiments to identify structured variations resulting from interfering factors, and

choose P to be an orthogonal basis for the space in which these variations lie. They do

not use y, and therefore are genuine pre-treatments.

In IIR, which builds on work by Sun (1997), spectra are measured on samples

that do not contain the analyte of interest, but are otherwise variable. PCA is applied

to the matrix Z of these spectra to find the principal dimensions in which they vary,

and the loading vectors of the first k principal components become the columns of P.

IIR is an attempt to identify and remove all sources of interfering variability from the

spectra. The success of this is clearly dependent on the extent to which Z represents

these sources of variability, and implies that it must include a substantial number of

samples. It will, of course, not always be possible to find such samples.

In contrast, EPO is more focused on removing interfering variability from one

particular source. In the EPO experiment a small number of samples are taken and

each is measured under a range of conditions. For example Roger et al. (2003)

measured the samples at different temperatures, and Andrew and Fearn (2004)

measured the samples on different instruments. A matrix Z of difference spectra may
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then be constructed in which between-sample variability has been eliminated and

which represents variability due to the changing conditions. The columns of P are

then the loadings for the first k principal components of Z. In the applications

described the results were calibrations robust to sample temperature (Roger et al.

2003) and calibrations transferable between instruments (Andrew and Fearn 2004),

but the idea could be applied in any situation where the required experiment is

feasible.

4.3.2 Error Removal by Orthogonal Subtraction (EROS)

A method called error reduction by orthogonal subtraction (EROS) is proposed to

ameliorate the effects of measurement variability in in-vivo ESS spectra. EROS also

uses the projection in Equation (4.1) to subtract variability from the spectral matrix X,

but introduces yet another way of constructing P. In some situations there can be

considerable variability between the spectra obtained in replicate measurements of

what is nominally the same sample. A common way of dealing with this is to take

several replicates and average them to reduce this variability. If the variability behaves

like white noise then this is probably the best that can be done. If, however, it has

some structure, it may be beneficial to identify this structure and subtract appropriate

dimensions by projection.

Suppose we have replicate spectral measurements on each of m samples. Let Ri

be the ri  p matrix whose rows are the ri replicate spectra for the ith sample, and let

Zi be this same matrix after centring by subtraction of the column means, i.e. after

subtracting from each row the mean spectrum for the sample. Then

)mr/(ZZW i

m

i
i 

1

T , (4.2)

with  


m

i irr
1

, is the pooled within-sample covariance matrix of the spectra. W

describes the variability between replicate measurements, the variability between

samples having been removed by the centring.
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The basic idea of EROS is to use the first k eigenvectors of W, for suitably chosen

k, as the columns of P for the projection of Equation (4.1). If the replicate variability

contains structure, i.e. if it is concentrated in particular directions in the spectral space,

these eigenvectors will lie in those directions, and subtracting them will remove this

variability.

4.4 Applications and results

Two applications of EROS pre-treatment to the clinical diagnosis of colon lesions and

high grade dysplasia or cancer in Barrett’s oesophagus are presented here to illustrate

the use of EROS for the construction of an effective classification model.

4.4.1 Detection of cancer risk in Barrett’s oesophagus

(Barrett’s data)

4.4.1.1 Background and introduction

The incidence of oesophageal adenocarcinoma has increased dramatically since the

1970s, and it is now the fifth commonest cause of cancer death in the UK. The five

year survival rate for this cancer is less than 10% (Newnham et al. 2003, Toms 2004).

Barrett's oesophagus (BE) is a pre-malignant condition in which the normal squamous

epithelium of the oesophagus is replaced by metaplastic columnar epithelium (Phillips

and Wong 1991), increasing the risk of developing adenocarcinoma by 30-125 times

(Hameeteman 1989, Williamson et al. 1991) when compared to the general population.

Systematic endoscopic surveillance of BE has been shown to detect oesophageal

adenocarcinoma at an early and curable stage (Levine et al. 1993). High grade

dysplasia (HGD) is the current most robust predictor of future cancer risk in patients

with BE, with around 50% progressing to adenocarcinoma at five years if it is not

treated (Rabinovitch et al. 2001, Sharma et al. 2007)

Endoscopic surveillance relies on regularly spaced, but essentially random,
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biopsies being taken from the four quadrants of the Barrett’s segment every 2cm. It is

time consuming, labour intensive and has a low detection rate for HGD even when

abnormalities exist (Sandick et al. 1998, Messmann et al. 1999). The challenge for

clinicians and scientists is to develop new technologies for detecting patients at high

risk of progression to cancer. Ideally this would be accurate, easy to use, inexpensive,

and provide results rapidly, preferably without the need to remove tissue.

As described in Chapter 2 elastic scattering spectroscopy (ESS) is an in vivo

optical point measurement which, using an appropriate optical geometry, is sensitive

to changes in properties of tissue (Lovat and Bown 2004). The optical probe is passed

through the working channel of an endoscope and is placed in direct contact with

tissue. A flash of light interrogates a cylinder of tissue approximately 0.5mm in

diameter and 1 mm deep. Results are available within milliseconds. Since the

technology uses white light and produces a strong backscattered signal, components

are inexpensive and the system is simple to manufacture. It is also safe because only

visible light is used for illumination with ultraviolet light being filtered out. Many of

the features that pathologists look for in diagnosing HGD have also been shown to

affect light scattering including the nuclear: cytoplasmic ratio (Drezek et al. 1999);

the cellular packing density (Wallance et al. 2000); and the nuclear size (Zonios et

al.1999). The nuclear chromatin content has also been shown to affect the spectra of

both singly scattered light (Gurjar et al. 2001, Beckman et al. 2000) and high angle

scatter in ESS (Mourant et al. 2000).

The problem is how to maximise the discrimination between ESS spectra taken

from high and low risk sites in order to accurately detect the patients at high future

cancer risk. The difficulty is that the spectral differences between normal and

abnormal tissue are very subtle. At the same time, ESS spectra often contain major

sources of variation that are of little or no predictive value for the detection of cancer

risk. In the clinical setting it is extremely difficult even for experienced endoscopists

to accurately control all aspects of ESS spectral acquisition especially with respect to

the angle and pressure of the optical probe in relation to the tissue with which they are

in contact.
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4.4.1.2 Spectral acquisition

This study was approved by the joint University College London/University College

London Hospitals (UCLH) ethics committee. During the routine endoscopy, optical

measurements were taken, followed immediately by biopsy from the same site. A

total of 152 matched optical and histological biopsy sites were collected from 81

patients referred to our tertiary referral centre between 2000-2003 for the management

of HGD (high grade dysplasia) or early cancer in BE. Informed consent was obtained

from all patients prior to their participation in the study.

Before any tissue spectra were taken, a white reference spectrum was recorded

from the flat surface of a Spectralon reference. The ESS spectral data used in our

analysis is the ratio of the spectral intensity of backscattered light from the tissue to

that of the standard reference spectrum from Spectralon. Each spectrum was made up

of 1801 points spanning the wavelength range 320-920nm, which lies in the visible

and near infrared (NIR) regions.

Measurements were replicated by removing and replacing the probe in an attempt

to take a spectrum at exactly the same point. Repeated measurements were taken from

1-3 biopsy sites per patient with a median of four spectra from each site (mean 3.3).

Routine quadrantic biopsies were taken every 2 cm as standard practice for

management of patients with suspected HGD in BE. Of the 152 matched optical and

histological biopsies (corresponding to 506 spectra), 122 (corresponding to 413

spectra) were from low grade dysplasia or no dysplasia (low risk) and 30

(corresponding to 93 spectra) were from high grade dysplasia or cancer (high risk).

Each biopsy was assessed and assigned as either high or low risk by three pathologists

who met to agree a consensus in cases of disagreement.

All raw spectra were visually examined for any obvious outliers caused by

acquisition errors, poor contact of the optical probe with the tissue, or other artefacts;

such spectra were excluded from subsequent analysis.
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4.4.1.3 Statistical analysis

Standard data pre-processing was carried out on the spectra to improve signal quality

(Næs et al. 2002, Lovat et al. 2006). The spectra were first smoothed using a

Savitzky-Golay filter (Savitzky and Golay 1964), using a 7-point window below 620

nm and a 20-point window above 620 nm where noise was greater. To speed

subsequent manipulation, the smoothed data were then reduced from the 1801 points,

corresponding to the spectrometer resolution, by taking alternate points only. To

remove the regions of the spectra with low signal-to-noise ratios arising from the

lower light intensity emitted by the Xenon arc lamp at the extremes of its output

spectrum, only the wavelengths between 370 and 800nm, with 637 points, were used

in the analysis. Using the standard normal variate (SNV) (Barnes et al. 1989) method,

the spectra were then normalized by setting the mean intensity of each spectrum to

zero and the variance to one. The mean spectral patterns from high risk and low risk

sites after standard pre-processing are shown in the left panel of Figure 4.1. It

illustrates that both high risk and low risk sites spectra are of very similar shape with

the mean spectra showing small between-class differences.

EROS, as described in Section 4.3, was then applied to the spectra, using the

replication to derive the projection. Various choices of k, the dimension of P in

Equation (4.1), were investigated.

Classification rules were derived from both the original spectra and the EROS

pre-treated spectra using principal component discriminant analysis (PCDA), and

partial least squares discriminant analysis (PLSDA). The PCDA involves an initial

PCA on the pre-treated spectra followed by linear discriminant analysis (LDA) on the

first q PC scores. The PLSDA involves a PLSR on the pre-treated spectra followed by

LDA on the first q PLS latent variable scores. EROS and PCDA or PLSDA were

carried out for a grid of values of k and q, with k ranging from 0 (no dimensions

subtracted) to 7 and q from 2 to 30. A method called stratified repeated holdout ,

described in Section 3.5.1, trained the algorithm on stratified randomly sampled 80%
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of the data and tested it on the remaining 20% of the data with 50 repetitions of the

split. In each split all the replicated spectra from a particular biopsy site were

allocated to either the training set or the testing set (to prevent bias being introduced

through non-independence of data) and there were the same proportion of sites

belonging to each class in the training set as in the whole data set.

For each test set a separate AUC was calculated, and a specific cut off canonical

score discriminating the two classes in the test set was chosen to give the same value

of sensitivity in each set. The mean sensitivity, mean specificity and the average AUC

with its standard deviation were then calculated from the 50 replications to assess the

performance of the classification. As mentioned in Section 3.5.3, this approach does

not generate an average ROC curve.

All the above analysis was carried out on a per-site-base since this usually gives

more reliable results than a per-spectra analysis. In per-site analysis, if any one of the

spectra from a particular biopsy site is classified as a spectrum from a high risk site

(i.e. the maximum canonical score of the spectra from a particular biopsy site is

higher than the cut off score), the whole biopsy site may be regarded as a high risk

one. An alternative criterion is that if the average canonical score of the spectra from a

particular biopsy site is higher than the cut off score, the whole biopsy site may be

classified as one with high risk. Our experience is that for repeated holdout validation

choosing mean canonical score rather than maximum canonical score on a per-site-

base can give better classification results. So we chose this mean-score-per-site

criteria for the analysis of the Barrett’s data.

All the computation and analysis for EROS, PCDA and PLSDA was performed

using the R statistical language.
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4.4.1.4 Principal component discriminant analysis (PCDA) model

Table 4.1 shows the repeated holdout validation results for detection of HGD or

cancer for various combinations of k, the number of dimensions removed by the

EROS pre-treatment, and q, the number of principal components used in the

construction of the PCDA diagnostic rule. The specificity and AUC results are plotted

in Figure 4.2. In deriving the rule, the cut off canonical score between the high risk

and low risk sites was adjusted to give a sensitivity of at least 90%. This high

sensitivity comes at the expense of specificity but it was felt to be a greater omission

to potentially miss patients at high risk than to have to collect a few additional

biopsies. Conventional biopsies would only be taken if the ESS spectrum was

indicative of dysplasia or cancer.

Trying to avoid the temptation to over interpret small differences in performance,

it seems reasonable to draw the following conclusions:

 Pre-treatment with EROS substantially reduces the number of PC scores q

needed to attain the best levels of accuracy in the classification, and this

reduction in number is greater than k, the number of dimensions removed by

EROS. Thus the total number of factors involved, even if one counts those in

the EROS pre-treatment, is reduced.

 For this Barrett’s dataset, k should be at least 3, with the choices 3, 5 and 7 all

being reasonable ones.

Before pre-treatment with EROS (k = 0), the choice q = 20 gives the best results

with sensitivity, specificity and AUC of 92%, 63% and 85%, respectively. After pre-

treatment with EROS, the combinations of k = 3, 5, 7 with q from 5 to 7, all give the

better results with fewer factors. Amongst these choices, the combination k = 5, q = 5

gives the best results with the fewest factors, with sensitivity, specificity and AUC of

92%, 75% and 87%, respectively, and subsequent discussion is based on this choice.

The two panels of Figure 4.1 show the mean spectra for the high risk and low risk

biopsy sites, before and after pre-treatment with EROS, in which k = 5 dimensions
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were removed. The differences between the means are much more evident in the right

hand panel after pre-treatment than they are before pre-treatment.

Figures 4.3-4.4 compare the loadings for the PCDA discriminant functions using k

= 0, q = 20 (no EROS) in the left panel and k = 5, q = 5 in the right panel. These

loadings show the contribution at each wavelength to the linear diagnostic rule, and

thus permit interpretation of its spectral basis. After using EROS, and thus being able

to attain acceptable levels of accuracy with far fewer factors in the classification

model, the loading vector is much less noisy and can be related much more easily to

features in the spectra. The first few PCs’ loadings of PCDA model after EROS pre-

treatment in Figure 4.5 show that the first five to seven PCs are most responsible for

both the EROS pre-treated spectral difference between two types and the shape of the

spectra. After EROS employing large number of PCs in construction of PCDA model

may include interference spectral variation which can be seen from the noisy structure

of 8th, 9th PC. This gives some evidence that PCDA model with q = 5 or 7 can achieve

optimal accuracy after EROS with k = 5.

As can be seen in Figure 4.4, the most obvious feature is a large positive PCDA

loading in the region of 650~800nm, corresponding to clear differences between the

mean spectra, which means the measurements in this range contribute strongly to the

classification. Physically this might be explained as the effect of scattering differences

between the spectra of normal and abnormal tissues in this region. Absorption also

seems to play a key role in the spectral differences and the classification between two

types of tissue in some specific region of spectra. The region around the 760nm stands

out as the most prominent spectral feature with highest PCDA loading. This is

consistent with the finding by Jöbsis (1977) that there exists a broad peak at 760 nm

characteristic of deoxyhaemoglobin absorption. Two peaks in the PCDA loading

around 540 and 580nm might be due to absorption dips of HbO2 at 542 and 577nm in

the spectra of high risk cancer due to increased Hb presence (as described in Section

2.3.3.1). It is known that cancers and pre-cancerous tissues are characterized by

increased microvascular volume, hence increased blood content (Jain 1988).
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Figure 4.1: Mean spectra from low risk (solid line) and high risk (dotted line) sites of

Barrett’s data. Left: with standard pre-processing only. Right: with standard pre-processing

and EROS (k = 5).

The gain in accuracy through the use of EROS is fairly modest one, but the gain

in interpretability, and very probably in robustness, of the classification rule is

substantial. That the changes are so dramatic is not surprising when one considers that

the pre-treatment removes 96.6% of the variability in the spectra. If the information

for the classification is in the remaining 3.4%, as it appears to be, it will be much

more prominent after pre-treatment. From these result it appears that the EROS pre-

treatment has removed much of the undesirable measurement variation, and that the

variation left in the spectra is more representative of the spectral features relevant to

the detection of high risk cancer. The nature of this measurement variation was

explored in a designed experiment described in a later Section 4.5.
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Table 4.1: Results of repeated holdout PCDA classification on Barrett’s dataset using various

combinations of k (number of dimensions removed by EROS pre-treatment) and q (number of

PC scores used in the LDA).

Prediction Accuracy
k (EROS) q (PCDA)

Sensitivity (%) Specificity (%) AUC.mean AUC.sd

0 2 91 19 0.61 0.08

0 3 91 16 0.62 0.09

0 5 91 39 0.72 0.11

0 7 91 41 0.72 0.11

0 10 92 34 0.71 0.11

0 15 92 55 0.83 0.10

0 20 92 63 0.85 0.07

0 30 90 59 0.80 0.09

2 2 91 14 0.67 0.11

2 3 91 38 0.79 0.12

2 5 90 57 0.85 0.09

2 7 92 49 0.83 0.09

2 10 90 57 0.82 0.09

2 15 91 53 0.81 0.09

2 20 91 58 0.82 0.08

2 30 92 59 0.80 0.09

3 2 90 34 0.79 0.11

3 3 90 39 0.83 0.09

3 5 90 66 0.85 0.10

3 7 91 69 0.83 0.08

3 10 91 59 0.80 0.09

3 15 91 60 0.83 0.10

3 20 92 56 0.82 0.08

3 30 92 52 0.82 0.11

5 2 92 56 0.81 0.09

5 3 91 67 0.86 0.08

5 5 92 75 0.87 0.08

5 7 90 74 0.86 0.08

5 10 93 60 0.84 0.09

5 15 92 62 0.82 0.09

5 20 91 65 0.83 0.10

5 30 92 55 0.79 0.10

7 2 90 48 0.83 0.11

7 3 91 66 0.85 0.08

7 5 90 67 0.85 0.09

7 7 91 66 0.85 0.07

7 10 92 55 0.80 0.10

7 15 92 48 0.76 0.12

7 20 92 43 0.76 0.11

7 30 91 43 0.78 0.09
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Figure 4.2: Repeated holdout PCDA classification accuracy of Barrett’s data as measured by

specificity and AUC. The five lines correspond to the choices of k, the x-axis to the choice of

q.
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Figure 4.3: PCDA loadings for discrimination between low risk and high risk sites of

Barrett’s data using model with k = 0, q = 20 (no EROS). The PCDA loading is shown in

green, with the mean spectra for the two types superimposed (low risk solid blue line, high

risk dotted red line).

Figure 4.4: PCDA loadings for discrimination between low risk and high risk sites of

Barrett’s data using model with k = 5, q = 5. The PCDA loading is shown in green, with the

mean spectra for the two types superimposed (low risk solid blue line, high risk dotted red

line).
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Figure 4.5: The first nine PC loadings based on the EROS pretreated spectra from Barrett’s

data with k = 5. PC loadings are shown in green line, with the mean spectra for the two types

superimposed (low risk in solid blue line, high risk in dotted red line).

4.4.1.5 Partial least squares discriminant analysis (PLSDA) model

Table 4.2 shows the repeated holdout validation results on the per-site base for various

combinations of k, the number of dimensions removed by EROS pre-treatment, and q,

the number of PLS latent variable scores used in the construction of the PLSDA

diagnostic rule. The specificity and AUC results are plotted in Figure 4.6. As in the

PCDA model, a sensitivity higher than 90% was chosen for all the combinations.

PC 1 PC 2 PC 3

PC 4 PC 5 PC 6

PC 7 PC 8 PC 9
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Table 4.2: Results of repeated holdout PLSDA classification on Barrett’s dataset using

various combinations of k (number of dimensions removed by EROS pre-treatment) and q

(number of PLS scores used in the LDA).

Prediction Accuracy
k (EROS) q (PLSDA)

Sensitivity (%) Specificity (%) AUC.mean AUC.sd

0 2 91 30 0.68 0.08

0 3 91 39 0.68 0.09

0 5 90 42 0.73 0.10

0 7 91 53 0.79 0.10

0 10 90 44 0.79 0.11

0 15 91 40 0.78 0.10

0 20 92 41 0.77 0.11

0 30 90 30 0.73 0.11

2 2 90 30 0.73 0.13

2 3 91 44 0.78 0.11

2 5 90 61 0.84 0.09

2 7 92 56 0.83 0.09

2 10 92 51 0.77 0.11

2 15 94 51 0.80 0.08

2 20 91 56 0.79 0.10

2 30 91 54 0.78 0.10

3 2 93 43 0.75 0.12

3 3 90 64 0.83 0.08

3 5 91 66 0.84 0.12

3 7 91 60 0.80 0.08

3 10 91 46 0.80 0.10

3 15 91 50 0.80 0.10

3 20 91 49 0.80 0.09

3 30 90 54 0.81 0.09

5 2 91 60 0.83 0.11

5 3 90 72 0.87 0.09

5 5 93 65 0.81 0.09

5 7 92 54 0.81 0.09

5 10 92 51 0.81 0.10

5 15 92 47 0.82 0.11

5 20 91 51 0.80 0.10

5 30 91 55 0.79 0.10

7 2 92 63 0.85 0.09

7 3 91 60 0.82 0.10

7 5 90 58 0.78 0.09

7 7 92 54 0.79 0.09

7 10 91 45 0.80 0.11

7 15 91 44 0.77 0.11

7 20 91 42 0.77 0.12

7 30 90 50 0.79 0.09
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Figure 4.6: Repeated holdout PLSDA classification accuracy of Barrett’s data as measured by

specificity and AUC. The five lines correspond to the choices of k, the x-axis to the choice of

q.

Compared with PCDA, PLSDA uses fewer latent variable components (factors)

for classification. Before pre-treatment with EROS (k = 0), the choice q = 7 gives the

best results with sensitivity and AUC of 91% and 79%, respectively. But the

specificity of 53% is not acceptable. After pre-treatment with EROS, the combination

k = 5, q = 3 gives best results using fewer factors, with sensitivity, specificity and

AUC of 90%, 72% and 87%, respectively, and subsequent discussion is based on this

choice. Other models with combination of k = 3, 5 and q = 3, 5 also give acceptable
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results. The PLSDA classification accuracy has improved after EROS pretreatment

although on the whole the accuracy is not as high as that of PCDA. The right hand

panel of Figure 4.7 shows the mean spectra for the high risk and low risk biopsy sites

after pre-treatment with EROS. The differences are much more evident than they were

before pre-treatment. Figure 4.7 shows the loadings for the PLSDA discriminant

functions using k = 0, q = 7 (no EROS) in the left panel and k = 5, q = 3 in the right

panel. After using EROS, and thus being able to attain acceptable levels of accuracy

with fewer factors in the classification model, the loading vector is much less noisy

and can be related much more easily to features in the spectra. Again, the most

prominent spectral feature lies in the region around the 760nm with highest PLSDA

loading, together with another two peaks of the PLSDA loading around 540 and

580nm. These features are similar to that from the PCDA model. A comparison

between the PCDA loading and the PLSDA loading for discrimination between low

risk and high risk sites can be seen in Figure 4.8. The PCDA loading vector shows

simpler features than the PLSDA loading vector.

Figure 4.7: PLSDA loadings for discrimination between low risk and high risk sites of

Barrett’s data. The PLSDA loading is shown in green, with the mean spectra for the two types

superimposed (low risk blue solid line, high risk red dotted line). The left panel is for k = 0,

q = 7 (no EROS) and the right panel is for k = 5, q = 3.



56

Figure 4.8: Comparison of PCDA loading (blue line) and PLSDA loading (green line) for

discrimination between low risk and high risk sites of Barrett’s data.

Further exploration on how PLS components contribute to the classification in

this dataset can be done by looking at the PLS loading weights as described in Section

3.3.2. The PLS loading weights define the contributions of each wavelength to the

constructed components.

In this dataset, the loading weights of the first two PLS components in the top

row of Figure 4.9 show many of the same features as the PLSDA loading in Figure

4.7 which is a combination of the loading weights. Comparing these loading weights

with the PCA components’ loadings in the bottom row of Figure 4.9, PLS is choosing

different factors to PCA although more or less similar features can still be found in

some spectral ranges. The first three principal components seem to be modeling some

mixture of common spectral features and spectral differences between the two types

of tissue, though the first two PCs focus more on the latter feature after EROS

pretreatment. The first three PLS components seem to have specific focus on

between-type features. The comparison of PLS loading weight, PC loading, PLSDA

loading and PCDA loading might explain some connection between PLS and LDA

and why fewer factors can be chosen for PLSDA model. Further comparison between
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PLSDA and PCDA when they are working with EROS will be discussed in Section

4.7.2.

Figure 4.9: The loading weights (top row) of the first three PLS components and the first three

PC loadings (bottom row) based on the EROS pretreated spectra from Barrett’s data with

k = 5. The loadings are shown in green, with the mean spectra for the two types superimposed

(low risk in solid blue line, high risk in dotted red line).

4.4.2 Diagnosis of colon lesions (Colon data)

4.4.2.1 Data description

A colon dataset is presented here to illustrate the use of EROS with another

application relating to the discrimination between hyperplastic and adenomatous

polyps in the colon. Visible-NIR spectra covering the range from 320 to 920nm were

collected from 73 human colonic biopsy sites using an optical probe in vivo during

colonoscopy which was undertaken to assess patients for precancerous adenomatous

polyps (Dhar et al. 2006). Repeated measurements, on average 5 spectra per site, were

taken from each biopsy site. In total 402 spectra were analyzed, including 63 spectra

from 11 hyperplastic polyps and 339 spectra from 62 adenomatous polyps.

PLS component 1 PLS component 2 PLS component 3

PC 1 PC 2 PC 3
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In clinical diagnosis of colon lesions by use of ESS, measurement variability is a

major source of variation. The procedure was done in lightly sedated patients and it

was difficult to place the optical probe in constant contact with the polyps. Movement,

pressure and other artefacts are therefore very likely to occur and these will influence

the experimental result but are irrelevant to classification. These problems are

reflected in considerable variability between the measured replicate spectra at a given

site. Ideally these measurement variations should be modelled and then removed from

the spectra, and this was attempted using EROS.

4.4.2.2 Data analysis

Before applying EROS pre-treatment and constructing a classification model,

standard data pre-processing as described in Section 4.4.1.3 was carried out on the

spectra to improve signal quality. This involved spectral smoothing using Savitzky-

Golay method (Savitzky and Golay 1964), cropping the noisy ends of the spectra, and

normalizing using the standard normal variate (SNV) method (Barnes et al. 1989).

Spectra from the two types of polyps are of very similar overall shape, with the

mean spectra showing small between-class differences (left panel of Figure 4.10).

Figure 4.10: Mean spectra from hyperplastic (solid blue line) and adenomatous (dashed red

line) polyps of colon data. Left: after standard pre-processing but before application of EROS.

Right: after standard pre-processing followed by EROS.
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The pooled within-sample covariance matrix was calculated using the replicated

spectra measured at each biopsy site, and the first k eigenvectors of this matrix were

used to construct P in Equation (4.1). EROS was applied by projecting the spectra

onto the subspace orthogonal to the main sources of measurement variability using

Equation (4.1).

Classification rules were derived using both principal component discriminant

analysis (PCDA) and partial least squares discriminant analysis (PLSDA).

EROS with PCDA or PLSDA was carried out for a grid of values of k and q, with

k ranging from 0 (no dimensions subtracted) to 7 and q from 2 to 30. Leave-out-one-

site cross-validation (LOOCV), which trains the algorithm on all the data except one

site which is then tested, was used to assess performance, the classification accuracy

being measured by sensitivity, specificity and AUC, the area under the ROC curve.

The construction of P was carried out inside the loop, i.e. with the replicates for the

omitted site not included in the procedure. The reason for not choosing the repeated

holdout validation used in the Barrett’s data is that the colon data is a small set, even

if we used repeated holdout validation the data randomly split off for testing would

not be sufficient to generate a AUC for the held-out set.

The same per-site analysis as described in Section 4.4.1.3 was used for the colon

data to classify each biopsy as a high risk site or a low risk site. Also since for

LOOCV mean value of the canonical scores on per site base gives better classification

results than maximum value (as shown in Figure 4.13 and Figure 4.17), we chose a

mean-score-per-site criterion for the analysis of the colon data. The sensitivity,

specificity, AUC, and the ROC curves were then calculated by pooling the mean

canonical score outputs determined on each biopsy site as described in Section 3.5.3.
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4.4.2.3 PCDA model

The leave-out-one-site cross-validation results for various combinations of k and q are

shown in Table 4.3, and the specificity and AUC results are plotted in Figure 4.11.

The ROC curves are given in Figure 4.13. Instead of choosing a balanced sensitivity

and specificity the cut off canonical score between the normal and abnormal sites was

adjusted in order to load towards a higher sensitivity (normally above 90% is

preferred) because in practice we don’t want to miss any high risk (abnormal) site.

Here a sensitivity of 85% was chosen considering the small size of the colon data.

Before pre-treatment with EROS (k = 0), the choice q = 15 gives the best results

with sensitivity, specificity and AUC of 85%, 64% and 86%, respectively. After pre-

treatment with EROS, the combination k = 5, q = 7 gives better results with fewer

factors, with sensitivity, specificity and AUC of 85%, 82% and 88%, respectively,

and subsequent discussion is based on this choice. The right hand panel of Figure

4.12 shows the mean spectra for the two types of polyp after pre-treatment with EROS.

The differences are much more evident than they were before pre-treatment. Figure

4.12 shows the loadings for the LDA discriminant functions using k = 0, q = 15 (no

EROS) in the left panel and k = 5, q = 7 in the right panel. After using EROS, the

loading vector is much less noisy and can be related much more easily to features in

the spectra.

What cannot be seen from the figure, because the spectra have rescaled, is that the

pretreatment has removed 94% of the variability in the original spectra, and that the

information for the classification appears to be in the remaining 6%. This gives

another example showing the most gain from EROS probably is to make the subtle

difference between two groups become much more prominent after the pre-treatment.
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Table 4.3: Results of leave-out-one-site cross-validation on colon dataset using various

combinations of k (number of dimensions removed by EROS pre-treatment) and q (number of

PCA scores used in the LDA).

Prediction Accuracy
k (EROS) q (PCDA)

Sensitivity (%) Specificity (%) AUC

0 2 85 27 0.70

0 3 85 18 0.68

0 5 85 36 0.79

0 7 85 27 0.76

0 10 85 27 0.68

0 15 85 64 0.86

0 20 85 45 0.78

0 30 85 55 0.77

2 2 85 18 0.52

2 3 85 36 0.69

2 5 85 18 0.67

2 7 85 36 0.69

2 10 85 9 0.71

2 15 85 73 0.84

2 20 85 55 0.82

2 30 85 64 0.83

3 2 85 27 0.71

3 3 85 27 0.69

3 5 85 45 0.70

3 7 85 64 0.85

3 10 85 64 0.83

3 15 85 73 0.84

3 20 85 64 0.84

3 30 85 45 0.79

5 2 85 45 0.71

5 3 85 36 0.71

5 5 85 55 0.76

5 7 85 82 0.88

5 10 85 73 0.86

5 15 85 73 0.89

5 20 85 55 0.84

5 30 85 55 0.84

7 2 85 18 0.66

7 3 85 64 0.86

7 5 85 64 0.85

7 7 85 64 0.84

7 10 85 64 0.86

7 15 85 45 0.84

7 20 85 45 0.81

7 30 85 27 0.77
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Figure 4.11: Leave-one-site-out cross-validation PCDA classification accuracy of colon data

as measured by specificity and AUC. The five lines correspond to the choices of k, the x-axis

to the choice of q.

Figure 4.12: LDA loadings for discrimination between hyperplastic and adenomatous polyps

of colon data. The LDA loading is shown in green, with the mean spectra for the two types

superimposed (hyperplastic solid blue line, adenomatous dashed red line). The left panel is for

k = 0, q = 15 (no EROS) and the right panel is for k = 5, q = 7.



63

Figure 4.13: ROC curves from leave-one-out cross-validation on colon dataset by using

PCDA for discrimination between hyperplastic and adenomatous polyps. The left panel is for

k = 0, q = 15 (no EROS) and the right panel is for k = 5, q = 7.

4.4.2.4 PLSDA model

The leave-out-one-site cross-validation results on the per-site base for various

combinations of k and q from PLSDA model are shown in Table 4.4, and the

specificity, AUC results are plotted in Figure 4.14. The ROC curve is given in Figure

4.17. A sensitivity of 85% was chosen for all the combinations.

Compared with PCDA, PLSDA uses fewer parameters for EROS pretreatment.

Before pre-treatment with EROS (k = 0), the choice q = 7 gives the best results with

sensitivity, specificity and AUC of 85%, 73% and 83%, respectively. After pre-

treatment with EROS, the combination k = 2, q = 7 gives best results with fewer

factors, with sensitivity, specificity and AUC of 85%, 82% and 85%, respectively, and

subsequent discussion is based on this choice. Other models with combination of k =

5 and q = 5, and combination of k = 7 and q = 3 also give acceptable results with

sensitivity, specificity and AUC of 85% 73% and 84%; 85%, 73% and 86%,

respectively.
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Table 4.4: Results of leave-out-one-site cross-validation on colon dataset using various

combinations of k (number of dimensions removed by EROS pre-treatment) and q (number of

PLS scores used in the LDA).

Prediction Accuracy
k (EROS) q (PLSDA)

Sensitivity (%) Specificity (%) AUC

0 2 85 36 0.76

0 3 85 27 0.74

0 5 85 45 0.74

0 7 85 73 0.83

0 10 85 55 0.80

0 15 85 45 0.74

0 20 85 36 0.72

0 30 85 36 0.72

2 2 85 36 0.72

2 3 85 36 0.68

2 5 85 45 0.80

2 7 85 82 0.85

2 10 85 55 0.80

2 15 85 64 0.85

2 20 85 64 0.84

2 30 85 64 0.83

3 2 85 36 0.71

3 3 85 36 0.72

3 5 85 64 0.81

3 7 85 64 0.82

3 10 85 45 0.82

3 15 85 36 0.74

3 20 85 36 0.78

3 30 85 36 0.77

5 2 85 55 0.78

5 3 85 55 0.78

5 5 85 73 0.84

5 7 85 64 0.82

5 10 85 45 0.82

5 15 85 45 0.78

5 20 85 27 0.77

5 30 85 27 0.76

7 2 85 64 0.79

7 3 85 73 0.86

7 5 85 36 0.82

7 7 85 55 0.80

7 10 85 36 0.76

7 15 85 45 0.77

7 20 85 45 0.72

7 30 85 36 0.69
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Figure 4.14: Leave-one-site-out cross-validation PLSDA classification accuracy of colon data

as measured by specificity and AUC. The five lines correspond to the choices of k, the x-axis

to the choice of q.

Panels (b), (c) and (d) of Figure 4.15 show the mean spectra for the two types of

polyp after pre-treatment with EROS when k = 2, 5 and 7, respectively. The loadings

for the PLSDA discriminant functions of (b) (c) (d) models all show high peaks in the

region between 450 and 600nm. After using EROS, the (b) model with best accuracy

shows a loading vector with simpler features than others. Also in Figure 4.16 we

found in the case of the colon data that the loading vector of optimal models from

both PCDA and PLSDA showed similar features, especially in the region between 540

to 580 nm. The PLSDA loadings have more structure than the PCDA loadings. The
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important regions for classification indicated by the loadings are consistent with the

tissue absorption knowledge described in Chapter 2. It was found in a pilot study that

by comparing the normalized backscattered signal between 540 and 580 nm with that

found between 400 and 440 nm, it was possible to differentiate between adenomatous

and dysplastic areas from other non-neoplastic areas of the colon. In these regions of

spectra the major spectral differences between the tissues are caused by the changes in

blood volume, and oxygen saturation of haemoglobin. Most of these variables are due

to absorption rather than scattering, which underlies the complexity of interpreting

these data.

Figure 4.15: PLSDA loadings for discrimination between hyperplastic and adenomatous

polyps of colon data. The LDA loading is shown in green, with the mean spectra for the two

types superimposed (hyperplastic solid blue line, adenomatous dashed red line). a) The top

left panel is for k = 0, q = 7 (no EROS); b) the top right panel is for k = 2, q = 7; c) the bottom

left panel is for k = 5, q = 5; d) the bottom right panel is for k = 7, q = 3.

a) b)

c) d)
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Figure 4.16: Comparison of PCDA loadings and PLSDA loadings for discrimination between

hyperplastic and adenomatous polyps of colon data.

Figure 4.17: ROC curves from leave-one-out cross-validation on colon dataset by using

PLSDA for discrimination between hyperplastic and adenomatous polyps. The left panel is

for k = 0, q = 7 (no EROS) and the right panel is for k = 2, q = 7.
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4.5 Experiment

4.5.1 Purpose of experiment

In order to understand the measurement variability modelled and removed by EROS,

an experiment was designed to determine how experimental variation affects optical

spectra collected under controlled conditions.

Two major potential sources of measurement variability when collecting data in

vivo include differences in pressure of the probe on the tissue and the angle at which

the probe is held to the tissue. These factors are difficult to control during

measurement. In the experiment they were deliberately varied in a controlled fashion

in order to investigate their effect on the spectra.

4.5.2 Materials, instruments and methods

Two different types of tissues, squamous lined pig oesophagus and columnar lined pig

stomach, were resected (we used a portion of approximately 4cm2 of each tissue),

extended on a small piece of cork and fixed with pins. This preparation was placed on

an electronic balance as illustrated in Figure 4.18. All measurements were carried out

with a 2.5 mm (outer diameter) optical biopsy probe. Data were collected at 10

random sites for each tissue. At each site 10 replicate measurements were taken under

the conditions of all possible combinations of four pressures (0kPa, 10kPa, 20kPa,

30kPa) and four angles (0°, 15°, 30°, 45°). The total number of spectra measured for

each tissue was 1600. The probe was fixed to a micro-manipulator and pushed

downwards until the balance gave a reading close to the desired pressure level. The

data for each type of tissue were pooled to mimic the in vivo situation. The same

spectral pretreatment procedures (smoothing, reduction, cropping and normalization

by SNV) as described in Section 4.4.1.3 were carried out this data. We then extracted

the first few principal components based on the pooled within-site covariance matrix

(Equation (4.2)) using all 160 spectra at each site. By looking at these PC loadings,
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we can see how pressure and angle affect the experimental spectra. These loadings

were then compared to the loadings obtained by EROS from the in vivo Barrett’s data

with the aim of gaining some understanding of the causes of within-site variability in

spectra taken at endoscopy.

Figure 4.18: Schematic representation of the experimental set-up.

4.5.3 Experimental data

Our laboratory data show that different levels of pressure and angle have a substantial

effect on the spectra. There is a clear ordering in the mean spectra in Figure 4.19. The

first three principal component loadings based on the pooled within-site covariance

matrix are plotted for both the experimental data and in vivo Barrett’s data for

comparison. For each principal component, there is quite a good match between the

experimental and in vivo data as shown in Figure 4.20. For the experimental data, the

pooled within-sample covariance captures the variation caused by pressure and angle

under controlled laboratory conditions. For the in vivo Barrett’s data, it describes the

variability between replicate measurements. The similarity in the loadings supports

the contention that the measurement variability removed by EROS comes from

differences in pressure and angle when measurements were taken in vivo.

ESS box

Laptop

10 g

Probe

Display

Tissue sample

Digital balance
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Figure 4.19: Spectral pattern of squamous tissue. Left: blue, red, green and orange lines: mean

spectra at pressures 0kPa, 10kPa, 20kPa, 30kPa, respectively (Results are combined for all

angles). Right: blue, red, green and orange lines: mean spectra at angles 0°, 15°, 30°, 45°,

respectively (Results are combined for all pressures).

Figure 4.20: The first three principal component loadings of experimental data (dotted blue

line) and in vivo Barrett’s data (solid red line).

4.6 Prospective prediction

A new Barrett’s dataset with a total of 68 matched optical and histological biopsies

(corresponding to 276 spectra) was later collected from another 20 patients. It

includes 50 biopsies (corresponding to 202 spectra) from low grade dysplasia or no

dysplasia (low risk) and 18 biopsies (corresponding to 74 spectra) from high grade

dysplasia or cancer (high risk). To test the robustness of the EROS models introduced

in the Section 4.4.1.4, the classification rules trained on the Barrett’s dataset described

in Section 4.4.1.3 were applied to this independent test set.

The same spectral pretreatment procedures were implemented on the test data as

on the training data and the classification rules were applied using the cutoffs learnt
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from the training data.

All the models (i.e. all the choices of k and q) were applied on the test set. The

prospective prediction results are shown in Table 4.5. In general, the models with

EROS give higher prediction accuracy than that without using EROS. The models

with fewer number of PC scores in LDA, q, are the ones that work best with EROS.

The comparisons of the two best validation models using 0k , 20q (no EROS)

and 5k , 5q (EROS) (described in Section 4.4.1.4) show that the model with

5k , 5q (EROS) gives much better prediction results with sensitivity of 83% and

specificity of 84%, while the model with 0k , 20q (no EROS) gives prediction

results with sensitivity of 83% and specificity of 68%. The prediction results here

show some evidence that the simple EROS model with fewer parameters gives more

robust prediction accuracy for discrimination between spectra from high risk and low

risk sites.

Table 4.5: Results of prospective testing prediction on an independent Barrett’s dataset by

applying the classification rules trained on the training set using various combinations of k

(number of dimensions removed by EROS pre-treatment) and q (number of PC scores used in

the LDA).

Prospective Prediction Accuracyk
(EROS)

q
(PCDA) Sensitivity (%) Specificity (%)

0 5 83 28

0 10 100 28

0 20 83 68

0 30 78 66

2 5 83 67

2 10 72 80

2 20 67 84

2 30 72 82

3 5 83 76

3 10 72 86

3 20 78 84

3 30 89 74

5 5 83 84

5 10 67 86

5 20 78 80

5 30 72 80

7 5 78 78

7 10 83 58

7 20 83 64

7 30 89 42
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4.7 Discussion and conclusions

EROS works well as an effective pre-treatment for both Colon and Barrett’s in vivo

data, characterising the measurement variability between the spectra from repeated

measurement, and ameliorating the effect of it. In comparison to using the original

spectra for classification we can extract the most useful information from the first few

principal components after eliminating this structured measurement variation from the

total variation of the spectra. The designed experiment gave a plausible explanation

for the measurement variability that much of the measurement variability comes from

the differences of pressure and angle of the probe. The remaining variation left in the

spectra contributed the most to the classification. The LDA loadings derived from the

pre-treated spectra show a very smooth and simple structure while the LDA loading of

the original spectra looks quite noisy. The simple structure is likely to be much more

meaningful and instructive for the physical interpretation of the loadings. The

approach, which was successful in this application, is quite general, and could be used

in many other situations.

4.7.1 How EROS works

EROS worked well in the diagnostic application described above because the spectra

contain a substantial amount of structured noise that can be removed by a simple

projection without destroying the information of interest. This is only possible

because the spectra are high-dimensional observations, but it will not always hold.

The approach makes no attempt to orthogonalise the subtracted dimensions to y, and

could thus remove some or all of the signal along with the noise. If there is a lot of

interfering variability in the same dimensions as the signal of interest, then neither

EROS nor any other mathematical treatment is likely to help. If it is in different

dimensions, EROS will help. The situation in which EROS will have a negative effect

is when it is used to remove small amounts of interfering variability that coincide in

direction with the signal. In any given application, the best approach is to try it and

see what happens.

An alternative approach to constructing calibrations robust to replication
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variability is to include replicate spectra in the training set, all with the same reference

value. The fitting process then rewards prediction formulae that ignore the replication

variability and tends to produce calibrations robust to this variability. The problem

with this approach is that it interacts badly with the use of factor-based methods such

as principal components regression or PLS to construct calibrations. Including the

variability in the training set results in factors being constructed that describe it.

These factors may then be downweighted in the regression part of the procedure, but

the damage is already done in terms of complexity and interpretability. Removing the

variability, as EROS does, removes it from the constructed factors, reducing

complexity and improving interpretability.

The EROS pre-treatment is a subtraction. It removes entirely the targeted

dimensions in the spectral space, but leaves the rest unaffected. It cannot therefore

play the same role as a multiplicative scatter correction, and it will often be beneficial

to use such a correction as well as EROS, as in the applications of Section 4.4.

An alternative approach to cope with effect of replicates by hierarchical mixed

models to model structured within-sample variability in a nested or hierarchical

fashion might also be interesting, but could become much more complicated, and has

not been tried.

4.7.2 How EROS works with PCDA and PLSDA

Although neither the Barrett’s data set nor the colon data set is large, we can still draw

some conclusions about the comparison of PCDA and PLSDA. Figures 4.21-4.22 (top

panels) show that before EROS pretreatment, PLSDA uses many fewer components

(7) than PCDA (about 15-20) to achieve the best accuracy. The optimal results from

both Barrett’s and colon data seem vary with the method. This is probably because

before EROS the variations extracted from the data using different methods to

construct the components are different, and most probably neither method is

completely successful in extracting the relevant information since results from both

methods are improved after EROS. This also gives an example that PLSDA/PLSR

does not always do better than PCA in discrimination, especially when there exist

large within-group variations.
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However after EROS pretreatment (as shown in the bottom panels of Figures

4.21-4.22), for the Barrett’s data using 3~5 factors gives the best results for both

PCDA and PLSDA models; for the colon data using 7 factors give the best results for

both PCDA and PLSDA models. Both PCDA and PLSDA models can achieve

comparable accuracy using a similar small number of components. This is especially

the case for the colon data which shows highly consistent pattern of classification

accuracy varying with model complexity. This gives some evidence that when the

difference between two groups is subtle and there exist large variabilities within the

groups, using EROS to eliminate large within-group variations before constructing

classification models results in prominent distinction between groups and enables

PCDA and PLSDA to achieve comparable discrimination results.

Figure 4.21: Classification accuracy of Barrett’s data as measured by AUC and specificity

before and after EROS pretreatment (k = 5 for both PCDA and PLSDA) by using PCDA (in

blue) and PLSDA (in red).
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Figure 4.22: Classification accuracy of colon data as measured by AUC and specificity before

and after EROS pretreatment (k = 5 for PCDA, k = 2 for PLSDA) by using PCDA (in blue)

and PLSDA (in red).

In general, before EROS pretreatment, it’s always worthwhile to try different

classification models since their performance is variable. After EROS, the models are

more parsimonious and how much variation of interest can be extracted from the

EROS pre-treated data seems not to be method-dependent.

4.7.3 How to choose components used in EROS

According to our practical experience, the number of dimensions removed by EROS

pretreatment should normally be small, in most cases using the first 3~5 PCs does best.

This is evidence that the first few principal components stand a good chance to have

contained the most undesirable variation for classification. This is to some extent
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warranted with reflectance spectra. For example the first PC often relates to a varying

baseline of the spectra (Næs et al. 2002). Although in the applications above we

always use the first few PCs to construct the projection matrix, it is not necessarily the

only option. Two models from the colon example are compared here. One is the

PCDA model with k = 5 and q = 7. The other is a PCDA model with q = 7 after EROS

removed four dimensions corresponding to the first three components and the fifth

component.

Figure 4.23 shows that the pretreated spectra by the second model show clearer

differences and more structure (especially in the region of 400~450nm and

600~650nm) in the difference between two kinds of tissue than that for the first model.

As to the PCDA loadings of both models, the second model gave the simpler structure

than the first one. Removing fewer dimensions by EROS in the second model does

not seem to decrease the prediction performance, as shown in Table 4.6. This is some

evidence that the fourth principal component of the original spectra matrix, though

capturing more measurement variability than the fifth one, might also contain

information about the diagnosis. No attempt has been made to pursue this line of

research any further, but there is scope for further investigation of how to select

components to construct an optimal model and how to interpret them.

Figure 4.23: PCDA loading of the EROS pretreated spectra from colon data. Left panel is for

k = 5, q = 7. Right panel is for the model with first 3 and 5th PC used for dimension removing

in EROS and q = 7; Green line: PCDA loading; Red line: mean spectra from adenomatous

polyps; Blue: mean spectra from hyperplastic polys.
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Table 4.6: Results of leave-one-out cross-validation on colon dataset using various

combination of dimension k (number of dimensions removed by EROS pre-treatment) and q

(number of PCA scores used in the LDA)

Prediction Accuracyk
(EROS)

q
(PCDA) Sensitivity (%) Specificity (%) AUC

1:5 5 63 64 0.74

- 7 82 82 0.85

- 10 81 82 0.83

- 15 82 82 0.87

20 71 73 0.82

30 72 73 0.76

1:3, 5 5 66 64 0.67

- 7 81 82 0.86

- 10 82 82 0.84

- 15 77 82 0.85

- 20 81 82 0.86

- 30 71 73 0.77

4.7.4 Wavelength selection

As can be seen in Figure 4.24, for the Barrett’s data after pretreatment by EROS the

PCDA loadings show much more importance in the spectral region where there are

bigger differences between normal and cancer spectral intensity, especially in the

region 500~800nm, which make it reasonable that we should interpret the LDA

loading as importance of the wavelengths for interpretation.

According to the importance it appears to have for the classification, the

wavelength range from 600 ~ 800 nm was selected for the PCDA model with

pretreatment by EROS for k = 5, q = 5. The results of repeated holdout validation

shown in Table 4.7 demonstrated that using only the information from the selected

spectral interval with the range of 600 ~ 800 nm did not decrease by much the

classification accuracy. This implies there exist strong spectral features in this region

for classification model building. Although performance is not improved by selecting

wavelength regions, the contribution of the wavelength selection to clinical diagnosis
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may be much more meaningful. If a small number of specific wavelengths can be

found which give as much information as a full spectrum when used for classification,

ESS point measurement then may possibly be developed for in vivo field imaging

detection, which would become an invaluable tool to endoscopists.

Figure 4.24: PCDA loadings for discrimination between low risk and high risk sites of

Barrrett’s data. The PCDA loading is shown in green line, with the mean spectra for the two

types superimposed (low risk solid blue line, high risk dotted red line). The PCDA model is

for k = 5, q = 5.

Table 4.7: Results of repeated holdout validation on both whole range and selected range of

Barrett’s data by using EROS pretreatment and PCDA model with k = 5, q = 5.

whole range: 370 ~ 800 nm Selected range: 600 ~ 800 nm

EROS PCDA Sensitivity Specificity AUC Sensitivity Specificity AUC

5PCs 5PCs 92% 75% 0.87 92% 72% 0.85



79

CHAPTER 5

PARTIALLY SUPERVISED BAYESIAN

CLASSIFICATION OF SCANNED SENTINEL

LYMPH NODES

5.1 Background and introduction

Breast cancer is the most common malignancy in women in the western world, with a

reported incidence of up to 1 in 8 women. The presence or absence of metastatic

cancer in the axillary lymph nodes in patients with breast cancer remains the most

powerful predictor of prognosis, and plays an important role in identifying patients

who are at risk of developing disease that spreads throughout the body, and thus likely

to benefit from chemotherapy. Traditionally, the presence of axillary lymph node

metastases has been determined by axillary lymph node dissection (ALND), which is

a surgical procedure that removes all the lymph nodes under the arm. This is a

substantial surgical procedure, however, which can be associated with several serious

side effects, the most significant being lymphoedema (persistent swelling of the arm)

and shoulder dysfunction, which adversely affect the patient’s quality of life. In

current surgical practice, most patients present with early disease as a result of

increased public awareness of breast cancer and mammography screening programs.

Hence most patients do not have axillary lymph node metastases at presentation, and

while the staging information is crucial for their future management, they get no
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therapeutic benefit from ALND, while still being at risk of developing the

complications associated with the procedure.

The sentinel node is the first node to be invaded by cancer spreading from the

breast as shown in Figure 5.1. It has been well documented that if cancer cannot be

detected in sentinel nodes, the chance of there being any cancer in nodes further down

the chain draining the breast is exceedingly small (Turner et al. 1997). Thus if the

sentinel node can be easily identified, removed, and examined for cancer and no

cancer is found, there is no need to remove the rest of the axillary nodes. This

markedly reduces the risk of complications associated with full axillary node

clearance (Veronesi 2003, Swenson 2002).

Axillary Lymph Nodes

Breast Cancer

Sentinel Lymph Node

Axillary Lymph Nodes

Breast Cancer

Sentinel Lymph Node

Figure 5.1: Illustration of sentinel and axillary lymph node in breast cancer.

To get the maximum benefit from sentinel node biopsy, it is important to be able

to determine rapidly whether or not cancer is present. If the assessment of the node

cannot be completed intraoperatively (while the patient is still on the operating table),

the subsequent discovery of cancer in the node will necessitate a second operation to

perform the ALND. This is technically more difficult, delays the start of adjuvant

radiotherapy and chemotherapy, gives rise to additional costs and causes further

anxiety to the patient.

Conventional intraoperative analysis is undertaken by touch imprint cytology or

frozen section histology. Both require sample preparation and interpretation of the

findings by an experienced pathologist (Johnson et al. 2004).
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The lack of a more generally available and reliable intraoperative tool to establish

the sentinel node status remains an obstacle to the routine practice of sentinel node

biopsy. A real-time optical method for determining sentinel node involvement would

provide significant benefits to patients undergoing surgery for breast cancer.

Elastic scattering spectroscopy (ESS), as described in Chapter 2, when performed

using an appropriate optical geometry, is sensitive to the sizes, indices of refraction,

and structures of the subcellular components (e.g., nucleus, nucleolus, and

mitochondria) that change when cells become malignant (Mourant et al. 1998).

Employing multivariate statistical techniques on spectroscopic measurements may

enable in vivo examination and computer generated diagnosis without tissue

processing and pathologist interpretation.

We have shown in Chapter 4 that ESS manual measurements are able to detect

precancerous and early cancerous changes in Barretts oesophagus, and identify pre-

cancerous polyps in the colon. ESS is applied in this chapter to diagnose sentinel

lymph node metastases in breast cancer.

Conventional manually measured ESS spectra contain considerable experimental

variation caused by angle or pressure of the hand-held probe as described in Chapter 4.

To avoid this problem and to produce much more and reliable information for rapid

intraoperative diagnosis of sentinel node metastases, an automated two-dimensional

ESS scanning device was developed (as an advance on ESS manual measurements) to

take measurements from the entire cut surface of the excised nodes. Instead of

determining whether an individual point of tissue is abnormal or not, the ESS scanner

examines a larger area of tissue by taking measurements at 400 points (pixels) in a

2020 grid, and has the ability to produce diagnostic images (of any tissue that can

be optically scanned) to assess the cancer risk. The assumption is that more extensive

and reliable optical sampling of the tissue under examination should increase the

accuracy of diagnosis.

However additional problems arise in the analysis and interpretation of the ESS

scanned measurement data. The commonly used supervised classification methods,
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e.g., linear discriminant analysis, require training data to train the algorithm. Since the

histology data for sentinel lymph nodes is on a per node basis, there is no reference

pathology available for each pixel in the image. This causes problems when deriving a

classification algorithm for pixels. We do however have manual measurements on

totally normal and totally metastatic nodes from an earlier stage of this research. An

obvious approach is to use the manual measurement data to train the classification

algorithm for use with the scanning data. However, apart from the normal and

metastatic groups, the scan also includes a third group, which is a non-nodal group

from a background area, possibly contaminated by blood or lipid. There are no

training data available for this non-nodal group which varies considerably from node

to node, which causes further difficulty. Using the discriminant algorithm developed

from manual data, the spectra from background usually gives a canonical score

indicative of cancer. The non-node area may, as a result, be misclassified as metastatic

and impede the recognition of normal and metastatic nodes.

As well as the problems described above, there is also one interesting opportunity

arising in the ESS scanning data analysis. Since the scanner generates a spectral

image, and it should therefore be possible to use a smoothness assumption about the

image to improve the classification of individual pixels.

To solve the problems and make use of the advantage of having an image, a

partially supervised image classification model framework has been built to recognize

the non-nodal area automatically and enable clinicians to make a rapid intraoperative

diagnosis of sentinel node metastases from the images. The basic idea is that the

classification of points in the image will be done by clustering, using a mixture model,

with the training data providing prior distributions for the groups in this model.

To simplify the presentation and to demonstrate the effects of different aspects of

the model, the whole model framework is split into two parts. The first part, presented

in this chapter, concerns the dimension reduction and Bayesian multivariate finite

mixture image classification model. Without consideration of the spatial correlation in

the image, this part of the model generates a preliminary solution. The second part is
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addressed in Chapter 6 with additional information on spatial correlation in the image

added into the model. Taking into account the spatial correlation between contiguous

pixels in the image, this part of the model aims at generating a more realistic image.

All the results and discussions relevant to the joint model framework are illustrated in

Chapter 7.

A list of notations used throughout the Chapters 5-7 are listed in Appendix A.

5.2 Instrumentation system

In the case of this project, ESS is being developed as a technique to discriminate

between lymph nodes which contain metastatic tissue, and lymph nodes which are

normal. In the first stage of the work, spectra were collected from nodes using a hand-

held probe. Later on an automated two-dimensional ESS scanning device (an optical

scanner) was constructed to increase the sampling effort per-node. This takes

comprehensive measurements from the entire cut surface of the nodes. The ESS

scanner instrumentation consists of a xenon arc lamp, a static ESS probe, a mobile

stage, a spectrometer and a computer to control the various components and record

the spectra (see Figure 5.2).

After excision, nodes are bivalved along their long axis and touch imprint

cytology performed. ESS measurements are taken from the same cut surface. The cut

surface of the node is placed under a specially designed thin fibre optic plate attached

to a motorised stage that moves back and forth incrementally in two dimensions under

a stationary ESS probe in a raster scanning pattern (Figures 5.3-5.4) to enable multiple

ESS measurement of the cut surface of the node. The probe is optically coupled to the

fibre optic plate with a drop of immersion oil. Prior to use, the system response is

calibrated against a standard diffuse reflector as a reference (Spectralon) through the

fibre optic plate. A 1010 mm area of the cut surface of the each node is scanned as

the fibre optic plate repeats the procedure of “move, stop and measure” pixel by pixel.
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Figure 5.2: ESS scanning system Figure 5.3: ESS scanner stage

Figure 5.4: Schematic diagram of elastic scattering spectroscopy scanning device system.
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A 2020 ESS measurement pixel image is generated by the system, i.e. 400 pixels,

each of size 0.50.5 mm. For each node a photograph with a microscopic view is

taken for its area being scanned, usually including some area of fibre optic plate

uncovered by the node. These photos will be later used in Chapter 7 to compare with

the images generated by our model proposed in this chapter and Chapter 6 for the

purpose of assessing the model’s success.

5.3 Data description

The study was conducted in two phases, generating two datasets. Initially spectra

taken manually from nodes known to be entirely normal or completely replaced by

cancer were gathered in order to develop an algorithm to distinguish cancer from

normal nodal tissue. In the second phase, an independent set of nodes was scanned,

giving a 2020  image for each node.

All spectra were recorded as a ratio to a calibration spectrum taken from the

spectrally flat material Spectralon (as a reference), thus rendering the data

independent of the spectral response of the system. The spectra are recorded at 1801

equidistant wavelengths in the visible and near infrared (NIR) region of 320-919 nm.

For the first part of the study, a total of 3,525 spectra from 404 nodes, 356 normal

nodes and 39 totally metastatic nodes, were collected by manual point measurement.

Each spectrum was measured by placing the optical probe manually at up to 16

random sites on the bivalved node. The mean spectra from these manual

measurements are shown in Figure 5.5. Each node, and therefore each point is

classified as normal or metastatic by histological experts. No spectra from background

area are available in this dataset.

For the second part of the study, to assess nodes comprehensively, a total of 48

axillary nodes, 21 normal nodes and 27 partially metastatic nodes or totally metastatic

nodes, with matched histology from 26 patients were scanned in our study, giving a

2020 pixel image of 400 spectra for each node. The reference pathology is only
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provided on per node base, but not available for individual pixels in the image.

Figure 5.5: Mean spectra from normal (blue solid line) and metastatic (red solid line) node

with one standard deviation on either side of the mean (dashed lines) after standard pre-

processing.

Figure 5.6: One example of ESS scanning measurement pixel image of one partially

metastatic node generated by spectral intensity at nine different wavelengths.
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Figure 5.7: Typical spectrum from normal tissue (blue), metastatic tissue (red) and non-nodal

area (black) of one partially metastatic node (the pixel position index (x,y) of each spectrum

refers to the pixel location in the image of Figure 5.6).

The cut surface of the node with bivalved shape is placed under a square fibre

optic plate as shown in Figure 5.4, and in most cases the scanning data contains not

only the areas from the normal or metastatic groups, but also a non-nodal group from

a background area, possibly contaminated by blood or lipid, which varies

considerably from node to node. No training set from the manual data are available

for this non-nodal group.

For illustration Figure 5.6 shows the image of one partially metastatic node at

nine different wavelengths with a colour map for intensity. Typical spectral patterns of

one pixel of normal tissue, metastatic tissue and non-nodal area from this node are

shown in Figure 5.7.

Figure 5.6 shows this is a three-way data with two spatial dimensions and one

wavelength dimension where the response is intensity. One approach to dealing with

this kind of data is to begin with a second-order calibration model (Linder and

Sundberg 1998). Instead of using this method, our analysis essentially ignored the

spatial dimensions to start the analysis and then later on takes them into account.

5.4 Theory

In this section we give a brief review of the relevant theory on multivariate finite

mixture models which will be employed in the partially supervised image
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classification model introduced in Section 5.5.

5.4.1 Multivariate finite mixture model

Finite mixture models, as an increasingly important tool in multivariate statistics, are

widely used in semi-parametric probability density function (PDF) estimation

problems or clustering tasks (e.g. McLachlan and Basford 1988, McLachlan and Peel

2000). The unknown PDF is approximated by a weighted sum of mixture distributions.

Finite Gaussian mixture models (FGM) are widely used, showing good performance

in many applications (McLachlan and Peel 2000, Fraley and Raftery 2002,

Titterington et al. 1985). However, finite Student’s t mixture models (FTM) are

efficient alternatives that can deal with a limited number of outliers.

In a finite mixture model for a k-dimensional random vector X the PDF is a

linear combination of g component densities )|( jxf  :

),|()|( j

g

1j
j xfxf  



 (5.1)

where the mixing proportions j s are non-negative and must sum to one, and j s are

the parameters of the components in the mixture. Consider an i.i.d. realization

n
iix 1}{  of X. We may define the corresponding log-likelihood function:
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
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where ),...,,,...,(
11 gg

  summarizes the model parameters.

5.4.1.1 Multivariate Gaussian distribution

In multivariate analysis, a popular choice for the component density )|( jxf  is the k-

dimensional multivariate Gaussian distribution. The jth component in the mixture is

then characterized by its mean vector j and its covariance matrix j , so that
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5.4.1.2 Multivariate t distribution

An alternative choice is the multivariate t distribution. The family of t distributions

provides a heavy-tailed alternative to the normal family. Hence it provides a more

robust approach to the fitting of normal mixture models, as observations that are

atypical of a component are given reduced weight in the calculation of its parameters.

Also, the use of t components gives less extreme estimates of the posterior

probabilities of component membership of the mixture models, as demonstrated in

Peel and McLachlan (2000).

A random vector X is said to have a k-variate t distribution with location

parameter j , positive definite scale matrix j , and the degrees of freedom jv if its

joint probability density function is given by
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If 1jv , j is the mean of x, and if 2jv , jjj vv  1)2( is its covariance matrix.

The degrees of freedom parameter jv is also referred to as the shape parameter,

because the Kurtosis of Equation (5.4) depends on jv . When 1jv , it corresponds to

a k-variate Cauchy distribution for which neither the mean nor the variance exists. As

jv tends to infinity, x becomes multivariate normally distributed with mean vector j

and covariance matrix j . It can be fixed in advance or it can be inferred from the

data for each component thereby providing an adaptive robust procedure (Lange et al.

1989). In our applications we will fix, rather than estimate, jv , so the parameters are

},{ jjj   .

5.4.2 Maximum likelihood estimation (MLE)

The maximum likelihood approach to parameter estimation in finite mixture models

obtains a point estimate ̂ of the parameter  by attempting to maximize the log-

likelihood function in Equation (5.2), that is,

)(maxargˆ 


L . (5.5)
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Quantities of interest may then be estimated by “plugging in” the point estimates. For

example, the density )|( jxf  may be estimated by )ˆ|( jxf  .

Although popular, the maximum likelihood approach to mixture models suffers

from problems mostly caused by the fact that for many choices of parametric family f

the likelihood in Equation (5.2) is unbounded. Point estimates of the parameters

corresponding to singularities in the likelihood surface are of no real interest, and it is

usual to seek a parameter estimate which corresponds to a large local maximum of the

likelihood surface. Aside from the computational problems associated with finding

such maxima, there may be several reasonable local maxima between which to choose,

each of which may give quite different plug-in estimates for quantities of interest. In

many cases it will be difficult to justify choosing one of these point estimates of the

parameter above the others. Such problems have encouraged the development of a

Bayesian approach to the mixture models problem.

5.4.3 The Bayesian approach

In Bayesian paradigm, parameters are treated as random quantities, and point

estimates for parameters are replaced by distributions on the parameter space which

represent our knowledge or belief about the value of the parameters. A comprehensive

description is given by Bernardo and Smith (1994) and Gelman et al. (1995). Fully

Bayesian inference seeks quantities of interest by integration over the parameter space,

weighting by the posterior distribution of the parameters, which is implemented by

Markov chain Monte Carlo (MCMC). However when a spatial prior is taken into

account, the computation becomes very difficult for MCMC treatment. Here we just

use posterior modes as point estimates rather than using a fully Bayesian paradigm.

Since the posterior distribution is expected to contain multiple modes even in the

normal case, and much more critically in the student-t case, here we expect to find a

local maximum as the posterior mode. The choice of starting value is therefore

important. This is why the cluster analysis was used to provide a good starting point.

Using a Bayesian approach here allows us to incorporate prior information (from
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the manual measurements) into our model. Even though we only compute modes, this

will help with the problems described above. The informative prior distributions for

the j help to stabilize the computations. The realization of the Bayesian approach in

our classification model is given in Section 5.5.2.2, where priors for the parameters

j in the model are chosen for tractability.

5.4.4 Expectation maximization (EM) algorithm

Our model fitting is based on the expectation maximization (EM) algorithm. The EM

algorithm, first introduced by Dempster, Laird and Rubin (1977), is an iterative

method for finding maximum likelihood estimates (MLE) or posterior modes,

maximum a posteriori (MAP) estimates, in incomplete-data problems. In the mixture

application, the ‘missing data’ are the unknown group memberships. The E-step of

each iteration involves taking expectations of the complete-data log-likelihood

function, or log-posterior density function in Bayesian analysis, given the observed

data and the current parameter estimates. The M-step of each iteration re-estimates the

parameters by maximizing this (expected) complete data likelihood or posterior. The

EM algorithm has appealing properties relative to other iterative algorithms. Firstly, it

is typically easily implemented because it relies on complete-data computations,

which are often in a simple closed form. Secondly, its convergence is stable, with each

iteration increasing the likelihood or posterior density.

EM is widely used in imaging analysis with the finite mixture model. An early

EM algorithm applied to the Gaussian mixture model can be found in Little and Rubin

(1987) and subsequently in McLachlan and Krishnan (1997). An EM algorithm for

mixtures of t-distributions was presented by Peel and McLachlan (2000). This

algorithm introduces an additional set of weights, estimated during the E step, which

essentially performs a soft rejection of outliers. A significant advantage of using the t

distribution is the ability to tune the model’s robustness to a particular application or

even a particular data set, by varying the degrees of freedom parameter.
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5.5 Partially supervised image classification model

framework

Motivated by the misclassification problems described in Section 5.1, a partially

supervised image classification model employing a Bayesian multivariate finite

mixture model is developed in this chapter to recognize the non-nodal area in the

image and to further classify each node as normal or metastatic. Prior distributions

derived from manual data for normal and metastatic components are imposed onto a

multivariate mixture model derived from the scanning data, along the directions of a

low-dimensional space which, in one of the approaches, is constructed from both data

sets. Although the analysis is essentially a form of unsupervised clustering, it takes

place in a space partially determined by the manually measured training data, and uses

prior distributions derived from these data. It is therefore referred to as ‘partially

supervised’.

5.5.1 Dimension reduction and variable construction

In the context of hyperdimensional image classification using a multivariate finite

mixture model, some dimension reduction is essential to enable the feasibility of the

multivariate distribution fitting. Reduction to a very small number of dimensions will

also avoid excessive memory storage and speed up computation during the process of

model fitting and parameter estimation. The advantages of dimension reduction are

particularly apparent in the application of real-time prediction.

The high-dimensional spectra are projected into a low-dimensional space

constructed to include most of the variations in the original directions of data space.

Two different options for dimension reduction are explored here. One, which we call

PCA dimension reduction, applies PCA to the spectra from the node under study. The

other, which we call discriminant dimension reduction, takes as the first dimension the

canonical variate derived from the training data, and adds to this a small number of

dimensions derived from a PCA of the variability orthogonal to this in the spectra of

the node under study.
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In both cases we apply a preliminary PCA dimension reduction to the spectra

from the entire set of scanned nodes thus simplifying the calculation and storage of

training set means and variances for later use in prior distributions.

5.5.1.1 PCA dimension reduction by global PCA projection followed by

local PCA projection

A two-step PCA dimension reduction method projects the spectra of the scanned node

of interest onto a low-dimensional space through a global PCA projection followed by

a local PCA projection as described below.

A global PCA reduction step extracts the general features of normal, metastatic

and non-nodal spectra from all the scanned nodes by projecting the spectra via PCA

onto a low-dimensional space (typically with dimensions less than 20) capturing most

variations from all the scanned nodes. The global PCA loadings are then used to

project the manual measurement data onto the same low-dimensional space. With

known class membership for each spectrum in the manual data, the PC scores of

manual data are used to derive prior distributions for the parameters of the normal and

metastatic groups in the scanning data.

The only point of the global PCA reduction is to reduce the dimension before

calculating the priors. If the method is programmed and implemented for real time

prediction, these priors need to be stored, and the smaller the number of dimensions

the better so long as the space spanned by these dimensions captures most of the

important variability in the nodes. Instead of taking large memory space to store all

the high-dimensional spectral data, here we only need to store the mean and variance

of normal and metastatic groups of manual data in the reduced dimensions for later

use as priors for scanning data.

For each node, a local PCA reduction step starting with the scores from the

previous step extracts the individual features by finding a small number of axes,

typically less than 5 dimensions. The priors are then projected into the space spanned

by these axes.

We now describe the procedure in detail.
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Step 1: Global PCA projection

A principal component analysis is carried out on the spectra from all the scanned

nodes and the first gk , typically about 15 to 20, PCs are chosen to capture most of the

variability ( >99%) on all the nodes. The loadings for these PCs are applied to the

manually measured spectral data from normal and metastatic tissue as below, and the

PC scores are used to derive prior distributions (by calculating mean and variance of

the transformed spectral matrix in the space of these gk PCs) for parameters of the

normal and metastatic groups.

gnodesallnodesall LXZ ..  (5.6)

gtraintrain LXZ  (5.7)

where nodesallX . is a c pn spectral matrix of all the scanned nodes (n is the number of

observations from one scanned node, c is the number of scanned nodes, cn is the

number of observations from all the scanned nodes, p is the number of wavelength

points). Each row of nodesallX . is a p-dimensional spectral vector. gL is a gkp  global

PCA loading matrix of the first gk PCs of nodesallX . . nodesallZ . is a gkcn  score matrix,

the columns of which are the first gk PC scores of nodesallX . .

For the manual measurement data, trainX , a pm spectral matrix (m is the

number of spectra) is then converted into a gkm  score matrix trainZ using the global

PCA loading gL . The 1gk mean vectors '
nm ,

'
cm and the gg kk  covariance

matrices '
nV ,

'
cV of trainZ are calculated for normal and metastatic spectra.

Step 2: Local PCA projection

For the node of interest, PC scores are calculated in the same gk -dimensional space

as those in step 1 by using the global PCA loadings gL as below

gnodeonenodeone LXZ ..  (5.8)

where nodeoneX . is a pn spectral matrix for this scanned node, nodeoneZ . is a

gkn  score matrix whose columns contain gk PC scores (actually the matrix nodeoneZ .

is a submatrix of nodesallZ . already calculated). nodeoneZ . is then considered as raw data
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for this node. A PCA is carried out on nodeoneZ . with the first lk , typically less than 5,

PCs extracted as below

lnodeonenodeone LZS ..  (5.9)

where lL is a lg kk  local PCA loading matrix of the first lk PCs of the score matrix

nodeoneZ . of the node, nodeoneS . is a lkn score matrix whose columns consist of lk PC

scores. Each row of nodeoneS . is a lk -dimensional spectral vector node.ones which will be

the spectral data used in our image classification model.

The local PCA loadings lL are then used as below to convert the 1gk means

'
c

'
n m,m and gg kk  variances '' , cn VV derived in the global PCA step to 1lk means

''
c

''
n m,m and ll kk  variances '''' , cn VV for later use in priors for the parameters of the

mixture distributions.

'''
n

T
ln mLm  ; '''

c
T
lc mLm  ; (5.10)

ln
T
ln LVLV '''  ; lc

T
lc LVLV '''  . (5.11)

5.5.1.2 Discriminant dimension reduction using an external LDA

loading and an internal PCA

The two-step discriminant dimension reduction method described here projects the

spectra of each scanned node onto a low-dimensional space composed of an external

variable and a small number of internal variables as described below.

The canonical variate derived from a linear discriminant analysis (LDA) on the

manually measured data is used as the first axis in the reduced dimensional space for

each node. This axis gives maximum separation between normal and metastatic

groups in the manual data.

To allow the method to adapt to each node, a small number (e.g., 1-3) of local or

internal variables will be added to this external one. However, as with the previously

described method, we proceed in two steps. First we extract and store a substantial

number (e.g., 15-20) of PCs derived from a PCA of the variance in all the scanned

nodes orthogonal to the external variable, capturing as far as possible the variations
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left by the external variable. As before the main reason from this step is to be able to

save in convenient form the means and variances from the manual data.

For each individual node, we then calculate its scores on these 15-20 global PCs

and take these as raw data to further extract a small number (e.g., 1-3) of PCs as local

variables. The loadings are then used to convert the 15-20 dimensional priors to 1-3

dimensional priors. The external variable and internal (local) variables are combined

for use in the image analysis.

We now describe the procedure in detail.

Step 1: Constructing the external variable

A PCDA (a PCA followed by a LDA) is carried out on the manual measurement

data, trainX , and the first extk principal components (carrying most of the variability of

manual data) are chosen to construct a scalar canonical variable, traint , as a common

dimension along which there is the maximum separation between the normal and

metastatic groups. The discriminant algorithm is developed by leave-one-out cross-

validation on the manual data. The scores on this variable are calculated as

exttraintrain qXT  , (5.12)

where each element of the vector trainT is a 1-dimensional canonical score for one

spectrum in the manual training data, and extq is a p-dimensional PCDA loading

vector.

By applying the PCDA loading, extq derived from the manual data to the spectral

data from the node of interest, we compute the external variable for this node

extnodeoneextnode qXT ..  (5.13)

where each point of ext.nodeT is a 1-dimensional canonical score, nodeoneX . is a pn

spectral matrix for the scanned node of interest (each row of nodeoneX . is a p-

dimensional spectrum). We call extq the external variable loading here.
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Step 2: Constructing the internal variable(s)

Before constructing the internal variables, the first 0.intk (e.g., 15-20) PCs of all the

scanned nodes are extracted from a space orthogonal to the external variable,

capturing as much as possible the variations left by the external variable. Thus

extnodesallextnodesall qXT ...  (5.14)

nodesall
T

extnodesallextnodesall
T

extnodesallextnodesallnodesall XTTTTIX ...
1

....... ))((
~  (5.15)

0..0...

~
intnodesallintnodesall QXT  (5.16)

where I is a cncn  identity matrix extnodesallT .. is a vector of canonical scores for all

the scanned nodes, nodes.allX
~

is a pcn  spectral matrix whose columns lie in the

1p dimensional subspace orthogonal to the external variable, 0.intQ is a matrix, the

columns of which are the first 0.intk principal component loadings of nodes.allX
~

.

0..intnodes.allT is a 0.intkcn  score matrix whose columns contain 0.intk PC scores.

Then for the manual measurement data

0.0.. inttraininttrain QXT  (5.17)

converts trainX , a pm spectral matrix (m is the number of observations in the

manual data) into a 0.intkm score matrix 0..inttrainT . Means '
nm ,

'
cm and variance

matrices '
nV ,

'
cV of the )1( 0.intk variables ),( 0..inttraintrain TT are calculated for later use in

constructing priors.

For the node of interest, its scores on the 0.intk PCs are calculated and subjected to

a further PCA to extract the first intk (e.g., 1-3) PCs as internal variable(s) by

intintnodeintnode QTT 0...  (5.18)

where 0..intnodeT is a 0.ntikn  submatrix of score matrix 0..intnodes.allT already calculated

in Equation (5.16) whose columns contain 0.intk PC scores, intQ is a matrix the

columns of which are the first intk PC loadings derived from a PCA of 0..intnodeT . Each

row of .intnodeT is intk -dimensional internal variable, .intnodet which is composed of the

first intk PCs in the subspace orthogonal to the direction of external variable ext.nodet .
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The dimension-reduced data vector used in the later data analysis is composed of

the external variable and 1-3 internal variables, given by ),( .. intnodeextnode ttx  with a

dimension of intkk 1 .

Using the internal variable(s) loadings intQ , the 1)1( 0.  intk means '
nm , '

cm and

the )1()1( 0.0. intint kk  covariance matrices '
nV , '

cV of ),( 0..inttraintrain TT are converted

into ( intk1 )-dimensional means ''
nm , ''

cm and )1()1( intint kk  covariance matrices

''
nV , ''

cV for later use in the priors for normal and metastatic groups of scanning data as

below:
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By using the external variable we impose one dimension from the training data

which we believe can separate normal from metastatic tissue. Using internal variables

to add local features preserves the variability specific to this node, which is the

unsupervised aspect of the model.

All the models constructed below are based on the data reduced by either the

PCA dimension reduction method or the discriminant dimension reduction method.

5.5.2 Multivariate finite mixture model

5.5.2.1 The model

Suppose nxx ,...,1 are k-dimensional random observations generated independently

from a mixture of g underlying populations (groups) with unknown mixing

proportions g ,...,1 so that





g

j
jiji xfxf

1

)|()|(  (5.21)

where )|( jxf  denotes the conditional probability density function of x belonging to

the jth group, parameterized by j , and where each j is nonnegative and 1
1

 

g

j j .
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Here ),...,,,...,( 11 gg   denotes the set of unknown parameters. In this thesis,

we assume that 3g with normal, metastatic and non-nodal groups, and ix is the

dimension-reduced spectral data measured at pixel i of the image for one node. We

will use multivariate Gaussian and t distribution for f, as described in Section 5.4.1.1

and 5.4.1.2

We introduce the membership indicator variable, ),...,( 1 igii zzz  , whole role is to

encode which component has generated the ith observation. This will be the ‘missing

data’ in the EM algorithm. The indicators iz )1( n,...,i  are a set of binary variables

}1,0{ijz )1( g,...,j  with






otherwise0

grouptobelongsnobservatioif1 ji
zij

and hence 1
1

 

g

j ijz . If we knew iz we could write

 



g

j

z
jiii

ijxfzxf
1

)|(),|(  (5.22)

Given the mixing probabilities ),...,( 1 g  , the indicator variables nz,...,z1 are

independent, with multinomial densities,





g

j

z
ji

ijzf
1

)|(  , for n,...,i 1 . (5.23)

Then the joint density of ix and iz is given by

 



g

j

z
jijii

ijxfzxf
1

)|()|,(  (5.24)

5.5.2.2 Priors and posteriors for parameters j and j

We take a uniform prior for the mixing probability j . For the finite mixture model

the normal inverse Wishart prior (Gelman et al.1995) is used here as a prior for the

parameters j and j of both the k-dimensional multivariate Gaussian distribution

(Fraley and Raftery 2007) and the k-dimensional multivariate t distribution (Lin et al.

2004). We use normal priors on the mean vectors j conditional on the scale
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matrices j (Richardson and Green 1997, Stephens 1997):
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and inverse Wishart priors on the scale matrices j , as suggested in Raftery (1996):
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The hyperparameters jpjp  , and jpv ( )3,2,1j are called the mean, shrinkage

and degrees of freedom respectively, of the prior distribution. The hyperparameter

1 jp , which is a matrix of the same dimension as j , is called the scale of the inverse

Wishart prior. Here the suffix p does not refer to the number of wavelength, but is

used to indicate a hyperparameter.

The joint prior density )( jp  is therefore
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(5.27)

Integrating joint prior density in Equation (5.27) with respect to  we get the

marginal prior density for the mean:

)))1(/(,()( 1
1  
 kvtp jpjpjpjpkvj p

 , (5.28)

where 1kvp
t is a multivariate t-distribution with 1 kv p degrees of freedom.

In the case of the multivariate Gaussian distribution ),( jjN  the normal

inverse Wishart prior is conjugate so that the posterior can also be expressed as the

product of a normal distribution and an inverse Wishart distribution with different

parameters. Given data },...,{ 1 nxxx  from this Gaussian, i.e., data known to be from

this group, we have
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where
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which can also be expressed as
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Here 



n

i

ixx
1

is sample mean of one scanned node, ix is the dimension-reduced

spectral data measured at pixel i of the image for one node, and n is the number of

observations from one scanned node.

The joint posterior modes of the mean vector and the covariance matrix are

jpj  ~ˆ  (5.35)

and
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In the case of the multivariate t distribution ),,( jjj vt  , the normal inverse

Wishart prior is not conjugate. However an EM algorithm can be used to estimate j

and j . An additional set of weights, viewed as missing data here,

},...,1,{ niui  (5.37)

are introduced, one corresponding to each of the observations ix , so that

),/,(~| ijjii uNux  (5.38)

independently for ,,...,1 ni  and

)2/,2/(~ jji vvGu (5.39)

are independently distributed for ni ,...,1 .
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The complete-data log-posterior density function (distribution) is
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In the E-step the conditional expectation of the complete-data log-posterior

function
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is with respect to the conditional distribution of }{ iu given }{ ix and current

estimates j̂ .

In general it is possible to estimate jv , but in our application to mixture models

we will take jv as fixed. In this case the part of )( jQ  in Equation (5.41) we have to

compute in M-step (i.e., ignoring the terms not involving j ) expands to
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which has a linear dependence on iu . Thus in the (t+1)st iteration of the EM

algorithm, computing )( jQ  in the E-step involves replacing iu by its expectation

)ˆ,|( )(t
i xuE  .
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Since the gamma distribution is conjugate,
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In the M-step at the (t+1)st iteration of EM algorithm, we substitute )1(ˆ t

iu for iu in

the first term on the right hand side of Equation (5.40), then the posterior estimates of

j and j are updated by computing the modal estimates:
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In the estimation of the mean and variance the observation ix is weighted by

)1( t
iu , the current estimate of the scale factor. When iu is equal to 1, Equations (5.45)

and (5.46) are equivalent to Equation (5.35) and (5.36), which makes the Gaussian

distribution a special case of t distribution.

For a single t distribution, the computations are more complicated than for a

single Gaussian, since we need to introduce an EM iteration. However in the mixture

model, the iterative estimation of iu can be incorporated in the EM we will be doing

anyway for the mixture, and so costs nothing extra.

5.5.3 Model fitting algorithm and parameter estimation

Since both the class label and the parameters are unknown and they are strongly inter-

dependent, the problem of parameter estimation is regarded as an “incomplete-data”

problem. Many techniques have been proposed to solve this problem, among which

the expectation-maximization (EM) algorithm described in Section 5.4.4 is the one

most widely used. Given initial values for the parameters  of the multivariate finite

mixture model, in the E-step we calculate the conditional probability that pixel i

belongs to the jth component in the mixture and use this to compute the conditional

expectation of the complete-data log posterior density function; in M-step we then

update the parameters by maximizing this log density. The process is iterated until

convergence. In this chapter the class membership iy of pixel i in the image is

assumed independent of all the other pixels, without considering the spatial

correlation of the image. The complete algorithm is described in a flowchart in Figure

5.8. To distinguish this algorithm from the one with spatial prior introduced in

Chapter 6 (Figure 6.3), we refer to the algorithm in this chapter as the first stage

algorithm and the one in Chapter 6 as the second stage algorithm.
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Figure 5.8: The first stage algorithm flowchart.

Initialize the parameters  )0()0()0( ˆ,ˆˆ
jjj   using a single-link hierarchical

clustering analysis based on Euclidean distance between objects.

Initialize the vector
)0(̂ to give equal proportions in the mixture.

E-step: Calculate the conditional probability that pixel i belongs to the jth component by
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, for i = 1, 2, … , n and j = 1, … , g (g = 3 here).

These are the probabilities in Equation (5.52) used in calculating the conditional expectation of the

complete-data log posterior density function expressed in Equation (5.50).

For multivariate t distribution, also calculate the conditional expectation of weight iu by
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for i = 1, 2, … , n and j = 1, … , g.

M-step: Update the parameter
)t(

j
ˆ 1 using Equation (5.55)

Update  )1()1()1( ˆ,ˆˆ   t
j

t
j

t
j  , ,1,..., gj  using Equations (E1-E2) for Gaussian distribution

and Equations (E3-E4) for t distribution.

Is relative change in all

elements of j̂ and  j
ˆ ?

1st stage convergence is reached.

Estimate class label ij
j

i zy ˆmaxargˆ 

Mixture components order fixing and image correction rules

(refer to Section 5.5.3.2)
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5.5.3.1 EM for mixtures of multivariate Gaussian and t distributions

via Bayesian theory

(1) The E step evaluates the conditional expectation of the complete data log-posterior

density given the observed data and the current parameter estimates.

For the mixtures of multivariate Gaussian distribution, the “complete data” here

are }){},({ ii zx , where ),...,( 1 igii zzz  is the unobserved portion of the data (the

unknown class label), with ijz , a binary indicator variable which takes the value 1

when observation i came from mixture component j and zero otherwise. From

Equation (5.24) the complete-data likelihood for a mixture model with g components

is
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Thus the Bayesian posterior density is of the form
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and the log-posterior distribution is
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where )( jP  is the normal inverse Wishart prior distribution on the parameters

j and we have taken a uniform prior for the j .

The conditional expectation of the complete-data log posterior density function is
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where the expectation is with respect to the conditional distribution of }{ iz given

}{ ixx  and the current estimate ̂ .

Since )(Q in Equation (5.50) has a linear dependence on ijz , calculating the

expectation of Q simply requires replacing ijz by their expectations,
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)ˆ,()ˆ,|(ˆ  xjyPxzEz iijij  , (5.51)

where ijẑ is the conditional probability that pixel i belongs to the jth component given

data x and the current parameter estimates  ˆ,ˆ . At the (t+1)st iteration, the updating

equation for ijẑ is as follows:
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For mixtures of multivariate t distributions, given additional missing data }{ iu as

defined in Equations (5.37)-(5.39), the “complete data” are }){},{},({ iii uzx . The

conditional expectation of the complete-data log posterior density function is
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Calculation of Equation (5.53) in the E-step can be effected by first taking the

expectation of iu conditional on }{ iz and }{ ix , and then finally over the iz given }{ ix .

For these calculations we need )ˆ,|( xzE ij as given in Equation (5.52) above and
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(2) The M step for the multivariate Gaussian distribution involves maximizing

Equation (5.50) over j and j with ijz fixed at the values ijẑ computed in the E step.

For j , let 
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The results for j are given in Equations (E1-E2) of Table 5.1.

For the multivariate t distribution, the conditional expectation function to be

maximized in Equation (5.53) involves the additional weight ijû . The result for j is
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the same as in Equation (5.55). The results for j are given in Equations (E3-E4) of

Table 5.1.

The whole EM algorithm is judged to have converged when the relative changes

in all elements of j and j are less than  . Here we choose the value 0.1 for  in

order to achieve a weak convergence in this stage, which merely provides a stationary

configuration for the second stage.

An alternative procedure for fitting mixture models by using the classification

Expectation Maximization (CEM) (Celeux and Govaert 1992, Dean et al. 2006)

algorithm is almost identical to the EM algorithm, except that it incorporates a

classification step between the E-step and M-step replacing the ijẑ by:


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(5.56)

That is, a discrete classification is made where each object is assigned to a unique

group. For example, if EM algorithm produces )15.0,05.0,8.0(ˆ )1( k
ijz then the

equivalent CEM step would transform this to a new )0,0,1(ˆ )1( k
ijz . These values of

)1(ˆ k
ijz are used in the M-step of the CEM algorithm.

The CEM algorithm converges faster, but has a tendency to eliminate genuine

small groups.
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Table 5.1: M-step estimators for the mean and variance of multivariate mixture models under the normal inverse Wishart conjugate priors. Here )1(ˆ t

ijz

is the conditional probability that observation i belongs to the jth component at (t+1)st iteration.
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5.5.3.2 Mixture components order fixing and image correction rules

The mixture components order fixing and image correction rules at the end of

algorithm as shown in Figure 5.8 came into existence here because of two problems in

the Bayesian mixture model, one is a label-switching problem, the other is a number

of components problem.

The existence of multiple MLE solution to the mixture problem, corresponding to

permutations of the labels, is well known (Titterington et al. 1985). A Bayesian

analysis with informative prior distributions is less prone to such problems, but our

use of a diffuse prior for the background component does cause difficulties here.

The number of components problem arises because we assume for each node

there are three components in the mixture. The model is thus trying to fit the data with

three components, which is usually but not always correct. This may result in the

misclassification of some small cluster of data which is actually not a separate group.

When a node is analysed, we first run the model described in this chapter, then

use the result as a starting point for the more sophisticated model of Chapter 6. In

between, we apply the rules described below to fix the problems of incorrect labelling

and spurious groups.

(a) Mixture component order fixing

Since non-nodal component is more likely to appear on the fringe area of the

node, in order to easily recognize the non-nodal component first, here we introduce a

distance id and a background score i . The id is used to measure the distance

between each pixel and the central point of the image at (10.5, 10.5), and varies from

0.7 for the most central points to 13.4 in the corners. As a function of id , i gives a

background score to each pixel as below:
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where ii sr , denote the row position (index) and the column position (index) of the

pixel i in the image, the power  (for which we have tried values in the range 1-5) is

used to emphasize the scores for the pixels on the edge. Here we choose

22 5.05.7  as a threshold for the piecewise function of id . This represents the

radius of a circle that reaches to two pixels from the edge of the image. By these

definitions, pixels on the corner or the edge of the image are given higher background

score than those in the centre. These scores will be used to identify the non-nodal

component in the mixture, as the one receiving the highest average background score.

Figure 5.9: The mapping of the position weight of each pixel with the scores of distance

parameter id plotted with false coded colour (red shows high probability being background

pixel, blue shows low probability being background pixel).

The effect of the choices of i on the probability of each pixel being background

is represented in Figure 5.9 with false coded color (red corresponding to pixel

indicative of background with high probability, blue corresponding to pixel indicative

of background with low probability). Here we use 5.1 ..Here we use
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The two nodal components can then be distinguished by comparing their mean

scores with prior means for the components: for the discriminant reduction, the prior

mean of the first dimensional variable (external variable) of the metastatic component

is higher than that of normal component; for PCA reduction, the reverse is true. These

rules work well for the situation where there exist three components in the mixture

and they are all sizable groups.

However there are some situations where a very small nodal group concentrated

on the fringe of the image will have higher average background scores than a more

spread out non-nodal group, and the nodal component might then be misclassified as a

non-nodal component. To avoid this situation, we make some adjustments to the

background score for small groups. For the situation where only one sizable nodal

component exists, we find its class label by comparing its mean score with the prior

means of both nodal components. The complete rules for mixture component order

fixing are given in detail in Figure 5.10.

Step 1: Mixture components order fixing

2 sizable groups

3 sizable groups

How many

sizable groups*

in the mixture?

R1

1 sizable group

(therefore nodal)

R1

R3

2 small groups

1 small group

R1

R1

R2

no small group

1 small group

with background

no background

R2

R2

R3

R3

* Sizable group refers to the group with size larger than or equal to 30.
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Figure 5.10: Mixture components order fixing algorithm flowchart. The set of 3 labels {1, 2, 3}

corresponds to normal, metastatic and non-nodal groups, respectively.

(b) Image correction rules

Given three components in the mixture, the model will try to find three groups in the

image. However, when there are really only one or two components in the node, some

misclassification might happen, especially to some small nodal groups.

The image correction rules attempt to detect and rectify this situation. For the

case where there is one sizable normal group and one small metastatic group, if

amongst the pixels from fitted metastatic group the maximum conditional probability

of a pixel belonging to metastatic group is very low, then we consider the metastatic

group actually belongs to normal group or non-nodal group. For the case where both

normal and metastatic groups are sizable, if the mean score on the first dimension of

R1 Calculate j
i

ij ng /  , with background score i at pixel i , summed over the

jn points assigned to the thj component of the mixture. If exactly 2 sizable

groups exist and 1 small group with current label k, then adjust kk g.g 70 .

Background index = }{maxarg j
j

g .

R2 Let 1k , 2k be the labels of the two nodal groups. For discriminant reduction, meta

index = }ˆ{maxarg [1]
21 ,

j
kkj



; for PCA reduction, meta index = }ˆ{minarg [1]

21 ,
j

kkj



.

R3 For one sizable nodal group with current label k , if 1|}ˆˆ{|minarg ]1[[1]
21,




jpk
j

 ,

then normal index = k ; if 2|}ˆˆ{|minarg ]1[[1]
21,




jpk
j

 , then meta index = k .

If 1 small group also exists, and if its current label is background, leave it; if not

background, it belongs to the other nodal group.
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the metastatic component is much closer to the mean score of its neighbour

component than to the prior mean of metastatic component, we will consider the fitted

metastatic group may belong to normal group.

For the PCA dimension reduction method, since for each node the spectra and the

prior means are all projected onto a different low-dimensional space, especially for

the variable non-nodal component, the image correction rules given here also depend

on the different relative positions of the first dimensional scores of the non-nodal

component in the mixture. The image correction rules are given in detail in Figure

5.11.

S1: If 1 sizable normal group and 1 small meta group with current label k ,

if kik
i

nz ˆ/4.5)(max  , then merge meta group to the closest group, either normal or non-

nodal group.

How many

sizable groups

in the mixture?

S1

S2

sizable normal and small meta groups

sizable normal and meta groups

Step 2: Image corrections (Discriminant dimension reduction )

What is the

relative position

of the 1st PC

scores of

background in

the mixture?

meta < background < normal

S1

S2
sizable normal

& meta groups

sizable normal

& small meta groups

sizable background

& meta groups

background < meta < normal

or meta < normal < background

Step 2: Image corrections ( PCA dimension reduction )

S3
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Figure 5.11: Image correction algorithm flowchart for discriminant dimension reduction and

PCA dimension reduction.

S3: Both meta and background sizable groups with labels of 2k and .3k If

|ˆˆ||ˆˆ| [1][1][1][1]
223 2 kpkk   , then merge meta group to background group.

S2: Both normal and meta sizable groups with labels of 1k and .2k If

|ˆˆ||ˆˆ| [1][1][1][1]
221 2 kpkk   , then merge meta group to normal group.
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CHAPTER 6

IMAGING CLASSIFICATION WITH SPATIAL

PRIOR ON SCANNED SENTINEL LYMPH

NODES

6.1 Introduction

The imaging model presented in Chapter 5 takes the class memberships of the pixels

in the image to be independent, thus ignoring the spatial contextual information. In the

true image adjacent pixels tend to belong to the same group. The model in this chapter

takes into account the spatial correlation in the image by adding a Markov random

field spatial prior to the previous model. Since the property of neighbourhood

contiguity of the image is now considered, the classification model framework aims at

generating an image with smooth pattern, comparable to the real tissue structure of the

node.

6.2 Theory

6.2.1 Markov random fields

MRF theory

Markov random fields (MRF) provide a powerful and robust framework for modeling

spatial interactions between neighboring or nearby pixels. The local correlations
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provide a mechanism for modeling a variety of image properties (Chellappa and Jain

1993, Li 2001). In medical imaging, they are typically used because most pixels

belong to the same class as their neighboring pixels. In physical terms, this implies

that any anatomical structure that consists of only one pixel has a very low probability

of occurring.

In an MRF, the sites in S are related to one another via a neighbourhood system,

},,{ SiNN i  where iN denotes the set of neighbours of i . The system is

symmetric, so that ij NjNi  and no site is its own neighbour, so that iNi .

A random field Y is said to be an MRF on S with respect to a neighborhood system

N if and only if

)|()|( }{\ iNiiSi yypyyp  (6.1)

0)( yp , Yy (6.2)

where }{\ iSy denotes a realization of the field restricted to },{}{\ ijSjiS  .

The neighbour set of ),( jis  for a regular lattice S is commonly defined as

ojlikSlkrN s  22 )()(0:),({ , (6.3)

where o is the order of the neighbourhood system. Figure 6.1 shows the typical

examples used in image analysis, the two dimensional lattice with a first order and

second order neighbourhood systems.

Figure 6.1: MRF neighbourhood systems for site Ss . Left: first-order; Right: second-order.

Property (6.1) means that in an MRF, the interactions between site i and the other sites

actually reduce to interactions with its neighbours, and that according to the

Hammersley-Clifford theorem, established by Hammersley and Clifford (1971) and

further developed by Besag (1974), the joint probability distribution of a MRF (an

ss
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image labeling configuration) can be characterized by a Gibbs distribution given by

)),(exp()( 1 yUZyP   (6.4)

where Z is a normalizing constant called the partition function, and )( yU is an

energy function which is a sum of clique potentials over all possible cliques c . A

clique c for ),( NS is a subset of pixels in S chosen to represent the spatial interaction.

The computation of Z involves all possible realizations y of the MRF, and therefore,

it is in general not computationally feasible. More detail on MRFs and the role of the

Gibbs distribution can be found in the paper by Geman and Geman (1984)

Hidden Markov Random Fields (HMRF)

The HMRF model is popular in the statistical analysis of pixellated images (Geman

and Geman 1984). In image analysis, problems involving incomplete data are

common. As described in Chapter 5, the complete data here include the observations

representing measurements, e.g. multivariate variables recorded for each pixel of an

image, and the missing data (hidden data) consisting of unknown class assignment to

be estimated from the observations for each pixel. The complete likelihood is given

by

)|(),|(),|,(  yPyxfyxf  (6.5)

where  are parameters of the distribution generating X , and  are parameters of the

MRF.

In hidden Markov models, the observations X are assumed to be conditionally

independent given the image configuration yY  , we then have the joint conditional

probability of x given y

),|(),|(  ii
Si

yxfyxf 


 . (6.6)

Equation (6.5) is then expressed as

)},|(log)|(exp{),|,( 1  i
Si

i yxfyUZyxf 


  , (6.7)

Thus the conditional field Y given xX  is a Markov field as is Y , with posterior

energy function:
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),|(log)|(),,|(  i
Si

i yxfyUxyU 


 . (6.8)

For known parameters  , , the maximum a posteriori (MAP) estimation of the

image is equivalent to minimizing the posterior energy function

)},,|({minargˆ xyUy
Yy

 (6.9)

The difference between the concept of an HMRF and that of an MRF is that the

former is defined with respect to a pair of random variables ),( XY while the latter is

only defined with respect to Y .

6.2.2 Parameter estimation in HMRF-based models

In a typical application of an HMRF-based model we face the problem that both

the class labels and the parameters are unknown and are strongly interdependent. A

major difficulty of parameter estimation then arises due to the introduction of the

dependence in the MRF. In our application we will take the parameters  of the MRF

to be fixed, thus avoiding some complications. However, even with this restriction, it

is not simple to estimate  . The classical EM algorithm applied to the situation in

Chapter 5 runs into problems because the conditional expectations required in the E-

step cannot be simply and directly calculated.

Various approximations have been introduced in order to make the problem

tractable. Techniques such as simulated annealing with Gibbs sampling (Geman and

Geman 1984), and a Monte Carlo method based on the Gibbs sampler (Chalmond

1989) have been proposed to attempt to compute the true mode of )(yp , thereby

obtaining the MAP restoration.

The iterated conditional modes (ICM) algorithm proposed by Besag (1986) does

not claim to find a global maximum. It uses an iterative local minimization for which

convergence is rapid, but will be to a local mode only. Given the data x and the other

labels ,)(
}{\

k
iSy the algorithm sequentially updates each )(k

iy into )1( k
iy by minimizing

),|( }\{iSi yxyU , i.e. maximizing the conditional posterior probability, with respect to
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iy .

Other approximation techniques have been suggested. The mean field

approximation (Celeux et al. 2003, Alfo et al. 2008) implements a standard EM

algorithm after approximating the hidden field of class labels. A similar strategy

underlies the EM algorithm given by Zhang et al. (2001) which estimates the missing

data as ŷ given the current  estimate by ICM and then uses it to form the complete

data },ˆ{ xy followed by a new  estimation via E-M steps.

A number of approaches are suggested by Qian and Titterington (1991) for the

image-analysis context. These are based on iterative restoration of the true scene,

perhaps using the ICM algorithm, alternating with parameter estimation, with the use

of Besag’s pseudolikelihood (1975) when the parameter  of )(yp is to be estimated.

There are many suggested approaches in the literature, and in some cases

distinguishing between them is not easy. However in the case where  is not

estimated they generally alternate between estimating the image, using approaches

that vary in their level of sophistication, and estimating the parameters  using an

EM-type algorithm. Here we will adopt the simplest version of such a scheme, as

described below.

6.3 Partially supervised Bayesian imaging classification

with Markov random field prior

6.3.1 Markov random field model

We assume that the true configuration y is a realization of a locally dependent Markov

random field (MRF). Following the suggestions of Besag (1986) we model the

conditional prior probability of pixel i having class label j, given the class labels of all

other pixels, in the following way:

)}({exp)( yyjyp ijijiiij    (6.10)

where i is the set of neighbours of i, and )(yij is the proportion of neighbours
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having class memberships different to j. In our model we always consider a second

order neighbourhood, that is, the eight pixels surrounding each single pixel of the

image.

In Equation (6.10),  is a fixed regularization parameter (smoothness parameter),

which, when positive, discourages neighbours having different labels. In this model,

the size of the parameter  will decide the local smoothness imposed by the prior

distribution. Figure 6.2 shows the effect of  on the prior probability ij by plotting

the relationship between the prior probability and the number of neighbours having

different labels when different  are given, fixing 1ij .

Using the background score, i , already defined in Equation (5.57) of Chapter 5,

the position parameter ij is defined using the form given by Equation (6.11). The

label coding is 1, 2 and 3 for normal, metastatic and background (non-nodal)

components, respectively. The ij allows the probability that the pixel is

background )3( j to depend on its position in the image (measured by its distance

id from the centre of the image, using the function )( idf in Equation (5.57) with

fixed 5.1 ). The remaining probability is split equally between the two nodal

groups.

















2,2/)1(

1,2/)1(

3,

jif

jif

jif

i

i

i

ij







 (6.11)

Figure 6.2: The relationship between the prior probability and the number of neighbours

having different labels as  varies.
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Yes

R-step:

(a) Calculate spatial prior })ˆ({-expˆ )()( k
ijij

k
ij y  , for i = 1, 2, … , n and j = 1, 2, 3, where

)ˆ( )(k

ij y is the proportion of neighbours having class labels different to j in the current configuration

of image
)(ˆ ky . See Equation 6.16.

(b) Compute the posterior probability of the unknown labels using the current estimates of
)k(

j̂ ,
)(ˆ k

iy by

,

)ˆ(ˆ

)ˆ(ˆ
ˆ

)()(

)()(

)1(




j

k
ji

k
ij

k
ji

k
ijk

ij

xp

xp
w




for i = 1, 2 , … , n and j = 1, 2, 3.

(c) Update class labels )1()1( ˆmaxargˆ   k

ij
j

k

i wy . See Section 6.3.3.2.

(d) If using RM algorithm, let
)1()1( ˆˆ   k

ij
k

ij wz ;

Use converged estimators of parameter ̂ and image configuration ŷ from the first stage

algorithm in Figure 5.8 as starting values )0(̂ ,
)0(ŷ in this second stage.

M-step:

Update the parameter vector  )1()1()1( ˆ,ˆˆ   k
j

k
j

k
j  using Equations E1-E4 in Table 5. 1.

number of pixels changing label in the

current configuration of image < cn ?

The 2nd stage convergence is reached.

No

6.3.2 Model fitting algorithm and parameter estimation

We extend the fitting algorithm of Chapter 5 to incorporate the locally dependent

MRF prior as shown in Figure 6.3.

Figure 6.3: The second stage algorithm flowchart.
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6.3.3.1 Details of the algorithm

A restoration maximization (RM) algorithm and classification RM algorithm are used

here for fitting the multivariate finite mixture model with MRF prior.

The joint probability of the observations x and pixel labels y is

),|(),|()|,(  ijypyxfyxf  (6.12)

where ),|(  ijyp is joint density of MRF model from a Gibbs distribution, defined in

Equation (6.4) and (6.10), and },...,{ 1 g  are the parameters of the component

distributions in the mixture.

As described in Chapter 5, the binary membership indicator variable,

),,...,( 1 igii zzz  was introduced as ‘missing data’ in the EM algorithm, indicating

which component the ith observation belongs to. If iy is known (that is, iz is known),

the ix are conditionally independent, using Equation (5.24) we have


 


n

i

g

j

z

ji
ijxfyxf

1 1

)}|({),|(  . (6.13)

Incorporating the joint prior density )( jP  defined in Equation (5.27), the complete-

data log-posterior density function is

}){},{( ii zx = ),|(log)(log)|(log
1 1 1

 ij

n

i

g

j

g

j
jjiij ypPxfz  

  

, (6.14)

which reduces to the expression in the form of Equation (5.49) when the iy ’s are

independent of each other.

The EM algorithm applied in Chapter 5 will not work here. The M-step is

straightforward, since we are only estimating  and not ij or  , but the E-step

requires the ijz in Equation (6.14) to be replaced by their conditional expectation

given the current parameter estimate ̂ and the observed data x ,

)ˆ,(ˆ )1()1(   k
ij

k xzEz
ij

 . (6.15)

This is non-trivial, because of the dependence structure introduced by the MRF.
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In order to deal with the above situation, a practicable approach called the

restoration-maximization (RM) algorithm by Qian and Titterington (1991) is used

here. This generates a sequence of pairs },{ )1()1(  kk y of iterates for  and y such that

)1( ky is updated on the basis of x and )(k , and )1( k is updated from x and )1( ky .

Given the current },{ )()( kk y , the general procedure of the RM algorithm is as follows,

(1) The R-step (the E-like step) updates )1( ky from ),|( )(kxyp  .

In order to update each pixel iy , we adopt the approach suggested by Besag (1986) in

his iterated conditional modes (ICM) algorithm. Given the data x and the current

realization of the neighbourhood iy , the algorithm updates each pixel iy by the class

label which maximizes the conditional posterior probability:




 
G

j

k
jij

k
ij

k
jij

k
ijk

ij

xp

xp
w

1

)()(

)()(

)1(

)ˆ(ˆ

)ˆ(ˆ
ˆ




for j=1,2,…,g and i=1,2,…,n. (6.16)

where )}ˆ(exp{)|( )()( k
ijijii

k yyjyp
ij

   . (6.17)

Thus )1()1( ˆmaxargˆ   k
ij

j

k
i wy (6.18)

Then ijz in Equation (6.14) is replaced by either )1(ˆ k

ij
w , for an EM-type algorithm or by



 






otherwise,0

ˆif,1
ˆ

)1(
)1( jy

z
k

ik
ij (6.19)

for a CEM-type algorithm.

(2) The M-step updates )1( k by maximizing Equation (6.14) with ijz replaced by

ijẑ with respect to  .

For mixtures of multivariate Gaussian or t distributions we have the same update

equations as given in Chapter 5 (Equations E1-E4 in Table 5.1) for jj
ˆ,ˆ  .
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6.3.3.2 Some issues in the implementation of the algorithm

1) Image updating by ICM

The R-step corresponds to a single cycle of Besag’s ICM, where each pixel is updated

by the class label which has maximum conditional probability. Here a synchronous

updating is used in which all the pixels are updated simultaneously rather than cycling

through the image. The main advantage of this approach is computational simplicity.

Also the updating results will not be affected by the updating sequence of pixels.

However convergence can no longer be guaranteed and small oscillations may occur.

One possible modification to this pixel updating would be to update them

sequentially. Another would be to use a number of cycles of updating the image

before updating the estimators of the parameters. Neither of these has been tried since

the option chosen appears to work satisfactorily.

2) Parameter updating

Two approaches are used to update the estimators of the parameters. One is to use

conditional posterior probability ijŵ given the spectral records x and the current

realization of the neighbourhood iy to replace the ijz in Equation (6.14). The other,

CEM-type approach is to use a ijz that corresponds to iŷ , via Equation (6.19). The

former method keeps the algorithm converging smoothly. The latter method can be

very much affected by the initial estimate ŷ . If the initial crude estimate of the image

from the first stage algorithm is plausible and close to the true image convergence will

be reached quickly, otherwise it may take a long time or be very difficult to work up

to the true scene.

Because it assigns each pixel definitely to one group for parameter estimation, the

CEM algorithm tends to produce more compact and non-overlapping distributions. In

some applications this may be an advantage. Here it is not cleat that it will be.
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CHAPTER 7

APPLICATION OF IMAGE CLASSIFICATION

METHODS TO SCANNED SENTINEL LYMPH

NODES

In Chapters 5 and 6 two customized dimension reduction methods have been

described to project the spectral data from the scanned lymph nodes into a low-

dimensional space and a partially supervised image classification algorithm

employing a Bayesian multivariate finite mixture model with Markov random field

spatial prior has been developed on the low-dimensional data to model the three

unknown groups in the image. In this chapter we explore the application of this image

classification model to the diagnosis of sentinel lymph node metastases in breast

cancer from the ESS images. The models are studied by exploring the two dimension

reduction methods, choosing model parameters and priors, assessing classification

performance and analyzing model sensitivity. A hierarchical structure of the model

framework is shown in Figure 7.1.
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Figure 7.1: Hierarchical structure of observations, parameters, priors, and values of constants

used in our analysis of the sentinel lymph node data. In the square boxes are tuning

parameters or choices, in the ellipses are data or fixed constants.

7.1 Data description and pre-processing

As described in Chapter 5, two datasets collected in different way were used in this

study and each performs its own function in training the classification algorithm. One

is the ESS manual measurement data, including 3,523 spectra measured from 365

totally normal nodes and 39 totally metastatic nodes from 241 patients, all with

known reference pathology. For each node spectra were manually measured at up to

16 random sites on the bivalved node with one spectrum taken at one site. Reference

pathology is available on a per-site (or per-spectrum) basis. The mean spectral pattern

of the manual data is shown in Figure 5.5. The other is the ESS scanning data,

including another 48 sentinel lymph nodes from 26 patients of which 21 are normal

and 27 partially metastatic or totally metastatic, with a 2020 pixel image of 400

spectra for each node. Reference pathology is available on a per-node basis, but not

on a per-spectrum basis for individual pixels in the image. For each node, the

Scanning data

nodesallX .

Choose dimension reduction approach

discriminant reduction: int0.int ,15, kkkext 

or PCA reduction:
lg

kk ,15

Multivariate finite mixture model
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pppp
v,,,  

Multivariate finite mixture model with MRF prior

ndv2 = 1 to 20, normal,  = 0 to 8,
p

 = 1 to 5.

Summary of manual data
'''''''' ,,, cncn VVmm

Reduced scanning data kX
( lkk  or intk1 )

Classification results

Manual data
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scanning data contains not only normal or metastatic nodal group, but usually a third

group which is a very variable non-nodal group from a background area, possibly

contaminated by blood or lipid. No training data are available for this group.

Standard data pre-processing was carried out on spectra from both manual

measurements and scanning measurements to improve signal quality. This involved

spectral smoothing using the Savitzky–Golay filter (Savitzky and Golay 1964),

cropping the noisy ends of the spectra before 400nm and after 800nm and normalizing

using the standard normal variate (SNV) method (Barnes et al. 1989).

A preliminary analysis on the manual measurement data was first carried out by a

PCA followed by a LDA to find the canonical variate, the direction maximizing the

discrimination between normal and metastatic nodes. Leave-out-one-site cross-

validation was undertaken to access the accuracy of the LDA analysis on a per-site

basis. Figure 7.2 shows the distribution of canonical scores from normal (blue) and

metastatic spectra (red) in the manual measurement data derived from a LDA using 20

principal components. There are two dominant peaks, the first at a score of 0,

corresponding to normal nodes and some part of metastatic nodes, and the second at 4

corresponding to metastatic nodes. Scores from metastatic nodes have a multimodal

distribution. It may be that despite the selection of totally metastatic nodes, there

remains a mix of normal and metastatic spectra, presumably related to remaining

normal structures within the metastatic nodes, or it may be that the metastatic areas

are genuinely very variable.
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Figure 7.2: Distribution plot of LDA canonical scores of spectra from manual measurement

data. The frequency is plotted as a proportion of class. Normal nodes shown in blue,

metastatic nodes in red.
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7.2 Dimension reduction

The two different options for dimension reduction described in Section 5.5.1 were

explored on both manual and scanning data.

7.2.1 Discriminant dimension reduction

For the discriminant dimension reduction method, a variable external to the scanning

data was constructed by projecting each scanned node data onto the direction of the

canonical variable derived from the LDA on the first extk PC scores of the manual data

(using Equations 5.10-5.11). Internal variable(s) were constructed in two steps. First

do a preliminary PCA to extract the first 0.tink PCs of all the scanned nodes in a

subspace orthogonal to the direction of the external variable (using Equations 5.12-

5.14). Then for the node of interest its scores on the 0.tink PCs are calculated for

further extracting the first tink PCs as internal variable(s) (using Equations 5.16-5.17).

The dimension-reduced scanning data of each node thus contain one external variable

and one or more internal variable(s), with dimensions reduced from pn  (n = 400, p

= 1801 here) to )1(  tinkn .

The manual data were then projected into the space spanned by the directions of

the external and internal variables for this node. Along these directions means and

variances derived from normal and metastatic spectra were calculated to be used in

the priors for normal and metastatic components (using Equations 5.12, 5.19-5.20). In

the first dimension the prior mean is -0.21 for the normal component, and 2.44 for the

metastatic component. More details about these priors can be found in Section 7.3.

External and internal variables were constructed on each scanned node for a grid

of values of extk , the number of principal components constructing the external

variable by using LDA , and tink , the number of internal variable(s), with extk ranging

from 10 to 20 and tink from 1 to 5. Here we fix 0.tink at 15 since this preliminary PCA

is really just used to reduce the dimension for convenience and 15 PCs capture the

variability of the data in the subspace orthogonal to the external variable.
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7.2.2 PCA dimension reduction

The PCA dimension reduction method was carried out in two stages as described in

Section 5.5.1.1. A global PCA first projected each scanned node data into a space

spanned by the first
g

k PCs derived from a preliminary PCA reduction on the pooled

scanning data (using Equations 5.6-5.7); then a local PCA projection used a PCA on

the
g

k PC scores of the node of interest to extract the local variables, the first lk PCs

for each node (using Equation 5.9). After this, the dimension-reduced scanning data of

each node contain lk PC scores, with dimensions reduced from pn (n = 400, p =

1801 here) to lkn  .

The manual data were first converted into the same
g

k -dimensional space as

above for calculating means and variances for normal and metastatic components.

These means and variances were then converted into the same lk -dimensional space

(using Equations 5.10-5.11) as that from the node of interest for later use in the priors

for normal and metastatic components.

A global PCA and a local PCA were carried out on each scanned node with

g
k fixed at 15 and lk varying from 2 to 5.

7.3 Bayesian multivariate finite mixture model

application (stage 1)

The partially supervised image classification algorithm employing a Bayesian

multivariate finite mixture model described in Chapter 5 was then applied to the low-

dimensional data (reduced by either PCA dimension reduction method or discriminant

dimension reduction method) to model the three unknown groups (normal, metastatic

and non-nodal) in the images from the scanned measurements.

Both the multivariate Gaussian distribution and multivariate t distribution with

degrees of freedom v ranging from 3 to 20 were tried for the component density of

the mixture model. For both the Gaussian and t distributions, the normal inverse

Wishart prior with parameters derived from the manual measurements was used as a
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prior on the parameters of the components of the mixture, with Gaussian prior for

component mean vector  conditional on scale matrix  and inverse Wishart prior

for  (Equations 5.26-5.27).

The following choices were made following the suggestions from Fraley and

Raftery (2007) for the prior hyperparameters for multivariate mixtures. Here the prior

hyperparameters, mean p , scale p and shrinkage p are different for each

component of the mixture with ),,(),,,( 321321 pppppppp  

and ),,( 321 pppp   for normal, metastatic and non-nodal components respectively.

 ppp 321 ,,  : For the normal and metastatic components, we take '''' , cn mm , the

mean of normal and metastatic groups from the manual data (Equations 5.10

and 5.19) as prior means pp 21 ,  . For discriminant reduction, the first

dimension mean is 21.0]1[1 p for the normal component, and

44.2]1[2 p for the metastatic component; for PCA reduction, the prior

distributions for the parameters of normal and metastatic groups are projected

into a different space for each individual scanned node. To aid interpretation

and simplify the image correction rules described in Section 5.5.3.2 the sign of

the first PC was chosen so that ]1[]1[ 12 pp   . For the non-nodal component,

a few spectra selected by an experienced physicist from a non-nodal area of a

scanned node were used to generate a prior mean p3 .


1

3
1

2
1

1 ,,   ppp : For the normal and metastatic components, we take as prior

scales k

cp

k

np gVgV /2''1

2

/2''1

1 ,   , i.e., the empirical covariance matrix of

normal and metastatic groups from the manual data (Equations 5.11 and 5.20)

divided by the square of the number of components, g ( 3g ), to the power

1/k, k being the reduced dimension of the spectra. For the non-nodal

component, the same selected spectra from a non-nodal area as described

above for prior mean were used to generate a prior scale 1
3
 p (more details are

given in Section 7.7.2.3).

 pv : The marginal prior distribution of  is a multivariate t distribution

centred at
p

 with 1 kv
p

degrees of freedom. The mean of this distribution

is p provided that kv
p
 , and it has a finite covariance matrix provided that

1 kv
p

(Schafer 1997). Here we choose 2 kv p , the smallest integer
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value for the degrees of freedom that gives a finite covariance matrix, using

the same degrees of freedom for all components.


p

 : The shrinkage vector of the prior distribution, ),,( 321 ppp  , gives

weights on the contributions of the means of the prior distribution to the

posterior means (as shown in Equation 5.45).

o For discriminant dimension reduction, there are considerable variations

in the metastatic group, with two obvious peaks for the distribution of

the canonical scores in Figure 7.2 for example. Therefore more

certainty is made about the prior information on the normal component

than that on the metastatic one by choosing the prior weight vector

)1.0,1.0,2(
p

 with a larger value, 2, for the normal component and a

smaller value, 0.1, for both metastatic and non-nodal components.

o For PCA dimension reduction (after a change of sign where necessary,

as described above) the first dimension PC scores of normal spectra

show positive values while the scores of metastatic spectra vary

considerably in the negative region. Thus a stronger prior for the

normal component and weaker priors for both metastatic and non-

nodal components are chosen for the mixture model by giving
p

 the

values of (5, 2, 1) for normal, metastatic and non-nodal components,

respectively. These specific values were arrived at by experiments.

The model fitting was implemented by the iterated EM algorithm of Figure 5.8.

Rather than using the discrete classification result (via CEM), here the M-step uses

the conditional expectation as the value of )1(ˆ k

ij
z . This was suggested by some

preliminary results running both algorithms. Although CEM may converge faster, the

EM algorithm seems always to give an image closer to the real picture.

7.4 Markov random field spatial prior (stage 2)

Spatial interactions between neighbouring or nearby pixels modelled by a Markov

random field were then imposed onto the Bayesian multivariate finite mixture model

using the prior in Equation (6.10) with smoothing parameter  ranging from 0 to 30,
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and with position parameter ij as specified in Section 6.3.1. The other prior

specifications were unchanged from the model without spatial interaction.

The model fitting was implemented by the RM (the EM-like) algorithm of Figure

6.3 starting from the configuration reached after the stage 1 fitting. In this stage also

the conditional expectations were used in the M-step for the values of )1(ˆ k

ij
z instead of

the classification values (via CEM). Apart from the fact that EM generates a better

image, this is also because the CEM result can depend strongly on the initial estimate

from the stage 1.

7.5 Image classification performance assessment

Since reference pathology is not available for individual pixel of the images, but only

available for each node, the classification was carried out on a per node basis. To

define conditions for labelling each node as metastatic or non-metastatic, we simply

counted the number of positive (metastatic) pixels in the node. The likelihood of

scattered false positive pixels occurring over a node is very slim since the spatial

correlation between adjacent pixels of image has been taken into consideration in the

model fitting, hence we classify a node as metastatic if it has even one pixel thus

classified.

Leave-out-one-node cross-validation was used to assess performance, the

classification accuracy being measured by sensitivity, specificity and AUC, the area

under the ROC curve. The global dimension reduction was carried out inside the loop,

that is, on the pooled scanning data with the omitted node not included in the

procedure. An image was generated by plotting a 2020  matrix of probabilities with

the following colour codings. Black indicates the pixels classified as non-nodal

component; for normal or metastatic component we used the posterior probability of

the pixel belonging to the metastatic component to generate a colour between red

(represents positive) and blue (represents negative) for each pixel. This image was

compared by eye with the photograph of the node to assess the method’s success in

reconstructing its shape.



133

7.6 Classification results

7.6.1 Using discriminant dimension reduction

For discriminant dimension reduction, in order to search for optimal combinations of

extk , intk , stv1 , ndv2 and  (with  fixed at 1.5 as mentioned in Section 5.5.3.2), instead

of an exhaustive searching of all the possible combinations of these parameters, a

more restricted approach was adopted. First we varied combinations of extk and intk for

a restricted number of values of ndst vv 21 and, , and then we fixed extk = 20 and intk =

1, the values which gave the best results in this limited search. The leave-out-one-

node cross-validation results for the various combinations of stv1 and ndv2 (the number

of degrees of freedom of the multivariate t distribution or multivariate Gaussian

distribution in the first and second stage algorithms) and  with these fixed values of

extk and intk are shown in Table 7.1. The whole computation is very time-consuming,

even just for generating the results in Table 7.1 with one combination of extk and intk it

took several weeks and several computers to run the algorithm with many times.

During the experiments, we found when ndv2 is smaller than stv1 , the algorithm does

not always converge, so results are only given for the combinations with ndst vv 21  .

For discriminant dimension reduction, the combination extk = 20, intk = 1, 41 stv ,

42 ndv with a wide range of  starting from 8 (or other choices with ndv2 = 10, 20 and

a correspondingly higher  ) gave the best results, with sensitivity, specificity and

AUC of 81%, 90.4% and 0.86, respectively. The scanned nodal spectra data are here

reduced to a space with two dimensions, one external variable, and one internal

variable. In the rest of the chapter we will refer to the combination of extk = 20, intk =

1, 41 stv , 42 ndv and 8 as the optimal model for the discriminant reduction

method, with a ROC curve shown in the left panel of Figure 7.5. Some examples of

the mapping images of metastatic nodes and normal nodes generated by this optimal

model are shown in Figure 7.3.
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Figure 7.3: Examples of the mapping images from three partially or totally metastatic nodes

(first three rows) and two totally normal nodes (last two rows) using the partially supervised

image classification model via discriminant reduction. The left column shows the photographs
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of the nodes (red dotted line circles the supposed metastatic area of the partially metastatic

node). The middle and right columns are the 1st stage and 2nd stage resulting maps of the

scanned nodes, with posterior probability scores plotted as colours. Red corresponds to

spectra indicative of metastases, blue corresponds to spectra indicative of normal lymph tissue,

and black corresponds to non-nodal spectra.

Table 7.1: Accuracy results for discriminant reduction method using various combinations of

stv1 and ndv2 (degrees of freedom of t or Gaussian distribution in the 1st and 2nd stage

algorithms respectively) and  (the smoother parameter) with 20extk and 1intk .

Accuracy
st

v
1 nd

v
2 

Sensitivity (%) Specificity (%) AUC

4 4 4 78 90 0.84

4 4 5 81 90 0.85

4 4 6 81 90 0.85

4 4 8 81 90 0.86

4 4 10 81 90 0.86

4 4 15 81 90 0.86

4 4 20 81 90 0.86

4 4 30 81 90 0.86

4 10 4 78 90 0.84

4 10 5 78 90 0.84

4 10 6 78 90 0.84

4 10 8 78 90 0.84

4 10 10 78 90 0.84

4 10 15 81 90 0.86

4 10 20 81 90 0.86

4 10 30 81 90 0.86

4 20 4 78 76 0.80

4 20 5 78 76 0.81

4 20 6 78 81 0.83

4 20 8 78 86 0.83

4 20 10 78 86 0.83

4 20 15 78 90 0.84

4 20 20 78 90 0.84

4 20 30 81 90 0.86

4 norm 4 78 76 0.82

4 norm 5 78 76 0.82

4 norm 6 78 76 0.82

4 norm 8 78 76 0.82

4 norm 10 78 76 0.82

4 norm 15 78 90 0.84
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4 norm 20 78 90 0.84

4 norm 30 78 90 0.84

10 10 4 78 71 0.77

10 10 5 78 71 0.77

10 10 6 78 71 0.77

10 10 8 78 71 0.78

10 10 10 78 71 0.79

10 10 15 81 71 0.80

10 10 20 81 71 0.81

10 10 30 81 71 0.81

10 20 4 78 71 0.78

10 20 5 78 71 0.77

10 20 6 78 71 0.77

10 20 8 78 71 0.78

10 20 10 78 71 0.79

10 20 15 78 71 0.79

10 20 20 78 71 0.79

10 20 30 81 71 0.81

10 norm 4 78 62 0.75

10 norm 5 78 62 0.77

10 norm 6 78 62 0.77

10 norm 8 78 62 0.77

10 norm 10 78 62 0.78

10 norm 15 78 71 0.78

10 norm 20 78 71 0.79

10 norm 30 78 71 0.79

20 20 4 78 67 0.78

20 20 5 78 67 0.78

20 20 6 78 67 0.79

20 20 8 78 67 0.80

20 20 10 78 67 0.80

20 20 15 78 67 0.79

20 20 20 78 71 0.80

20 20 30 81 71 0.81

20 norm 4 78 62 0.77

20 norm 5 78 62 0.78

20 norm 6 78 62 0.78

20 norm 8 78 62 0.79

20 norm 10 78 62 0.79

20 norm 15 78 67 0.79

20 norm 20 78 67 0.79

20 norm 30 78 67 0.79
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norm norm 4 70 43 0.76

norm norm 5 70 43 0.76

norm norm 6 70 43 0.76

norm norm 8 70 43 0.76

norm norm 10 70 43 0.77

norm norm 15 70 43 0.77

norm norm 20 70 43 0.77

norm norm 30 70 43 0.76

7.6.2 Using PCA dimension reduction

For the PCA dimension reduction method, the same procedure as used in discriminant

reduction was used to search the optimal combinations of
g

k , lk , stv1 , ndv2 and  , that

is,
g

k and lk were first decided by experiment using restricted choices of ndst vv 21 , and

 , and then fixed to explore the other parameters in more detail. Among all the

choices, the model worked best in a two-dimensional space with 15
g

k and 2lk .

Table 7.2 Shows the leave-out-one-node cross-validation results for various

combinations of stv1 , ndv2 and  for these choices of dimension. As in discriminant

reduction, the results here are only given for combinations with ndst vv 21  since

otherwise the model may fail to converge. For PCA dimension reduction, the

combination
g

k = 15, lk = 2, stv1 =10, 102 ndv and 20 gave the best results, with

sensitivity, specificity and AUC of 88.9%, 76% and 0.81, respectively, and a ROC

curve shown in the right panel of Figure 7.5. Some examples of the mapping images

from metastatic nodes and normal nodes generated by this optimal image

classification model via PCA reduction method are shown in Figure 7.4. The same

nodes as shown in Figure 7.3 are used here for convenience of comparison.
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Figure 7.4: Examples of mapping images from three partially or totally metastatic nodes (first

three rows) and two totally normal nodes (last two rows) using the partially supervised image

classification model via PCA reduction. The left column shows the photographs of the node (red
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dotted line circles the supposed metastatic area of the partially metastatic node). The middle and

right columns are the resulting maps of spectra using the 1st and 2nd stage algorithms of the model,

with posterior probability scores plotted as colours. Red corresponds to spectra indicative of

metastases, blue corresponds to spectra indicative of normal lymph tissue, and black corresponds

to non-nodal spectra.

Table 7.2: Accuracy results for PCA reduction method using various combinations of stv1 and

ndv2 (degrees of freedom of t or Gaussian distribution in the 1st and 2nd stage algorithms

respectively) and  (the smoother parameter) with gk = 15 and lk = 2 .

Accuracy
st

v
1 nd

v
2 

Sensitivity (%) Specificity (%) AUC

3 3 4 85 62 0.76

3 3 5 85 62 0.77

3 3 6 85 62 0.78

3 3 8 85 62 0.79

3 3 10 85 62 0.79

3 3 15 85 62 0.79

3 3 20 85 62 0.79

3 3 30 81 62 0.77

4 4 4 78 67 0.68

4 4 5 78 67 0.68

4 4 6 78 67 0.68

4 4 8 78 67 0.68

4 4 10 78 67 0.69

4 4 15 78 67 0.68

4 4 20 78 67 0.68

4 4 30 74 67 0.66

4 10 4 78 62 0.66

4 10 5 78 67 0.68

4 10 6 78 67 0.68

4 10 8 78 67 0.67

4 10 10 78 67 0.68

4 10 15 78 67 0.69

4 10 20 78 67 0.68

4 10 30 78 67 0.67

4 20 4 78 48 0.63

4 20 5 78 48 0.63

4 20 6 78 48 0.63

4 20 8 78 48 0.65

4 20 10 78 52 0.66

4 20 15 78 52 0.67
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4 20 20 78 67 0.69

4 20 30 78 67 0.68

4 norm 4 78 33 0.64

4 norm 5 78 33 0.65

4 norm 6 78 33 0.65

4 norm 8 78 33 0.65

4 norm 10 78 33 0.67

4 norm 15 78 38 0.67

4 norm 20 78 38 0.67

4 norm 30 78 38 0.67

10 10 4 89 71 0.80

10 10 5 89 71 0.79

10 10 6 89 71 0.79

10 10 8 89 71 0.80

10 10 10 89 71 0.80

10 10 15 89 71 0.81

10 10 20 89 76 0.81

10 10 30 85 71 0.80

10 20 4 89 62 0.79

10 20 5 89 62 0.78

10 20 6 89 67 0.79

10 20 8 89 67 0.79

10 20 10 89 62 0.79

10 20 15 89 71 0.81

10 20 20 89 71 0.81

10 20 30 89 71 0.81

10 norm 4 89 38 0.76

10 norm 5 89 38 0.79

10 norm 6 89 43 0.78

10 norm 8 89 43 0.80

10 norm 10 89 43 0.80

10 norm 15 89 43 0.81

10 norm 20 89 43 0.81

10 norm 30 89 48 0.81

20 20 4 85 67 0.78

20 20 5 85 67 0.78

20 20 6 85 67 0.78

20 20 8 85 67 0.78

20 20 10 85 67 0.78

20 20 15 85 67 0.79

20 20 20 85 67 0.80

20 20 30 85 71 0.80
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20 norm 4 85 43 0.77

20 norm 5 85 43 0.78

20 norm 6 85 48 0.78

20 norm 8 85 48 0.78

20 norm 10 85 48 0.78

20 norm 15 85 48 0.80

20 norm 20 85 48 0.80

20 norm 30 85 57 0.80

Figure 7.5: ROC curves from leave-out-one-node cross-validation using the optimal image

classification model after discriminant dimension reduction (left, extk = 20, tink = 1, 41 stv ,

42 ndv and 8 ) and PCA dimension reduction (right, gk = 15, lk = 2, 101 stv ,

102 ndv and 20 ).

7.6.3 Discussion of the results

The method gives acceptable accuracy using both of the dimension reduction

approaches. Some conclusions that apply in either case are:

 Although the spaces themselves are different, two dimensions are sufficient to

separate the three groups using either of the dimension reduction approaches.

 In both stages of the model, the multivariate t distribution gives better results,

with higher AUC and specificity than the multivariate Gaussian distribution

(This is discussed further in Section 7.7.4).

 Higher degrees of freedom for the t distribution in the first stage of the model,

stv1 , require at least the same level of degrees of freedom in the second stage

of the model, ndv2 . The algorithm may run into problems when ndv2 < stv1 , not

always converging.
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 Higher degrees of freedom for the t distribution in the second stage of the

model need to be combined with a stronger spatial prior with higher smoother

parameter  to work well.

 Large stv1 with subsequently large ndv2 gives high sensitivity; small stv1 with

small ndv2 gives high specificity.

 The image generated by the first stage of the model contains scattered spots

that are probably not genuine. Introducing spatial priors in the second stage of

the model normally does not improve the classification accuracy in terms of

sensitivity, specificity and AUC on per-node basis, but does improve the image

quality in terms of image smoothness and probable closeness to the real

picture.

Some specific conclusions and comparisons for the two dimension reduction

options are drawn as follows:

 For the PCA dimension reduction method, classification models with good

accuracy result from using moderate or high degrees of freedom for the

multivariate t distributions and a spatial prior with a high value of the

smoother parameter  . The combinations of 101 stv with 102 ndv and

4 (or with 202 ndv and )15 give the better accuracy than other

choices with sensitivity, specificity and AUC of 89%, 76% (or 71%) and 0.81.

 For the discriminant dimension reduction method, classification models with

good accuracy result from lower degrees of freedom of the multivariate t

distribution for a wide range of values of  . The combinations of stv1 = 4 with

ndv2 = 4, 10, 20 all give good accuracy with sensitivity, specificity and AUC of

81%, 90% and 0.86, respectively. Some interactions between ndv2 and  can

be seen from Table 7.1. For the model with stv1 = 4, as ndv2 increases from 4 to

20, the minimum value for a strong enough smoother  to give good accuracy

increases from 8 to 30.

 In general the discriminant dimension reduction method works better than the

PCA dimension reduction method.

o Using discriminant dimension reduction, the two extracted dimensions

are feature-oriented and thus more interpretable. The external variable
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works in a direction capturing most of the variation between the

normal and metastatic groups, and the internal variable works in a

direction capturing most of variation between the nodal and non-non-

nodal groups. Using PCA dimension reduction, the separation of the

three groups by the first two dimensions of the local PCA projection

varies with different nodes, the first dimension can be either the

direction capturing most of the variation between the nodal and non-

nodal groups or the direction capturing most of the variation between

the normal and metastatic groups. More details can be found in Section

7.7.1. One consequence is the need to use higher degrees of freedom in

the t-distribution to impose the prior grouping more tightly.

o Models using PCA dimension reduction and higher degrees of freedom

tend always to find three components in the mixture although in some

cases there are only one or two components. It may give a better

representation of a node with all three of normal, metastatic and

background components, and thus gives higher sensitivity. However,

there is also the possibility to misclassify some of the normal pixels as

metastic when in fact there are only normal and background groups,

thus it gives lower specificity.

o An option that works well is to use lower degrees of freedom in the

first stage of the model with the discriminant dimension reduction

method. This results in rapid convergence of the first stage to a rough

solution. With an appropriate choice of degrees of freedom and

smoother parameter in the second stage of the model this stage then

converges to a good image.

o The image results generated by the model following the discriminant

reduction method are closer to the real picture than that generated by

the model following PCA reduction method.
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7.7 Parameter tuning, model sensitivity, and comparison

of model choices

7.7.1 Comparison of the dimension reduction methods

The classification models described in Section 7.6 derived from two-dimensional data

extracted by either discriminant or PCA dimension reduction method, though built in

the same way, work in a completely different space. Two examples are given here to

show how the classification works in the two different two-dimensional spaces

constructed from the same scanned node data.

Figure 7.6(a) demonstrates how the three groups of a partially metastatic node are

classified in a two-dimensional space constructed by discriminant dimension

reduction method. The classification of the pixels in these figures is that resulting

from the application of the model: there is no reference pathology at a pixel level.

Along the first dimension, the external variable (in the left panel), the metastatic

component can be discriminated from the normal and non-nodal components; along

the second dimension, the only internal variable here (in the right panel), the non-

nodal component can be discriminated from the normal and metastatic components.

The peak of the distribution of the external variable scores from the metastatic

component is close to the higher mode of the distribution of canonical scores from

metastatic spectra in Figure 7.2.

For the same partially metastatic node Figure 7.6(b) illustrates how three groups

are classified in the different two-dimensional space constructed by the PCA

dimension reduction method. Along the first dimension, the metastatic component can

be discriminated from normal and non-nodal components; along the second

dimension only some of the spectra from the non-nodal component can be

discriminated from the nodal component, and some misclassification of the nodal

component as non-nodal component occurs in this case. The mapping image derived

from the data reduced by discriminant dimension reduction method is much closer to

the real picture of the node than that derived from the data reduced by the PCA

dimension reduction method.
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Another example given in Figure 7.7 (a) shows three groups from a metastatic

node being fairly well separated in the two-dimensional space constructed by the

discriminant dimension reduction method. In Figure 7.7 (b) the spectra from the same

node are projected to a two-dimensional space via PCA dimension reduction method.

Along the direction of the first dimension in Figure 7.7 (b), the three groups are

already well separated.

Using either reduction method, the best performing models all use a two-

dimensional space. Using two dimensions in directions orthogonal to each other

seems to be a reasonable and sufficient choice to do discrimination between three

groups. Following the discriminant dimension reduction method, the first and second

dimensions (i.e. the external and internal variables) typically work as two classifiers,

the first discriminates between the two nodal (metastatic and normal) components and

the second between non-nodal and nodal components, Following the PCA dimension

reduction method, the first and second dimensions (i.e. the two local variables) work

in a different two-dimensional space for each node, and how three components in the

mixture are separated in this two-dimensional space really depends on the features of

each individual node, especially the behaviour of the variable non-nodal component.

The first dimension itself may or may not be enough to discriminate one of three

components from the others, or may even be good enough for the discrimination

between three components.

In these two examples, using discriminant reduction the peak of the distribution

for the metastatic component from the scanning data is either around a score of 4.5

(Figure 7.6(a)) or around 0 (Figure 7.7(a)). This is consistent with the appearance of

two dominant peaks in the LDA analysis of the manually measured metastatic nodes

(as shown in Figure 7.2).
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Figure 7.6 (a): Plots of external variable scores (left panel) and internal variable scores (right

panel) of spectra from a partially metastatic node (sc8471) after discriminant dimension

reduction. In rows 2, 3, 4 histogram of normal spectra (i.e. spectra classified as normal) is

shown in blue, metastatic in red and non-nodal in green. Last row shows the photograph (left)

and the mapping image (right, red indicative of metastatic spectra, blue of normal and black

of non-nodal) of this node.
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Figure 7.6 (b): Plots of the 1st dimension PC scores (left panel) and the 2nd dimension PC

scores (right panel) of spectra from a partially metastatic node (sc8471) after PCA dimension

reduction. In rows 2, 3, 4 histogram of normal spectra (i.e. spectra classified as normal) is

shown in blue, metastatic in red and non-nodal in green. Last row shows the photograph (left)

and the mapping image (right, red indicative of metastatic spectra, blue of normal and black

of non-nodal) of this node.
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Figure 7.7 (a): Plots of external variable scores (left panel) and internal variable scores (right

panel) of spectra from a metastatic node (sc8841) after discriminant dimension reduction. In

rows 2, 3, 4 histogram of normal spectra (i.e. spectra classified as normal) is shown in blue,

metastatic in red and non-nodal in green. Last row shows the photograph (left) and the

mapping image (right, red indicative of metastatic spectra, blue of normal and black of non-

nodal) of this node.
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Figure 7.7 (b): Plots of the 1st dimension PC scores (left panel) and the 2nd dimension PC

scores (right panel) of spectra from a metastatic node (sc8841) after PCA dimension reduction.

In rows 2, 3, 4 histogram of normal spectra (i.e. spectra classified as normal) is shown in blue,

metastatic in red and non-nodal in green. Last row shows the photograph (left) and the

mapping image (right, red indicative of metastatic spectra, blue of normal and black of non-

nodal) of this node.
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7.7.2 Choice of prior and sensitivity of results to prior

assumptions in mixture model

Choice of prior distributions can be a contentious issue in any situation where

Bayesian methods are applied, and the mixture model and our application provide

particular problems in this aspect. As described in Section 7.3, in our application,

informative priors based on the manual data are given for the normal and metastatic

components, although the prior for the metastatic component makes no attempt to

model the apparent multimodal distribution seen in Figure 7.2. For the non-nodal

component a diffuse prior distribution was used with a prior mean derived from some

non-nodal spectra selected from the scanned nodes by an experienced physicist and a

large prior variance. A shrinkage parameter (prior weight) is also included for each

component in the mixture with a relatively strong value for the normal component and

weak values for both metastatic and non-nodal components.

However, we found that even when the priors are relatively diffuse, inference can

still be influenced by the priors. The sensitivity of the Bayesian inference to the priors

is investigated here by comparing the effect of different choices.

7.7.2.1 Sensitivity to the shrinkage parameter,
p

 , of the prior

distribution

As described in Equations (5.32)-(5.33), the conditional posterior mean

jp

jp

jp

jp

jp
n

x
n

n







 

























~ is a weighted average of the prior mean jp and the

sample mean x of one scanned node (n is the number of pixels from one scanned

node, n = 400), which can be viewed as adding jp observations with value jp to

group j in the data. The shrinkage parameter of the prior distribution, jp , also called

the prior weight here, thus gives the weight on the contributions of the prior mean jp

to the posterior mean jp~ . It is standard to refer to jp as the shrinkage parameter, as

it governs the extent to which the sample mean x is shrunk toward its prior mean, jp .

The choices of jp will crucially influence the posterior distribution of means and
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variances as in Equations (5.32)-(5.33). Strong weight (larger jp ) on the priors will

aid convergence and help to avoid the label switching problem. However, too strong a

weight will not allow enough flexibility for components that vary from node to node.

To reflect the variability of the metastatic and non-nodal components, we chose a

larger prior weight for normal component and a smaller one for metastatic and non-

nodal components. As described in Section 7.3 for the discriminant dimension

reduction method we give ),,( 321 pppp   the values of (2, 0.1, 0.1) for normal,

metastatic and non-nodal components, and for the PCA dimension reduction method

we chose the values of (5, 2, 1).

One example is given in Figure 7.8 to demonstrate how different choices of prior

weight affect the results of the imaging classification. Since the analysis following the

dimension reduction via the discriminant method is the same as that PCA reduction

method, but works in different spaces, here the example is given using the analysis via

discriminant reduction method using the optimal model described in Section 7.6.1

with a combination of parameters extk = 20, tink = 1, 41 stv , 42 ndv and 8 . In the

first dimension (the external variable), the prior mean was given a value of -0.21 for

the normal component, and a value of 2.44 for the metastatic component. For the non-

nodal component, the first dimension prior mean, with a value of 2.42, is very close to

that for the metastatic component.

Figure 7.8 shows an example of a partially metastatic node with three

components in the mixture and the non-nodal component being very similar to the

normal component, on the first dimension at least. From the top row in Figure 7.8 we

can see that given prior weights of (2, 0.1, 0.1) for the three components, the normal

component (solid blue line) converged to a value very close to its prior distribution

(dotted blue line). For the metastatic and non-nodal components, although their prior

means are very close to each other, their posterior distributions (solid red line and

solid green line) depart substantially from their prior distributions (dotted red line and

dotted green line) converging to what seem to be correct values because the resulting

image is plausible.

When the prior weights p rise (row 2 in Figure 7.8) the posterior density of the
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non-nodal component on the first dimension starts shifting to the right, and the area

from the non-nodal component in the image reduces. When p increases to (3, 3, 3),

rather than the correct posterior shown in row 1, here a posterior distribution between

the normal and metastatic components is fitted to the non-nodal component as shown

in row 3 of Figure 7.8. As a result, some areas from both normal and metastatic

groups are taken up by the non-nodal component while the real non-nodal group

which should appear at the top of the image has been completely misclassified as

normal. When p increases to (5, 5, 5) and (20, 20, 20), the non-nodal component

further shifts to the right, closer to its prior distribution, and more areas from the

metastatic component rather than from the normal component are then graduately

encroached by the non-nodal component. Hence, with jp increasing to a higher value,

it tends to cause the severe problem of misclassifying a metastatic node or partially

metastatic node as a normal node with non-nodal area.

Our experimental experiences show that weak prior weights on prior mean of

metastatic and non-nodal components combined with a strong prior weight for the

normal component gives the most satisfactory image classification results.

)5.2,5.2,5.2(p

)1.0,1.0,2(p
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Figure 7.8: Posterior density plots and the mapping image of multivariate mixture model on the

spectra from one partially metastatic node showing the model sensitivity to the prior weight. The

left and middle columns show the histograms for the 1st and the 2nd variable scores of

discriminant-dimension-reduced spectral data. The prior (dotted line) and posterior (solid line)

densities are superimposed on the histogram for the three components with red for metastatic, blue

for normal, green for non-nodal component and grey for the converged curve of the whole mixture

model. The right column shows the mapping image from the 2nd stage algorithm with colour

coding at each pixel (red for metastatic, blue for normal and black for non-nodal spectra). The

rows 1-5 correspond to the results when the shrinkage parameter p takes values of (2, 0.1, 0.1),

(2.5, 2.5, 2.5), (3, 3, 3), (5, 5, 5) and (20, 20, 20), respectively for prior mean of normal, metastatic

and non-nodal components. The last row shows a photograph of this node.

)5,5,5(p

)20,20,20(p

)3,3,3(p
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7.7.2.2 Sensitivity to prior distribution of mean for the non-nodal

component

An important component of the mixture model is the prior model for the means j ,

which is taken to be a multivariate normal distribution ),( 1

jjpjp
N  conditional on

the covariance matrix
j

 .

Different choices of prior means jp may affect the result of the image

convergence. Since the prior means for normal and metastatic components are given

by manual measurement data we are not going to explore the choices of these prior

means. However, the prior mean of non-nodal component, which is constructed from

some spectra selected from the non-nodal areas of scanned nodes by an experienced

physicist as described in Section 7.3, is much more speculative so that different

choices of prior mean for the non-nodal component are worth exploring.

Two examples of partially metastatic nodes in Figures 7.9-7.10 show how

different choices of prior mean for the non-nodal component affect the image

classification results, taking some plausible values of -10, -5, 0, 5 and 10 for both

dimensions of
p3

 (a two-dimensional prior mean vector for the non-nodal

component). The analysis here is based on the optimal classification model via

discriminant dimension reduction method with the prior weight )1.0,1.0,2(
p



described in Section 7.6.1.

From Figure 7.9 we can see that along the axis of the external (1st) variable the

group of non-nodal component is almost covered by the normal group but the two

nodal components can separate from each other. The non-nodal component can be

separated from nodal components along the axis of of the 2nd, internal, variable.

Different choices of prior mean p3 do not seem to have much impact on the image

results.

In contrast, in Figure 7.10, when neither external nor internal variable can easily

discriminate the non-nodal component from the nodal components, we see that taking

different values of the prior mean really affect the image results of the non-nodal

component, and also the metastatic component which seems easier to confuse with
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non-nodal than does the normal component.

Although the real mean for the non-nodal component varies tremendously from

node to node, when the prior mean takes values around 0 or between 0 and the real

mean for both external and internal variable, the parameters for the non-nodal

component converge well to a sensible looking picture, as do those for the nodal

components (which can be seen from a good match between the mapping image and

the real picture shown in the bottom row of Figure 7.9). The two-dimensional prior

mean for the non-nodal component constructed from some selected non-nodal spectra,

with a value around 2.42 for the external variable, is a reasonable compromise choice
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Figure 7.9: Posterior density plots and the mapping image of multivariate mixture model on the

spectra from one partially metastatic node for investigating the model sensitivity to the prior mean.

The left and middle columns show the histograms for the 1st and the 2nd variable scores of

)10,10(3 p

)5,5(3 p

)0,0(3 p

)5,5(3 p

)10,10(3 p
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discriminant-dimension-reduced spectral data with prior (dotted line) and posterior (solid line)

densities superimposed for three components in the mixture with red for metastatic, blue for

normal, green for non-nodal area and grey for the converged curve of the whole mixture model.

The right column shows the mapping image from the 2nd stage algorithm with colour coding at

each pixel (red for metastatic, blue for normal and black for non-nodal). Rows 1-5 correspond to

the results when the prior mean for the non-nodal component takes values

of ,] 105,0,5,-10,-2[]1[
33


pp

 with the shrinkage parameter )0.10.1,2,(
p

 . The last row

shows a photograph of this node.
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Figure 7.10: Posterior density plots and the mapping image of multivariate mixture model on

the spectra from one partially metastatic node for investigating the model sensitivity to the

)5,5(3 p

)0,0(3 p

)5,5(3 p

)10,10(3 p

)10,10(3 p
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prior mean. The left and middle columns show the histograms for the 1st and the 2nd variable

scores of discriminant-dimension-reduced spectral data with prior (dotted line) and posterior

(solid line) densities superimposed for three components in the mixture with red for

metastatic, blue for normal, green for non-nodal area and grey for the converged curve of the

whole mixture model. The right column shows the mapping image from the 2nd stage

algorithm with colour coding at each pixel (red for metastatic, blue for normal and black for

non-nodal). Rows 1-5 correspond to the results when prior mean for non-nodal component

takes values of 10,5,0,5,--10,]2[]1[
33


pp

 with the shrinkage parameter )0.10.1,2,(
p

 .

The last row shows a photograph of this node.

7.7.2.3 Sensitivity to prior distribution of variance for the non-nodal

component

Three possible choices of prior scale 1 were investigated for the non-nodal

component : (a) using the total variation of all the dimension-reduced scanning data

with three unlabelled components; (b) using the variation of the selected background

spectra determined by the physicist expert; or (c) using )( 1
2

1
1

1
3

  ppp c , where c

is a coefficient (taking the value of 1 or 0.5) and 1
1
 p and 1

2
 p are the scale matrices

of the prior distributions for normal and metastatic components, respectively, derived

from the manual data as described in Section 7.3. Both (a) and (c) result in a widely

spread prior distribution.

Investigations, not reported in detail here, suggest that the eventual classification

and image are not particularly sensitive to its choice, and we have settled for using

method (b) in our analysis.

7.7.2.4 Interactions between the shrinkage parameter p and the prior

mean p for the non-nodal component

The interactions between the shrinkage parameter (prior weight) p and the prior

mean p are investigated here on an example of a partially metastatic node.

When weak prior weight is given to the prior mean, especially for metastatic and

non-nodal components, different choices of the prior mean don’t have much impact

on the posterior mean, at least for this node, as shown in Figure 7.11 (a). When strong
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prior weight is imposed on the prior mean, different choices of prior mean do have an

effect on the posterior distributions and, as a result, in the mapping image the

component far away from its prior mean might disappear or be misclassified as an

other component with closer mean, as shown in Figures 7.11 (b)-(d).

With a relatively strong prior weight of 2 for all three components in the mixture

as shown in Figure 7.11 (b) , when the 1st dimensional value of prior mean for non-

nodal component rises from -10 to 0 (first 3 rows of Figure 7.11 (b)) a non-nodal

component appears at the top of the image. When the prior mean increases from 0 to 5

(rows 3 and 4 of Figure 7.11 (b)), the non-nodal component begins to interfere with

the metastatic component and at the same time the metastatic component encroaches

on some of the area of the normal component. When this prior mean increases from 5

to 10 (rows 4 and 5 in Figure 7.11 (b)), the non-nodal component disappears

altogether.

When the prior weight is getting stronger with pk3 increasing to 5 and 10 as

shown in Figure 7.11 (c) (d), the non-nodal component only appears when its prior

mean takes values close to the data mean.

A strong prior weight allows less flexibility and adaptation of the data to the

choices of prior mean (and variance). As a result, there are problems when the prior

and data do not agree. When modest prior weight is given, observations give greater

contributions to the updating of the posterior mean and variance, and some bias in the

choices of priors won’t spoil the image results. Although this may result in a relatively

slow convergence, it enables the parameters converge in a proper and accurate way,

especially with the preferred choices of strong prior weight for normal component and

weak prior weight for metastatic and non-nodal components as shown in Figure

7.11(a).
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Figure 7.11 (a): Posterior density plots and the mapping image of multivariate mixture model

on the spectra from one partially metastatic node for investigating the interactions between

)10,10(3 p

)5,5(3 p

)0,0(3 p

)5,5(3 p

)10,10(3 p
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shrinkage parameter and prior mean. Here the shrinkage parameter )2,0.1,0.1(
p

 . The left

and middle columns show the histograms for the 1st and the 2nd variable scores of

discriminant-dimension-reduced spectral data with prior (dotted line) and posterior (solid line)

densities superimposed for the three components in the mixture with red for metastatic, blue

for normal, green for non-nodal area and grey for the converged curve of the whole mixture

model. The right column shows the mapping image from the 2nd stage algorithm with colour

coding at each pixel (red for metastatic, blue for normal and black for non-nodal). Rows 1-5

correspond to the results with prior mean for non-nodal component taking values of

105,0,5,-10,-]2[]1[
33


pp

 . The last row shows a photograph of this node.
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Figure 7.11 (b): Posterior density plots and the mapping image of multivariate mixture model on

the spectra from one partially metastatic node for investigating the interactions between shrinkage

parameter and prior mean. Here the shrinkage parameter )22,2,(p . Rows 1-5 correspond to the

results with prior mean for non-nodal component taking values of

105,0,5,-10,-]2[]1[
33


pp

 . The last row shows a photograph of this node.
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Figure 7.11 (c): Posterior density plots and the mapping image of multivariate mixture model on

the spectra from one partially metastatic node for investigating the interactions between shrinkage

parameter and prior mean. Here the shrinkage parameter )55,5,(p . Rows 1-5 correspond to the

results with prior mean for non-nodal component taking values of 105,0,5,--10,]2[]1[ 33  pp  .

The last row shows a photograph of this node.
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Figure 7.11 (d): Posterior density plots and the mapping image of multivariate mixture model on

the spectra from one partially metastatic node for investigating the interactions between shrinkage

parameter and prior mean. Here the shrinkage parameter )1010,10,(p . Rows 1-5 correspond to

the results with prior mean for non-nodal component taking values of

105,0,5,--10,]2[]1[ 33  pp  . The last row shows a photograph of this node.

)10,10(3 p
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7.7.2.5 How the two-stage model fitting algorithm works for image

classification

Two examples are given here to show how the two-stage algorithm works. The

images are generated from two scanned nodes data after discriminant dimension

reduction.

Figure 7.12 gives an example of a partially metastatic node with three

components. Points in blue, red and green refer to the pixels classified as normal,

metastatic and non-nodal component, respectively, at the current stage.

The model uses prior distributions derived from manual data for normal and

metastatic components as described in Section 7.3, and a widely spread prior

distribution for the non-nodal component as shown in the top panel of Figure 7.12.

Guided by the prior information, the centres of the three components develop along

the directions of the external (1st) and internal (2nd) variables, being updated by the

observed data from the individual node. After the first stage fitting, shown in the

middle panel of Figure 7.12, all three groups, but especially the metastatic one, have

moved substantially from the prior positions. The groups seem to be fairly well

separated from each other, although the variances are still large for each group.

In this stage the features of the three components are seen from their distributions

to have fairly well separated means (the peak of the posterior distribution of the 1st

variable scores from the metastatic component matches one of the two modes of the

distribution of canonical scores from metastatic spectra in Figure 7.2) and a relatively

concentrated dispersion for the non-nodal component. The image configuration at this

stage shows a rough match to the photograph, with some background spots on the

upper left corner being misclassified as normal or metastatic.

In stage 2, on incorporating the spatial information into the model the groups do

not move very much, but isolated pixels are tidied up, and those misclassified pixels

from the background area all recover as shown in the bottom panel of Figure

7.12. Although the fitted posterior distributions of the three components show some

overlap with each other, the resulting image from this stage shows a much better

match to the photograph. This example shows clearly the effect of incorporating
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spatial information into the model. The estimated groups become less concentrated

and overlap more, but the resulting image is a better one.

Figure 7.13 gives an example of a node including only normal and non-nodal

components. Given relatively informative prior distributions for two nodal

components and a diffuse prior distribution for non-nodal component, three groups

are fitted in stage 1 with generally more concentrated posterior distributions. However,

when compared with the photograph, the image result (on the mid-right panel of

Figure 7.13) shows that normal and non-nodal components are separated well, but the

observations in between classified as metastatic are all false positives since metastatic

group does not exist in this node.

After stage 2 converges, all the misclassifications from stage 1 are corrected with

the effect that the whole fitted metastatic group disappears and three scattered normal

spots misclassified as non-nodal in stage 1 all flip back to normal. With spatial

information incorporated in this stage, the improvement here is significant, but not

surprising, since the smoothing parameter can eliminate a scattered small group

(misclassified metastatic group). With no class membership in the metastatic group in

stage 2, the posterior distribution for the metastatic component is the same as its prior

distribution. The between-stages image correction rules described in Section 5.5.3.2

which might also have removed the metastatic group were not applied here in order to

show clearly that the stage 2 algorithm can also fix the problem of some small group

misclassifications in the stage 1.

From both examples we can see that the two-stage algorithm works well here in a

flexible way. Stage 1 focuses on the distribution convergence with the result of tight

fitted groups, and a rough convergence is enough to generate plausible starting points

for the stage 2 fitting, avoiding wasting time in fitting a partial model at this stage.

With the MRF spatial prior incorporated in stage 2, although the distribution density

fitting might be not as good as the previous stage, the image becomes much smoother

and some misclassification caused by the small group fitting and distribution density

fitting might be able to recover. When small groups survive this stage, they are

probably real. In both cases, priors calculated from manual measurement data for the

normal component seem fairly informative and plausible. The prior for the metastatic

component seems to be less useful, or at least rather wide of the mark in Figure 7.12.
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Figure 7.12: Plot of the two-stage imaging result from a partially metastatic node after

discriminant dimension reduction. Two-dimensional prior (top left panel) and posterior (middle

and bottom left panels) probability density contour plots showing the effect of stage 1 (middle

panel) and stage 2 (bottom panel) model fitting for a mixture of three components (normal in blue,

metastatic in red and non-nodal in green). The points show the fitted class membership of each

pixel at current stage, the stars show the prior mean and posterior mean, and the ellipses represent

(95%) probability contours of the estimated probability distribution for each component. The right

panel shows the photograph of the node and the fitted images from stage 1 and stage 2 with red

indicative of metastases, blue of normal, and black of non-nodal spectra.
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Figure 7.13: Plot of the two-stage imaging result from a totally normal node after discriminant

dimension reduction. Two-dimensional prior (top left panel) and posterior (middle and bottom left

panels) probability density contour plots showing the effect of stage 1 (middle panel) and stage 2

(bottom panel) model fitting for a totally normal node with two components (normal in blue and

non-nodal in green) in the mixture. The points show the estimated class membership of each pixel

at current stage, the stars show prior and posterior means, and the ellipses represent (95%)

probability contours of the estimated probability distribution for each component. The right panel

shows the photograph of the node and the two mapping images from 2 stages with red indicative

of metastases, blue of normal, and black of non-nodal.
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7.7.3 Sensitivity of second-stage results to MRF prior

distribution

In the MRF spatial prior distribution, )}(exp{)( yuyjyp ijijiiij    , as

described in Equation (6.10),  rewards smoothness, and ij reflects the position of

each pixel in the image, giving more probability to the non-nodal group for the pixels

on the corner or edge than that in the centre, according to the definition of ij in

Equations (5.56) and (6.11).

Figure 7.14 gives an example of a partially metastatic node to show how the two-

stage algorithm works when  varies. When 0 and 1
ij

 , it is equivalent to

generating the result from the 1st stage algorithm, which we use to initialize the 2nd

stage algorithm. When  increases, the area of metastatic component extends, as

does the normal component. Some isolated pixels, generally associated with the

metastatic component, vanish. When single pixels have different labels from their

contiguous pixels, only the ones with large posterior probability of occurrence can

keep the current label. Once  reaches 8 or 10 the image is as smooth as the pixel

size will allow. Here we take the value of 8 for discriminant dimension reduction and

the value 4 for PCA dimension reduction as compromise choices of  to keep the

mapping images closer to the real pictures in general.

Figure 7.15 shows the effect of the position parameter ij (defined by Equations

(6.11) and (5.57)) on the image as the power parameter  in Equation (5.57) is varied.

For a given value of  , when the value of  increases, more non-nodal component

appears, especially in the lower right corner of the image. Here we chose 5.1 .
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Figure 7.14: Second-stage results for one partially metastatic node after discriminant reduction

with  0, 2, 4, 6, 8, 10, 20, 30, 50. ( 1ij for the 1st image and 5.1 for the others.) The

first three rows are the resulting maps of the spectra with red indicative of metastatic, blue normal

and black non-nodal. The last row is a photograph of the node.

1,0  ij 0

4 8 10

20 30 50

2



172

Figure 7.15: Second-stage results for one partially metastatic node with all the combinations of

 0, 4, 8 and  = 1, 2, 3, 5. The first three rows are the resulting maps of the spectra with red

indicative of metastatic, blue normal and black non-nodal. The last row is a photograph of the

node.

3,4  2,4  1,4   5,4  

1,8   2,8   3,8   5,8  

3,0  2,0  1,0   5,0  
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7.7.4 Sensitivity to the choices of multivariate t distributions

or multivariate normal distributions

In this image analysis, our experiments show that the multivariate t-distribution with

heavier tails, as an alternative to multivariate Gaussian distribution, shows robustness

towards outliers by minimizing their impact on the estimation of the model

parameters, which increases flexibility and robustness of the model. In general the

multivariate t-distribution provides an overall more accurate image classification

result than multivariate Gaussian distribution for the scanning data.

An example of a totally normal node after discriminant dimension reduction is

given in Figure 7.16. The rows correspond to different choices of degrees of freedom

of t distribution (varying from 4 to 20) and normal distribution. It shows that using

multivariate normal distributions or multivariate t distributions with large degrees of

freedom leads to the appearance of three components in the mixture. The second stage

eliminates some of the isolated areas, but at least one clump always persists.

Although the multivariate normal distribution always gives better fitting to the

histogram of the data than the multivariate t distribution, it gives worse classification

accuracy. Good histogram convergence doesn’t mean goodness of model fitting since

the histogram only reflects the marginal distribution and does not include spatial

information.

When using large degrees of freedom stv1 of t or a normal distribution in the first

stage, we should be very careful with the model fitting and the choice of prior. When

there are three components in the mixture, the metastatic group is unlikely to be

missed by the classification and this gives high sensitivity. However when there are

fewer than three components in the mixture, the extra component misclassified in the

first stage using a large stv1 is usually difficult to remove in the second stage algorithm

since a degrees of freedom, ndv2 , larger than that in the first stage will be used in the

second stage for the reasons of model convergence as described in Section 7.6.3. In

this case small stv1 will be preferred and thus lead to a high specificity. However in the

real prediction we won’t be able to know how many components there are in the
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mixture, using a modest stv1 in the 1st stage to achieve a vague model fitting may give

more possibility for further accurate fitting in the 2nd stage.

Figure 7.16: Histogram for the 1st (1st column) and the 2nd (2nd column) variable scores of spectral

data from one totally normal node after discriminant reduction, with prior (dotted line) and

posterior (solid line) densities superimposed for three components of multivariate mixture model
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with red for metastatic, blue for normal and green for non-nodal component. The corresponding

mapping images from the 1st stage and 2nd stage algorithms are shown in the last two columns with

colour coding at each pixel (red for metastatic, blue for normal and black for non-nodal spectra).

The rows correspond to different choices of t distribution with degrees of freedom varying from 4

to 20, and normal distribution. The last row is a photograph of this node.

7.7.5 Label-switching problem

The label switching problem, mainly due to the use of a diffuse prior for the

background has been described in Section 5.5.3.2.

Figure 7.17: Histogram for the 1st (1st column) and the 2nd (2nd column) variable scores of spectral

data from one partially metastatic node after discriminant dimension reduction, with prior (dotted

line) and posterior (solid line) densities superimposed for three components of multivariate

mixture model with red for metastatic, blue for normal and green for non-nodal component. The

corresponding mapping images from the 1st stage and the 2nd stage are shown in the last two

columns with colour coding at each pixel (red for metastatic, blue for normal and black for non-

nodal). The 1st and 2nd rows show the results without and with class label correction rule applied

between two stages. The last row shows a photograph of this node.

Without label correction

1st stage 2nd stage

1st stage 2nd stage

With label correction
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Figure 7.17 shows an example of a partially metastatic node with all three

components mislabeled after discriminant dimension reduction. This is essentially

because on the external variable the non-nodal and metastatic components are given

similar prior means with a large prior variance for the background and low prior

weights. The non-nodal component is incorrectly identified, and the other two groups

then remain in the same relative positions as suggested by the prior means, but both

wrong, as shown in the top panel of Figure 7.17. Even though the second stage

algorithm introduces the position parameter ij which should help it to identify the

background, it is still unable to recover.

The class label correction rules described in Section 5.5.3.2 fix the mislabeling

problems in between stages. By giving higher scores to the pixels on the corner or

edge, the non-nodal component can usually be recognized, followed by the

recognition of the other two groups. This gives correct starting points to the smooth

fitting in the second stage as shown in the bottom panel of Figure 7.17.

Although they are easy to implement, having to use these rules is not ideal. One

possible alternative would be to improve the first stage fitting by incorporating a prior

using
ij

 .

7.7.6 Number of components problem

Although our model can deal successfully with the nodes with less than three

components, it often attempts to find an extra group, normally with only a small

number of pixels.

Figure 7.18 is an example of a totally normal node (with two components of

normal and non-nodal in the mixture). The results and image are generated from the

optimal model via PCA reduction described in Section 7.6.2, with gk = 15, lk = 2,

101 stv , 102 ndv and 20 . Without using the image correction rules of Section

5.5.3.2 between the stages three components were fitted by the two-stage model, some

pixels from the normal component being misclassified as metastatic ones in the first

stage algorithm, and persisting in the second stage as shown in the top panel of Figure
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7.18. For both dimensions, the PC score distribution of the false positive spectra looks

like a tail of the score distribution of the normal spectra. Although the scores of both

nodal components are very close, the large prior variance given to the metastatic

component, especially in the second dimensional scores, allows its convergence to a

separate component in the mixture. Different parameter choices were tried on this

node: using a heavy-tailed multivariate t distribution with lower degrees of freedom

did not seem to help; building the model in a space with more dimensions gave more

chance to fit the unnecessary multimodality of the spectra data.

Figure 7.18: Histogram for the 1st (1st column) and the 2nd (2nd column) variable scores of spectral

data from one normal node after PCA dimension reduction, with prior (dotted line) and posterior

(solid line) densities superimposed for three components of multivariate mixture model with red

for metastatic, blue for normal and green for non-nodal component. The corresponding images

from the 1st stage and the 2nd stage are shown in the last two columns with colour coding at each

pixel (red for metastatic, blue for normal and black for non-nodal). The 1st and 2nd rows show the

results without and with image correction rules applied between two stages. The last row shows a

photograph of this node.

1st stage

1st stage 2nd stage

Without image correction

With image correction

2nd stage
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To avoid encouraging the small group fitting in the mixtures with a very close

mean to that of another sizable group, the image correction rules described in Section

5.5.3.2 are applied. The false positive metastatic component is thus merged to the

normal component at the end of the first stage algorithm and the model fitting

continues working in a right way in the second stage algorithm.

7.8 Discussions and conclusions

In Chapters 5 and 6, a partially supervised image classification algorithm based on a

composite Bayesian multivariate finite mixture model with MRF spatial prior was

developed to represent a scanned node image. This chapter has applied the model to

the scanned nodes and explored its behaviour.

Two datasets with different structure and knowledge have been used for model

construction: one is the manual measurement data with known reference for spectra

from totally normal and totally metastatic nodes; the other is scanning data with three

unknown groups (normal, metastatic and non-nodal) in the images from scanned

measurements.

A traditional supervised classification method applied directly to the scanned data

is not suitable here to derive an algorithm to classify pixels, since there is no reference

pathology available for individual pixels in the image and, furthermore, the required

training set for the non-nodal group from background areas is not available, and these

background areas are very variable from node to node.

The key issues addressed in Chapters 5-7 are the representation of knowledge and

inference methods for using the available knowledge to infer the correct image. The

main idea is to enable an integration of a priori knowledge from manual measurement

data, with accumulated evidence from scanning data, encoded in terms of a joint

posterior probability distribution with Markov random field, through a Bayesian

formalism.

The spectral data are high-dimensional and are reduced to a low dimensional

space, two dimensions work best, before constructing an image classification model.



179

Two customized dimension reduction methods have been explored. The model on

two-dimensional data reduced by discriminant dimension reduction works better than

that via PCA dimension reduction. For discriminant reduction, the two axes (of

external and internal variables) are function-specific and interpretable. Typically the

first axis separates the normal and metastatic groups; the second axis allows the model

to capture the remaining individual nodal features, particularly from the non-nodal

component. For PCA reduction, the directions of both axes vary for different scanned

nodes. How the model works in this two-dimensional space depends on the individual

features of the node. Since the model via PCA reduction has more flexibility we need

put more constraint on it by using high degrees of freedom for the multivariate t

distributions representing the components.

Based on the low-dimensional data, the image classification model is fitted in two

stages. In the first stage, a Bayesian multivariate finite mixture model is employed to

model three unknown groups (normal, metastatic and non-nodal) in the images from

scanned measurements. The normal inverse Wishart prior distributions for the

parameters of normal and metastatic groups derived from the manual data are

projected into the low-dimensional model space. Since the class memberships in the

mixture here are not interchangeable, the prior knowledge given here works as

identifiability constraint for normal and metastatic groups. In the second stage,

considering the spatial correlation between adjacent pixels of image, a spatial prior

based on a Markov random field (MRF) is then incorporated into the model from the

first stage to represent the continuity of the image, and the first stage result used as a

starting point for fitting this model.

Some recommendations may be made on the choices of distributions, prior

distributions and parameters of these distributions in an attempt to balance flexibility

and the incorporation of prior information:

(a) The multivariate t distribution works better than the normal distribution. For

discriminant reduction, using low degrees of freedom in stage 1, 41 stv ,

combined with a modest or at least the same degrees of freedom in stage 2,
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20,10,42 ndv , may achieve optimal accuracy. For PCA reduction, using modest

or high degrees of freedom in both two stages, 101 stv and 20,102 ndv , may

achieve good accuracy. The t distribution gives higher classification accuracy and

increases the flexibility and robustness of the model by minimizing the impact of

outliers on the model parameters estimation. Especially the rough convergence

achieved in the first stage algorithm using the t distribution gives more flexibility

for model fitting in the second stage.

(b) The choice of prior distributions on the parameters of non-nodal component is

more difficult than that for the nodal groups because of variability in this

component and lack of training data. Here we chose a fairly flat prior to make the

model more flexible.

(c) The prior weight for three components is a combination of a strong value for

normal component and weak values for metastatic and non-nodal components,

which makes the model more flexible to variability in these components between

nodes.

(d) Weak convergence in the first stage leaves more flexibility for model fitting in the

second stage and does not waste time.

(e) Some interactions exist between different parameters of the model. Optimising the

parameter choices requires careful experimentation.

Label switching and an incorrect number of components are two common

problems from mixture models for image classification. Misclassifications do happen,

especially to some small groups of pixels but occasionally to whole groups. Some

proposed correction rules have been applied between the two stages of the model

fitting algorithms to deal with these problems. These work, but it has to be admitted

that this is not an elegant solution. It would be nicer to construct a first-stage model

that avoided the problems in the first place. Better modeling of the distribution of the

metastatic spectra, perhaps even as a mixture itself, would be one possible approach.

Incorporating the positional prior, via ij , into the first stage model would also be

worth investigating.

Our experiments show that good classification results can be achieved by
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different options. Working in a PCA reduced two-dimensional space with multivariate

t distributions on moderate degrees of freedom gives higher sensitivity. Working in a

discriminant reduced two-dimensional space with lower degrees of freedom

multivariate t distribution gives higher specificity. The model with higher degrees of

freedom for the multivariate t distributions requires a higher value of the smoother

parameter  to modify the discontinuity of the image pattern. For the models with

lower degrees of freedom, a lower value of  is more suitable. Although the high

degrees of freedom and smoother normally give better convergence to any arbitrary

distribution with multimodal structure, we attempt to keep the balance between

preserving the nodal structure of each node (with the feature of multimodality) and

not misclassifying normal as metastatic spectra.

Our results so far suggest that this model can be successful in recognising the

variable non-nodal areas automatically and distinguishing between normal and

metastatic nodes with sort of accuracy required to enable clinicians to make a rapid

intraoperative diagnosis of sentinel node metastases in breast cancer. As a general

method, this model may also be applied to many other situations for both

noise/background recognition and multi-group tissue classification.
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CHAPTER 8

CONCLUSION

In this chapter, a summary of the achieved objectives in this work is given, focussing

on the specific statistical issues in the context of elastic scattering spectroscopy (ESS)

applications, as well as some brief comments on the possible directions for future

methodological research.

8.1 Summary of thesis

This thesis has focused on the statistical issue of how to eliminate irrelevant

variations in high-dimensional ESS data and extract the most useful information to

enable the classification of tissue as normal or abnormal. The classification models,

either built on an individual spectrum basis or further developed for an image analysis,

have been employed for detection of pre-cancerous and early cancerous changes in

human tissue, with applications in Barrett’s oesophagus, colon lesions and sentinel

lymph nodes.

ESS, as a non-invasive and real-time in vivo optical diagnosis technique, is

sensitive to changes in the physical properties of human tissue resulting from

dysplasia. The evidence given in Chapter 2 that normal and abnormal tissues have

different spectral patterns of scattering and absorbance makes it possible to use

measured spectra to classify areas of tissue as normal or abnormal for purpose of

cancer diagnosis.
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Multivariate statistical methods reviewed in Chapter 3 are used in ESS spectral

analysis, amongst which principal component discriminant analysis (PCDA) and

partial least squares discriminant analysis (PLSDA) are the most explored methods

throughout the thesis as general tools for dimension reduction and supervised

classification. Based on these classical methods, customized multivariate methods are

proposed in this thesis driven by two ESS clinical diagnosis applications: One

application is gastrointestinal cancer diagnosis in Barretts esophagus and colon

lesions, to which the major statistical contribution is a spectral pretreatment method

called error removal by orthogonal subtraction (EROS) as described in Chapter 4.

This is proposed for the situation where there exists large measurement variability

while the differences between normal and abnormal tissues are subtle. The other

application is breast cancer diagnosis in scanned sentinel lymph nodes, to which the

main statistical contributions are two customized dimension reduction methods and a

partially supervised image classification model as presented in Chapters 5-7. This is

proposed for the situation where there exist large variations for the components of the

mixture model and the reference pathology for algorithm training are not completely

available.

Spectral pretreatment (EROS)

Spectral pretreatment works as an important step to eliminate the irrelevant

variations from spectra before constructing an effective regression or classification

model. When ESS spectra are measured in vivo by a hand-held optical probe, small

changes in angle and pressure may cause considerable measurement variability which

should be removed or at least reduced from the spectra.

A customized spectral pre-treatment called error removal by orthogonal

subtraction (EROS) was designed to model the measurement variability and to

ameliorate the effects of it from the spectra in the following way. Data on replicate

measurements were analysed by PCA to identify the dominant structure in the

variability, and the corresponding factors were subtracted from the spectra by
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orthogonal projection. Pre-treatment with EROS improved the classification accuracy

and substantially reduced the model complexity, resulting in the use of a small total

number of factors to attain good levels of accuracy in the classification. The success

of the model has been proved in two applications with clinical diagnosis in Barrett’s

oesophagus and colon lesions. The robustness of the classification model after EROS

pretreatment is also proved by a maintained improvement in an independent

prospective prediction. The nature and possible causes of measurement variability

were better understood by a laboratory experiment for helping with the model

interpretation. This approach, as a general pretreatment method, can be used in many

other situations.

However the success of any spectral pretreatment method is always subject to the

sources of the interfering variability and the spectral structure. In our situation EROS

worked well because the spectra contain a substantial amount of structured noise

(interfering variability) in the different dimensions as the signal of interest that can be

removed with targeted dimensions without destroying the useful information.

However, if the situation is that interfering variability coincides in the same direction

of the signal, neither EROS nor any other mathematical pretreatment will help.

Dimension reduction

Dimension reduction has been a fundamental topic of this thesis. Several approaches

to looking for a representation of high-dimensional data in a low-dimensional space

have been considered. A classical linear projection approach by principal components

analysis (PCA) has been used throughout the thesis to reduce the number of

spectroscopic variables. PCA plays a key role in constructing a multivariate

classification/discrimination model by solving the collinearity and overfitting

problems. Based on PCA, two customized dimension reduction options have been

developed to solve the problems in ESS image analysis. An automated ESS scanner

was developed to take measurements from a larger area of tissue to produce ESS

images for cancer diagnosis. Problems arise due to the existence of background area
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in the scanned image with considerable between-node variation and no training data

available. Our customized methods for dimension reduction try to capture as much as

possible the structured nodal (normal and metastatic) variations by new components.

One called discriminant dimension reduction uses an external variable, the canonical

variable from a linear discriminant analysis on a separate set of manual data for which

we do have reference pathology, to capture variations between normal and metastatic

groups, and uses a small number of internal variables, the principal components on the

individual scanning data orthogonal to the external variable, capture the remaining

individual nodal features, particularly from the non-nodal component. The other,

called PCA dimension reduction, uses a global PCA projection to capture most of the

common information from all the scanned nodes followed by a local PCA projection

to extract individual nodal features. In our application, discriminant reduction works

better than PCA reduction in image classification model. Although both methods

allow adaptation to individual nodal features, discriminant reduction has one common

direction, adding extra model robustness, while the directions extracted by PCA

reduction all depend on the individual features of each node.

The PCA dimension reduction methods provide a general option for a preliminary

dimension reduction. The discriminant dimension reduction methods can be used in a

general situation where some specific direction can be used as a guide for constructing

a low-dimensional space.

Image classification

As an extension of the point measurement, ESS imaging generated by ESS

scanning device examines a larger area of tissue and here smoothness assumptions

make it possible to improve the classification of individual pixels. A partially

supervised image classification model based on a Bayesian multivariate finite mixture

model with a Markov random field (MRF) spatial prior was developed to represent

the scanning data of each node by a statistical image containing information on both

between-group features and spatial correlation features. The main idea of the
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composite model is to enable an integration of a priori knowledge, via normal inverse

Wishart priors, from manual measurement data on the two main components, normal

and metastatic, with observational evidence from the scanning data of the individual

node. The smoothness of the image is modeled by a spatial prior using a Markov

random field. The whole model fitting is implemented in two stages by EM and ICM

algorithms, with the feature priors and the spatial prior imposed onto the model space

in turn. In the first stage, a multivariate finite mixture model with three components

uses informative prior distributions derived from the manually measured data for the

parameters of the normal and metastatic components in the mixture, and a diffuse

prior distribution for the variable non-nodal component. This allows the flexibility

and adaptation to the background component varying from node to node. In the

second stage, with a MRF spatial prior incorporated into the model to represent the

spatial correlation between adjacent pixels of image, a rough image generated from

the first stage then develops to an image showing the quality of continuity and

smoothness with a good match to the nodal shape and good accuracy in diagnosis.

Our results show that from the mapping image the variable non-nodal areas can

be recognized automatically and normal and metastatic nodes can then be

distinguished easily with sort of accuracy required to help clinician with a rapid

intraoperative diagnosis of sentinel nodal metastases in breast cancer. As a flexible

and robust model, this can also be applied to many other multi-group image

classification situations with incomplete information, such as group features and class

memberships.

8.2 Future work

The subject of this thesis being extensive, we do not pretend to have covered it

exhaustively. Several interesting issues arising from classification by ESS analysis

could not be dealt with, due to lack of time. We mention some of them.

Spectral wavelength selection for classification is of essential interest. The LDA
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loading, which measures how intensity at each wavelength contributes to the

classification, shows more important weight on certain regions of the wavelength

range for discrimination between normal and abnormal tissue. The challenge is how to

select the most informative spectral features with minimum redundancy and noise to

enhance the classification performance without losing useful information. The

wavelength regions with high-ranked loadings selected by the model for the

classification task could be highly correlated among themselves. Simply combing one

effective variable or region with another doesn’t necessarily form a better subset,

because it might contain certain redundant features. Also calculations of all possible

wavelength combinations require enormous computations. This concern is of

particular interest for dimension reduction, and for the purpose of building cheaper

instruments.

The topic of ordered multi-group classification needs to be explored with the aim

of grading the level of abnormality. A sequential multi-group classification based on

the two-way classification model described in Chapter 4 has already been put into

practice for the real-time clinical prediction. However it would be of great interest to

classify the different groups simultaneously enabling a better understanding of

misclassification errors and helping a rapid real-time diagnosis. One possible

approach is using the Soft Independent Modeling of Class Analogy (SIMCA) (Wold

and Sjöström 1977) to capture the local structure of each group to train the

classification model. However, this supervised model is very sensitive to the training

data, especially when the between-group differences are subtle. Further study will

focus on how to balance the flexibility and robustness of the model, avoiding

misclassifications.

Concerning imaging classification methods, several aspects of the model can be

further investigated. In the multivariate Gaussian or t mixture model, we have, so far,

used separate and unstructured covariance matrices for each group. Choosing a

common covariance matrix or a diagonal but different covariance matrix may give the

opportunity to use more dimensions in the model. Although some problems of label-
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switching and incorrect number of components can be tackled by our model, some

rules in between stages are still applied to correct some problems. Ideally the first

stage model should be improved to make these rules unnecessary. Since the model

fitting is implemented by a composite two-stage algorithm, it is possible to use

different fitting algorithms in the two stages and alternatives could be explored.

Another issue for further study relates to classification assessment stimulated by

the problems occurring when AUC and ROC curves are used in conjunction with

cross-validation. The assumption made in the pooling strategy that the classifier

outputs are comparable across all the left-out segments is generally not valid and thus

large biases can be caused. How to estimate AUC and ROC curves with less bias for

the purpose of model selection and comparison in practice is of potential interest.

There is also a need for defining general measures for assessing multi-group

classification accuracy, perhaps via an appropriate 3D-ROC curve. Also there is scope

for exploring the assessment of the image classification, for the cases with both

discrete and continuous values for each pixel.
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APPENDIX A

NOTATION

Throughout the Chapters 5-7, the notations commonly used are listed as below:

n : the number of observations from one scanned node.

m: the number of observations from point measurement data.

c: the number of scanned nodes.

p : the number of wavelength point.

nodesallX . : a pcn spectral matrix of all the scanned nodes.

trainX : a pm spectral matrix of point measurement spectral data.

nodeoneX . : a pn spectral matrix of one scanned node.

extk : the number of principal components constructing the external variable by

discriminant reduction method (the dimension of external variable).

0.intk : the number of principal components capturing most of the variations left by the

external variable by discriminant reduction method (before constructing the

internal variables).

intk : the number of principal components constructing the internal variables by

discriminant reduction method (the dimension of internal variable).

gk : the number of principal components constructing the global variables by PCA

reduction method (the dimension of global variable).

lk : the number of principal components constructing the local variables by PCA

reduction method (the dimension of local variable).
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k : the dimension of spectral matrix of one scanned node when projected to a low

dimensional space ( lkk  for PCA reduction, intkk 1 for discriminant

reduction).

kX : a kn spectral matrix of one scanned node with reduced dimensions of k.

nodesallZ . : a gkcn score matrix whose columns are the first gk PC scores of nodesallX . .

trainZ : a gkm score matrix whose columns are the first gk PC scores of trainX , for the

use of gk -dimensional priors.

nodeoneZ . : a gkn score matrix whose columns contains the first gk PC scores of

nodeoneX . , a pn spectral matrix for one scanned node, each row of which is a

p-dimensional spectrum.

nodeoneS . : a lkn matrix whose columns consist of lk PC scores.

gL : the global PCA loadings of the first gk PCs of all the scanned nodes nodesallX . .

lL : the local PCA loadings of the first lk PCs of the scores matrix nodeoneZ . .

trainT : a 1n dimensional canonical score vector of the spectra from manual data.

extnodeT . : a 1n dimensional external variable score vector of the spectra from one

scanned node.

extnodesallT .. : a 1cn dimensional external variable score vector of the spectra from all

the scanned nodes.

nodesallX .

~
: a pcn spectral matrix whose columns lie in the 1p dimensional

subspace orthogonal to the external variable extnodesallT .. .

0... intnodesallT : a 0.intkcn score matrix whose columns contain 0.intk PC scores.

0..inttrainT : a 0.intkm score matrix whose columns contain 0.intk PC scores.

0..intnodeT : a 0.intkn score matrix whose columns contain 0.intk PC scores.

intnodeT . : a intkn -dimensional internal variable score matrix.

extq : the 1p -dimensional PCDA loading vector of manual data trainX .

ortQ : a cncn projection matrix constructing nodesallX .

~
.

0.intQ : a 0.intkp loading matrix, the columns of which are the first 0.intk principal
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component loadings of nodesallX .

~
.

intQ : a intint kk 0. loading matrix, the columns of which are the first intk PC loadings

derived from a PCA of 0..intnodeT .

'''' , cn mm : k -dimensional means derived from manual data for use with priors on

normal and metastatic groups of scanning data.

'''' , cn VV : kk  variances derived from manual data for later use with priors on normal

and metastatic groups of scanning data.

stv1 : the degree of freedom of multivariate t distribution in the 1st step EM algorithm.

ndv2 : the degree of freedom of multivariate t distribution in the 2nd step EM algorithm.

iy : a multi-dimensional variable with reduced dimensions at pixel i.

j : the proportion of the jth component in the mixture.

j : the mean vector of jth component in the mixture of multivariate t distribution or

multivariate Gaussian distribution.

j : the covariance matrix of jth component in the mixture of multivariate t

distribution or multivariate Gaussian distribution.

p : the mean of the normal priors (of normal inverse Wishart priors) on the mean

vectors j conditional on covariance matrices j of multivariate t distribution

or multivariate Gaussian distribution.

p : the scale of the inverse Wishart priors (of normal inverse Wishart priors) on the

covariance matrices j of multivariate t distribution or multivariate Gaussian

distribution.

p : the shrinkage parameter of the normal inverse Wishart prior for multivariate t

distribution or multivariate Gaussian distribution.

pv : the degrees of freedom of the normal inverse Wishart prior for multivariate t

distribution or multivariate Gaussian distribution.

 : a regularization parameter (smoothness parameter) used in spatial label prior

expression.

ij : a position parameter used in spatial label prior expression.

id : a distance score measuring the distance between each pixel and the central point
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of the image.

i : a background score of each pixel i emphasizing the scores for the pixels on the

edge.

 : a power parameter used in background scores and spatial label prior expression.
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