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Disappearing Private Reputations in Long-Run Relationships

Abstract. For games opublic reputation with uncertainty over types and imperfect
public monitoring, Cripps, Mailath, and Samuelson [4] showed that an informed player facing
short-lived uninformed opponents cannot maintain a permanent reputation for playing a strategy
that isnotpart of an equilibrium of the game without uncertainty over types. This paper extends
that result to games in which the uninformed player is long-lived and has private beliefs, so that
the informed player’s reputation @ivate The rate at which reputations disappear is uniform
across equilibria and reputations also disappear in sufficiently long discounted finitely-repeated

games.
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1 Introduction

Reputation games capture settings in which a long-lived player benefits from other players’
uncertainty about her characteristics. Reputation effects arise most cleanly when a long-lived
player faces a sequence of short-lived players who believe the long-lived player might be com-
mitted to the stage-game “Stackelberg” action. In such a setting, the Stackelberg payoff provides
a lower bound on the long-lived player’s average payoff, provided she is sufficiently patient (Fu-
denberg and Levine [5, 6]).

In an earlier paper (Cripps, Mailath, and Samuelson [4]), we showed that if monitoring
is imperfect and the reputation of the long-lived playepuslic, meaning that the public sig-
nals allow the long-lived player to infer the short-lived players’ beliefs about the long-lived
player’s type, then reputation effects eventually disappear. Almost surely, the short-lived player
eventually learns the type of the long-lived player.

Many long-run relationships involve two (or more) long-lived players. Reputation effects
arise in this setting as well, and can be more powerful than when the uninformed player is
short-lived. Intertemporal incentives can induce the uninformed agent to choose actions even
more advantageous to the informed long-lived player than the myopic best reply to the Stack-
elberg action (Celentani, Fudenberg, Levine, and Pesendorfer [1]). In addition, it is natural for
an analysis of long-lived uninformed players to encomgaB&te reputations: the actions of
both players are not only imperfectly monitored, but the monitoring need not have the special
structure required for the informed player to infer the uninformed player’s beliefs. Instead, the

uninformed player’s beliefs can depend critically on his own past actions, which the informed



player cannot obsenve.

In this paper, we show that reputations eventually disappear when the uninformed player
is long-lived and beliefs are private We also improve on our earlier paper by showing that
the rate at which reputations disappeanmformacross equilibria (Theore®), and that rep-
utations disappear in sufficiently long discounted finitely-repeated games (Thdhrémour
analysis, the long-lived informed player (player 1) may be a commitment type that plays an ex-
ogenously specified strategy or a normal type that maximizes expected payoffs. We show that
if the commitment strategy isot an equilibrium strategy for the normal type in the complete-
information game, then in any Nash equilibrium of the incomplete-information repeated game,
almost surely the uninformed player (player 2) will learn that a normal long-lived player is in-
deed normal. Thus, a long-lived player cannot indefinitely maintain a reputation for behavior
that is not credible given her type.

This result has implications for the way playergentuallyplay rather than for expected
payoffs at the beginning of the game. We believe that such long-run equilibrium properties are

relevant in many situations. For example, an analyst may encounter an on-going interaction

1For example, the inferences a firm draws from market prices may depend upon the firm’s output choices, which
others do not observe. Because private reputations arise when the uninformed player privately obsewes his
past actions, they occur most naturally with a single, long-lived uninformed player rather than a sequence of short-
lived players. In [4], we assumed that the short-run player’s actions are public, allowing a natural interpretation
of the assumption that short-run players’ observed their predecessors’ actions, but also ensuring that player 1's

reputation (player 2’s belief) is public.
2Cripps, Mailath, and Samuelson [4, Theorem 6] igaatial result for the case of a long-lived uninformed

player whose beliefs aggublic. That result is unsatisfactory, even for the public-reputation case, in that it imposes

a condition on the behavior of the long-lived uninformed plagerquilibrium See footnot® for more detalils.



whose beginnings are difficult to identify. Long-run equilibrium properties are then an impor-
tant guide to behavior. Alternatively, a social planner or a welfare analysis may be concerned
with the continuation payoffs of the long-run player and with the fate of all short-run players,
even those in the distant future. Finally, we may be interested istdsely statesf the model,
especially when pursuing applications, again directing attention to long-run properties.

We view our results as suggesting that a modébo§-runreputations should incorporate
some mechanism by which the uncertainty about types is continually replenished. For example,
Holmstrom [10], Cole, Dow, and English [3], Mailath and Samuelson [12], and Phelan [13]
assume that the type of the long-lived player is governed by a stochastic process rather than
being determined once and for all at the beginning of the game. Reputations can then have
long-run implications.

Establishing a disappearing-reputations result for the case of public reputations and short-
lived uninformed players is relatively straightforward (Cripps, Mailath, and Samuelson [4]).
Since monitoring is imperfect, deviations from equilibrium play by player 1 cannot be un-
ambiguously detected by player 2, precluding the trigger-strategy equilibria that support per-
manent reputations in perfect-monitoring games. Instead, the long-run convergence of beliefs
ensures that eventualiynycurrent signal of play has an arbitrarily small effect on player 2’s be-
liefs. Thus, when reputations are public, player 1 eventdallywsthat player 2’s beliefs have
nearly converged. Coupled with discounting, this ensures that deviations from the commitment
strategy have virtually no effect on the payoffs from continuation play (though we impose no
“Markov” restriction on strategies). But the long-run effect of many such deviations from the

commitment strategy would be to drive the equilibrium to full revelation. Public reputations



can thus be maintained only if the gains from deviating from the commitment strategy are ar-
bitrarily small, that is, only if the reputation is for behavior that is part of an equilibrium of the
complete-information game corresponding to the long-lived player'siype.

The situation is more complicated in the private-reputation case, where player 2’s beliefs
arenotknown by player 1. Now, player 1 may not know when deviations from the commitment
strategy have relatively little effect on beliefs and hence are relatively costless. Making the
leap from the preceding intuition to our main result thus requires showing that there is a set
of histories under which player 2’s beliefs have nearly convergedunder which player 1 is
eventually relatively certain player 2 has such beliefs.

In general, one cannot expect player 1's beliefs about player 2's beliefs to be very accurate
when the latter depend on private histories. A key step in our proof is to show that whenever
player 2’s private history induces him to act as if he is convinced of some important characteris-
tic of player 1, eventually player 1 must become convinced that such a private history did indeed
occur (LemméB). In particular, if this private history ensured that player 2 is almost convinced
that he faces a commitment type, and acts on this belief, then this eventually becomes known to
player 1.

As in the case where player 1’s reputation is public, the impermanence of reputation also
arises at the behavioral level. Asymptotically, continuation play in every Nash equilibrium is a
correlated equilibrium of the complete-information game (ThedsgnWhile the set of Nash

equilibrium payoffs in the game with complete information is potentially very large when player

3This argument does not carry over to repeated games without discounting, where small changes in beliefs,

with implications only for distant behavior, can still have large payoff implications.



2 is sufficiently patient (suggesting that limiting behavior to that set imposes few restrictions),
we emphasize that our analysis holds &irdegrees of patience of the players. When player

2 is impatient, as in the extreme case of short-run player 2s, reputations can ensure payoffs for
player 1 that cannot be obtained under complete information. Our result (that limiting behavior
must be consistent with complete information) shows that this effect is transitory.

More importantly, reputation arguments are also of interest for their ability to restrict,
rather than expand, the set of equilibrium outcomes. For example, reputation arguments are
important in perfect-monitoring games with patient players, precisely because they impose tight
bounds on (rather than expanding) the set of equilibrium payoffs. Our results caution that one
cannot assume that such selection effects are long-lasting.

For expositional clarity, this paper considers a long-lived informed player who can be
one of two possible types—a commitment and a normal type—facing a single long-lived un-
informed player, in a game of imperfect public monitoring. The argument of Cripps, Mailath,
and Samuelson [4, Section 6.1] can be used to extend our results to many possible commitment
types. The final section of this paper explains how our results can be extended to the case of
private monitoring (where reputations are necessarily private).

Our analysis subsumes a private-reputation model with a sequence of short-lived unin-
formed players. In several places, the arguments for the latter case are simpler and considerably
more revealing, primarily because we can then restrict attention to simpler commitment strate-
gies. Accordingly, where appropriate, we give the simpler argument for short-lived uninformed

players as well as the more involved argument for the long-lived uninformed player.



2 Reputation Games

2.1 Complete Information

We begin with an infinitely repeated game with imperfect public monitoring. The stage game is
a two-player simultaneous-move finite game of public monitoring. Play#rooses an action
ie€{1,2,..,1} =1 and player2 chooses an actiopc {1,2,...,J} = J. The public signaly,
is drawn from the finite seéf. The probability thay is realized under the action profil j)
is given bypﬁj . The ex post stage-game payoff to playefrespectively2) from the action
(resp.,j) and signaly is given by fi(i,y) (resp.,f2(],y)). The ex ante stage game payoffs are
(i, ) =3y fi(i,y) ol andme (i, ) = 5y f2(j,y) oY

We assume the public signals have full support (Assumdpso every signal is possible
after any action profile. We also assume that with sufficiently many observations, either player
can correctly identify, from the frequencies of the signals, any fixed stage-game action of their

opponent (Assumptiorzand3).
Assumption 1 (FULL SUPPORT) pﬁ} > Oforall (i,j) el xJandyeY.

Assumption 2 (IDENTIFICATION OF 1) For all j € J, thel columns in the matriXpﬁJ()yeng

are linearly independent.

Assumption 3 (IDENTIFICATION OF 2) For all i € I, theJ columns in the matri(pﬁj)yemej

are linearly independent.

The stage game is infinitely repeated. Player 1 (“she”) is a long-lived player with discount

factor &1 < 1. Player 2 (“he”) is either short-lived, in which case a new player 2 appears in



each period, or is also long-lived, in which case player 2’s discount fagtoray differ from
01. Each player observes the realizations of the public signal and his or her own past actions.
(If player 2 is short-lived, he observes the actions chosen by the previous Rigydrlayer 1
in periodt thus has grivate history consisting of the public signals and her own past actions,
denoted byhy; = ((io,Yo0), (i1, Y1), - -, (It—1,¥%t-1)) € Hir = (I ><Y)t. Similarly, aprivate history
for player2 is denotechy = ((jo,¥0), (j1,Y1)s-- -, (jt—1,%t—1)) € Hx = (I x Y)'. The public
historyobserved by both players is the sequefyeey, . .., Y1) € Y'. The filtration on(l x J x
Y)® induced by the private histories of playes= 1,2 is denoted{ .7}, while the filtration
induced by the public histori€go, Y1, ..., yt—1) is denoted J&}* .

In Cripps, Mailath, and Samuelson [4], we assumed that the public signal included player
2’s action. This ensures that player 1 knows everything player 2 does, including player 2’s
beliefs. Here, only player 2 observes his action, breaking the link between 2’s beliefs and 1's
beliefs about those beliefs.

The long-lived players’ payoffs in the infinite horizon game are the average discounted
sum of stage-game payoff6l — &) 5709/ (i, jr) for £ = 1,2. The random variablet;

denotes average discounted payoffs in petjod

= (1-8) i@”m(ir,m. 1)

If player 2 is short-lived, the periotplayer 2 has payoffs(it, jt).

A behavior strategy for playek (respectively, 2) is a mamy : U gHie — A (resp.,05:
Up_oH2t — M%), from all private histories to the set of distributions over current actions¢ For
1,2, g, defines a sequence of functiofisy };> , with oyt : Hiy — A andoy : Hyx — AJ. Each
function oy denotes the™" period behavior strategy af;. The strategy profiler = (01, 0>)

9



induces a probability distributioR? over (I x JxY)*. Let E?[ - | 7] denote player’s
expectations with respect to this distribution conditional’éh.
A Nash equilibrium for the case of two long-lived players requires pldigestrategy to

maximize the expected value gfy, the discounted value of payoffs in period zero:

Definition 1 A Nash equilibrium of the complete-information game with a long-lived player 2
is a strategy profileg = (01, 02) such thatE?|[mg] > E("i’@)[nlo] for all o] and E9[mpo] >

E(91.9) 1] for all aj.

This requires that under the equilibrium profile, playsrstrategy maximizes continuation ex-
pected utility after any positive-probability history. For example, for playeeq|m; | 73] >
E(01:92) [3,|.#4;] P°-almost surely for albj and allt. The assumption of full-support monitor-

ing ensures that all histories of public signals occur with positive probability, and hence must
be followed by optimal behavior in any Nash equilibrium (with long-lived or short-lived player
2’s, and complete or incomplete information). Consequently, any Nash equilibrium outcome is
also the outcome of a perfect Bayesian equilibrium.

For future reference, when player 2 is long-lived,
BR (01) = {02 : E9[mg) > E(919) 1] Vb }

is the set of player 2’s best repliesd® in the game with complete information.
When player 2 is short-lived, in equilibrium, player 2 plays a best response after every

equilibrium history. PlayeR’s strategyo» is then a best responsedm if, for all t,

E%[ 1®(it, jt) | #a) > E°[ (i, |) | #a),  Vjed PP-as.

10



Denote the set of such best responseBB(01). The definition of a Nash equilibrium for this

case is:

Definition 2 A Nash equilibrium of the complete-information game with a short-lived player
2 is a strategy profileo = (01, 02) such thatE?[mq] > E(°1:92)[m] for all o} and such that

0, € BRY(ay).

2.2 Incomplete Information

We now perturb the complete-information game by introducing incomplete information about
the type of playerl. At timet = —1, Nature selects a type of play&r With probability
1— po > 0, she is the “normal’ type, denoted loyand with the preferences described above,
who plays a repeated game stratégy With probability pg > 0, she is a “commitment” type,
denoted byc, who plays the repeated game stratégy

A state of the world in the incomplete information ganag,is a type for played and a
sequence of actions and signals. The set of stat@sss{n,c} x (I x JxY)®. The prior po,
the commitment strategd;, and the strategy profilé = (71, 02), jointly induce a probability
measurd® on Q, which describes how an uninformed player expects play to evolve. The strat-
egy profiled = (61, 02) (respectivelyd = (61, 0»)) determines a probability measuPdresp.,
P) on Q, which describes how play evolves when plagéds the commitment (resp., normal)
type. SinceP andP are absolutely continuous with respectRpany statement that holds
almost surely, also hold8- andP-almost surely. We usE(‘}l?‘A’lv"Z)[- | to denote expectations
taken with respect to the measwe This will usually be abbreviated t&]- | except where it

is important to emphasize the dependence on the strategies. Also, where appropriate, we use
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E[-] andE[-] to denote the expectations taken with respedt andP (instead ofE (91:92)]. |
andE(%1.%)[.]). The filtrations{ .74 }* o and {74}, will be viewed as filtrations o® in the
obvious way.

The normal type of player 1 has the same objective function as in the complete-information
game. PlayeR, on the other hand, uses the information he has acquired from his pmate
history to update his beliefs about player 1's type and actions, and then maximizes expected
payoffs. Player2’s posterior belief in period that playerl is the commitment type is the
Jx-measurable random variabRéc|.77%) = p 1 Q — [0,1]. By Assumptioril, Bayes’ rule
determines this posterior after all histories. At any Nash equilibrium of this game, thefyadief
a bounded martingale with respect to the filtrat{oi% }+ and measurB. It therefore converges
P-almost surely (and hend® and P-almost surely) to a random variabte, defined onQ.
Furthermore, at any equilibrium the posterjgris a P-submartingale and B-supermartingale

with respect to the filtratiod. 7% },.

3 Disappearing Reputations

Sections3.1 and3.2 present our disappearing reputation results, whose proofs are deferred to

Sectiord, while Section$.3-3.5 present extensions and implications.

3.1 Uninformed Player is Short-Lived

When player 2 is short-lived, and we are interested in the lower bounds on flayser ante
payoffs that arise from the existence of “Stackelberg” commitment types (as in Fudenberg and
Levine [6]), it suffices to consider commitment types who follow “simple” strategies. Conse-

12



guently, when player 2 is short-lived, we assumespecifies the same (possibly mixed) action
¢1 € A in each period independent of history (cf. Definitidbelow).
If ¢ is part of a stage-game equilibrium, reputations need not disappear—we need only
consider an equilibrium in which the normal and commitment type both @lagnd player 2
plays his part of the corresponding equilibrium. We are interested in commitment types who

play a strategy that isot part of a stage-game equilibriufn:

Assumption 4 (NON-CREDIBLE COMMITMENT) Player2 has a unique best reply i (de-

noted¢) and ¢ = (G, ¢) is not a stage-game Nash equilibrium.

Sinceg, is the unique best responsecio the actiong, is pure andBRS(4y) is the singleton
{82}, wheredy is the strategy of playing, in every period. Assumpticdimplies that(d1, 62)

is not a Nash equilibrium of the complete-information infinite horizon game.

Definition 3 A Nash equilibrium of the incomplete-information game with short-lived unin-

formed playerss a strategy profiléd1, 02) such that for alloy, j € Jandt =0,1, ...,

~

E[mg > E(% [mg, and

E[ (i, jt) | #2] > E[ (i, ]) | 2, P—as.

Our main result, for short-lived uninformed players, is that reputations for non-equilibrium

behavior are temporary:

41 player 2 has multiple best responses, it is possible to construct equilibria of the complete information game
in which player 1 playz in each period, irrespective of history, everifis not part of a stage-game equilibrium

(for an example, see Cripps, Mailath, and Samuelson [4, Section 2]).
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Theorem 1 Suppose the monitoring distributign satisfies Assumptiori; 2, and3 and the
commitment actiorg; satisfies Assumptiod. In any Nash equilibrium of the incomplete-

information game with short-lived uninformed playeps.— 0 P-almost surely.

3.2 Uninformed Player is Long-Lived

When player 2 is long-lived, non-simple Stackelberg types may give rise to higher lower bounds
on player 1's payoff than do simple types. We accordingly introduce a richer set of possible

commitment types, allowing arbitrary public strategies.

Definition 4 (1) A behavior strateggy, ¢ = 1,2, is publicif it is measurable with respect to the
filtration induced by the public signal$,74},.

(2) A behavior strateggy, ¢ = 1,2, is simpleif it is a constant function.

A public strategy induces a mixture over actions in each period that only depends on public
histories. Any pure strategy is realization equivalent to a public strategy. Simple strategies,
which we associated with the commitment type in SecBiah play the same mixture over
stage-game actions in each period, and hence are trivially public.

Allowing the commitment type to play any public strategy necessitates imposing the non-
credibility requirement directly on the infinitely repeated game of complete information. Mim-
icking Assumptiorid, we require thatif player 2's best responsg be unique on the equi-
librium path and if) there exists a finite tim&° such that, for every > T°, a normal player
1 would almost surely want to deviate frofn, given player 2's best response. That is, there

is a periodt continuation strategy for player 1 that strictly increases her utility. A strafegy

14



satisfying these criteria at least eventually loses its credibility, and hence is said to have “no

long-run credibility.”

Definition 5 The strategyd; hasno long-run credibilityif there existsI® and e > 0 such that,
for everyt > TO,

(1) 62 € BR-(61) implies that withP(%:92) -probability one 6z is pure and
EO[ 1oy | Ao | > E009) [ 1oy | Ay | + €°,

for all oy attaching probability zero to the action played by (hx) after P(61.92)_almost all
hy € Hy, and

(2) there exists; such that, ford, € BR-(61), P(9:92)-almost surely,
E(0v9) [ gy | 4y ] > EO [ oy | Ay | + €°.

This definition captures the two main features of Assumpdjanunique best response and
absence of equilibrium, in a dynamic setting. In particular, the stage-game action of any simple
strategy satisfying Definitioh satisfies Assumpticd. In assuming the best response is unique,
we need to avoid the possibility that there are multiple best responses to the commitment action
“in the limit” (as t gets large). We do so by imposing a uniformity condition in Definition
5.1, that inferior responses reduce payoffs by at Iedst The condition on the absence of
equilibrium in Definition5.2 similarly ensures that for all largeplayer 1 can strictly improve
on the commitment action. Again it is necessary to impose uniformity to avoid the possibility

of an equilibrium in the limie

SCripps, Mailath, and Samuelson [4] show that reputations disappear when the commitment strategy satisfies

the second, but not necessarily the first, condition (such a strategy was saitéwdrean equilibrium strategy

15



Any 0, that doesot satisfy Definition5 must have (at least in the limit) periods and histo-
ries where, given player 2 is best responding@fpplayer 1 prefers to stick to her commitment

strategy. In other wordg; is a credible commitment, in the limit, at least some of the time.

Definition 6 A Nash equilibrium of the incomplete-information game with a long-lived unin-

formed playeiis a strategy profilé &1, 02) such that,

~

E[7T10] > E(ai’UZ)[T[lo] , VO’:’L, and

E[rp) > E0%)[mpg, Yoy,
Theoren®2, which implies Theorer, is our result for games where player 2 is long-lived:

Theorem 2 Suppose satisfies Assumptioiis 2, and3, and that the commitment type’s strat-
egydy is public and has no long run credibility. Then in any Nash equilibrium of the game with

incomplete informationp; — 0 P-almost surely.

We have followed the standard practice of working with commitment types whose behavior

is fixed. If instead we modeled commitment types as strategic agents whose payoffs differed

from those of normal types, we would obtain the following: Under Assumpidesin any
Nash equilibrium in which the “commitment-payoff” type plays a public strategy with no long

run credibility for the “normal-payoff” typep;, — 0 P-almost surely.

in the long run. However, that result also requires the commitment strategy to be implementable by a finite
automaton, and more problematically, the result itself imposed a condition on the behavior of player 2 in the
equilibrium of the game with incomplete information. We do neither here. Consequently, unlike our earlier paper,

the long-lived player result implies the result for short-lived players.

16



3.3 Uniform Disappearance of Reputations

Theoren2 leaves open the possibility that while reputations do asymptotically disappear in ev-
ery equilibrium, for any period’, there may be equilibria in which reputations survive beyond
T. We show here that that possibility cannot arise: there is sbraéter which reputations
have disappeared @l Nash equilibria. Intuitively, a sequence of Nash equilibria with reputa-
tions persisting beyond periodd — o implies the (contradictory) existence of a limiting Nash

equilibrium with a permanent reputation.

Theorem 3 Suppose satisfies Assumptiords2, and3, and that the commitment type’s strat-
egy 0 is public and has no long run credibility. For a#l > 0, there existd, such that for all

Nash equilibria,o, of the game with incomplete information,
Po(pf <&, Vt>T)>1—¢,

whereP? is the probability measure induced @ by o and the normal type, ang? is the

associated posterior of play@on the commitment type.

Proof. Suppose not. Then there exists- 0 such that for alll', there is a Nash equilibrium
o' such that

PT(pl <&, "t>T)<1-g¢,

whereP" is the measure induced by the normal type uraleand p{ is the posterior in period
t undero’.
Since the space of strategy profiles is sequentially compact in the product topology, there is

a convergent subsequenpe’«}, with limit o*. We can relabel this sequence so tbit— o*

17



and

P(pf < g, Vvt >k) <1—¢,

PK(pK > & for somet > k) > ¢.

Since eactoX is a Nash equilibriumpk — 0 PX-a.s. (Theoren®), and so there exists
Kk > k such that

PK(pk < g, vt > Ky) >1—¢/2.
Consequently, for ak,
PX(pK > €, for somet, k <t < Ky) > £/2.
Let 1, denote the stopping time
T = min{t > k: pf > €},
andq[k the associated stopped process,

) Pk, ift < Ty,

q,t =
e, Ift>r.
Note thatgf is a supermartingale undef and that fott < k, gf = pk.

Observe that for ak andt > K|,
EXgk > ePX(1 <t) > £2/2.

Sinceo™ is a Nash equilibriump; — 0 P*-a.s. (appealing to TheoreBhagain), and so
there exists a datesuch that
P*(pi < €2/12) > 1—€2/12

18



Then,
2 2 2 2
~ £ £ £ £
* *<_ - — _.
E'pi < 12(1 )+ =<

Sinceak — o™ in the product topology, there iskd> s such that for alk > K/,

& ~ ~
5 > Epi=Eg
~ gz
2 Ekq[k 2 57 (2)
which is a contradiction. [

3.4 Disappearing reputations in discounted finitely-repeated games

In this section we show that reputations also disappear in sufficiently long discounted finitely-
repeated games of incomplete information. If the commitment type plays a simple strategy of
playing ¢1 in every period, withg; satisfying Assumptiod, then the description of the finitely
repeated game for differing repetitions is straightforward: The commitment type plags
every period. More generally, HrlT is the commitment type’s strategy in tAeperiod game,

we require that the sequen{:élT } converge to a strategy of the infinitely repeated game that

has no long-run credibility.

Theorem 4 Supposeo satisfies Assumptiorfs 2, and/3, and 6 is a public strategy of the
infinitely repeated game with no long run credibility. 1@t denote theT -period discounted
repeated game of incomplete information in which the commitment type plays accordq:lg to

19



Suppose for ali, 61Tt — 01t asT — o, For all € > 0, there exist§ such that for allT’ > T and

for all Nash equilibriac of GT',
PO(pl <&, Mt >T)>1—¢,

whereP? is the probability measure induced dhx J x Y)T/ by o and the normal type, and

p? is the associated posterior of play2on the commitment type.

Proof. Suppose not. Then there exists- 0, such that for alll, there existd’ > T and a

Nash equilibriumo™ of the T'-period finitely repeated game with
PT(pl <&, t>T)<1-g¢,

wherePT is the probability measure induced in tiéperiod repeated game hy" and the
normal type, angy is the associated posterior.

A standard diagonalization argument yields a subsequéade and a strategy profile
in the infinitely repeated gameg*, with the property that for al, aéTt" — oy for 0 =1, 26
Moreover, since each '« is a Nash equilibrium of increasingly long finitely repeated games and
61Tt" — O1t, 0" is a Nash equilibrium of the infinitely repeated game with incomplete information
in which the commitment type playdy. We can relabel this sequence so th&t— o;* for each
t and

P(pf <&, vt >k) <1—¢.

Letting Ty be the length of the finitely repeated game correspondiraftave have (recall that

the initial period is period)

PX(pk > ¢, for somet, k <t < T) > &.

SFor eacht, g; ¥ ando;” are elements of the same finite dimensional Euclidean space.

20



The proof now proceeds as that of Theoi@nwith (2) evaluated at = Ty — 1. [ ]

3.5 Asymptotic Equilibrium Play

The impermanence of reputations has implications for behavior as well as beliefs. In the
limit, the normal type of playet and player2 play a correlated equilibrium of the complete-
information game. Hence, differences in the players’ beliefs about how play will continue
vanish in the limit. This is stronger than the convergencsulojectiveequilibria obtained by

Kalai and Lehrer [11, Corollary 4.4.7]though with stronger assumptions.

We present the result for the case of a long-run player 2, since only straightforward modi-
fications are required (imposing the appropriate optimality conditions period-by-period) to ad-
dress short-run player 2's. To begin, we describe some notation for the correlated equilibrium
of the repeated game with imperfect monitoring. We use the pamodt continuation game
for the game with initial period in period® We use the notatiotf = 0,1, 2, ... for a period of
play in a continuation game (which may be the original game)tdndthe time elapsed prior
to the start of the periotlcontinuation game. A pure strategy for playlers;, is a sequence
of mapss;y : Hyy — | fort’ =0,1,...2 Thus,s; € I ands; € %Py = S;, and similarly

s € S =JHr | The spaceS; andS, are countable products of finite sets. We equip the prod-

’In a subjective correlated equilibrium, the measuréjrcan differ from the measure id)
8Since a strategy profile of the original game induces a probability distributiori-qegiod historiesHz; x H,

we can view the periotlcontinuation, together with a type spadg x Hx and induced distribution on that type
space, as a Bayesian game. Different strategy profiles in the original game induce different distributions over the

type space in the continuation game.
9Recall thatoy, denotes general behavior strategies.
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uct spacesS= S x S with the g-algebra generated by the cylinder sets, denoted’bypenote
the players’ payoffs in the infinitely repeated game (as a function of these pure strategies) as

follows

Ui(s,s2) = E&%)[mg], and

Uz(S1,S2) ES%)[ g .

The expectation above is taken over the action pairgy ). These are random, given the pure
strategy profile(s1,sp), because the pure action played in peribdepends upon the random
public signals.

We follow Hart and Schmeidler [9] in using the ex ante definition of correlated equilibria

for infinite pure-strategy sets:

Definition 7 A correlated equilibriunof the complete-information game is a measuren

(S.) such that for all.”-measurable function, : § — S and{>: S — S,

/S[ul(si,Sz)—ul(Zl(sl%sQ)]du > 0, and (3)

Jlua(st.50) - va(ss.Gals)ldn > 0 @

Let .# denote the space of probability measuresn (S,.), equipped with the product

topology. Then, a sequengg converges tq if, for eacht > 0, we have

Ilnh (IxY)T 5 JAxV)T — IJh(l XY)T 5 JAXY)T -

Moreover, .7 is sequentially compact with this topology. Payoffs for playgrand 2 are

extended ta# in the obvious way. Since payoffs are discounted, the product topology is
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strong enough to guarantee continuityupf .# —R. The set of mixed strategies for player
is denoted by#,.

Fix an equilibrium of the incomplete-information game with imperfect monitoring. When
player1 is the normal (respectively, commitment) type, the monitoring technology and the
behavior strategie&d, 02) (resp.,(01,02)) induce a probability measurg (resp.,@) on the
t-period historiegha, hat) € Hir x Hx. If the normal type of playet observes a private history
hy; € Hy, her strategyg:, specifies a behavior strategy in the perfocentinuation game.
This behavior strategy is realization equivalent to a mixed straié'gye 1 for the periodt
continuation game. Similarly, the commitment type will play a mixed stratse'?gye A for
the continuation game and play2will form his posteriorp;(ha) and play the mixed strategy
A" € _#, in the continuation game. Conditional on player 1 being normal, the composition of
the probability measurg and the measurQi hu Ahat) induces a joint probability measutg,
on the pure strategies in the continuation game and pl2igeyosterior (the spac8x [0, 1]).
Similarly, conditional upon playet being the commitment type, there is a measdren Sx
[0,1]. Let fi: denote the marginal g& on Sandf; denote the marginal g& on S.

At the fixed equilibrium, the normal type is playing in an optimal way from ttroawards

given her available information. This implies that for afl-measurable functiong : S — S,

/ Uy (sy, S2)dfk > / Uy (2 (s1), 52)dlfk. (5)
S S

Let .7 x % denote the produat-algebra orSx [0,1] generated by on Sand the Borelb-

algebra ori0, 1]. Player2 is also playing optimally from timeéonwards, which implies that for
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all . x #-measurable function® : S x [0,1] — S,

/ Uz(s1,52)d(Poft + (1 — po)fr) > / Uz(s1, €2(S2, pt))d(pofr + (1 —po)@t).  (6)
Sx[0,1] Sx[0,1]

If we had metrized#, a natural formalization of the idea that asymptotically, the normal
type and playef are playing a correlated equilibrium is that the distance between the set of
correlated equilibria and the induced equilibrium distributippson S goes to zero. While
A is metrizable, a simpler and equivalent formulation is that the limit of every convergent
subsequence dfik} is a correlated equilibrium. This equivalence is an implication of the fact
that.# is sequentially compact, and hence every subsequengg pthas a convergent sub-

subsequence. The proof of the following theorem is in AppeAdix

Theorem 5 Fix a Nash equilibrium of the incomplete-information game and supppse O
P-almost surely. Lefi; denote the distribution o8induced in period by the Nash equilibrium.
The limit of every convergent subsequencéie} is a correlated equilibrium of the complete-

information game.

Since players have access to a coordination device, namely histories, in general it is not
true that Nash equilibrium play of the incomplete-information game eventually looks like Nash

equilibrium play of the complete-information garte.

1%e do not know if Nash equilibrium play in the incomplete-information game eventually looks like a public
randomization over Nash equilibrium play in the complete-information game. As far as we are aware, it is also not
known whether the result of Fudenberg and Levine [7, Theorem 6.1, part (iii)] extends to correlated equilibrium.
That is, for moral hazard mixing games and for ladges it true that the long-run player’s maximucorrelated

equilibrium payoff is lower than when monitoring is perfect?
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Suppose the Stackelberg payoff is not a correlated equilibrium payoff of the complete-
information game. Recall that Fudenberg and Levine [6] provide a lower bound on equilibrium
payoffs in the incomplete-information game (with short-run players) of the following type:
Fix the prior probability of the Stackelberg (commitment) type. Then, there is a value for the
discount factorg, such that ifd; > 6_ then in every Nash equilibrium, the long-lived player’s
ex ante payoff is essentially no less than the Stackelberg payoff. The reconciliation of this result
with Theoren'5 lies in the order of quantifiers: while Fudenberg and Levine [6] fix the prior,
Po, and then seleczf( po) large (with5_( po) — 1aspp — 0), we fix & and examine asymptotic

play, so that eventually, is sufficiently small that, < 5_(pt).

4 Proofs of Theoremsl and 2

The short-lived uninformed player case is a special case of the long-lived player case. How-
ever, the proof for the long-lived uninformed player is quite complicated, while the short-lived
player case illustrates many of the issues in a simpler setting. In what follows, references to the
incomplete information game without further qualification refer to the game with the long-lived
uninformed player, and so the discussion also covers short-lived uninformed players (where
01(hs) = ¢ for all hs). Whenever it is helpful, however, we also give informative simpler argu-
ments for the case of short-lived uninformed players.

The basic strategy of our proof is to show that if plages not eventually convinced that
playerlis normal, then he must be convinced that pldyerplaying like the commitment type
(Lemmal) and hence playe plays a best response to the latter. Our earlier paper proceeded

by arguing that the normal type then has an incentive to deviate from the commitment strategy
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(since the latter has no long-run credibility), which forms the basis for a contradiction (with
player2’s belief that the two types of playérare playing identically). The difficulty in applying
this argument in our current setting is that play@eeds to know play&'s private historyhy in
order to predic®'s periodt beliefs and hence behavior. Unfortunately, play&nows only her

own private historyhy;. Our argument thus requires showing that player 1 eventually “almost”

knows the relevant features of player 2’s history.

4.1 Player 2's Posterior Beliefs

The first step is to show thagither player 2's expectation (given his private history) of the
strategy played by the normal type is, in the limit, identical to his expectation of the strategy
played by the commitment typer player 2's posterior probability that play&iis the commit-
ment type converges to zero (given that player 1 is indeed normal). This is an extension of a
familiar merging-style argument to the case of imperfect monitoring. If, for a given private his-
tory for player 2, the distributions generating his observations are different for the normal and
commitment types, then he will be updating his posterior, continuing to do so as the posterior
approaches zero. His posterior converges to something strictly positive only if the distributions
generating these observations are in the limit identical for each private history.

The proof of Lemma 1 in Cripps, Mailath, and Samuelson [4] applies to the current setting

without change:

Lemma 1 Suppose Assumptiofind2 are satisfied and, is public. In any Nash equilibrium
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of the game with incomplete informatish,
tlmpt(l_pt)”alt_é[alt | ]| =0, P-a.s. (7)

Condition [7) says that almost surely either player 2’s best prediction of the normal type’s
behavior at the current stage is arbitrarily close to his best prediction of the commitment type’s
behavior (that is||61 — E[ &1 | #% ] || — 0), or the type is revealed (that igy(1— pt) — 0).

However,lim p; < 1 P-almost surely, and henc@)(implies a simple corollary:

Corollary 1 Suppose Assumptiofisand?2 are satisfied andy is public. In any Nash equilib-

rium of the game with incomplete information,

lim p 6w —E[ 6u | 2 ]|| =0, P-a.s.

4.2 Player 2’s Beliefs about his Future Behavior

We now examine the consequences of the existencePepasitive measure set of states on
which reputations do not disappear, il@m_. pt(w) > 0. The normal and the commitment
types eventually play the same strategy on these states (L&ni@ansequently, we can show
that on a positive probability subset of these states, player 2 eventually attaches high probability
to the event that in all future periods he will play a best response to the commitment type.

As 0, is public, player 2 has a best responsedtothat is also public. Moreover, this
best response is unique on the equilibrium path fot 2lIT° (by Definition5). We let j*(h;)
denote the action that is the pure best-response after the public Higtéoy all t > T°. Note

that j*(h;) is s#-measurable. The event that player 2 plays a best response to the commitment

\We usel|x|| to denote thesupnorm onR'.
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strategy in all periods aftér> T° is then defined as
GY = { w: a3 "™) (hps(w)) = 1, Vs> 1},

wherehs(w) (respectivelyhys(w)) is thes-period public (resp., 2's private) history af.
When the uninformed players are short-lived,is simple and player 2 has a unique best

reply, BRS(G1) = {2}, s0
G = {w: os(hps(w)) = G2, Vs> t}.

With this in hand we can show that if player 2 does not eventually learn that player 1 is
normal, then he eventually attaches high probability to thereafter playing a best response to the

commitment type:

Lemma 2 Suppose the hypotheses of Thedhold}? and suppose there is a Nash equilib-
rium in which reputations do not necessarily disappear, B¢A) > 0, whereA = {p; - 0}.
There existg) > 0andF c A, with P(F) > 0, such that, for any > 0, there existd for which,
onF,

P>, Vi> T,
and

PG| ) >1-&,  W>T. (8)

Proof. Since F~>(A) > 0 and p; converges almost surely, there exigts> 0 andn > 0
such thatP(D) > 2u, whereD = {w : lim{ . p(w) > 2n}. The random variablefdys —

E[51t|.#%]| tend P-almost surely to zero oB (by Corollary1). Consequently, the random

12This lemma does not require Assumpti@n
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variablesz; = sup.|/01s — E[51s|.#4|| also convergdd-almost surely to zero oB. Thus,
from Hart [8, Lemma 4.24]E[1pZ | #%] converges almost surely to zero, whdggis the
indicator for the everD. DefineA = {w: E[1p | /4](w) > 3}. The #-measurable ever
approximate® (because player 2 knows his own beliefs, the random variableg1p — 1 |

convergeP-almost surely to zero). Hence

1pE(Z | #%] < 1AE[Z | 5]+
= E[1aZ | 4]+ 0

< E[lpZ | /%] +E[tk | )+,

where the first and third lines uZe < 1 and the second uses the measurabilitgafith respect
to #%. All the terms on the last line convergealmost surely to zero, and &Z;|.7##%] — 0
P-a.s. on the sdb. Egorov’s Theorem (Chung [2, p. 74]) then implies that there ekistsD
such thaP(F) > 0 on which the convergence of andE|[Z;|.#%] is uniform.

To clarify the remainder of the argument, we present here the case of short-lived player 2
(long-lived player 2 is discussed in Appen@). This case is particularly simple, because if
player2 believed his opponent was “almost” the commitment type, then in each geplays
the same equilibrium action as if he weertainhe was facing the commitment simple type.

From the upper semi-continuity of the best response correspondence, therepexi§ts
such that for any historis and anyl; € Al satisfying||{1 — ¢1|| < ¢, a best response @ is
also a best response ¢p and so necessarily equais The uniform convergence E‘[Zﬂ%ﬂz]

onF implies that, for any¥ > 0, there exists a tim& such that orF, forallt > T, pr > n and
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(sincedis = G1)
E il;'tpHCl_E[alsL%sz]H‘%Zt} <&y.
As E[Z| %) < Egforallt > T onF andZ >0, P({Z > y}|#%) < & forallt > T onF,

implying (8). ]

4.3 Player 1's Beliefs about Player 2's Future Behavior

Our next step is to show that, with positive probability, player 1 eventually expects player 2
to play a best response to the commitment type for the remainder of the game. We first show
that, while playeR’s private historyhy is typically of use to player 1 in predictir@js periods
behavior fors > t, this usefulness vanishesss- «. The intuition is straightforward. If period-
s behavior is eventually (asbecomes large) independentef, then clearlyhy is eventually
of no use in predicting that behavior. Suppose thenthat essential to predicting player 2's
behavior in all periods > t. Then, playef continues to receive information about this history
from subsequent observations, reducing the value of hawingxplicitly revealed. As time
passes player 1 will figure out whethex actually occurred from her own observations, again
reducing the value of independently knowing.

Denote byp (<7, %) the smalleso-algebra containing the-algebrasez and %4. Thus,
B (s, 7%) is the o-algebra describing playdrs information at times if she were to learn

the private history of playe2 at timet.
Lemma 3 Suppose Assumptioisand3 hold. For anyt > 0andt > 0,
S"_rgo HE[O—27S—I-T|B(%37 Ha)] — E[027S+T|<%ﬂls] || =0, P-a.s.

30



Proof. We prove the result here far= 0. The case of > 1 is proved by induction in
AppendixA.3. Suppos&K C J'is a set oft-period player action profiles(jo, j1, ..., jt_1). We
also denote b the corresponding event (i.e., subsef))f By Bayes’ rule and the finiteness
of the action and signal spaces, we can write the conditional probability of the lévgen

the observation by playdrof hy s.1 = (his,Ys,is) as follows

FN)[K|h1,S+1] = FN)[K|hlsaYSais]

PIK [has]Plys, is] K. hug
P[yS> |S| hlS] .

PK sl 3 05 E[03 (has) K, ]
3 i P E (03 (has) ]

Y

where the last equality us&is|K, his] = Plis|hyg].

SubtractP[K |hy¢] from both sides to obtain

. . BlK g 35 2% (E[0d (hos) K, hs] — E[}(has) ) )
PIK|hyst1] — P[K|his] = o= ] .
> j PiE[07 (hos)[hag]
The termy; piisjli[azj(hZS)|hls] is playerl's conditional probability of observing the periad-
signalys given she takes actiagand hence is strictly positive and less than one by Assumption

1. Thus,

[PIKIhys:1] — PKhus]| > PIK|hus] | 5" 05 (E[0(hs) K, hug] — E[0d (has) ) )

J

Since the sequence of random varial|B§K |74 } s is a martingale relative to{.#s}s, P), it
converged>-almost surely to a non-negative Iinf?t[K|ji”1°o] ass — o. Consequently, the left
side of this inequality convergdsalmost surely to zero. The signals generated by plaiger

actions satisfy AssumpticB, so an identical argument to that given at the end of the proof of
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Lemma 1 in Cripps, Mailath, and Samuelson [4] establishestanost everywhere oK,
lim BIK| 4] || E[ozs| (s K)] — Eloa) s | =0,

wheref3 («,B) is the smallest-algebra containing both the-algebraes and the evenB.

Moreover,P [K|.#w] (w) > 0 for P-almost allw € K. Thus,P-almost everywhere oK,
lim ||E[o2|B(Ais, K)] — E[ 02| #4d] || = O.
Since this holds for aK € %,
lim |E[02s|B(As, #2)| — E[02s 44| =0, P-as,
giving the result forr = 0. ]

Now we apply LemméB to a particular piece of information player 2 could have at time
t. By Lemmaz2, with positive probability, we reach a timeat which player 2 assigns high
probability to the event that all his future behavior is a best reply to the commitment type.
Intuitively, by Lemme3, these period-beliefs of player 2 about his own future behavior will,
eventually, become known to player 1.

This step is motivated by the observation that, if player 1 eventually expects player 2 to al-
ways play a best response to the commitment type, then the normal type of player 1 will choose
to deviate from the behavior of the commitment type (which is not a best response to player
2’s best response to the commitment type). At this point, we appear to have a contradiction
between player 2’s belief on the evdat(from Lemma?2) that the normal and commitment
types are playing identically and player 1’s behavior on the eérfthe event where player 1
expects player 2 to always play a best response to the commitment type, identified in the next
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lemma). This contradiction would be immediatéFif was both a subset & and measurable
for player 2. Unfortunately we have no reason to expect either. However, the next lemma shows
thatF T is in fact close to a##s-measurable set on which player 2's beliefs that player 1 is the
commitment type do not converge to zero. In this case we will (eventually) have a contradic-
tion: On all such histories, the normal and commitment types are playing identically. However,
nearly everywhere on a relatively large subset of these states, player 1 is deviating from the
commitment strategy in an identifiable way.

Recall thatj*(hs) is the action played for sure in perigdfter the public histonhs by
player 2's best response to the commitment type. Heﬁ@g;(hs’ )|,%”15] is the probability
player 1 assigns in pericgito the event that 2 best responds to the commitment type in period
s > s. For the case of the short-lived uninformed players and the simple commitment type,
j*(hs) = ¢ for all hs ™ and s0||E[02s|-#4s] — G| > 1— E[ozj;(hd)L%”ls]. So, in that case1Q)

implies || E[0¢|-#4s] — G| < v. SectioriA.4 contains the proof of the following lemma.

Lemma 4 Suppose the hypotheses of ThecBdmld, and suppose there is a Nash equilibrium
in which reputations do not necessarily disappear, if&{.{pt -+ 0}) > 0. Letn > 0 be the
constant andr the positive probability event identified in Lem@&iaor anyv > 0 and number
of periodst > 0, there exists an evefRt’ and a timeT (v, T) such that for alls > T (v, 1) there

existsC] € /s with:

ps>n onCl, (9)
FTUF ccl, (10)
P(FT > B(cl) — vB(F), (11)

B3Here we use; to denote the pure action receiving probability one ur@er
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and for anys € {s,s+1,...,s+ 1}, onFT,

E[ azj;(hd) | #As]>1—-v,  P-as. (12)

When playel? is long-lived, it will be convenient to know that the conclusions of Lemma

4 hold on a sequence of cylinder sets:

Corollary 2 Assume the conditions of Lem@#aDefineF] = {w € Q : projs(w) = projy(«')
for somew’ € F1}, whereprojy(w) is the projection ofw onto (1 x J x Y). Then, [10), (11),

and [12) hold for FJ replacingF .

Proof. The proof follows from the observation that, for allIFt ¢ FJ ¢ CI (sinceC] ¢

Jt5s) and (L2) is an.7#is-measurable condition. [ ]

4.4 Toward a Contradiction

We have shown that when reputations do not necessarily disappear, there exisks' @set
which (12) holds andF' ¢ Cg € 5. The remaining argument is more transparent in the
setting of Theorerd, where player 2 is short-lived. Accordingly, we first prove Theof&@nd
then give the distinct argument needed when player 2 is long-lived and the commitment strategy
is not simple.

In broad brushstrokes, the argument proving Theotamas follows. First, we conclude
that onFT, the normal type will not be playing the commitment strategy. To be precise—on
FT there will exist a stage-game action playeddayput not by the normal type. This will bias
player 2’s expectation of the normal type’s actions away from the commitment strat@jy on
because there is little probability weight ®§ \ FT. We then get a contradiction, because the
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fact thatps > n on C! implies player 2 must believe the commitment type’s strategy and the
normal type’s average strategy are the sam€pbn

The argument proving TheoreBmust deal with the nonstationary nature of the commit-
ment strategy (and the nonstationary nature of the failure of credibility). As in the simple case,
we have found a set of stat€d where, for alls sufficiently large, the normal type attaches
high probability to player 2 best responding to the commitment type for themmattiods. The
normal type’s best response to this is not the commitment strategy, and hence the normal type
does not play the commitment strategy. We will derive a contradiction by showing that player
2 almost comes to know this.

The complication is that it may be very difficult for player 2 to predict just how the normal
type’s strategy deviates from the commitment strategy. When working with the stationary com-
mitment strategy of Theorej we can be certain there is a stage-game action played by the
commitment type which the normal type’s strategy would (eventually) not play after any private
history. In the setting of Theore®) however, the normal type’s deviation from the nonstation-
ary commitment strategy may be much more complicated, and may depend on private (rather

than just public) information.

4.5 Proof of Theoreml

Suppose, en route to a contradiction, that there is a Nash equilibrium in which reputations do
not necessarily disappear. ThE{p; - 0}) > 0. Let ¢, = minie, {cl : ¢ > 0}, that is,¢, is
the smallest non-zero probability attached to an action under the commitment stat8gyce

(¢1, ¢2) is not a Nash equilibriumg; plays an action that is suboptimal by at legst 0 when
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player 2 uses any strategy sufficiently closetoThat is, there existg > 0, i’ € | with cill >0

andv > 0 such that

y< min _(maxnl(i,og)—nl(i’,az)).
o2—¢f<v \ i€l

Finally, for a given discount factad; < 1 there exists a sufficiently large such that the loss
of y for one period is larger than any feasible potential gain deferredg®riods:(1— 1)y >
o 2max; | (i, ).

Fix the eventF from LemmaZ2. Forv < min{v, %51} andt above, letF' and, fors >
T(v,1), C;r be the events described in Lem#iaNow consider the normal type of player 1 in
periods > T(v, 1) at some state iff . By (12), she expects player 2 to play within< v of
¢ for the nextr periods. Playing the actidhis conditionally dominated in periog since the
most she can get from playingin periodsis worse than playing a best responsestdor 1
periods and then being minmaxed. Thusdrthe normal type plays actidghwith probability
zero: o} = 0.

Now we calculate a lower bound on the difference between player 2's beliefs about the
normal type’s probability of playing actiori in periods, E[oil's|<%”25], and the probability the

commitment type plays actidhon the set of state@sT :

B[ |of — Eloly e

10| > E[(d - Elolra) 1]

> ¢,P(Ch) - E|ally]

> ¢l - (Pch -BF)

> ¢,P(C)—vP(F)

> 26,PF). (13
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The first inequality above follows from removing the absolute values. The second inequality
appliescil/ > G, uses the#ss-measurability ofC! and applies the properties of conditional
expectations. The third applies the fact tdg = 0 on FT andal, < 1. The fourth inequality
applies 1) in Lemmad. The fifth inequality follows fromv < %51 andF c C{ (by (10)).

From Corollaryl, ps||¢1 — E(81s|.#s)|| — 0 P-almost surely. It follows that
pelcl — E(5i1/s|<7fés)llcg -0, P-as
But, by Lemmad, ps > 1 on the se€C!, and so
i — E(5i1,s|=?fés)|1c§ —0, P-as

This concludes the proof of Theoréinsince we now have a contradiction wiF ) > 0 (from

Lemma2) and [L3), which holds for alls > T (v, 1).

4.6 Proof of Theorem?2

We first argue that, after any sufficiently long public history, there is one continuation public
history after which the commitment type will play some actidr | with positive probability,

but after which the normal type will choose not to pidyregardless of her private history. To
find such a history, notice thab (player 2's best response to the commitment strategy) is pure
and therefore public, ensuring that the normal player 1 has a public best respopsamtbthat

it is not ;. Hence, there exists a public history where 1's public best response differs from the
commitment strategy, for all private histories consistent with this public history. If we can show
this preference is strict, this will still hold when player 2 is just playing close to a best response,
which will open the door to a contradiction. The formal statement is (the proof is in Appendix
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A.5):

Lemma 5 Supposé is a public strategy with no long-run credibility (with an associafed),
and G, is player 2's public best reply. Then, player 1 has a public best re;flyio 0. There
existsT € N, A > 0, andk > 0 such that for alls > T° and eachhs € Hs, there is an action®,

a periods’ < s+ T, and a public continuation history of hs, such that
1. Gig(hg) > A,
2. the actioni® receives zero probability underfg(hg), and

3. player 1's payoff from playing® and continuing with strategg; is at leastk less that

what she gets from playinng;_{r ath?,i.e.,
E(%1.92) [y h9] — EC19) [(1— &) m(i°, &) + St ¢21h] > K.

Fors> T°, Lemma5s describes how player 1's best responséddliffers fromd;. In the
game with incomplete information, Lemniadefines threesz-measurable functions(-;s) :
Q—1,9(;9):Q— {t:s<t<s+71},andh(-;s): Q — U2 ,Y! as follows: Associated with each
statew € Q is the implieds-period public historyhs. The action-period paifi(w;s),s (w;s))
is the action-period pai(i®,s') from Lemmas for the public historyhs. Finally, h(w;s) is
the s'(w; s)-period continuation historyg of hs from Lemma5. We emphasize thaf(w;s)
is typically not the '(w; s)-period public history ofw (for a start, it is7%-measurable); while
the firsts-periods off)(w;s) are thes-period public history ofw, the nexts'(w;s) — s periods
describe the public signals from Lemifa

With these functions in hand, we can describe how player 1's behavior differs from that of
the commitment type when she is sufficiently confident that player 2 is best responding to the
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commitment type (wherp = miny; | pﬁjf > 0 andA is from Lemméb; the proof is in Appendix

A.6):

Lemma 6 Suppose the hypotheses of Thec2dmld, and suppose there is a Nash equilibrium
in which reputations do not necessarily disappear, Pé{,p; -+ 0}) > 0. Letf, A, andk be the
constants identified in Lemnt andM = maX¢, jeyreq12) [70(I, j)|- Supposea > T satisfies
12M{ < k, v > 0 satisfiesl2Mv < kp', and {F}s is the sequence of events identified in

Corollary2. For all s> T(v,21),

2. the sef = {w € F : hy () (w) = h(w; )} has probabilityP(FE) > p"P(FJ) > 0, and

3. forall w e FY,

~i(w;s)

Ul,s’(w;s)(hl,S’(w;s)(w)) =0.

If the eventsFF were known to player 2 in periog then the argument is now complete,
since there would be a contradiction between player 2's belief that the normal and commitment
type play the same way dR} and player 1's actual behavior. Howeveg is not known to
player 2. On the other hand} is approximated byC? (the analogous modification @,
defined below), an event known by player 2 in persodAt the same time, we must still deal
with the random nature adf-;s) ands'(-; w).

To complete the argument then, suppose the assumptions of L&r(maluding the

bounds ortr andv) hold, and in addition

2Ap"
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The set of states consistent with 2’s information at tay@J, and the “right” continuation
public history, isC = {w € C{ : hy(,)(w) = h(w;s)}. Note thatP(C{\F¢) < P(C{\FJ), and
sinceC! o FJ, Ct o F}. We also partitiorC{ into the subevents corresponding to the relevant
period in which the action= i(w;s) is not optimal:Ct = {w e C! :i(w;s) =i, §(w;s) =t,
h(w) = h(w;s)}, so thalCt = USHT Ui CH. Note thaC¥t € s forallic |l andt =s,... s+
T.

For eachw, leti® =i(w;s) ands’ = s(w;s). Now, for fixed w and implied fixed ac-
tion i° and periods®, define fs(w) = dic(w) and fs(w) = E [le| #2s] (w). In the last ex-
pression, for fixed actioif and periods®, E [Gi|#s] is the conditional expected value of
Gle. In particular, forw € CH, ° =t andi® = i, and we can writefs(w) = 6}, (w) and
fs(w) = E [6};| #4] (w). Then,Zs(w) = sups||61 — E (G| 4] || > | fs(w) — fs(w)].

So,

ElZsley] > E|(fi—f) x 1] (15)
S+T -
= Y SE[(fs~ ) x 1]

t=sie
skt .
= Y SE|[(8)—E 6l #5]) x Lea]
t=Sie -
ST _
=3y E_E[(U'lt—a'lt)lcécn]%ztﬂ, (16)

t=sie

where the last equality follows fror@3t € 7. Now, defineF = {w € FJ :i(w;s) =

i, §(w;s) =t, h(w) = h(w;s)}, and soFF = UL Ui FF. SinceFd c ¢!, Fft « ¢, and
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so (16) is at least as large as

[ [ 1t — O1t) Fm|ffztﬂ iz (int\F¢.t>

fleS¢ - z E [Glt F¢|t|jf2t )] Ci\F )

> AP(F¥) —PB(CI\F), (17)

where the last equality is an implication éf[éilt 1 si L%”Z] = 0 P-almost surely. Hence, from

the chain from15) to (17), we have

E(Zsles] > Ap"P(F N — (P —PF). (18)
Applying the bounds/P(F) > P(Cl) — P(FJ) andP(FJ) > B(F)(1— v) from Corollary2 to
the right side of/18) gives
E[Zsles] > (ApT(1—v) —V)P(F).
The bound/14) ensures thak p*(1—v)—v > v/2, and hence

. 1 -
E[Zslcg] > EVP(F).

However,P(C{) > p"(1—v)P(F) > 0 and sinceC{ C {w: p - 0}, Zsle: — 0 P-almost

surely, the desired contradiction.

5 Imperfect Private Monitoring

In this section, we briefly sketch how our results can be extended to the case of private monitor-
ing and short-lived uninformed players. Instead of observing a public sygatahe end of each
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period, playerl observes grivate signal @ (drawn from a finite se®) and player2 observes
a private signall (drawn from a finite sef). A history for a player is the sequence of his or
her actions and private signals. Given the underlying action pr@fijg, we letpj; denote a
probability distribution ove® x Z. We usepi?Z to denote the probability of the signal profile
(8, ¢) conditional on(i, j). The marginal distributions a;zaﬁ =57 pﬁz andpg =59 pi?z. The
case of public monitoring is a special case: t&ke Z andZgcop® = 1for alli, j.
We now describe the analogs of our earlier assumptions on the monitoring technology. The

full-support assumption is:

Assumption 5 (FULL SUPPORY) pfj’,pfj >0forall 60O, cZ andall(i,j) el xJ.

Note that we dsmotassume thami‘?Z > 0forall (i,}) €l x Jand(8,) € @ (which would rule
out public monitoring). Instead, the full-support assumption is that each signal is observed with

positive probability under every action profile.

Assumption 6 (IDENTIFICATION 1) For all j € J, thel columns in the matri;@pif)Zezyia are

linearly independent.

Assumption 7 (IDENTIFICATION 2) For all i € I, theJ columns in the matri)@pﬁ)eeo,j@ are

linearly independent.

Even when monitoring isruly private in the sense the;ﬂti?Z > Oforall (i,j) €l xJand
(8,{) € ©® x Z, reputations can have very powerful short-run effects. This is established in

TheorenB, which is a minor extension of Fudenberg and Levine!fs].

14While Fudenberg and Levine [6] explicitly assume public monitoring, under Assumitibeir analysis also

covers imperfect private monitoring. This includes games where player 1 observes no informative signal. In such
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Theorem 6 Suppose the game has imperfect private monitoring satisfying Assunibtos

6. Suppose the commitment type plays the pure actiomevery period. For allpg > 0 and

all € > 0, there exist® < 1 such that for allé; > 5 player 1's expected average discounted
payoff in any Nash equilibrium of the incomplete-information game with short-lived uninformed
players is at least

min 1R (i*,j) —¢,
jeBRS(i%) (%)

where
BRE(i) = argmaxp (i, )
je
The proof of the following extension of Theoretio the private monitoring case is essen-

tially identical to that of Theorerd apart from the added notational inconvenience of private

signals.

Theorem 7 Suppose the imperfect private monitoring satisfies Assumi@sand7 and ¢;
satisfies Assumptioh Then at any Nash equilibrium of the incomplete-information game with

short-lived uninformed playerg; — 0 P-almost surely.

a case, when there is complete information, the one-period-memory strategies that we describe as equilibria in
Section 2 of Cripps, Mailath, and Samuelson [4] are also equilibria of the game with private monitoring. We thank

Juuso \alimaki for showing us how to construct such equilibria.
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A Appendix

A.1 Proof of Theorem5

Sincep; — 0 P-almost surely, we havp, — 1 P-almost surely. For ang,v > 0 there exists a

T such that for alt > T, B(p; > £) +P(pt < 1—¢€) < v. Hence, fot’ > T,

0 < | [up(s1,5) — ualse, Ealse, P))Jd(Popr + (1 o))
Sx[0,1]
<(1- po)/ [u2(s1, 52) — Ua(s1, €2(2, r))]d Py

Sx[0,€]

#po [ [ua(s1,59) (s, Ealse P)JdBr -+ 2MV,
Sx[1—¢,1]

whereM is an upper bound on the magnitude of the stage-game payoffs and the first inequality
follows from (6). As &» is measurable with respect pp, we can ensure that the final integral in

the preceding expression is zero by setp(s,, pr) = sz for p; > €, and hence, for ang,v >0

and for allé,
~ 2Mv
Ux(S1,S) — Ua(Sy, , doy > — . A.l
(5152 (51 ol PR > (A1)
Again, becausé(pt > g) <V, (A1) implies
~ 2Mv
[ els1,%2) ~ Un(st, Ea(sz )P = 5~ 2Mv.
Sx[0,1] 1-po
Integrating outp; implies that, for allé; : S — S,
~ 2Mv
s 52) — valsn, ()R > 0~ 2mv. (A2)

Consider now a convergent subsequence, denafedith limit [i,, and SUpposgl. is

not a correlated equilibrium. Sinc&)(holds for allt’, it also holds in the limit. If{i,, is not a

44



correlated equilibrium, it must then be the case that for séfheS, — S, there existsc > 0

so that

/S[UZ(SLS'Z) —Up(s1, &5 (82))]dfile < —K < O.

But then forty sufficiently large,

Jua(sr.52) — el & (s2)) ol < - <.

contradicting/A.2) for v sufficiently small.

A.2 Completion of the Proof of Lemma?2

Turning to the general case, Mt= maXx jcjcq1,2) |T0(i, )|, S0 thatV is an upper bound on
the magnitude of stage-game payoffs. ket €°/6M, wheree® is given by Definitiors. If
Z: < a, player 2's expected continuation payoffshag under the strategy profileds, 61, 02)
are within2Ma of his continuation payoff under the profi(é1, 61, 02). Hence, ifZ; < a and

historyhys (for s>t > T°) occurs with positive probability, then
E(91.01:92) g | hyg] — E(9191:92) 1 | gl | < 2Ma (A.3)

for all o».

We now show that i < o fort > T°, then player 2 plays the pure actipt{hs) in all fu-
ture periods. Suppose instead that the equilibraplays j # j*(hs) with positive probability
in periods under a histonhys. Definedy to be identical tas, except that, after the histotys,
it places zero probability weight on the actigi{hs) and increases the probability of all other

actions played by, by equal weight. Let» be player 2's best response to the commitment
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type. Then, ifZ; < a we havé®

E(61,61,02)[7-[25| hys] = E(&l’al’aé)[r@s | hag|
< E(61,61,09) [TBs | hog] +2Ma
< E019) [ | hyg — €0+ 2Ma

E(61:01.92) 155 | hps] — £°+ 4Ma.

IN

As dMa < £°, G, is a profitable deviation after the histonys for player 2—a contradiction.
Hence on the everit; < a player 2 playsj*(hs) in all future periods. Equivalently, we have
shown{Z < a} c GP. ChooseT > T° such thatp, > n andE[Z|#%] < a& forallt > T.

Condition B) now follows fromP[{Z; > a} | #%] < & forallt > T onF.

A.3 Completion of the Proof of Lemmas3

The proof fort > 1 follows by induction. In particular, we have

Pr[K|h1,S+T+1] - Pr[K|h1$7y37iSa "~7y5+T7iS+T]

Pr[K|h15] Pr[Ys, iSa s 7yS+T7 iS—Q—TlKa hlS]
Pr[y37 iSa s YsiT, iS—O-.T|h1$]

PrK|his] [13£5 3§ 075 E[03 (h2) K, hag]

S i P.ZZJ E[sz (h2z)[hag]

Y

15The equality applies the fact that in equilibrium, player 2 is indifferent between actions played with positive
probability. The first inequality applie2\(3). The second inequality applies Definitiéril. The third inequality

applies/A.3) again.
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wherehy 21 = (h1z,Yz,i2). Hence,

}Pr[Kyhl,WH] — Pr[Kyhls]y

> PriK|hyg]

S+T
M Zpiy;j (0] (ho) K, hyg] — |‘| Zp = (0] (hgz) [ has) |
7=S"]

The left side of this inequality converges to zétalmost surely, and hence so does the right

side. Moreover, applying the triangle inequality and rearranging, we find that the right side is

larger than
s+1-1
PriK|hyg] |_| Zp 02 (h2z) |hys]
ys” E[ 02 (h2si 1)K, hag] — ZP.ySHE[Uz(hZ st1)|hag
s+1-1 s+1-1

ys“ E 02 (hosio) K, hyg]| .

From the induction hypothesis thgiE[0o,|B (s, #5;)] — E[Gzzla“i”ls]!l converges to zer®-
almost surely for every € {s,...,s+ 1 — 1}, the negative term also converges to Zeralmost

surely. But then the first term also converges to zero, and, as above, the result holdsfer.

A.4 Proof of Lemma4

Proof. Fix v € (0,1) and a number of periods> 0. Fix & < (3 1vP(F))?, and letT denote the
critical period identified in Lemma for this value ofé.

Player 1's minimum estimated probability §hhy ) over periods, ..., s+ T can be written
asfs=minscg<sir E[O’ZS, |j£”13] Notice thatfs > 1— v is a sufficient condition for inequality
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(12).
The first part of the proof is to find a lower bound féy. For anyt < s, the triangle
inequality implies

1> fs> min E[o) ") |B( s, ) — K,

- s<g<stir
wherekl = max y<s, ¢ |E[o§;(h§)|ﬁ(%s, S| — E[og;(h§)|%s]| fort <s. By Lemma3,
lims_. ki = 0 P-almost surely.
(hy)

As ozj; < 1landis equal td on GP, the above implies

fs > FN)(GtO | B(e%ﬂl&%ﬁ)) - kg

Moreover, the sequence of random variaflB6G? | B(#4s, #3;)) } s is a martingale with respect
to the filtration{#4s}s, and so converges almost surely to a lingit= P(GP|B (e, #%)).
Hence

1>fs>d -k -4 (A.4)

wherell = |g' — P(GP|B(#is, #%))| andlims .« £ = 0 P-almost surely.
The second step of the proof determines the é‘étand a set that we will use to later

determineFT. For anyt > T, define
Ki={w:P(G | #%)>1-&, p>n} e .

Let K® denote the event?_K; and seti = N7_{K¢; note thatliminf Ky = U2+ N7 K¢ =
Ug k. By Lemma2, F C K¢ forallt > T, soF C K%, F C R, andF C liminf K;.
DefineNy = {w: ¢ > 1—\/&}. SetCl = F$ ¢ /%, and define an intermediate &t by

F*=F NNy. Becausé:;r C Ks, (9) holds. In additionF*UF C cg, and hencel0) holds with
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F* in the role ofFT. By definition,
P(C) —P(F*) =P(C{n (FrnNr)) =P(([CInFr)u(Cinnm),

where we use bars to denote complements. By our choi€d,dhe evenCI NNy is a subset

of the evenKt NNy. Thus, we have the bound
P(Cl) —P(F*) < B(CINFr)+P(KrnN). (A.5)

We now find upper bounds for the two terms on the right sid&d); First notice thats(Cg N

Fr) = P(F?) — P(Fr). Sincelims .., P(F?) = P(Fr), there exist§’ > T such that
P(CINFr) < & forall s>T. (A.6)

Also, asP(GP|K;) > 1— & andK; € ., the properties of iterated expectations imply that

1—& < P(GP|K;) = E[g!|K;]. Sinceg! < 1, we have
1-8 <E[g' [K] < (21— v&)P(Ne|K)+P(Ne | Kp)
= 1—/EP(N | Ky).
The extremes of the above inequality imply tﬁ%ﬁN]Kt) < /€. Hence, taking = T we get
P(KrNNr) < /E. (A7)

Using (A.6) and A7) in (A.5), P(C]) — P(F*) < 2,/& for all s> T'. GivenF c C{, the
bound oné, andv < 1, it follows that
N ~ 1-
P(F*) >P(F)—-2\¢& > éP(F) > 0.

Finally, we combine the two steps above to obfln As P(F*) > 0andk! + ¢ converges
almost surely to zero, by Egorov’s Theorem, there eXists- F* such thaPP(F*\ F1) < /&
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and a timeT” > T such thak! +¢I < /& onF'foralls>T”. SinceFTUF c F*UF c C{,
(10) holds. LetT(v,1) = max{T”,T’}. Also,g" > 1— /& onF', becausé&' c Nr. Hence
onFT, by (A4), fs>1—2/& forall s> T(v,T1). This, and the bound o0&, implies (L2).

Moreover, a®(F*\ FT) < /& andP(C]) — P(F*) < 2/&, (11) holds for alls> T(v,7). =

A.5 Proof of Lemmab

Since0, is public, player 2 has a best reply that is public, and so player 1 has a public best

reply of to 0,. By Definition’5.2, for everys-period public historyhs, s> T°, we have

E(01.62) [1hs|h] > E(91:9) [1m¢|hg] + £°. (A.8)

Sinceof is a best response @, player 1's payofE(UlTvaZ) [Ths|hs] is unchanged if the periosl-

mixture af(hs) is replaced by any other mixture that remains within the suppmﬂdﬁs), and
thereafter play continues accordingdg).

Fors> T° andhs € Hg, let Y(hs) be the set of public historids, s > s, that are continua-
tions ofhg ands' is the first period in which there is an actionlireceiving positive probability
underd; but receiving zero probability und@zrf.16 Note thatY(hs) is at most countable. In
addition, there are no two elements\ghs) with the property that one is a continuation of the
other. Forhy € Y(hs), S > s, in periods, every action that receives positive probability under

strategyd also receives positive probability undef, and so the comment after equatigng)

l‘5Becausecrf is a best response iy, there must exist such histories, since otherwise every action accorded

positive probability byg; would be optimal, contradictin¢A(8).
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implies

E(91:82) [y h — E(©1:92) [mqhg] =

5 31(1) £ 7513 )] — EC %) [ (s )]
Applying this reasoning iteratively allows us to rewrie.8) as
O(hg|he) 55~ [E(91:92) [pg |hg] — E(61:92) [rg4|h A.9
< Q(hghs) (T8¢ |hs] [Ts |hy] (A.9)
hy €Y{(hs)

whereQ(hy |hs) is the probability ohy givenhs under(61, 6).17

Chooset such thalZMch < €°/3. The terms in/A.9) corresponding to histories longer
thans+ T can then collectively contribute at mast/3 to the sum. The remaining terms must
then sum to at leagts®/3. Letting Y(hs; T) denote the set of histories ¥ihs) no longer than

s+ 7, we have

o ~ A
2 <y Qlhglng S [EL%) [mglhe] — E19 [rig )]

3 v

Let Y*(hs; T) be the histories ifv{h; T) satisfying

E(GI762)[7T13’|hs'] —E91%) [y hg] > (A.10)

&
3
Then,
280 . N . g°
- < Q(Y*(hs T)|hs)2M + (1 — Q(Y* (hs; T)\hs))g,
and so
80

Q(Y*(hs; T)|hs) > q= 6M — £0

Tt is possible that , cving) Q(hg|hs) < 1. However, expected payoffs und(ea{r,&z) and (01, 02) are equal

after any history not irv(hs), and such histories can then be omitted fr@xBj.

51



(the denominator is positive, since DefinitiBimplies® < 2M).

There are at most™ histories inY*(hs; 7). In the last period of each such history, there is
an actioni € | that is played with positive probability b§; and zero probability byzrir . Since
there are at modtsuch actions, there is a histdn§(hs) € Y*(hs; T) and actiori®(hs) such that,
under(d1, 62), the probability that the historyd (hs) occurs and is followed by actidfi(hs) is
atleastr = q/(IYT). Trivially, then, &1 (hg) > A.

Finally, since

EO1%) [my|hd] < AE©1%) [(1- &) (i jg) + &g 41| nS]

+(1— A)E(@192) g g,

from (A.10), we have
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E (%19 [mg|hg) — E@19) [(1— &) (i, js) + Bt g 1 ]nQ] = o =K

A.6 Proof of Lemmal6

We prove only the second and third assertions (the first being an immediate implication of
Lemma5 and the definitions af, s, andp).

Sincew € FJ andprojy(w') = projy(w) implies ' € FJ, for anys-period public history
consistent with a state iR/, and anys-period(s > s) public continuation of that history, there
is at least one state Iﬁj consistent with that continuation. Consequently, since evergriod
public history has probability at leagf, P(F¢) > p"P(FJ) > p™(1—v)P(F) > 0.

After any public history, the normal type’s payoffs uaneliT, 0») are independent of her

private histories—she is playing her public best response to a public strategy. At stﬁ,ﬁés in
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from Corollary2, underd;, player 1 expects player 2's future play (over the perisdst
1,...,5+ 21) to be withinv of his best response to the commitment stratégy, Hence, on
FJ, player 1 expects that player 2's future play (over the perigls 1, ..., s+ 2T) to be within
vp~" of his best response to the commitment strategy, irrespective of her play in those
periods. Discounted to the perigd< s+ 1, payoffs from periods aftes+ 21 can differ by at

most2Md; . Hence, for states iﬁsi, and for anyoy,
E(1%2)my | 4g] — E(O%) [y | Hg]| < (vp T+ 8])2M < K/3,
Lemma5.3 and the restrictions onandv then imply, forw € Fsi,
B9 g | Hi] > 5 + EO[(1- 3)M(i(;9), Is) + BaTg 4| His).

Hence, after the public historly(w;s), no private history for player 1 (consistent wiEg)

makes playing actioi{w; s) profitable.
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