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| examine the solution of the BFKL equation with NLO corrections relevant for deep inelastic scattering.
Particular emphasis is placed on the part played by the running of the coupling. It is shown that the solution
factorizes into a part describing the evolution@R, and a constant part describing the input distribution. The
latter is infrared dominated, being described by a coupling which grows @screases, and thus being
contaminated by infrared renormalons. Hence, for this part we agree with previous assertions that predictive
power breaks down for small enoughat any Q?. However, the former is ultraviolet dominated, being
described by a coupling which falls like (IH(Q¥A?)+A a(Q3)In(1/x)]¥?) with decreasingx, and thus is
perturbatively calculable at ak. Therefore, although the BFKL equation is unable to predict the input for a
structure function for sma, it is able to predict its evolution i?, as we would expect from the factorization
theory. The evolution at smak has no true powerlike behavior due to the fall of the coupling, but does have
significant differences from that predicted from a standard NL@dtreatment. Application of the resummed
splitting functions with the appropriate coupling constant to an analysis of data, i.e., a global fit, is very
successful[S0556-282(199)07213-9

PACS numbd(s): 13.60.Hb, 12.38.Bx

I. INTRODUCTION However, the part of the solution governing the evolution
in k? is not only infrared safe but is influenced strongly by
There has recently been a great deal of interest in thdiffusion into the ultraviolet. Hence the effective scale in the
solution to the BalitskiFadin-Kuraev-Lipatov (BFKL)  problem is greater thak?, and this increase becomes more
equation[1], triggered by the calculation of the next leading significant ax decreases. This leads to the effective coupling
order (NLO) correction to the kerndl2,3] and the apparent constant decreasing as we go to smakebehaving like
result that this leads to a huge correction to the LO result. AL/((In k¥A?)+A[In(1/x)/In(k¥A?)]?) rather than
number of subsequent papers have examined the solutions 1(In(k%/A?)). This result is quantified by using the BLM
this equation and/or its consequen¢és 9] drawing a vari-  scale fixing procedurf24] for both LO and NLO quantities,
ety of conclusiongdominant negative NLO anomalous di- obtaining precisely the same resultdf 3.63 in both cases.
mensions, oscillatory behavior, non-Regge terms, instabilitylt suggests that the effective splitting function governing the
breakdown of perturbation thedrymost being rather pessi- evolution does not grow like a power gf 1~ asx—0, but
mistic. This has prompted work on ways to at least estimatés softened to something of the form
contributions to the kernel at even higher orders, and obtaig1/x)exp( In(1/x)]*?p(k?)), though it seems difficult to ob-
perturbative stability via a summati¢a0,11]. tain the precise form. This result means that the NLO cor-
| will take the point of view that the most significant rections to the kernel not concerned with the running of the
result of the NLO kernel is that it indicates very strongly coupling are also relatively unimportant for the term govern-
how the coupling constant should run in the BFKL equation,ing the evolution, simply because the coupling constant as-
i.e., that the scale in the coupling should be chosen to be theociated with them is so small. Therefore, it seems as though
transverse momentum at the top of the gluon laddeMak-  we have good predictive power for the evolution of the gluon
ing this choicg 12] | follow many previous authors in exam- at smallx, but that it is very different from the LO-BFKL
ining how this choice affects the solution to the LO equationprediction with fixedas. Because the behavior of physical
[13-21]. | find that at leading twist the solution factorizes structure functions at smak is related to the gluon via the
into a part dependent of the input to the equation, but indeconvolution of ak?>-dependent cross section at the top of the
pendent of the scalk?, and a part independent of the input gluon ladder[25,26], all such effects are associated with the
which governs the evolution ik? [14,15,2]. The former is  ultraviolet diffusion. Hence, the evolution of physical quan-
disastrously contaminated by the diffusip??] into the in- tities is governed by the same effective coupling constant,
frared, and without a lovk? regularization is indeterminate and is completely predictive, being somewhat different from
due to the presence of infrared renormalons giving behaviopoth the LO-BFKL predictions with fixedrs and the fixed
~exp(— nBo[IN(QYAAT[A?IN(1/x)]), where Q2 is the order in ag(Q?) Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
scale of the input to the equation,is an integer, andA (DGLAP) descriptions.
~4. This is entirely consistent with Mueller's res(i23,7] In this paper | will demonstrate the results discussed
on the range of applicability of the BFKL equation. It ren- above. | will start with a brief discussion of the LO BFKL
ders the NLO correction to the kernel which is not associatedolution with fixed coupling, emphasising the role played by
with running of the coupling rather unimportant since thethe infrared and ultraviolet regions of transverse momentum.
infrared contamination renders even the LO result untrustt will then look at the same equation for running coupling,
worthy. showing how the solutions change. This will facilitate a dis-
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cussion of the real importance of the total NLO correction toi.e., the incoming gluon has a fixed nonzero virtuality. With
the BFKL equation. Finally, | will examine the implications this definition a moment space gluon structure function can
of my results for physical quantities and give a brief outlinebe defined &s

of phenomenological consequences, showing that my results
work very well when used to analyze experimental data. |
note that a very brief account of this work, which neverthe-
less contains many of the main ideas, appeaf&T.

Q2 dk?

GQN) = [T TN QR go(N.GF). (28

0

wheregB(N,QS) is the bare gluon distribution as a function
of the factorization scale @.*
Il. BFKL EQUATION FOR FIXED a In order to solve this equation it is convenient to take a

further Mellin transformation with respect {@, i.e., define
The BFKL equation for zero momentum transfer is an

integral equation for the 4-poitt;-dependent gluon Green'’s
function for forward scattering in the high energy limit,
f(kq,k,,@s/N) whereN is the Mellin conjugate variable to
energy. Throughout this paper | will consider the canonicalThis leads to the BFKL equation written in the form
physical process of deep-inelastic scattering where the bot-

tom leg is convoluted with a bare gluon density and the top T(y,N)=T%1,Q3) + (as/N)x(NF(v.N), (2.9
leg with an off-shell hard scattering process. Hercgjs

taken to be some fixed sca[eg typical of soft physics, where?o(y,Q§)=exp(—yln(Qg)) and x(y) is the character-
while k=k?, i.e., a variable scale typicallz Q3. In this istic function

caseN is the conjugate variable tm, i.e., we define the

T(y,N)zf:dkz(kz)’l’yf(kz,N). 2.7

moment space structure functions by the Mellin transforma- X(¥)=2¢(1) = ¢p(y) = (1= ). 2.9
o Hence,
ANGY)= [ X F Q70 2. SRR €] 210
’ N = @ mNx '

and the moment space parton distributions as the Mellin For asymptoztically smalkk this can be accurately inverted
transformation of a rescaled parton density, i.e., back tox and k® space using the saddle point technique to
give the celebrated result

f(N,Q?)= Jlfo(x Q2?)dx (2.2) k2|12 —In?(k?/Qj)
<7, : ' ' f(x,kz)ocx"‘(_—) exr{—_ O],
agIn(1/x) 56¢(3) agIn(1/x)
(2.1)
Using these definitions the BFKL equation becomes
where A\=41n2a5 and --- denotes subleading terms as
@ (= deP —0. Hence, we see that the BFKL equation at LO predicts
f(k?,Q3,as/N)=f(k?,Q3)+ WSJ —K%g%,k»)f(g?), powerlike growth inx * and ink?, as well as a diffusion in
o d k?. One can also be a little more systematic and solve for the
2.3 coefficient functions and anomalous dimensions for the
gluon, it is easy to generalize E(R.10 to give the double
where Mellin space expression for the gluon structure function
o 2o oo @A) (K ) o TU(N)gs(N,Q))
4

and

fO(k?,Q3) is the zeroth order input, and,=(3/7)as. As a
simple choice | take
2In this paper | will ignore the singlet quark distribution. This is
fo(kz,Qg) =& k2— Q%), (2.5 purely for simplicity and does not change any of the conclusions at
all. In most expressions the replacement g)é(N,Qg) with
0s(N,Q3) +535(N,Q2), where 35(N,Q?) is the bare singlet
quark distribution, is all that is required to make them completely
Istrictly speaking, within the leading twist collinear factorization correct.
framework this lower leg should be on-shell,@é is a regulariza- 3In making this definition of the gluon distribution we have de-
tion scale. fined a factorization scheme.
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1/2+i00

dy exp(y IN(Q?))G(y,N).
(2.13
From Eqg. (2.12 we see that there are poles when 1

—(ag/N)x(y)=0. Defining the rightmost solution of this
equation by

G(Q*N)=

2@ Ja-i

XO(@IN)

1, (2.14

we obtain the leading twist solution for the gluon structure

function

1
—(as/N)YOx' (7°)

QZ
Q?

,yO
G(Q%N)= ) 9s(N,Q3).

(2.15

|

Hence,y°(a5/N) is the anomalous dimension governing the

Q? evolution of the gluon[28], and R(as/N)=— (as/
NY%x’(¥%) 1 is a type of coefficient function giving the

normalization25]. Each of these may be expanded as powe

series in @ /N), which then lead to power series in
agIn(1/x) in x space. Both are only convergent fat/N
<41In2, each developing a branch point showing thakin
space they grow like«”)~*, Using the saddle point tech-
nigue one may find the asymptotic form of tkespace split-
ting function and coefficient function finding that

PO E_S _)\( 1
()= 5% Bem 203 @, (1) ™)
(2.16
and
. 1 1/2
R(X)=4 In 2ax 1477§(3)Esln(1/x)) . (217
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f(kz,QS,§>=f dr2f(k2,r2,&)f(r2,Q3,¢—¢').
(2.18

For a given¢’ we can ask for the mean and the deviation of
In(r?). This is equivalent to asking for the typical kd( at
some point along the ladder diagram representing the func-
tion f(kz,Q(z,,g), and also its spread, i.e., the range of impor-
tant values ofg? involved in finding the solution of the
BFKL equation. The result is well known:

| k2/ 2 ’
(In(rzl(on))>=W(l—2%), (2.19
and the rms deviation is
02=28§(3)ES§’< 1-— %) (2.20

So over much of the laddefIn(r?))~%In(k¥Q3) and o

~ (14¢(3) a5 In(1/x))Y2. Hence, for very lowx there will be
significant diffusion into both the infrared and the ultraviolet.
rln the case of fixed coupling this does not cause any serious
problems. However, in the case of the running coupling the
size of the coupling grows quickly in the infrared, and hence
this diffusion suggests that there will be serious contamina-
tion from nonperturbative physics.

Before looking at the BFKL equation for running cou-
pling let us briefly examine the role played by the various
regions ofg? in the fixed coupling case. In order to deter-
mine the role played by the region of low transverse momen-
tum we consider a upper cutoff tkﬁ in the integral in Eq.
(2.3). The only restriction we place dkj is thatki<k? for
whatever transverse momentum we ultimately wish to con-
sider at the top of the ladder. With this restriction we see that
for all momenta over which we integrate we have the relation

Therefore, both the anomalous dimension and the coefficierdnd inserting into the cutoff version of E(.3) we obtain

function predict powerlike behavior for the gluon distribu-
tion, although the true input for the distribution is really
R(x) convoluted withgg(x,Q3) of course, and this leads to
the exact form of R(x) being sensitive to the input

fO(N,QS) .“However, this powerlike behavior does not set in

k2
K(q?. k(g7 =f(q")+ O k—S) (220
Eskédqzozz 255222 S
Wfo ?—K (9%,k?)f(q )=Wh(k f(k2<k§)+0 2/
(2.22

until very smallx, as may be seen by examining the terms inThe integral over the regiog?<kj<k? contributes only a

the expansion for each quantity in powersaafn(1/x).

constant to the right hand side of E§.3), dependent on the

It has long been suspected that the diffusion property oform of f(g%N) at low momentum, but independent of the
the solution to the BFKL equation may have serious consevalue ofk? we consider as long as it is large kf is actually
quences when working beyond the strictly LO frameworksmaller thark3 thenh(k3, f (k?<k3)) becomes a much more

[13,22,29,20,2B One may appreciate this by recognizing
that in the smalk limit, defining £=In(1/x), we may write

sensitive function ok?, and in the limitk’—0 it is easy to
see that it becomes equal to the value of the integral in Eq.
(2.3) with no upper cutoff. Henceh(k3, f(k?*<k3)) has the
same structure fok?>—0 as the full integral on the right

“In the language of the factorization theorem this translates intchand2 sidg of Eq(2.3), but tends to a constant function kf
R(x) being regularization scheme dependent, e.g., if one uses dfor K“>Kka.

mensional regularization rather than an off-shell glug(x) has a
factor of (ag In(1/x)) ™% rather than(ag In(1/x)) ™2

Thus, if we imagine imposing an infrared cutoff on Eq.
(2.3) we can simply subtract the result of the integral up to
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k3 [now with a differentf(q?) for low g?, in particular the . BFKL EQUATION FOR RUNNING COUPLING
infrared cutoff renders it infrared finifdrom the right hand

side of Eq.(2.3), obtaining(up to higher twist corrections It was expected iri12] that the way to incorporate the

running coupling into the BFKL equation was to modify Eq.

(2.3 to
2 0/1,2 s 2,2
f(k , oya’s/N) f (k QO) h(k ,ko) f(kZ QO* k2)/N) fo(k2 QO)
— »d 2 k2
+aﬁf KGR, “S( L [*9% ot (e
o q

(2.23 (3.1

Taking the Mellin transform of this equation we get where
as=1/(Bo In(K?/A?)), (3.2

f(7.N)=T(7,Q9) — (as/N)h(7,k)) + (as/N) x (1) T(7,N),
(2.24 Bo=(11-2N¢/3)/(47), andN; is the number of active fla-

vors. One of the main results of the NLO corrections to the

where h(y,k3) is analytic for y>0 [h(k?k3) tends to a BFKL kernel is to show that this is indeed an effective way
constant at h.g}kz] This second term on the right may sim- to account for the running couplinghis will be discussed

ply be absorbed into the definition of the input and our ex-more latey. One can solve this equation in the same type of

pression foff (y,N) is exactly the same as in EQ.10 upto ~ Way as for the fixed coupling case, i:e., take the Me!lin trans-
this transformed input, i.e. formation with respect tok?/A?). It is most convenient to

first multiply through by Ink?A?), and then obtain

<0 = ind 2 ~ F
FO(y,N) = (@s/N)R(7,k) (2.25 df(y,N)  df%(».Q3)

_ _ 1 _
1—(as/N)x(y) dy = dy ENX(Y)f(%N)a (3.9
0

Ty, N)=

Performing the inverse Mellin transformation, then for the

leading twist solution the pole is in exactly the same placevhere 8o=(7Bo/3). The inclusion of the running coupling

and we obtain exactly the sark& dependence as previously, has thus completely changed the form of our double Mellin

but a potentially very differenN-dependent normalization. Space equation, turning it from a simple equality into a first

Hence we see that the region of transverse momenrtlh  order differential equation. However, this may be easily

contributes very significantly to the overall normalization of solved to give

our leading twist solution, but negligibly to the evolution,

essentially because the contribution from the infrared region . y,N Q3)

coming from the convolution in the BFKL equation is the f(y,N)=exp(—X(7,N)/( ﬁoN)) —

same for all highk?. We also notice that the other, higher

twist poles found in Eq(2 10 are now eliminated by the Xexp(X(W)/(EON))dS/, (3.4)

presence of—(as/N)h(y,k ).

This above argument is hardly new, and much more deyhere

tailed analysis can be found i80,31] who consider the

Mellin space solution carefully, showing that the infrared y T'(y)

cutoff does indeed change only the residue of the rightmost X(7)=f x(Pdy=\2¢4(1)(y—3) | (1"(1— )) :

pole in y (and removes all poles in the left half pland is 2 Y 3

also noted that infrared cutoffs influence only the normaliza- (3.9
The leading singularity in they plane for exg—X(vy)/

tion of the gluon distribution, leaving the shapeximas well
2] I h 9]. Thisis b the effectis t ) . .
asQ” largely unchangef29). This is because the effect is to (BoN)), is cancelled by an integral from-8y of the inte-
grand depending of [15], and so up to higher twist correc-

change the type of singularity iN-space, but not the actual
dions we may simplify(3.4) to

position, i.e.,N=4 In 2Zag. However, this is not usually dis-
cussed together with the phenomenon of diffusion. In th
case of fixed coupling the effect of diffusion is less important

than for running coupling for the obvious reason that the dfo(¥.N, Qo)
coupling is the same at all scales. Nevertheless, the above Fly.N)=exp(=X( 7)/('80N)) d>
arguments imply that in the case of running coupling diffu- .

sion into the infrared, i.e., strong coupling, should again only X expX(y)/(BoN))dy. (3.6

influence the normalization of the gluon, while diffusion into
the ultraviolet, i.e., weak coupling, should only influence theUsing our previous choice of input, i.e., fixed virtuality, we
evolution inQ?. We will now investigate this in more detail. obtain the moment space gluon structure function
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) 12+i% 1 b Even without regularization there is no obstruction to
GQN)=5—~ o ;exp(yln(Q IA%) solving for theQ? dependent part of the gluon distribution,
Vet and this is unchanged by this regularization, i.e., is unaf-

_ o 5 2o fected, up to(?(kﬁ/Qz) corrections, by the diffusion into the
= X( 7)/(30N))d7’f0 exp(—7 In(Qg/A%) infrared. The functiora(Q2,N) is, of course, determined by
the singularities of exg- X(y)/(BoN)) in the y plane. Here
+X()(BoN))dFgs(Q2,N) we notice a fundamental difference between the cases of the
fixed and running couplings. Whereas previously the leading
=a(Q2,N)b(Q§,N)gB(Q§,N). (3.7) singularity was a pole atas/N)x(y)=1, i.e., aty—3 as

N—4 In 2ag, now the leading singularity is an essential sin-
Hence, as in the case of fixed coupling constant, at leadgularity aty=0: there is no powerlike behavior 2. Simi-

ing twist the solution has factorized inta@?-dependent part larly, the branch point in thél plane at 4 In 25 has become
a(Q? N) which determines the evolution, and an input de-an essential singularity a&f=0: there is no powerlike be-
pendent parb(QS,N) which can be combined with the bare havior inx. The introduction of the running of the coupling
input gluon distribution to provide the input for the gluon has therefore also had an extreme effect upon the evolution,
distribution[14,15,21. This time the different parts are not changing its character completely. This point has been no-
so easy to calculate though. Clearly the behavior of botfiiced beforeg 15,20, but not emphasized or studied in detail.

functions is determined by the form of &3 7)/(50,\'))' H_ence I stlr_es§ tEe fl;n_dgmentgl results offlnrt]rodu?mg a run-
since this determines the singularity structure. ning coupling: theQ®-independent part of the solution is

. . — formally divergent, and hence is totally regularization
2
Consideringh(Qq,N) we find that expX()/(BoN)) has scheme dependent: ti@?-dependent part has no powerlike

poles at all positive integers, and zeroes at 0 and all negativ&owth inx
integers. Henceb(Qp,N) is not properly defined, since the ™ | ¢3¢0t we can obtain some information about thée-

integrand has an infinite number of poles lying along the lineyayior by noting that we can find the inverse Laplace trans-
of integration. These are due to the divergence of the €Ol ation of exi— X(7)/(BoN)) precisely[20,8]. It is a
pling at low k? and can only be removed by some infrared standard result that Y 0 P yL£9.9l
regularization. Hence, the diffusion into the infrared has de-

stroyed the apparefifimited) predictive power for the input.

Imposing some regularization scal§ and repeating the L[ expNE+KIN)IN= (A/E) Y2 (2(AL))Y2

same arguments as the previous section it is clear that up to 27 J-i- ! '
higher twist corrections the effect of the regularization is (3.10
simply to leave the factoa(Q? N) unchanged, and change

b(QS,N) to wherel (z) is the modified Bessel function, which for large

values of its argumentexp@)/(272)Y2. Hence for larget
<[ dfo(7.N,Q}) - _
(—0 +R(7.k3)

21,2 —
QBN = [ |

0

a(&,7)~ (= X(7)] Bo&)** exp(2[ — éX(7)/ Bo]) ™.
o (3.11
X exp(X(7)/(BoN))d, (3.9
It is difficult to perform the inverse Mellin transformation to
where the factor(dfo(7Q32,N)/d7+h(7,k3)) removes the get theQ? dependence, but the leading singularity isyat
singularities in eX@((ﬁ/)/(EoN)). Thus, we have =0. Thus, for anyQ* the leading twist solution foa(&,Q¢)
must have smalk behavior going like exg{/®) rather than
G(Q2N)=a(Q2N)c(Q2 k2 N 22 NY (3.9 the exp(\§) for the fixed cc_)upling case. Thi; is easy to un-
(Q7N)=a(Q"N)e(Qo.ko.N)gs(Qorko.N). - (3.9 derstand in terms of the diffusion picture. Since the function
as a well-defined solutiochFor a given regularization one (£ Q?) is insensitive to the diffusion towards the infrared,
can solve forc(Qé k2,N), as has been done numericdly but sensitive to that into the ultraviolet, we expect the typical

generally obtaining some powerlike growth snspace, but scale in the process to be determined by this latter diffusion.

which is totally dependent on the type and scale of regular] NUS the typical scale for the process will be approximately

ization[16,17,20,32 No real predictive power remairighis ~ set by Ink?)~In(k?)+o~In(k?)+4(as(k?) &) Hence, the

will be discussed more in Sec.)V effective strength of the running coupling will be setk?;
rather thark?, and asx—0 we will havea®"~1/(£)Y2 This
type of effective coupling has precisely the effect of turning

5That the solution at leading twist is of this general form wastn€ low x behavior of the fixed coupling solution to that
shown in[21] by putting the BFKL equation with running coupling Which we find for the running coupling. Hence, the diffusion
in the form of an infinite order differential equation with effective iNto the ultraviolet has a major impact on tQg dependent
potential depending on the lok? regularization of the coupling.  Part of our gluon distribution, but in a well controlled, and in

5The numerical solutions are always for the whole of the gluonprinciple calculable way, unlike the effect of the infrared
structure function, not just(Q3,k3,N). diffusion on theQj3 dependent input.
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Expansion about y=1/2 X(7y) is not at all well represented by the first few terms in a
L L e powerseriesinyabouteithery=% or about the saddle
full solution point. The former can be seen in Fig. 1, where we compare
________ solution truncated at O(y") the the full function expy IN(Q?/A%)—X()/(B,N)) to the

case where the exponent is truncatedé#°) along the line
R(y)=1%.8 Clearly the integral over the two contours need
bear little similarity.

When using the saddle point technique one finds the mini-
mum of the exponent of the integrand in the definition of
a(Q? N) and expands in a Taylor series about this point.
This minimum occurs when

d —
a(vln(QZ/Az)—X( Y)(BoN))=0, (4.1)

which using the definitior{3.5) leads to

—_— 2
)= “Sf LF=1, @2

BoIn(QYA%)N X

i.e., aty=1%(ay(Q?/N), the anomalous dimension for the
fixed coupling case, but with the running coupling evaluated
at scaleQ?. The integrand defining(Q?,N) is thus evalu-
ated along the axi$i(y) = 1°(as(Q?)/N), i.e.,

T T N TCRY, S Y 2 Ny p(JQZ 0(a-(a2)/NYd In 2

. T me» ' a(QN) = 5—ex v (as(@9)/N)dIng
FIG. 1. Comparison of the full function ekpIn(Q?*/A? o0 b o
—X(9)/(BN)) to the case where the exponent is truncate@@t®) ol o yeXF’(?’ In(Q/A%)

along the lineR(y)=3. | choose INQ%/A?)=6 and 1/(3,N)=2. o
+[X(70) = X(Y*+ U (BN))dy. (4.3

Of course, this is just a qualitative argument giving only

the general form of the results. It is also for the functionlLetting, y— —iy and expanding about®(as/N) this be-

a(x,Q?), which must be convoluted with an unknown, if comes

Q?-independent input function in order to obtain physical L ,

results. It would be nice to be more quantitative, and also to 2N Q" o —, 2

calculate some physical quantity unambiguously. For ex- a(Q ’N)_ﬂeXF<f y(as(q )/N))de

ample, staying in moment space we can examine

[dG(N,Q?)/dIn(Q%], which is an entirely perturbatively Xf“ 1 2 1 ONn T
calculable quantity, and its transformation int@pace. This —ol 0 - xRy "X (v)/(2BoN)
will be considered in the next section.

+--)dy. (4.9

IV. SOLVING THE BFKL SOLUTION

FOR RUNNING COUPLING:  EVOLUTION This is then normally evaluated by ignoring all those parts

not explicitly included above, and performing the Gaussian
The usual approaches taken to finding the solution fointegral[33] obtaining

a(Q? N) (or the full solution are to assume that for small

one can expan¥(y) abouty=13 to some finite order iny,’ SPLO2 N) = 1

usually toO(»3), or to use the saddle point method. Neither 2 (QN)= Y(as(Q?)/IN)[— x' (Y[ as(Q?)IN] Y2

of these are at all accurate unle®$ is very large indeed. ,

This is because along a line parallel to the imaginary axis xex% fQ WP(@(q?)IN)dIng?|. (4.5

"This is equivalent to writing thé&?-space BFKL equation as an
infinite order differential equation and truncating at a low order in °Actually | plot the real part of the functions. The imaginary part
derivatives, or iterating the LO solution in the truncated f¢@i2  is odd and integrates to zero.
in the NLO equation. %A factor of (B,N/27)Y? is absorbed intdo(Q3,N).
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Expansion about Saddle Point der in Byas(Q?) than the terms calculated, but their coeffi-

L e L L B L cients grow quickly, i.e., like factorials, and to be precise
full solution they are powers oByas(Q?) (a(Q?)£€)" higher than the pre-

sented results, wheneis a positive number, and are thus

------- saddle point estimate dominant for low enougix. Hence a resummation is really

20 — | )
necessary for a true understanding.

However, an alternative view of the result in E¢.5
may lead us towards the correct physics. It is not really use-
ful to interpret the prefactor in this equation as a coefficient
function which tells us something about the normalization of
the gluon structure function sinaN,Q?) must be multi-
plied by an unknowrN-dependent function in order to obtain
. this distribution. Rather, it is better to acknowledge that the
only real information contained ia(N,Q?) is on the evolu-
tion of the structure function, i.e.,

10 —

dIng(N,Q% dina(N,Q?
din(Q9) ~  dIn(Q?

0 " T Thus, usinga(N,Q?) in Eq. (4.6) gives us an entirely per-
turbative effective anomalous dimension governing the evo-
lution of the gluon distribution. Using Ed4.5 we obtain

=I'(N,Q?. (4.6

T'(N,Q%) =7%(as(Q*)/N)— Boars(Q?)

| | | | | | | x( dyo (_X”(’YO)_i))
B T s s 0 s 1 s 2 din(as) 2X’(70) 70

m(r-1) + O Boars(Q) )r (as(Q*IN).  (4.7)

FIG. 2. Comparison of the full function ekpIn(Q¥A?)
—X()/(BoN)) to the function appearing in the saddle point estimateSo within the framework of the LO BFKL equation with
along the line ®(y)=9°(as/N). | choose InQ¥A%=6 and  running coupling our unambiguous effective anomalous di-
1/(BoN) =2, s09°(ag/N)=0.384. mension is the naive leading order result with coupling at

scaleQ? plus a series of corrections going like powers of
This is of the same form as E(®.15), i.e., an evolution term  B,a(Q?).
governed by the previous anomalous dimension and a coef- |t is tempting to interpret the whole solution for
ficient function which is a power series in,/N, except that T'(a4(Q?),N) as simply telling us the appropriate scale to
now a5 runs with Q? rather than being fixed. This could be use in the coupling constant for the normal LO result. In-
taken to imply that one can simply extract anomalous dimeneeed, this is the philosophy in the BLM scherii4] for
sions and coefficient functions from this solution and that thescale fixing which uses the NL@,-dependent corrections
appropriate scale to use for the couplingQ$. for any process to determine the scale to use for the coupling

The invalidity of this assumption is related to the fact thatin the LO expression. However, in this case of an anomalous
Eq. (4.5 is in fact a very poor approximation to the full dimension for a structure function we have to decide whether
solution fora(Q?N). This is clear because ispace both it is appropriate to do this ilN-space o space, i.e., should
the perceived anomalous dimension and coefficient functiomwe write
above grow likex("1)~41n24(Q% a5x_,0, whereas we know
that the complete solution f@(Q?,x) has no real powerlike dG(N,Q?) o 5 5
behavior inx. We can see how we have obtained such a poor W%F(N,%[S(N)Q DG(N,Q), (49
approximation by using the saddle point technique if we ex-
amine the form of the complete integrand along our contour
of integration compared with the function we have actuallyOr
integrated making the approximation in E@.4). This is
seen in Fig. 2% and it is glaringly obvious that the saddle dG(x,Q%) fl

— 2 2
point estimate is not at all reliable in this case. Formally the din(Q?) ), P2 as(2),Q°)NG(X/2,Q%)dz
corrections ignored in evaluating E@t.4) are of higher or- (4.9

Since the moment space expressions are less physical, being
0again | plot only the real part. defined only by analytic continuations over much of the
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N-plane we choose the lattEr.As we will see later, this

PHYSICAL REVIEW D 60 054031

In order to calculate th&—0 limit of pl(ag(Q?)é) it is

decision is backed up by higher order calculations. Note thatasiest to first consider its moment space analogue, i.e., the
bothT"(N,Q?) andP(x,Q?) are entirely independent of fac- second term on the right of E¢4.7). First we note that using
torization scale, and are functions only of renormalizationEq. (2.14),

scale. Indeed, if there were a direct probe of the gluon, i.e.,

G(x,Q?) were directly measurable, then bdfliN,Q?) and

P(x,Q?) would be physically defined quantities. As such the

choice of the renormalization scale is entirely open.

_ x([ag(Q*)IND)
x' (Y[as(Q%)/N])

d7°(@(Q)/N)
din(as(Q?)

(4.1

The simplest thing we can do is to choose the scale for thén the limit x—0, y(y°)—4 In2 andy°— %, but to be more
coupling constant in the leading order expression so that thprecise,

NLO term in thex-space version of Eq4.7) is exactly pro-
duced by the expansion about(Q?). Thus, writing this
X-space expression as

(X ag(Q*)P(x,Q%) =p°(as(Q*) &)
— Boas(Q*)p*(ag(Q?) &)
+O([ Boars(QH) 1)1 (@(Q?)€),
(4.10

is the same as

[X/ag(Q?s[ £a( Q) DIP(x,Q%) = p°[as(QS[ éa(Q?)])]

+O( Boa Q)P @ Q8. (4.1
if we choose
L PM@(Q99)
L QD= G QD Eld In o @)
(4.12

This is the usual Brodsky-Lepage-Mackenzi®l M) scale

fixing, but here we have extra information since, in principle
at least, we know higher order terms and we would expect

? (as(Q?)€) to be small if the scale fixing is correct.
Equation(4.12 can be solved for arbitrany, but it is first

useful to examine the limit ok—0 in order to see if our

x(Y¥)—41In2-14,(3)(3—9y°)?+---. (4.1
Therefore,
x' (%) ——281(3)(5—9°)=—28(3)5y°. (4.17)
Hence,
dy’  x(¥° In2
din(ay X (P 71@sp 8

Since 87 is vanishingly small ags—0 we see that the 3
term in Eq.(4.7) becomes subleading to thev°)/x’ (7°)
term. The N-space version of pl(ag(Q?)¢) is thus
x(YPO) X" (Y0 12(x' (¥°)?). To progress further we neely°
as a function ofN. This can be obtained by solving Eq.
(2.14 using Eq.(4.16). This gives

1/2

. (4.19

2In2

1/2 N
570(55(Q2)/N):(—) ( 1

7(3)) \NQY)

This can be substituted into the moment space analogue of
pl(ay(Q?)¢) and the inverse transformation performed to
give

pl(as(Q?)E)—In2 exp\ (Q?)E).

This now makes it trivial to solve E@4.12), and we find that
in the coupling in our LO splitting function

(4.20

previous expectations based on qualitative arguments are

confirmed. Hence we need each of the terms in(Bd.2 in
this limit. As x—0,

O~ 2 1 2 — 2 —3/2
p (aS(Q )g)_) (56775(3))1 Zexrx)\(Q )é)(aS(Q )g) ’
(4.13

and therefore

dp°(ag(Q%)é) 41n2 B i
dIn(O;S(QZ)) _>(567T§(3))1/2exq)\§)(as(Qz)g) V2

(4.19

IN(Q%/ A2)—In(Q%/A2)=In(Q%/A?)

(56¢(3)m)"?
+ e —

T @(Q)9 (42

This is exactly the sort of scale change we would expect
from the diffusion into the ultraviolet. It also leads to
xP(ag(Q?),x)~exp(1.14 £l agy(Q?)]Y?) as x—0, precisely
the sort of behavior we would expect from the qualitative
discussions in the last section.

We can also solve Eq4.12 exactly rather than relying
on asymptotic limits using the power series expansions of
dp°(ag(Q%) &)/d In(as(Q%)) and p'(as(Q?)€) in ay(Q?)E.

The results of such solutions are shown in Fig. 3, where |
plot the effective coupling constant fod;=4 derived as a

'Fixing the scale inN-space would lead to a scale which was function ofx compared to its constant value ta_ki@@ as the
singular atN=X\(Q?), which does not seem a sensible proposition,scale. The qualitative result is entirely consistent with Eq.

while in x space it is a smooth function afas we will see.

(4.21) though the effective scale is a little smaller than this
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Running Coupling for Gluon Expanding the exponential iny® and performing each rel-
04 T T evant integral gives the most singular behavior (N
n(QYA»=6 —X\(Q?)) at each order iBya(Q?). This is a series of the
form
03 - —
g *
aS7(Q%N) 2, (—1)"L(Boas(Q?)"
02 - — n=0
X(NQA/IN=NQH]D*™, (4.23
01 ]
where asymptotically.,~ (1.84)'n!. Inserting this into Eq.
(4.6) and performing the transformation inkaspace leads to
0 el ol il o, a power series of the form
10 10 10 10 X 10 1
UL T T T T o *
n(@AD=10 PO, @x(Q9) 2, (= 1)"An(Boas(Q%)"
02 —
) X (M(QY) g (QH) ", (4.24
3

where the A, are all positive. If A, were equal to
o1 | - 3.63/n! the above series would simply be
exp(— A (Q?)3.638,a24Q?) £%?), which would be precisely
the leading correction in the exponent @i(x, a(Q?)) ex-
pected using my choice of scale, i.e.,

107 10 107 0?2 x 10" 1 exp(\ (Q?)&)—exp\ (Q%) -\ (Q?)
FIG. 3. The effective coupling constant fli- =4 for the gluon 302 ~2n o1/
structure function as a function gfcompared to the constant values X ¢[3.63Bpa5(Q%)¢ 2] ).
at the relevant values of IQ8/A2). (4.29

asymptotic result at slightly highx values due to In practice this works reasonably weR;=3.63 of course,

0 2)¢) and pt 2)£) not vet having reached their Since this set our scalé,=7.08 rather than 6.59, and the
gsiflfgé(t%t?f )expregs(igrsl(s(.? )9 y g terms then slowly increase above (3.83). As n—ce,

Hence, this BLM scale fixing procedure leads to a choicé°§n+1/An_’1-67h1/2' and therefore E¢4.24) cannot be pre-

of scale which fits in well with our naive expectations, andCisely of the suggested fo;m. Nevertheless, it defines a con-
e s . . n 2\ =120 A2\ £3/;
must be at least broadly qualitatively correct since it doed/ergent series in(Boas(Q%)"(\ (Q%)ag(Q%)£¥) which
destroy the powerlike behavior we get from fixed order cal-for a wide range of values mimics the desired exponential
culations inag(Q?). Ignoring for the moment the fact that €X(—A(Q?) £[3.6380a3(Q%) ")) well.
we have assumed the manner in which to take account of This above check is not really terribly useful since the
running coupling effects in the BFKL equatigwe will dis-  right hand side of Eq(4.25 hardly matches exp (Q?)¢)
cuss possible corrections latewe would still like to know  well for very large& and many other terms are important at
whether our prescription is a true representation of the fullll & Including our scale choice in the LO expression for the
effect of the running coupling, i.e., whethgfas(Q?)¢&) in  splitting function also leads to terms not explicitly shown in
Eq. (4.11) is really small. At each order iBya(Q?) it is Eq. (4.295 [and in the expansion of the unexponentiated
possible to calculate the leading behavior in the lim#0.  terms in p°(x,a4(Q?))] which are subleading i at each
By power counting one can see that these leading termgower of 8,a¢(Q?) to those discussed above. There are also
come from keeping only the next term not explicitly shown terms of this type generated by the subasymptotic corrections
in the exponential in Eq(4.4), i.e., the leading behavior is to Eq. (4.21. In principle one could compare with terms
given by generated form a more careful solution of E4.4), includ-
ing also the nonleading parts coming from E4.22. This

1 Q? rapidly becomes extremely complicated indeed. It appears as
a(Q?*N)= mex;{J 70@s(q2)/N))d In ¢ though the logarithm of the splitting function is indeed an
4 oscillating power series iByas(Q?)(as(Q?) &)Y but it is
* —  NC1rl. 2. 1/ difficult to prove this rigorouslylWe do know that the series
x f_w expl(BoN) “[27°x" (") will converge, or at least be unambiguously summable, since
the integral defininga(Q?N) is well defined} The best
+(i13) ¥ x"(¥*) ]d. (4.22 check to be done at the moment is to calculate the whole of
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Comparison of NNLO Corrections
20

exact NNLO corrections

15

predicted NNLO corrections

10

e b e L e L by e L L a4y

15 2 2.5 3 35 4
ag(Q)in(1/x)

5 Li
0 0.5 1

FIG. 4. Comparison of the exact NNLO splitting function
p2(ay(Q?) £) with the value predicted from the choice of scale in
the LO expression. Both terms are weighted(by\(Q%)&]) 2.

the O( Boas(Q?) 1% contribution to the splitting function

exactly, and compare this to that expected if the scale choiang abouty

is correct, i.e.,

7*p°(x, s(Q?))
d(In as(Q?))?

) &pO(X.Es(QZ)))

%(ﬁOaS(QZ))Z( ﬁ(ln as(Qz))

pl(x, a5(Q?)) 2
X( é’po(X,ES( QZ))/é’(h’] aS(QZ))) ) (4-2@

The relevant terms ia(N,Q?) can be found by considering
the terms in Eq(4.4) multiplying the Gaussian which go like
Y1(BoN)? and y*/(BoN), performing the Gaussian inte-
grals and using the equality=a4(Q?)1°. This gives

(A 0Y)2 0
a(Qz'N):aSP(szN)(l_,Boas(Qz)F(X (7°)Px(5)

24— x'(¥9))?

_(X"()’O) X”’(vo)) x(¥%) %)

2y° 8 J(=x'(¥")*? '
(4.2

PHYSICAL REVIEW D 60 054031

Inserting into Eq.(4.6) and making the transformation to
space we obtain the requir€d[ Boas(Q?)]?) splitting func-

tion p2(as(Q?) ). This is compared to Eq4.26 in Fig. 4,
where each term is weighted Kexg\(Q)¢&]) 2, and the
upper limit of ag(Q?)é=4 is chosen since the first 20 terms
in the series expansions of each expression give a very ac-
curate representation up to this value and it easily covers the
range relevant for comparison to HERA data. As one can
see, abovar(Q?)¢é=1 the ansatz for th€([ Byas(Q?)]?)
contribution of the splitting function matches extremely well
to the explicitly calculated value. Belowg(Q?)é=1 the
matching is not so good, but this is relatively unimportant
since in this region this contribution to the total splitting
function is small compared to the more leading contribu-
tions, i.e., the scale change is quite small @lda (Q?)¢)

> Boas(Q?) p(as(Q%) §)> (Boas(Q?))?p*(as(Q%)€).  In
this region the scale choice is also sensitive to the interfer-
ence with the finitex effects at fixed order imvg(Q?) which

are ignored using this expansion scheme. Hence, it seems
reasonable to conclude that explicit checks strongly support
the assumption that all the running coupling effects in the
evolution can be accurately described by the use of the ef-
fective scale obtained by solving E@.12 in the LO effec-

tive splitting function.

V. SOLVING THE BFKL EQUATION
FOR RUNNING COUPLING: INPUT

We could also attempt to evaludhéQg,N) in the same
manner, i.e., expanding aboui(ay(Q3)/N) and calculating
an order by order series iﬁoaS(Qé). Of course, without an
infrared regulator we know thabt(Qé,N) must be divergent
because the integrand has singularities along the contour of
integration, i.e., at integer values 9f which lead to ambi-
guities of order (\Z/Q(Z))”, i.e., higher twist. These singulari-
ties do indeed show up in this power series solution. Expand-
O(as(Q2)/N) and only keeping the lowest order
terms one obtains a sensible solution, i.e.,

1
(a(Q)/N)[— x' (¥°[as(QR)/ND T

bSP(QE,N) =

xex;{f_sto(Es(qz)/N)dln q?].
(5.1

Going beyond this approximation one obtains the same sort
of series as foa(N,Q?), except that because the contour is
now along the real axis, rather than parallel to the imaginary
axis, the terms in the series are all of the same sign rather
than oscillating. This leads to at least one power series be-
havior of the form

go Bon! (Boas(Q3)"(as(Q2)/[N—N(Q3D™, (5.2
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whereB,, is roughly B", andB~3.6. One can take the in- Before finishing this section it is interesting to discuss the
verse transformation of this series term by term, obtaining aelationship between the solutions obtained via the tech-
power series irx space which sums to approximately the niques in this paper and solutions obtained by other authors.
form It has been noted by several authdfg-9] that the
asymptotic solution for the BFKL equation with running
coupling has the general form

expM(Q))H) 2 (BBoas(QYED. (53 .
f(Q%.Q5.6)~ Wexp( MQQo)é+KBgase®

Hence, in this case the power series is suggestive of the fact

that due to the diffusion into the infrared the appropriate IN?(Q?/Qj)

coupling forb(Q3,N) depends not simply on IQ/A?) but T B6L(3)aut te ) (5.9
on In@QY/A?)—3.638o(as(Q3) £)*2, the exact opposite of the

case fora(Q?,N). where unless explicitly stateds is at some fixed scalg,

Of course, the infrared diffusion is a rather complicatedandK = (7/6)(3)(3/m)%(4 In 2F. This seems rather at odds
problem, and the series in E¢5.3) is only convergent for With the results discussed above. However, it is not difficult
(Bﬁoag’z(QS)gl’z)s 1. This indicates that | have been too t0 see how this solution appears. Ignoring the term in the
simplistic in transforming Eq(5.2) to x space term by term. €xponent going likeag¢? one achieves a solution of this
The series in Eq(5.2) is not defined for an\, and before form simply by taking the transformation tospace of the
going tox space we must solve this problem. The seffe®  productas"(Q? N)bSF(Qj,N) in the limit x—0, and only
may be summed using standard Borel transformation techkeeping the most dominant terms in the series expansions of
niques. This leads to a well-defined series up to an ambiguitthe couplings about scaje.
of the form exg—[N—\(Q3)]1Y%[BBya¥*(Q3)]). Now It is not too much extra work to see where #g¢° terms
performing the transformation t® space we obtain a well- come from. Consider if rather than taking the saddle point
behaved series iBBoa24Q2)£M?) as well as an ambiguity approximations foa(Q?,N) andb(Q3,N) one takes the so-
of order exg\(Q32)&)exp(— 1[B?B2a3(Q3)£]), whereB?  lution of Eq. (4.22 for a(Q? N) and the equivalent expan-
~13. This latter ambiguity is due to the presence of an insion forb(Qj,N). The solution fob(Q3,N) in this approxi-
frared renormaloi34] in the expression fob(QZ,N), and ~ mation is of precisely the same form as E4.23 once we
will be cancelled by similar ambiguities in higher twist replaceas"(Q? N) with bSP(QZ,N) and remove the factors
corrections? Such terms are therefore taken to estimate thef (—1)" (theL,, are identical. If we multiply the two series
size of higher twist effects. In this case we see that due tin these expressions together then since at large otders
diffusion becoming enhanced at small this infrared in- ~a"n!, the resulting series is to good accuracy proportional
duced uncertainty quickly becomes large at smRalind in-  to
deed the calculation of the normalization of the gluon .
Green’s function is only at all reliable in the limit D ) an

2, Lan((Boas IN(N=M) ), (5.6
1383a3(Qf) £<1. (5.4

where ag=ag(u?), ie., we expandag(Q?(Q3)) about
Hence, we find that even if we had a reliable model for thes(#”), and  asymptotically Loy o/Loy— (63(3)/
bare gluon distributioryg(Q2,N)* we cannot calculate the (810 2)n?. Multiplying this by the two saddle point solu-
input for the gluon distribution at smatiwithin perturbation ~ {ions, and performing the tragiformatlonXGpace this sum
theory, and previous conclusions on the infrared diffusionintroduces precisely exi(55aZe’) with the correct value of
physics ruining perturbative predictabilify23,7] are con- K. Hence, this non-Regge term comes about due to interfer-
firmed. In particular we note that the requirement in &4 €nce between the input tein¢Qg,N) and the evolution term
is basically identical to that found if23,7], and indeed, if a(Q?N).
the series in Eq(45) of the latter is summed it has an ambi-  Hence, these previous results do appear by taking the
guity of exactly the same type as discussed alfthveugh in  transformation tax space of the product of truncated solu-
[7] the series ix space was found direcilyHowever, here | tions for a(Q?N) and b(QS,N). However, | would argue
stress that this ambiguity is unique to the normalization functhat these solutions are not representative of any real physics,
tion, and does not affect the evolution, which is calculable insince neither of these truncations is at all accurate except at
perturbation theory. quite highx. For givenQS Eq. (5.9 is only applicable foix

satisfying Eq.(5.4), in which case th&—0 approximations

used to derive Eq(5.5 are generally rather inaccurate.

2The ambiguity is seen as the nonperturbative contribution to théNhezn Eq. _(5'4) IS _nOt satisfied the transform_atlon of
solution in[9]. b(Qg,N) is indeterminate, and that @i Q> N) requires re-
13Given that the functiorb(Q3,N) is dependent on the type of summation. The only sensible option seems to be to factor

collinear regularization as well as the ambiguity discussed aboveutb(Qj,N) and simply use(Q?,N) to determine the evo-
this actually seems rather unlikely. lution as accurately as possible, rather than trying to find
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f(QZ,QS,g). Then we know from the general arguments al-
ready discussed that the Regge term &#pis nothing to do
with the true result,

expK Brazd).

VI. NLO CORRECTIONS TO THE BFKL EQUATION

PHYSICAL REVIEW D 60 054031

let alone the non-Regge term

the same manner. In fact it is rather easier to altef&@) to
dof?

the slightly different form
&

—as(n?)KH g% k) (g?).

ay(k?)
N

f(kZ,QS,u2)=f°(k2,Q§)+< (K°a?,k?)

(6.9

So far | have simply assumed that an accurate way to

account for the running of the coupling in the LO BFKL
equation is to use Eg3.1). This is an assumption which
involves the resummation of an infinite number of terms, i.e.
it assumes that at all orders in(x?) the dominant contri-
bution to the BFKL equation due to the running coupling is

d 2
q—3K°<q2,k2>f<q2>.
(6.1

©

= (- 1" Boas NI |

Until recently this has been an assumption forre#1 al-

though the above terms must be present. However, the recent

calculation of the NLO correction to the BFKL equation has
given us some insight into this question. Formally the NLO
BFKL equation may be written as

f(k?,Q3, as( 1?)/N)=fO(k?,Q3)

S i

= Boas(1?)In(K? u?)K(g? k?)

—ag(p?)KY(9? k))H(a?),

dg?
q2

Es(,u,z)
N

(K%(a? k)

(6.2

where K1(g2,k?) can be found in[2]. This is the strictly

NLO equation with no resummation at all. The separation of

the NLO part into the running coupling part and the part
depending ork*(g?,k?) is arbitrary. The former is the first

term in the infinite series we have already considered, but the

This is identical to Eq(6.2) up to NNLO inag(«?) and is a
common way for the NLO BFKL equation to be written
since it makes the solution easier. One must simply remem-
ber that the solution obtained is only uniquely defined up to
NLO in ag(u?) when the couplingrs(k?) is expanded about
ag(n?). If we take the Mellin transformation of Ed6.4)

with respect to k?/ A?) we obtain

df(y,N) _dP(»Qf) 1

dy dy BoN

(xo(7)

—ag(p®)x1(Y)T(y,N), (6.5

which is identical to Eq(3.3) except for the NLO inxg(u?)
correction to the kernel. It can therefore be solved in exactly
the same manner as this previous equaftbis would also

be true for Eq.(6.3)], again obtaining a solution factorizing
into a Q%-dependent part and QS dependent part. Each of
these is a contour integral and analogously to the previous
treatment expanding about the saddle point when performing
the inverse Mellin transformation tQ? or QS space pro-
duces an ordered seriesdn(u?), as long as we also expand
as(Q?(Q3)) aboutag(u?). This time the saddle point is at
[35]

YNOSP(agIN) = 9°(as/N)
9Y°(as/N)

— BoasIN(Q%(Q3)/ 1) a(n(as))

x1(y°(a/N))

B AR D

-

latter also contains some pieces which may be associatglghere

with the running of the coupling, i.e., going lik&,.

This equation can be solved using the same methods

which were applied in Sec. IV. Taking the Mellin transfor-
mation, this time with respect tck¢/x?) we obtain

(xo(¥)— as(®) x1(y)T (7,N)

wherex!(y) can also be found if2]. As in Sec. lll, this is
a first order differential equation i, and it can be solved in

ES(MZ)
N

F(y.N)=T7,Q3) +

X

d(xo( (7))

dy (6.3

+ Boars(1?)

. x1(¥°(as/N)) _
S—x6(¥°(as/N))

is often called the NLO-BFKL anomalous dimension, and all
other corrections are beyond NLO in,.**

Using the previous choice of input we can evaluate the
two inverse transformations about the saddle ppir@ only
need go further than the strict saddle point approximation
when considering thél/y) factor in theQ?-dependent inte-
grand to obtain all results up to NLO accuracy—i.e., we use
1/(y°+ ) ~1=1/y°— y/(¥°)?]. This gives a solution for the
gluon structure function of the form

asy'(as/N), (6.7)

HFor the remainder of this section unless the argument is explic-
itly stated arg= ag(u?).
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GQAN) _ 1 (1_a L xe0”)  a”) 5 Xo(¥") xo(7°)
9s(Q3N)  (as/N)Y°(— x4(7°)) NPT T o) P02 xo (V)2
7y’ 1, xo(¥°) Y’ xo(¥°) )
aln(@(“”f “l+z dIn(as) — xo(7°)

¥ =xo(7°)
2 970
Xex;{JQQZ ( yo—ﬂoasln(qzluz)wyas))— asyl)d In qz). (6.8

This allows us to determine the gluon coefficient function and gluon anomalous dimension up to Ni,Quf), where the
former may be defined as the value of E6.8) whenQZ2=Q?, and the latter is then determined by the evolution of B)
with respect taQ? once the coefficient function has been subtracted out, i.e.,

— BoasIN(Q% u?) — BoasIn(Q3/ 1?)

1
@

a(_v_l L X6(¥%) Xi(vo))
NPT ) —xe()

9° (_i Xo(¥°) )m
() y°+—xo< ) €9

RMO(@IN,Q% u?) =

x5( Y x0(¥%)
29— x6(¥9)?

+asﬁo( IN(Q? n?)| -1+

and

0

B J
NLO(@L IN, Q% u?) = 10— Boas IN(Q 12) _a(lnzlas))_

(6.10

as'yl-l—

ay*  xo(¥°) )
BTN (¥

It is gratifying, though necessary, that in both cases the LQhe dominant contribution at NLO, or whether the conformal
results from Eq.(2.15 are reproduced, and the terms parts ofy! are more important.

~ BoasIN(Q%u?) are consistent with the renormalization  One can study the terms in E(6.11) by finding the ex-
group.[Note that— asy'(as/N) is not really the NLO cor- plicit form of each as a power series @,/N. However, in
rection to the anomalous dimension in this scheme—it ighe smallx limit we can examine the form of the singularities
actually quite similar to the modified minimal subtraction in the N plane, i.e., the limit of each of the terms as—3

(MS) factorization scheme anomalous dimensiddever-  and N—\. Using the well pubI|C|zed fact that,(3)
theless, both of these quantities are dependent on our choicey |, 2x6.3 for 4 flavors and in thaS renormalization

of input and factorization scheme, and do not contain aM¥cheme, and taking the inverse transformation back to

real physics. . _ . space of Eq(6.11), we obtain
The only physically unambiguous quantity which may be
extracted is the effective anomalous dimension defined by
Eq. (4.6): o — 0.068
XP(x,Q%) = asexp(\¢§) L
S

F(N,QZ/M2)=70—Boas(a|n( Fintag Q) as(—r(glgfz)mmz/ﬂzno.eg}
77’ _X”(”_i))_ . 1.18
ain(ag | 2x' (Y0 0l _aS(W)' 12

(6.11)

Hence, the last term, although numerically large, is sublead-
The second term on the right corresponds to the NL@dn ing to the effects due to the running of the coupling we have
contributions previously accounted for when considering thepreviously considered, being a power ai.€)Y? smaller.
running coupling, while the third gives the additional NLO However, now we can be a little more systematic. Examining
corrections. By examining the part of which depends on the full NLO correctiony,(y), presented in Eq4) in [2],
Bo we can check whether at NLO at least the previous aswe see that there are contributions which may be interpreted
sumption about the manner in which to treat running cou-as being due to the running of the coupling. These are
pling effects was correct, i.e., can see whether these do givEBo(x*(y) + x' (7)) and — (5/3)Box(y), coming from the
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NLO correction to the Reggeon-Reggeon-gluon vertex and Comparison of p'(6(Q2)In(1/x)

the purely virtual terms, respectively.We imagine that e
these should be moved out ¢f in Eq. (6.11) and put into
the By-dependent part of the NLO correction. Doing this
changes Eq(6.12 to 0 — exactresult

XP(x,Q%)=agexp\ &) 0.068 ~
’ s W __________ approximate result

0%s

0.188 Ir(QZ/ 2) —0.05
( ke )“"69}

( 1.23
— @

L
(@) ) ©.13

Therefore, not only is this additional NLO correction due to
the running of the coupling numerically very small, but it is
also subleading at smak to the terms we have already
considered® Choosing the renormalization scaleby set-
ting the 8, dependent term to zefdwe obtain a very minor
correction to our previous choice of scale for the limit

<

—>0, i.e.,
(56£(3)m)*™2 _
In(Q*A?)—In(Q*/A?) —0.26+ ———— (@(Q*))'",
(6.19
R, T R T SO S S S A Y
where in fact there should really be an additional constanton ~ * - &S(inln(l /X)2'5 PRl

the right in the above equation due to subleading corrections

in Eq. (4.21) that | have ignored. The constant on the right of  FIG. 5. Comparison of the exact NLB,-dependent splitting

Eq. (6.14) is also renormalization scheme dependent, thoughunction p(ay(Q?)€) including the corrections fromy?! with the

the dominant 3.6@x(Q?) &)Y term is not. value of p'(ay(Q?) &) obtained using the assumption in Sec. IV.
We can also solve the equation for the scale exactly ratheBoth terms are weighted bigxf2a4(Q?&]) ~* for ease of compari-

than in the smalk limit. Putting our additional terms into the son.

definition of the running coupling dependent NLO splitting

function, we compare with the preylo@é(Esz(Qz)_f) INFig.  ryunning coupling is very well justified. This gives us confi-

5. We see that indeed the gorrezctaz’(ﬁs(Q )& is slightly  gence if not a proof, that the approach taken in the previous

smaller t.han the ongmal forg(Q )52,1 but is d|ﬁerent at  sections, i.e., that the— Bead(u?)In(K/u)]" terms are the

higherx, implying a different scale choice here to thatin Sec'dominant contribution from the running of the coupling at all

V. Of course, at these higher valuesofhe d!fferences are  orders is roughly correct. Consequently, this full NLO result
not too important since, as already mentioned, the scale

changes are small here, and there will be interference witﬁaISO supports the hypothesis that the.LO running g:oupllng
other effects from the order by order in, expansion. effects can be taken. account .Of simply by using the
Hence, we find that at NLO our previous assumptionx—dependent scale choice, determined by the BLM prescrip-
about the — Boa(?)IN(K¥u?) term (which had to be tion, in the LO expression for the effective splitting function.
S . . . .
present being the dominant contribution associated with the ~ B€fore considering the details of the NLO corrections to
the kernel which are not associated with the running of the
coupling let us reconsider the NLO BFKL equation. Given
1s ) the above results it seems very unlikely that the NLO BFKL
It does not seem certain whether or not the second of these tem&quation as written in Eq6.4) is will be a good representa-

should be included as a running coupling effect or not. As Wi”tion of the real bhvsics sir;ce the overall bower of the cou-
become clear below this is only relevant for the scale choice at high /.~ ~. phy Y . P . .
x where other considerations from largeterms come into play pling is aIIOW.ed.to run Wzltrk Wh.”e t.hat E?\ssomated W'th the
also. NLO kernel is fixed atu”. Bearing in mind that letting the

16Not including the — (5/3)Box(7) term would simply lead to ~ coupling run in the LO equation leads to such dramatic ef-
—0.05 becoming 0.26 and 1.23 subsequently becoming 0.92. fects, and that at higher orders there will definitely be the

17 chooseas to be ag(Q?) rather thana(x?) when doing this.  10gs in (k?/ 1?) associated with the running of this additional
The two are of course equivalent up to higher order corrections, bufactor of 013(_#2) (with what now seem likely to be small
the results of previous sections suggest that this is the appropriatorrection$ it seems most appropriate to write the NLO
choice. BFKL equation with running coupling as
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5 o i 2 ag(k?)\ (=dg? o 212 where xynio(v,N) can be written as a power series
F(k% Qo %) =T(k% Qo) +| — Jo Ez—(K (9°,k%) beginning at zeroth order withyo(y). As seen in[11],
though here ignoring any resummations N the explicit
— ag(KAKM(G? k2 (g?), (6.15  formis
if attempting to find a complete solution, as proposeflLit. 2 2
Strictly speakingx¢(k?) should then be the two-loop running Yol 7:N) = xo(7) =N x1(7) n N_(_<X1( 7))
coupling, but this will make the equation very complicated. | NLOL T2 0 Xxo(¥)  xo\ \xo(y)
will just use the one-loop coupling which leads to a 2nd ,
order differential equation iry space _ O(M) )+ , (6.20
Xo(y)
dF(y,N)  d%Q0) 1 d(xo(nT(¥.N))
dy? - dy? EoN dy wherey,(y) would also appear at ord& if | had included
it.
- 5 It is now possible to obtain some general and rather spe-
e x1(Y)f(y,N). (6.16  cific results using Eq(6.16. Putting Eq.(6.20 into Eq.
38N (6.18 we note that the leading singularities 4nand N are

) ) o still both at 0, and thus there is still no true powerlike
~ This can be solved in a very similar way to the approachyrowth. Furthermore, the singularity Bit=0 is not affected
in Sec. IV, i.e., at leading twist it factorizes into the samepy any of the additional terms in E¢6.20 beyond xo(7y)

form as Eq.(3.7): since in the exponent in E¢6.18 the O(N) term leads to a
NLO 2y _ ANLO/ 2 NLO, ~2 2 constant alN—0 and all higher order terms vanish in this
g7 (N,Q7)=a" Q7 N)b (QO’N)QB(QO’N)(’6 17 limit. Hence, none of these terms should affect the solutions
' in the limit x—0, except that th&(N) term should affect
where the overall normalization, and we still expect smalsolu-
tions ~exp((£)?) with the exponent the same as in the LO
1 (uzti=1 case. Hence, higher order corrections to the BFKL equation
ao(Q%N) = 271 J 1/ iee ;exp(y In(Q*/A?) should be very subleading when calculating physical quanti-
ties. This implies that the scale for the coupling in higher
—Xno( 7. N/ (BoN))dy. (6.189  order corrections should be of the same type as at LO, i.e.,
falling with x.
However, Xy o(y,N) is rather more complicated than the |t is also possible to be more quantitative. Equatiérig
previousX(y). It can be expressed in the form can be solved using the same techniques as in Sec. IV—
expanding about the saddle point leads to an ordered expan-
Xnio( 7:N) = fyXNLO( 5.N)d%, (6.19 sion in ag(Q?). Using Eq.(6.20 it is easy to find that the
12 saddle point is now at

x1(¥’[as(Q?)/IN])
X6 (Y[ as(Q?)/IN])

SO (@ (Q?)/IN) = y°(a(Q?)/N) — ars(Q?) +0(a3(Q?). (6.20)

Expanding as in Eq4.4) one finds the saddle point solution

1
SO Q7N N){— Do (ro O  arg QO)/NT, N) T2

xp( f Qz7SF"“L°(Es(qz)/N)d Ing?®|.
(6.22

aNLOSP(QZ N)

Further corrections can be calculated as in Sec. IV. However, this expression contains some interesting information—the
dominant contribution to the running coupling corrections to the conformal part of the NLO effective splitting function.
Calculatingl’ (N,Q?) as a power series ing(Q?) and transforming ta space one recovers all the contributions to the splitting
functions in Sec. IV. One also obtains the term agy(Q?)p'c°"(ay(Q?)¢) which is the transformation of
— ag(Q?) v (as(Q?)/N) (with the By-dependent terms extractedind contributions to thgoa2(Q?)p(as(Q?)¢) splitting
function. This latter term provides the scale appropriate to use in the NLO conformal splitting function using the BLM
prescription at NLO[36]. This usually gives different choices for the LO and NLO scales, which could be particularly
important in this case where the scale choice is so important.

Calculatingl'(N,Q?) from Eq.(6.22 the NLO conformal contribution
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x1(¥[as(Q)/N])
— x6(¥[as(Q%)/N])

comes from the argument of the exponential term. The leading contribution gytependent correction to this comes from
the expansion of

(6.23

—ay(Q%) v (as(Q)/N)=—ay(Q?)

e xa( L Q)IND) ))1’2
( X6 P@QIN— (@) S e T | (6.24
to ordera4(Q?) which inT'(N,Q?) leads to the term
dy°(as(Q?)/N) [XS(VO[ES(QZ)/N])]le(VO[ES(QZ)/N]))
2 2
PoeslQ) (el @) [—xa(Tax QUINDF ' 6.29

It is easy to check that all other terms @(ﬂoaﬁ(Qz)) are  Therefore, considerings as a constant for the moment, we
less divergent abl— X\ (Q?) than this one, including the con- see that the NLO correction is both numerically large, and
tributions due to the8,-dependent term appearing explicitly enhanced by a power @f2¢ compared to the LO. This latter

in Eq. (6.20, which are very subleading. Similarly, the con- point is really expected. Consider a leading order result of
tributions from the unknowry,(y) will be very subleading the form expfacé). When we go to NLO the coupling con-
unlessy,(y) is rather singular aty=2%. Taking the InQ?) stantag becomes a renormalization scheme dependent quan-
derivative of Eq.(6.23 and transforming this and E¢6.25 tity, uncertain byO(«?). In order to be consistent with the

to x space one may find the scale for the NLO splitting func-renormalization group and produce a result which is inde-
tion in the same way that the scale for the LO splitting func-pendent of renormalization scheme up to higher orders the
tion was found in Sec. IV. However, comparing E.23  form of the full solution must be eXpAag+ ng_,_...)g),
and(6.25 with the terms in Eq(4.7) one notices some simi- whereB is scheme dependent. Expanding this about the LO
larities. These are not accidental, and a careful analysis fokolution we get exp{asd)(1+Bazé+:-+), i.e., the NLO cor-
lowing the lines of Eqs(4.13 to (4.20 leads to exactly the  raction is indeed a power @2 times the LO result, exactly
same result as at LO—the scale appropriate to the NLO conynat we see in Eq6.27. From this argument it is clear that
formal splitting function is given by the NLO correction should be exponentiated, and we obtain

IN(Q%/ A2)—In(Q%/A2)=In(Q% A?)

_0.068 _
+(56§(3)7T)1/2(E(Q2)§)1’2 66 xP(x,Q2)=aSWexp()\g(l—G.SaS)), (6.28
y s . (6.

i.e., we obtain(slightly altered due to the removal of the

This exact equalit_y was not gt all gyarantegd andis a r?marlﬁo-dependent terinthe publicized correction to the power-
able result, implying the universality of this scale choice atjjxe penhavior.

all orders. It is also renormalization scheme independent, owever. we know thatr. is not a constant. but runs
il S y

like the asymptotic form of the LO scale choice. It is Un- 5ecording to our scale choice at both LO and NLO. Indeed,
doubtedly true that the LO scale and the NLO scale willihe rengrmalization group argument above shows that the
differ for finite x, this depending on the unknown NNLO N0  terms in Eq. (6.12 which behave like
kernel, but it shows that the asymptotic results are very_, 6%, Boas exp(\é) are not of the form we would natu-

. . - . S S

simple and perturbation theory ought to be partlcularly CONyally expect for the NLO corrections, i.e., are not just a
vergent at smalk. The NLO scale also matches well with the a1 of o higher, do not represent the order of renormal-
qualitative predictions obtained from consideration of the,, o0 scheme uncertainty, and are not really subleading.
singularity structure of the full solution, as we will see be- Resumming by absorbing them into the definition @f

low. seems the only sensible thing to do. Doing this and using the

f £ h ; ated with th &cale choice(4.21) in the smallx limit in the expression
effects of the NLO corrections not associated with the fUN<6 28 in both the LO and NLO parts gives

ning coupling, the so-called conformal contributions. To be-

gin with | simply remove the3,-dependent terms from Eqg.

(6.13 obtaining ) 1

XP(X,
) (@D A E s
) 0.068 1.23 o1y 5
XP(X,Q%) = aseXp N\ =—ran— as| == |- X exp(1.14 &/ as(Q7) 7= 3.0lag(Q7)).
(asé) (asé)

(6.27 (6.29
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Therefore, it is only the LO part which gives thedepen-  Currently the relevanto; 4(k%/Q? ag(n®)) are known at
dence in this limit. The NLO part gives@?-dependent nor- lowest nontrivial order for a number of quantities. This is
malization change, which can admittedly be lafglgough  order ag for F|(x,Q?) for both massivg37] and massless
using thex—0 limit of Eq. (4.21) tends to exaggerate the quarks [37], F,(x,Q?) for massive quarks[25] and
size of this at finitex], as expected from the singularity struc- [ 9F ,(x,Q?)/d In Q?] for massless quark88]. For massless
ture of the solution of the full NLO BFKL equation. Hence, quarks the lowest order result fB5(x,Q?) is zeroth order in
using this scale choice the log BP(x,Q?) is very insensi- ag and is infrared divergent, representing the unknown non-
tive to NLO corrections at smaX, and we would expect the perturbative quark distribution function. None of the cross
NNLO corrections to—0 asx—0.18 sections are known beyond leading order, but all diagrams
Therefore, | conclude that the remaining NLO correc-accounting for the running coupling corrections at NLO for
tions, after running coupling effects have been absorbed intthe structure functions are contained within the NLO BFKL
the LO expression, are made far less significant by the effeequation.
tive scale used, which has been shown to be the same for LO Taking the Mellin transformation of Eq7.1) with respect
and NLO. However, they are still potentially important at to (Q?%/A?) leads to the simple expression
smallx. As far as comparison with experiment is concerned
the interesting question is whether these NLO corrections are Fi(y,N)=agh, o YG(y,N), (7.2)
significant within the current range of data available. In order '

to answer this question it is probably better to adopt a more . 4g befored( _F 2 2
.. . ’)’,N)_f(')’,N,Qo)gB(N,Qo)/'}/y and
sophisticated procedure, and look at the evolution not o .4(7) is a function of y which is finite aty=0 and y

some hypothetical gluon structure function, but of the true ) i o~ .
=1/2. Using the appropriate expression féy,N) the in-

physical structure functions. k ) :
verse Mellin transformation may be performed in the same
manner as before in order to give the moment space structure
VII. SMALL x STRUCTURE FUNCTIONS functions—considering the running coupling constant BFKL
equation, either LO or NLO, expanding about the same

The previous sections have all considered the calculatiofaddle points leads to an ordereg solutionvin Let us ex-
of the gluon structure function obtained by integrating the@mine the simple case of (N,Q°) with massless quarks
solution of the BFKL equation up to the virtuali@?2. Of only. As W|th_the gluon st_ructure function it is |mpOSS|t2)Ie to
course, this gluon structure function is not a real physicafctually predict this function due to the unknogp(N,Qp)
quantity, though it does, as we shall see, contain most of thand due to the need to regularize the BFKL equation when
essential information for physical quantities for asymptoti-using the running coupling. However, the previous leading
cally smallx. However, we would like to see precisely how twist factorization into an incalculabl@3-dependent func-
the results in the previous sections apply to real physicalion and a calculabl®?-dependent function also applies in
quantities, and how universal they are. the same way. The functioh, 4() is entirely associated

The generalization of the previous results to real physicawith the latter and does not alter the previous properties for
scattering processes is quite straightforward. Instead of intghe case of the gluon—th@2-dependent function is a finite
grating the upper leg of the gluon Green’s function from zerounambiguous quantity with a Mellin transformation having
up toQ? we perform the convolution of the Green’s function leading singularities ay=0 andN=0.
with the scattering cross section for a probe of virtuaty Hence, as in the case of the gluon structure function the
with a gluon of virtualityk? [25], i.e., Eq.(2.6) is replaced entirely perturbative calculable quantity to consider is

by )
_9In(FL(N,Q%)

FLL(QzaN)_ Jln QZ (73)

A@N= [ 58 0 010 a2
ne o k& 7N e This can be calculated for the case of the running coupling
and the LO BFKL equation as in Sec. IV, with all general
xf(N,kZ,Qg)gB(N,Qé). (7.9 results being the sar?1e as in this previous case, i.eg, one ob-
tains an oscillating series iByas(Q?) and a very similar
apparent scale choice, as we will see below. The changes
18This result for the splitting functions as—0 is xP(x,Q?)  brought about by using the NLO BFKL equation with run-
~exp(ALof & as(Q?) Y2~ ByLo/ as(Q?)) where A o is renormal-  ning coupling are also much the same as when considering
ization scheme independei®,, , is scheme dependent, and higher the gluon. As stated, to get a full solution one should use the
order corrections are claimed to be negligible. The apparent scherfdLO BFKL equation in the form6.15. Being instead en-
dependence can be eliminated by noting that the leading order resdirely systematic one may use E(5.4), and examine the
assumed IQ%/A?%)=3.63@y(Q?)¢)"2 as x—0. Including the full  results only up to NLO inxg(«?). Doing this one calculates
IN@ZA2)=In(QYA)+B,o+ 3.63ay(Q?) £)Y2 whereB,, is renor-  the analogues of Eq€6.10 and (6.9). The latter is un-
malization  scheme  dependent, leads  toxP(x,Q?) changed while the former is altered by the presence of
~exp(ALof & a(Q?) 1Y%+ C o /[ aX(Q?) ]+ (Blo— Baio)/as(Q?)  hig(y) into a different coefficient functionCl(as/
whereC, o and B, o— By.o are scheme-independent. N,Q?% u?). The evaluation of this complete NLO coefficient
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function is not yet possible due to the absence of the NLO Running Coupling for F (x.Q%)
correction oo 4(k?/Q? as(1?)). However, in order to cal- 04
culate the NLO physical anomalous dimension (QYAY)=6
T'N-O(N,Q%/ u?), the analogue of Eq6.11), one needs only
the NLO part ofC}'"°(as/N,Q%/ u?) containing InQ%u?), 03 - 7
which is really provided by the LO expression via the renor-
malization groupg?® Explicitly one obtains

O

02 - -

0

J
T (N, QY u?) = yO—BOas(WZ)WQZmZ) o F -
v (=X 1 )
* Fin(ay ( 2 (¥ 7”‘%(70))

_a’s')’l- (74) L e e R L L B ) S e B R
In(Q¥/A%=10

P Y Y B T R
. B 2 _
107 10 107 10 x 107 1

Hence, the conformal part df, | (N,Q% ?) is identical to 02 §

that of I'(N,Q?/ w?), but there is a modification to the term

determining the scale. In fact, the additional tehﬁg(yo), 1
is a constant a§°= 3, and as such it only contributes insig- _/,_/
nificantly asx—0: the asymptotic scale is dominated by o1 .

[07%9In(ad[—X"(YP)/2x' (¥°)] and is identical to the
choice already presented for the gluon structure function.
h,'_’g(yo) is important at moderate however.

Taking the transformation of E¢7.4) back tox space and P Y R R B R
eliminating the B,-dependent partincluding the terms in 107 10 10° 0? x 107 1
¥') by setting the scale leads to a precise definition of the

? . . FIG. 6. The effective coupling constant for the physical splitting
effective coupling constant to be used for the evolution Offunction PLL(x.Q?) for Ny—4 as a function ok compared to the

FL(x,Q?) within this expansion scheme. This is presented a

a function ofx for two choices ofQ? in Fig. 6, and can be Bonstant values at the relevant values o0
compared with the effective coupling for the gluon structurescale. Let us first make the simple scale chqice= Q2. In
function (without the Bo-dependent terms in') in Fig. 3. this case we may write the physical splitting function as
Clearly in both cases the effect of the change in scaleisto - -

reduce the smalk coupling, and the effect becomes more  (X/@s(Q?)P  (as(Q?)&)=pf| (as(Q?)€)

important asQ? decreases and the size f(ag(Q?) &) be-

Og

_ 2yn18 2
comes larger relative top®(ay(Q?)é&). However, for Boas(QI)PLL(5(Q)€)
FL(x,Q?) the effective coupling ax=0 is larger than — a(0?)pleonfm (02
a(Q?). This is mainly due to the- (5/3)8x(y) term in (QIPT (@@
¥!, but is also influenced by the first nontrivial term in the EpEL(ES(Qz)E)

series expansion de'g('yO) in powers of fws/N) which is

negative. Asx decreases the effective coupling quickly de- — as(Q)p{*(@s(Q?)9),
creases also, and soon falls below that in Fig. 3. This latter (7.5

point is due to the} Bo(x%(y)+ x' (7)) term in y! and the , _
remainder ofh,_4(y) which both act to increasp}, (a.£), ~ Where each of the|, (a5(Q*)£) may be written as a power
and hence increase the scale for the couplingxAtl0>  series of the for
the effective coupling foF | (x,Q?) is noticeably lower than w0 2 n
that for the gluon, but as decreases even further the effect Pl (@(Q)9)=3 a (a5(Q9)¢) (7.6
of the additional terms becomes less and less important, and LTS o " n! ' '
the couplings converge. o ) ) )
One can now be rather quantitative about the phenomena:he coefficients for the power series of the various terms in
logical effects of the NLO BFKL equation and the choice of EQ. (7.5 are shown in Table I. As one can see the coeffi-
cients for all thepﬁL(aS(QZ)g) are generally much larger
than those fop?, (as(Q?)¢).
1SEquivalently one can use the formulas for the physical anoma-
lous dimensions describing the evolution of structure functions in

terms of themselves, rather than unphysical partons and coefficient?®Actually pﬁf"”f has an additional terme&8(1—x)/(as(Q?))
functions, given in37]. which appears in the normal one-loop physical structure function.

054031-18



NLO BFKL EQUATION, RUNNING COUPLING, AND . .. PHYSICAL REVIEW D60 054031

TABLE |. The coefficients in the power serigs | (as(Q?)¢&)

Evolution of F, I(Q*/A%)=8, F, =(x/0.1y**
=35a,(ay(QH)&Mn! for the various LO and NLO contributions

to the physical splitting functiof®,  (x,Q?). 10 l I LO | ]
n pLL P pLf T N LO+NLO
0 1.00 0.23 -2.00 157 5 (L 1
1 0.00 4.38 4.15 160 =
2 0.00 15.87 11.32 8.29 F;
3 2.40 13.41 —16.18 24.25
4 0.00 86.26 76.03 35.31 0
5 2.07 252.92 167.34 140.81
6 17.34 323.08 —81.51 377.69 x
7 2.01 1699.65 1472.42 713.25 s s
8 39.89 4338.69 2665.07 2553.16 10 10 10 oo 10
9 168.75 7592.65 1674.16 6470.97 10 L] I R T
10 69.99 33409.13 28319.16 14435.29
11 661.25 79427.26 47284.56 47746.61 3 — Lo _
12 1945.31 173361.43 81792.97 118560.14 i
13 1717.68 657395.79 543255.72 293414.46 v oek N T LONLO a(Q’) ]
14 10643.26 1527235.16 927749.64 905642.90 g N0 LONLO (exponeniared)
15 25266.78 3833618.50 23539999.61 2256438.84 %4 \
Using the conventional choice of scale then at leading , L
order one would obtain the value piF (x,Q%)/dIn Q%] by
convoluting the first term on the right of Eq7.5 with
F_(x,Q?) itself. As an appropriate choice & (x,Q?) at a 007 1

value of Q%A% =8(Q°~40GeV’) | choose F (x,Q?)

=(x/0.1)" %30 (0.1-x). This is a function with the approxi-
mate shape oF ,(x,Q?) at this Q% and the® function is
chosen as a crude model for the approximate x)° fall-off

at largex. The result for the evolution df  (x,Q?) is shown

in the upper of Fig. 7. It increases very quickly at smxadlue

to both the shape df (x,Q?) and the large splitting func-
tion at smallx. Using the conventional scale choice one
would then find the NLO evolution by using the whole of
Eq. (7.5. The effect of adding in this very large negative
contribution to the physical splitting function is also shown
in the upper of Fig. 7. As one can see the effects are dr
matic, largely killing the evolution fox>0.0001 and turning

it sharply negative below this.Indeed, the NLO correction
is nearly as large as the LO result for-0.001, and becomes
dominant asx decreases below this:

surements of | (x,Q?) in this range ofx and Q?, similar
behavior would feed through t&,(x,Q?), and the NLO
prediction is dramatically at odds with the experimental data.

FIG. 7. The values ofdF(x,Q2)/In(Q?) using the resummed
physical splitting functions for an input of F (x,Q?)
=(x/0.1)"%%(0.1-x) at In(Q¥A?=8 as a function ofx. The
upper figure shows the LO and IENLO results for the conven-
tional scale choiceQ?= w2 The lower figure shows the LO,
LO+NLO, and LO+exponentiated NLO results for thxedependent
scale choice in this paper.

we go to lowerQ? the coupling becomes stronger and the

expected shape of the structure function becomes flatter.

JBoth lead to the NLO corrections becoming even more im-

portant relative to the LO, and &2~ 10 Ge\? the NLO

correction is larger than the LO for essentially allSo we

see that the conventional choice for the scale leads to disas-

the perturbative soly-rous results.

tion is not at all stable. Also, although we do not have mea- i . e
d P.L(x,Q?). Absorbingp;f(as(Q?)¢) into the definition of

the scale changes E(/.5) to

Let us consider instead the BLM scale choice for

This is therefore a real physical example of the problems (X/as(Q%)P  (ay(Q%)&)=pP (ay(Q?)¢)

induced by the NLO BFKL equation, and is completely in-

dependent of factorization schemes and hence totally unam-

biguous(which is not the case for discussions of behavior of
the gluon distribution in a given factorization schemas

—ay(QH)p"(@s(Q%)¢),
7.7

where, as | have already noted, the LO scale is only guaran-
teed to be exactly the same as that to use at NLQ-a$.
2similar behavior was found for the gluon in a particular factor- [Using Eq. (6.19 it is easy to show that this is true for
ization schemeNIS) using an incomplete calculation of the NLO F((X,Q?) in the same way as for the gluorh4(y) only
anomalous dimensiof89]. Using the complete anomalous dimen- introduces subleading effects as in Ed.4).] The result of
sion does not alter the qualitative results. the evolution using the LO splitting function is shown in the
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lower of Fig. 7. It is a little smaller at the lowest values»of [ 4F,(N,Q?)/dInQ?] has a factor ofyg‘Lo(Es/N,QZ/,uz).

than forQ*= u?, but only by ~15%. This is because until Hence, we can write the physical evolution equation
we get to extremely smalk the LO evolution is largely 5
dF>(N,Q%)

driven by the first term in the power seriespff (as(Q?)&) s
due to the vanishing of the second, third and fifth terms, and dInQ
relatively small fourth and sixth terms. Hence, the decreasgvr1ere

of the coupling is only felt as a single powéand indeed

there is an increase of the coupling for the highest values of ', (N,Q?) = y5-(as/N,Q% u?)/C-C(ag/N, Q% u?) .28

X). The discrepancy between the LO results will increase at . . . )
lower values ofx. It will also increase a®? gets smaller In this expression all the unknown nonperturbative physics

H ) 2 2 2
and/or as the structure function becomes less steep. It %ssomated with 075(N,Q%)/d1n Q°] and 7, (N,Q") cancel

when we include the NLO corrections that the more dramati®Ut leave us an gntirely pert.urbatively calculable physical
result is seen. The size of these now decreases for two rednomalous dimension depending only @A,N and at finite

sons: much of the NLO correction has vanished, having beeRrder our Ch,\(,)'L%e_oh' 2, 2

absorbed into the definition of the sc&feand the effective As with € (as/N,Q%/ u%) we do not know the NLO
coupling is now much smaller at small The result of in- th‘;]_sohe_” cross szectlon and hence cannot fully calculate
cluding the NLO corrections is seen in the lower of Fig. 7. It Y2 _(@s/N,Q*/u%).  Hence, ~we cannot calculate
is now a significant, but by no means overwhelming effectI’5 “(N,Q?) fully. However, we do know all the the effects
As argued in the previous section renormalization schem@t NLO due to the running of the coupling for both
consistency implies that these NLO effects should really b&} -°(as/N,Q?/ 1?) andyy"°(as/N,Q% u?) and can calcu-
exponentiated. The result of such an exponentiation is alstate the NLO contribution thgLLO(N,QZ) due to the running
shown in the lower of Fig. 7. It is clearly not dramatic, but of the coupling and hence find the appropriate scale to use in
does help the convergence of the perturbative calculatiorthe LO expression. This is a straightforward, though rather
The exponentiation will become more important »as: 0. lengthy calculation using the NLO BFKL equation in the
Now that | use the BLM scale choice the coupling at small form (6.4), and expanding the Mellin-space solutions about
is far less sensitive t@? than for u?=Q? and the relative the saddle point for both[dF,(N,Q?)/dlnQ?] and
importance of the NLO corrections increases far less quickly7; (N,Q?) in order to find the relevant parts of
as Q? decreases. As shown for the case of the gluon, atN"®(a./N,Q% 1?) and yY-(ag/N,Q% u?). It results in
asymptotically smallx the effective splitting function will  the relatively simple expressith

behave like exfl.14 ¢/ ay(Q?)]Y? and the exponentiated b

NLO corrections will lead to ar-independent multiplicative 1'2.(N,Q*/u%)

=T, (Q%N)FL(N,Q?), (7.8

factor. This factor is potentially quite large, however, and the 0 0

NLO effects must ultimately be treated to obtain the correct = hz,g(yo) ol 9y (ﬁ(hz'gw)/hL'g(”)>

quantitative results. Nevertheless, it appears as though the ~ NLg(7") dIn(as) dy 0

LO calculation with the correct scale setting may be quite 0 v 0

accurate in the current range xfaind Q2 probed by experi- XIN(Q¥ u?) - Boat Iy (( X'y )_ i)

ment. OSain(as) \\ 2x' (¥ °
These results regarding, (x,Q?) seem very pleasing. .o

However, phenomenologically,(x,Q?) is far more impor- y ( 5(h2,g(7)/h|_,g(7))) +E 20(7")

tant since this is the quantity for which we have a great deal dy o 2 \hgg(70)

of data[40,41. One can calculatgdF,(x,Q?)/dInQ?] in 7

exactly the same way & (x,Q?) simply by using the rel- h! o(¥*)h24(¥°) d(hag(Y)IhL (7))

evanto,4(k?/Q?, as(1?)) which leads toh,4(y) in Mellin T M (%) * gy ,

space. Hence, in this case one obtains a direct expression for 9 v

the evolution of the structure function with respectQ@g, 1 o X' () 5

rather than for the structure function itself. However, invert- X5 | x()+ W) - 5} : (7.9

ing the Mellin transformation it is easy to see that the ex-
pressior; for[ 3F,(N,Q?)/dIn Q%] is identical to that for \yhere hag(¥) and hy4(y) can be found in[38], and

Fi(N,Q%) up to theh; 4(v)-dependent effective coefficient [hag(M /N g(1]1=T2(7)=(3/2)y+(1—y) " As usual

function (or in this case anomalous dimensioWhereas \ye can take the transformation backtaspace. Using the
FL(N,Q? has a factor o' “(/N,Q? 1?) up to NLO,  naive scaleQ?= 2 we obtain

“’For lowish order in the power series the coefficients for 23again one can use the rules for finding physical anomalous di-
pif(ay(Q?) &) andpl " (as(Q?)£) are similar, but the former be- mensions if37].
gin to dominate at higher orders, i.e., lowerand become totally %For reasons of simplicity | have previously defined
dominant asni— (x—0) as demonstrated by the asymptotic re- I',, (N,Q?/ 1?) with an additional factor o [42]. This leads to no
sults in the last section. differences when calculating physical quantities.
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TABLE II. The coefficients in the power serigs, (@s(Q?)¢)  the diffusion into the ultraviolet. Hence, we would always
=3gan(as(Q?)&)"n! for the LO andB,-dependent NLO contri-  expect physical quantities to be controlled by the same

butions to the physical splitting functioR,, (x,Q2). asymptotic scale.
5 5 Being more precise we may find thespace version of
n P2L P2l Eq. (7.9 as a power series img(Q?)&. The coefficient func-
0 250 —4.00 tions for t_he knownp}, (as€) are shown in Table II. Using
1 1.00 9.39 these series we can solve exactly for the scale down to some
finite value ofx. The effective coupling to be used when
2 1.00 36.60 : _ o
3 701 6.27 calculating the smalk evolution of F,(x,Q¢) in terms of
4 581 239.73 F.(x,Q?) is actually very similar to that for the evolution of
) . 2 ; )
5 13.40 687.03 F(x,Q%) over the whole range of. They become identical
' ' asx—0, but are only slightly different even as—1.
6 58.11 771.35 . > 5
If we examine the value dfdF,(x,Q%)/dIn Q7] for the
7 64.74 5281.50 . . 2 . .
8 196,83 13213.51 given input forF (x,Q¢) using the LO physical anomalous
9 649.89 24043.80 dimension we find that the decrease in going from the choice
: ' Q?=u? to the effective scale is a little larger than when
10 930.65 111578.92 examining[ dF _(x,Q?)/dIn Q?]. This is simply because the
E 3023"73 2?5502.09 terms in the power series fcp‘z)L(Esg) are not as small as
13 12346'?)2 2213;?325'%53 those forp| (as¢), and so higher terms in the series, where
' : powers of the coupling are used, are proportionally more
14 43434.53 9521425.31 important. Since we do not actually know the value of
15 124600.51 14458201.96 P2 (@) it is impossible to evaluate the NLO effects,
with or without the scale setting, but | imagine they are of
— . — similar importance to the those f& (x,Q?). They will cer-
(X1 as(Q))P2(as(Q%),X)= 8(1—-X)/as(Q%) tainly lead to the same general result, i.e., the LO expression
— ~exp(1.14§)/ 2))¥2 as x—0 with the exponentiated
+p3L(@(Q)9) PL13@)/a(Q)) - as x> P

NLO corrections leading to arindependent multiplicative
—Boas(Q*)p3f(as(Q?)¢),  factor. o _ i
I note that within this picture there is no way of predicting
(7.10 inputs for structure function&r parton$ at some fixecQ,Z.

_ However, since the evolution generates no true powerlike
where thep, (ag(Q?) &) are power series of the for(7.6),  behavior there may well be no growthsat>0 stronger than
and the LO physical splitting function has a zeroth orderthe soft Pomeron. | see no reason to believe the values for
term proportional to & function. As is now standard we can the intercepts calculated by putting some infrared cutoff on
find the correct scale by eliminating g#l,-dependent NLO the BFKL equation for running coupling, which are both
terms. This is a little more involved than the previous casescutoff method and scale dependent. However, at the sort of
but in the asymptotic limit reduces to exactly the same resultvalues ofx we consider in practicex=10 2—10"°, the
As y°—3 if we keep only the most divergent part in the perturbative evolution can generate a rise at smathich
third term on the right in Eq(7.9) then we have the condi- appears to be like an effective power over this restricted
tion that thex-space version of range inx. In broad terms this will not be dissimilar to that

generated by the NLO ia,(Q?) evolution, but will be dif-

0" [ dhag(y)Ih 4(7)) )= ferent in detail. Perhaps the best method for attempting to
7in 3 In(Q“/Q%) predict the shape of a structure function at a given input scale
(as) Y 70 is to demand that the general form of the structure functions
0 [ _ A0 h h are as insensitive to changes in starting scale as possible
MY ( X, (70))(3( 247/ g(1) , [42]. In this way the inputs are determined largely by the
dinas) | 2x" (") dy 40 form of the evolution, and hence the effective physical split-

(7.11) ting functions. Since the smatlevolutions ofF ,(x,Q?) and
FL(x,Q?) are related in a calculable manner this imposes a
. . . o precise consistency requirement on the smatiputs of the
must vanish. Since in this limif(d[h2g(¥)/NLo(MD/  two. A more detailed study of study of this would be inter-
dy],0—5/2 this is precisely the same condition as we foundggiing though an obvious conclusion is that the shape of

for the gluon and forF (N,Q?), and we obtain exactly F.(x.02) andF, (x.02) with x should be rouahly the same
the same asymptotic scalé.21). Indeed, if we attach any atZ(alllgz)and heLrEc,eQat)glz (see below gny

physical process to the top of the gluon ladder we will
always obtain solutions for physical quantities in the same
manner: the physical anomalous dimension or coefficient
function will be determined from the part of the solution  Armed with the smallx scale choices for the physical

which has factorized, i? dependent, and is influenced by structure functions, it is now possible to do a phenomeno-

VIlIl. PHENOMENOLOGICAL CONSEQUENCES
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logical analysis. The inclusion of the input singlet quark dis- TABLE Ill. Comparison of quality of fits using full leading
tribution, or equivalently the inclusion df ,(N,Q?) and order[including In(1k) termg renormalization scheme consistent
Fzz(Nle) is easy since at LO these are related in a simp|eexpression, with BLM scale setting and th(_a NLQuig( Q?) fit [47].
manner tol', | (N,Q?) and I', (N,Q?), respectively[37].  The references to the data can be foundi4in].

Furthermore, they have only a small effect. Much more im- 5
portant is the treatment of the LO terms in the physical split- Data X
ting functions which are less singular thanx Hsx—0. AS  gyperiment points LO(x) MRST
shown in[42] a full LO analysis should include all such
terms at lowest order img as well as all terms in the LO H1F3° 221 149 164
smallx expansions considered so far in this paper. A correcEEUS F5P 204 246 270
extension of[42], which used the simple scale choi¢  BCDMS F}P 174 241 249
=u?, would involve the full LO, inag as well as In(), NMC F4P 130 118 141
physical splitting functions with the scale choice determined\MC F4¢ 130 81 101
not only by the NLO running coupling effects considered inNMC F£"/F4P 163 176 187
this paper, but also by thefinite NLO in a5 running cou- s AC F4P 70 87 119
pling effects. E665 F4P 53 59 58
Consideration of the NLO imrs running coupling effects  ggggFud 53 61 61
leads to additional important scale changes away f@m CCFRFN 66 57 93
=pu? at high x. The evolution of the nonsinglet structure CCFRFN 66 65 68
function FS‘S(X,QZ) was considered if43] where it was Total 1330 1339 1511

found that the appropriate scale to use is

QZ—QZ (1-X) K(X) 8.1) | leave a full discussion of the implementation of a full
- X2 ’ ' LO in ag and In(1k) (denoted by LORSLglobal fit using
scale setting in physical anomalous dimensions to a future
wherek(x) is a relatively smooth function of from 0—1, paper® Details of such dslightly approximatgfit have al-
k(x)~0.15. Careful consideration shows that such a scald®ady been briefly reported [27], and here | report the most
change(with some regularization ags—1) must be imple- 'MmPortant consequences. o
mented at highx for quark driven processes, leading to a (1) Compared to the ”;c_’St_ recent NLO in(Q°) global
larger coupling and quicker evolution. There are also nonfit [47] the quality of the® is improved from 1511 to 1339
trivial high x effects in the gluon driven processes due to the©" 1330 structure function data pointeConstraints from
NLO in e, running coupling terms. This changes the detailed’®nstructure function data, e.g., prompt-photon, Drell-Yan,
form of the effective coupling already presented in Fig. 6 for€tC- at highx are Inz’lpOSed in the same manner for bpt.
values ofx above approximatelx=0.05. For values ok  Préakdown of they” for each experiment is shown in Table
below this the finitex effects on the scale fall away quickly. !l This extremely statistically szlgmﬂcant Improvement is
One particular consequence of including the ftMa.) achlgved |n_aII regions of and Q —_the scale choicé8.1)
effective splitting functions is that like ng(z,Qz), hglpmg at highx aqd the rgsummatlon @i £ terms coupled
P,.(2,Q?) actually leads to a fall witl? for high values of with the s_cale choice hglplng at smallThe vglue of the LQ
z, the rise only setting in when the smallterms become COUPIling is set atrg(M7)=0.116, where this LO value is
dominant. Hence, the fact that the effective coupling forun@mbiguous, contrary to the normal case at LO, because the
P, (z,Q?) is actually large at higlz increases this negative Scalé choice has been determined unambiguously. The ef-
contribution, whereas the smaller coupling at snmle- ~ fects of varying the coupling remain to be investigated. A
creases the positive contribution, as we already know. Thi§tandard NLO inas fit with BLM inspired scale fixing has
means that, looking at the complete convolution leading tSO recently been performgds] with less impressive re-
the evolution ofF _(x,Q?), the increased negative contribu- Sults, particularly at smak. _ o
tion at highz leads to the full scale-fixed LO evolution being ~ (2) Since the procedure for calcglatlng the evolution s
reduced compared to the fu@?=u? LO evolution more ~ Very different from the NLO inay(Q®) approach, predic-
than the consideration of smalleffects only in Fig. 7 sug- tions resulting from the best fit are significantly %IteLed. For
gests. Inclusion of the higkterms at NLO has precisely the €xample, the additional terms in powersaf in p3 (asé)
opposite effect: this time the positive contribution to the evo-compared to the NLO inry(Q?) approach more than com-
lution from highz due to theO(a?) terms is enhanced, as Pensates for the qlecrease in the effective couplmg_ at moder-
well as the known effect of the negative contribution from atex andQ?, leading to a smalle_(x,Q?) (very similar to
small z being much reduced in size. Hence, the negative
NLO correction at smalk is significantly reduced compared
to that seen in Fig. 7. Details will be shown in a future paper 25t is also necessary to treat the heavy partons in a consistent
[44], but the apparent convergence of the perturbative exparnmanner. The way to do this in the context of the full LO physical
sion is considerably better even than that implied in the preanomalous dimensions wi@?= u? was presented briefly if45],
vious section. and will be presented in more detail in a future pajpi].
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that predicted if42] if Q?=15 Ge\f) being required to ob- FLat Q=12GeV?
tain a similar rate of evolution foF,(x,Q?). Predictions for 01
other processes, e.g., Drell-Yan production, are potentially

very different in the two approaches. —_ LOsummed

(3) There is a failure of the NLO inx(Q?) approach at
smallx for Q?<2-3 Ge\f. This can be seen in two ways. If
the gluon[and henceF | (x,Q?)] is required to be positive
definite down to Q?<1Ge\® then the value of
[9F ,(x,Q2)/dIn Q%] becomes too large foR?<2-3 GeVf
[49] (a plot can be found if50]), as can be seen by com-
paring the data with the prediction from a GRV type param-
eterization [51].  Alternatively, the value of
[ 9F 5(x,Q?)/3In Q%] can be made correct down tel Ge\?,
at the expense of having a valencelike gluon distribution, and
hence odd shapeH, (x,Q?) (see beloy, at Q°=1 Ge\?,
and hence negative gluon afig(x,Q?) below this[47,50.
Each case demonstrates that the NLQrifiQ?) approach is
breaking down atQ?~2-3 Ge\? at smallx.?® While this
might not seem surprising since there are many potential
reasons for this failur¢higher twist, higher orders and of
course In(IX) resummationk it is a problem not shared by
the full LORSC fit with the correct scal@ven though it is a
considerably better fit at small than in[47]). Because the
small x effective coupling becomes proportionally smaller
compared tars(Q?) as we tend to lowe®?, and because, as T B .
seen in Table I, the coefficients in the expansiopQf(a.£) 10 10 10 10° 1
are small, the evolution df (x,Q?) is slowed down at very
small x and Q% compared to the NLO inxg(Q?) approach.
Hence, theF (x,Q?) predicted by the global fit does not
evolve backwards into a pathological form@t=1 Ge\2.

This iszshown in Fig. 8 where | compare the predictedhad worked we would not have known wh).

FLZ(X'Q ) with that obtained from the MRST analg/s!s al  Hence, all details of the phenomenology of the scale fixed
Q?=1.2GeV. Clearly the shape of the LORSG (x,Q%) is | ORSC analysis seem very satisfactory, being a distinct im-
not dissimilar to that of 5(x,Q?) at the sam&?, while the  provement on the standard approach and the LORSC analy-
MRST F(x,Q?) is rather odd, though it looks sensible by sis with Q2= 2. As a word of caution, the analysis pre-
about 2 GeV. (The rise at very smak in the MRST curve is  sented is still a little approximate, and all quantitative results
due to the small quark contribution becoming dominant oveiare likewise approximate. A more careful detailed analysis
the large but valencelike gluon contributibnEvolving  will appear soon, though it would be very surprising if the
downwards the MRSTF(x,Q?) dips down to negative val- same quality fit were not achieved simply by a slight alter-
ues at about 1 GeAivhile the LORSCF | (x,Q?) will clearly  ation of input parameters and hence very slightly different
be sensible to much lower valuékis will be investigated in ~ predictions.

detalil in[44]). Since the effective coupling at smallis so

FIG. 8. Comparison of the predictions fé¥ (x,Q?) at Q?
=1.2 GeV from the global fit performed in this paper and the NLO
in ay(Q?) fit in [45].

small it seems reasonable to believe that the full LORSC IX. CONCLUSIONS
calculation should really represent the physics down to low i )
Q?, as it does, whereas even if the NLOdg(Q?) approach | have presented a full discussion of the effect of the NLO

corrections to the BFKL equation. | have shown that if one
resums the Iné/x?) terms into a running coupling constant,
- _ _ as must be roughly correct, this alters the whole structure of
I note that despite reports to the contrary an analysis of datghe solution to the BEKL equation. As previously pointed out
using the leading In(X) terms with a5(Q?) does not fail inany 15 21), at leading twist it leads to the solution factorizing
more dramatic a manner than this. As showiidBl, using the LO g 5 input dependent part which requires regularization,

physical anomalous dimensions to perform the analysis, rather thay, iq infrared renormalon contaminated, arid-alependent
some factorization scheme which leads to extremely ambiguous re-

sults at smalk, a fit of even better quality than the NLO in(Q?)
fit can be achieved. The only failings are that the pathological be-

havior in the predictedf, (x,Q?) sets in at very slightly highe®?, 27A recent discussion of the “Caldwell plot” using the LO BFKL
and of course the NLO corrections using this approach appear to beguation with running coupling, though with very different tech-
huge. niques from those used in this paper, appeaf&).
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part which is well defined. The degree of uncertainty associeisely the correct manner, as well as the picture of ultraviolet
ated with the input part is shown to have exactly the behaviodiffusion.

predicted by Muellef23,7]. However, this ambiguity affects Examining the full NLO BFKL equation | find that as far
the input part only, not the whole solution. | note that theas running coupling is concerned by far the dominant effect
evolution part as a function of andN no longer has singu- is produced solely by the Ik{/u?) term. All additional NLO
larities to the right of zero for eithey or N, a result which ~ Bo-dependent corrections lead to modifications to the physi-
has previously been notdd5,20, but seems to have been ¢al splitting functions which are not only numerically small,
universally ignored. Hence, this calculati®dependent so- but are reduced by a factor G&y(Q?) §)712/2- This indicates
lution has no true powerlike behavior in either or x—the that it is Ilke_ly that at all orders the Ik/u?) tgrms will lead
hard Pomeron intercept is zero. These results require no at2 the dominant smalk effects due to running of the cou-

sumptions at all. If one takes the running of the coupling inpling. Indeed, at NLO the contribution to the physical split-

the BFKL equation seriously, the input term is indeterminateind function from this term is also dominant to the confor-

; 2y £)1/2
unless 182a3(Q2)£<1, and the evolution term is well de- mal corrections by(ag(Q“) &)™~ The latter are of the form

fined and caleulabl d h ¢ like behavi expected from a renormalization group argument, i.e., a fac-
Ined and calculablé, and has no rué powerlike benhaviol, . ¢ ag(agé) up on the LO expression, while the running

This is not difficult to understand _in a qualitgtive manner._ltcoupnng effect is of an unexpected, more leading form, and
has long been known that the typical virtuality of a gluon in ggsentially demands to be resummed. | also proved that if
the ladder representing thg I3FKL Green’s function has gne assumes the dominance of thedr?) terms the appro-
mean of ordeik?, but a deviation of orderds£)*? [22]. I priate scale to use at NLO is precisely the same as the LO
have shown that the diffusion & into the infrared influ- scale ax—0—a result which was by no means guaranteed
ences only the input dependent solution, the strong couplings be true and seems strongly suggestive of the correctness of
then leading to infrared renormalons, while #fedependent  the approach. It also implies that perturbation theory at small
part is influenced only by the ultraviolet diffusion. This x should be particularly convergent. Using this effective
means that as one goes to smaller and smaltke appro- scale choice in the coupling | find that the remaining, con-
priate scale becomes larger and larger, the coupling weakéormal NLO corrections to the physical anomalous dimen-
and weaker(like £7Y?), and the growth from the In(g) sions are much more under control than for the scale choice
terms is sufficiently weakened by the coupling to destroy theQ?= u? due to the smallness of the effective couplingxas
powerlike behavior. —0. At all x andQ? they are subdominant to the LO result,
Using the LO BFKL solution with running coupling | although they can be significant, and in the regiorx aind
have argued that in order to investigate perturbatively calcuQ? probed at the DESY ep collider HERA they are numeri-
lable physics one must investigate physical anomalous dically quite small.
mensions[37], or splitting functions, which tell one how  An analysis of data using the full LO physical splitting
unambiguous physical quantities evolve in terms of eacliunctions containing both leading in Ing)/ terms and all
other, and hence are themselves unambiguous, i.e., indepe®{as) terms, with scale fixing appropriate to this combined
dent of factorization schemes or scales. This is importanexpansion scheme, is very successful. It produces a far better
when using a smalk expansion even at low orders due to fit to data than conventional approaches, and also predicts an
large factorization scheme uncertainties, but is now vital inF(x,Q?) of the same shape aB,(x,Q%) down to Q?
order to obtain well-defined, perturbatively calculable re-=1 Ge\?, and possibly below. In fact, it seems to work
sults. While, of course, it is ultimately necessary to use reaperfectly over the whole range of parameter space one might
structure functionsF,(x,Q?) and F| (x,Q?), one may for hope. The fit toF ,(x,Q?) also leads to predictions for other
simplicity work with an unphysical, but unambiguously de- quantities such & (x,Q?) (difficult to measurg F5(x,Q?)
fined gluon structure functio®(x,Q?). By calculating the  (not much different from the standard appropend Drell-
solutions for theQ?-dependent factors of the structure func- Yan production(if the necessary BFKL coefficient functions
tions about the saddle points, one obtains ordered power serere calculated
ries in Boas(Q?) for the physical anomalous dimensions.  Since the coupling at smaX is weak, seemingly at all
While these series appear to be very badly convergent, therders, one may be optimistic that it is possible to use even
coefficients oscillate in sign, rendering them summable. LO perturbation theory down to very low@? at small x.
hypothesize that one can approximate the whole result bindeed, the prediction is that the corrections at NNLO and
using the BLM scale fixing procedure4]| absorbing the beyond will be insignificant due to the fall of the coupling
NLO B,-dependent term into the definition of the scale usedverwhelming all possible enhancement due to snxall
in the LO expression. This results in an effective coupling ofterms. However, there are still potentially important higher
the form 1(Bo[IN(Q?/A?)+3.6F ay(Q?)£]Y?]) asx—0. For  twist (A%/Q?) contributions. Nevertheless, the weakness of
different physical variables the moderatecouplings are the coupling may make one hope that the smaligher twist
slightly different but the asymptotic form is universal. It is effects are strongly suppressed, for example a weaker cou-
not guaranteed that this choice of coupling is really correctpling would certainly delay the onset of such effects as shad-
However, the explicit NNLO calculation supports the proce-owing [12] rather significantly. Also, | note that within the
dure strongly, and it is also consistent with the qualitativesmall x expansion there are no infrared renormalons in the
features one knows must be associated with the full summazalculation of the physical anomalous dimensions. Since
tion, i.e., it smooths out the powerlike growth iin pre-  renormalons lead to ambiguities which must be cancelled by

054031-24



NLO BFKL EQUATION, RUNNING COUPLING, AND . .. PHYSICAL REVIEW D60 054031

higher twist ambiguities they are normally taken to be esti-inappropriate place to make the scale choice since, as soon as
mates of the size of these higher twist contributions—indeedpne introduces the running coupling into the BFKL equation,
the scale fixing for nonsinglet evolution at higt{43] does  the whole structure changes. TBé-dependeneigenvaluds

imply renormalons of the type already calculat&®]. The  no longer a real eigenvalue, as it is at strictly LO, and it no
absence of the renormalons at smalnakes the author at longer has a direct physical interpretation. This is identical to
least optimistic about the smallness of higher twist effectsthe statement that the argument of the exponent in(&8)
Some smallx higher twist calculations have already beendoes not in fact truly represent the full evolution of any
performed[54]. However, since the full physical picture at physical quantity, is by no means a true anomalous dimen-
leading twist only appears when performing a full resummedsion, and should not be used for setting the scale. In essence
In(1/x) calculation including running coupling effects, a true the choice in[55] misses the most important results gener-
picture of the higher twist contributions may sadly requireated by solving the BFKL equation with running coupling
similar sophisticatiorif this is possiblé. | certainly feel that and looking at physical quantities. This is easily seen by the
any renormalon calculations performed at fixed ordewin fact that in any renormalization scheme the change in scale
may _not_be representative o_f the true smalhigher twist using the method if55] is always of the form I@ZIAZ)
contributions. If the full LO, with resummed terms and Sca|e=|n(Q2/A2)+ArS, whereA, is a constant depending on the
fixing, analysis is indeed successful to very I@% | would  scheme. Using the BLM method for physical quantities, as in
regard this as empirical evidence, if by no means a proof, O{his paper, always results in @f/A2)=|n(Q2/A2)+BrS,i

the smallness of higher twist corrections at snxall +3-6ﬁs(Q2) §)1/2, whereB, ; depends on renormalization

: hgve commented on other approaches to the NLO BFKLscheme and process. Clearly telependent term is the
equation throughout this paper. There have also receml&ominant one at small enoughand contains the most im-

been alternative attempts. to 'mprove the apparent bad co ortant physics contributing to the scale fixing. Note that this
vergence of the perturbative series which are somewhat of-:

contribution is also scheme-independent and the same at
NLO as at LO, and that the choice of renormalization

X ! %cheme only leads to subleading contributions to the scale at
the convergence of the expansion of the kemel, thus |mplyé all x. Nevertheless, the type of renormalization scheme

ing a sensible, stable pomeron intercept. | have no argume%{)rI

with this approach and believe that for single scale process nsidered in[55] leads to a value 0B, that is rather
PP 9 P l?gwge. This implies that the details of calculations of structure

gflsxv::%lvrlz:/g?t?'gigg geﬁ;{:\%etﬁgg?grs';?uf&[j?:?Err]ilti\éﬁlsui%unctions in the current experimental range may be sensitive
: ’ to the renormalization scheme chosen. However, when doing

:ﬁﬁgie? beﬁ?r?;s rg;ﬁ]tinareofc?hrzp(l:itj%nSUbl?onTm:Q;utr% tygsg full analysis one should use the same scheme for all physi-
y 9 piing. y puon o splitting functions, which will be influenced by both

about the running coupling in the kemel belng accountgq forgluon and quark dominated processes. There are also further
by the effectivex-dependent coupling in physical quantities

has any truth in it, it makes resummations of the conformaf:hanges o the scale due to the running coupling effects at

part of the kernel unimportant since the higher orders are sg(as)’ which will be scheme dependent, and potentially of

greatly weakened by the reduction in the coupling. HenceSi.milar importance to t_he differences By,,; at the rel_atively
while the work in[10,11] is certainly interesting, | believe it high x values where it is relevant. A full understanding of the

may be unimportant for the real physical results, at least a elevance of renormalization scheme changes needs to take

far as structure functions are concerned. these into account C?ref“"y- . .
Also, there has very recently been a proposal to adopt th Hence, to summarize, | believe that the method of solving
BLM sc’ale fixing procedure at the level of teegenvaluesf ﬁ?r physica_ll quantities using the .BFKL equation With run-
the kernel[55]. This is similar, though not identical to the ngef?:ﬁuggbig? wyNttOp&%ﬁgﬁ%ﬂ?ﬁfgﬁ:&gg :;t(;]ézp
r | for the change in ling pr when ! ) . . .
thpl?lsijeger:dini acl:o?reectiocr?supto gthpeOpNoLsgqig]mel ewerelnelastlc scattering at smatl Certainly, the conclusion that
knownf. It avoids all the running coupling effects | considerthhe r'unn:jng tcoupling Sd‘?”t‘?‘%ts falteth our Ficuére qftB'F.KL
in Sec. IV, picking up only those ip! in Sec. VI, i.e., the pRysICs, destroying prediclivity Tor the input and maintaining

1 2 , - . it, but smoothing out the powerlike behavior for the calcu-
;’3 2((:);' é?’g; a)r(l g(ey)lg(z""/r‘Adz)_(j%@%ﬁ) Afervrvnhsér-er;msi!se%i?;o lable evolution, seems to be incontrovertible. More contro-
small (and negative However, the NLd contribution to the versial is the proposal that the true physics may be well

. o . escribed by a coupling which falls az falls like
kernel is renormalization scheme dependent, and this resqﬁ:t](llx)‘l’z. Tr{is i stror?glygsupported by current finite order

is in MS scheme. By transferrmg to schemes that t_he aUthorEfxpansions, the universality between deep inelastic scattering
reasonat_)Iy argue are more suited to gluon dominated pr({DIS) processes and different orders, the diffusion picture,
cesses, i.e., the MONK7] orNY—>ggg [24] schemes, the and the general features that the full solution must exhibit.
scale change at=; become*~120Q?, and the intercept However, it may well be possible to validate this more
becomes~\(Q?) (1—4a4Q?). Hence, the large increase strongly, or invalidate it. Also, the discussion in this paper
in scale and significant reduction in the NLO coefficienthas very firmly used the assumption that the lower end of the
leads to a sensible NLO intercept 60.15 which is not too  gluon ladder is fixed at some low scale, as is appropriate for
sensitive toQ?. | believe theeigenvalueof the kernel is an  deep inelastic scattering. Further investigation is required in
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order to consider different types of process, although | imagef currently unknown coefficient functions as power series in
ine that the qualitative results will be the same. Overall nor-a¢In(1/x), would then be important in order to produce truly
malization will be infrared renormalon contaminated, sinceprecise calculations for smatl physics.

even if there are no small scales in the problem the diffusion

into the infrared will eventually be important for small

enoughx, while evolution will be calcu_lable but not truly ACKNOWLEDGMENTS
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