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Ordered analysis of heavy flavor production in deep-inelastic scattering
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At low Q?, charm production in deep-inelastic scattering is adequately described by assuming generation in
electroweak boson-light parton scatteri@®minantly boson-gluon fusignwhich naturally incorporates the
correct threshold behavior. At high? this description is inadequate, since it does not sum Iog}zimﬁ, and
is replaced by the treatment of the charm quark as a light parton. We show how the problem of going from one
description to the other can be solved in a satisfactory manner to all orders. The key ingredient is the constraint
of matching the evolution of the physical structure functionorder by order inag(Q?), in addition, to the
matching of the value ofF, itself. This leads to new expressions for the coefficient functions associated with
the charm parton, which are unique in incorporating both the correct threshold and asymptotic behaviors at
each order in perturbation theory. The use of these improved coefficients leads to an improvement in global fits
and an excellent description of the obserfed,m. [S0556-282(98)05709-9

PACS numbg(s): 13.60.Hb, 11.10.Gh, 12.38.Bx

[. INTRODUCTION partons according to the massless evolution equations. How-
ever, we shall see that the detailed construction of the coef-
The factorization theory in QCIL] has existed for many ficient functions required is extremely difficult if not impos-
years, and has been one of the triumphs of quantum fieldible. Therefore, we provide instead a prescription for
theory. However, in its original form it does not take accountcalculating structure functions including heavy quark effects,
of a number of possible complications; i.e., it exists only forwhich is somewhat simpler than the strictly correct treat-
massless particles, and its ordering does not take account ofent, and which is directly analogous to the normal manner
possible enhancements at high orderajrat smallx. Until in which one calculates order by order for massless partons,
the past few years, both of these complications were not dput which is in practice essentially identical to the strictly
any real phenomenological importance. The lowest values agforrect treatment. Finally, we will present the results of a
x probed were large enough that it was unimportant to coneomparison of our method to data: both that for full structure
sider smallx enhancement. Also, the up, down, and strangdunctions and for the charm component to the structure func-
quarks were considered light enough to be treated as masi#ens. These comparisons turn out to be very good. We also
less, whenever one was within the realm of perturbativenake predictions for the charm component of the longitudi-
QCD. Furthermore, there were little data on the charm connal structure function. Complications due to leading Ir(1/
tribution to the structure function and it was generally such derms at all orders irxg are ignored, and while a correct
small component of the total structure function that it couldtreatment of structure functions should of course deal with
be treated very approximately. this problem, we feel that this would overcomplicate our
Both of the above complications have recently become g@resentation, and besides we wish to compare directly with
great deal more important due to the advent of the DE®Y normal next-to-leading ordéNLO) in ag approaches. A pa-
collider HERA. This now probes structure functions at farper which takes account of both smallcomplications and
lower values ofx than any previous experiments, as low asmassive partons is in preparation.
x~10"° [2,3], and the treatment of structure functions
s_hould really take proper account of any smakkomplica- Il. STRUCTURE FUNCTIONS WITH MASSIVE QUARKS
tions. Also, the smalk structure functions now have a con-
tribution due to the charm structure function, which is far We consider the case af; massless quarks and one
from insignificant, i.e., it can be more than 20% of the totalheavy quark. One of the simplest ways to deal with heavy
structure function and, moreover, in the past couple of yearflavor production in deep-inelastic scattering is to treat the
direct measurement of the charm structure function has als@ass of the heavy quark], as a hard scalgs]. In this case
become possiblp4,5]. This has made it essential to treat the then; light quarks are always treated as partons, but all other
contribution to the structure function due to massive quarksjuarks are never treated as partons at any scale: the cross
in a correct manner. section for production of heavy quarks is expressed entirely
In this paper we propose a new method for the treatmenin terms of coefficient functions depending on the heavy
of heavy quarks in structure functions. We begin by describquark mass convoluted with parton distributions which only
ing the features a correct treatment must exhibit at both higldepend on light partons, i.e.,
and lowQ?, and the techniques used in either of these limits.
We then give a discussion of the correct way to take account
of heavy guarks in a well-ordered manner 0\}//er the full range ‘Ti(x'Qz'Mz):z CEF(QZ/MZ'QZ/MZ)@’f;f(“Z)
of Q?, showing how this relates to present treatments, and in
particular demonstrating that one may choose to evolve the +O(A%M?), (2.1
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whereg;(x,Q?,M?) is the cross section for scattering off a how to sum the logarithms i@Q?, i.e., we solve the renor-
particular quark, either heavy or light, amdruns over the malization group equation for fixed order ir.
light partons, i.e., the gluon and the light quarks. This Thus, in order to sum these large logs @/M?, it
approach is very well-defined in theoretical terms, essentiallj convenient to consider the heavy quark to be a parton and
being a simple generalization of the usual factorization theofor its distribution function to satisfy the renormaliza-
rem, with Eq.(2.1) being valid to all orders up to the higher tion group[Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDG-
twist corrections ofO(A2/M2). LAP)] equations as do the light partons. An extremely
This approach is adopted by a number of grofifisand simple ap_proach which incorporates this idea is the_ zero-
is usually known as the fixed flavor number scheffleNS. ~ Mass variable flavor number scheni&M-VENS). This

It is normally used in the particular renormalization scheme,treats the massive parton as being infinitely massive below

where all diagrams with no heavy quark lines are renormalS°mMe threshold in.?, and totally massless above the thresh-
ed in the modified minimal subtractior‘NI_S) scheme old, i.e., all coefficient functions coupling directly to the

) : ) ' charm quark turn on at the threshold, the evolution of the
while those with heavy quarks are renormalized at zero mo- harm guark begins at this threshold, and the number of fla-
mentum. This is particularly convenient because the effect o i

the h ticle d les f the liaht sector. | " vors in the coefficient functions, anomalous dimensions and
€ heavy particie decouples Irom the ight sector, In particuy, running coupling constant increases by oneto1 dis-

lar the coupling is the three flavédS coupling and the light  continuously at the threshold. Despite the simplicity of the
parton distributions evolve as in the three fla® scheme. approach, this procedure must in principle be done with care
The C[{(z.Q%1?Q%M?) have all been calculated to if the correct results are to be obtained in the asymptotic
O(ag) [6,8,9 and O(ag) [10] in this scheme, though ana- limits [11] (see below for detai)s In particular, the decou-
lytic expressions only exist &(«s). pling theorem tells one how the coupling constant must

In principle this approach is a very good way to calculatechange in order to get the correct results well below thresh-
the effects of heavy quarks in structure functions. At eachold. Also, the parton distributions just above the chosen
order it incorporates the kinematical threshold in the lightthreshold must be carefully defined in terms of those below
parton-photon center of mass ener§y’=Q%*(z 1—1) threshold in order to guarantee that the correct result is ob-
=4M?2 in a smooth mannemwhich then guarantees the same tained asQ?—x. In practice at low orders the situation is
smooth threshold in the invariant mass of the hadronic remrelatively simple, e.g., if the threshold is chosen to be pre-
nantW2, up to proton mass correctionand the coefficient ~cisely u*=M?, then at NLO, the light parton distributions
functions are calculated order by order in precisely the samare continuous across the thresh@Gid MS schemgand the
manner as the light particle coefficient functiqiisough the  evolution of the charm parton distribution begins from zero.
actual calculations are rather more diffigulHowever, it At higher orders the parton distributions must change discon-
does have one major shortcoming. As one calculates ttnuously across the threshold and in particular the charm
higher orders inag, one encounters higher powers of evolution must begin from a nonzero value.

IN(Q¥M?) and Inw?M?). Letting ©2=Q?, and thus elimi- For many years the above approach was that most com-
nating all logs inQ?/ u?, then forQ2— the coefficients at monly used in global fits. The collaboration on theoretical
mth-order in[ a4(Q?)/27]™ have the series expansion and experimental QCIOCTEQ) used the approach at NLO,

as explained abovgl2], while the Martin-Roberts-Stirling
m (MRS) collaboration motivated their choice of threshold by
CTFM(z,QM?) = > f.(2)In"(QM?2). (2.20  phenomenological considerations rather than the strict theo-
n=0 retical oneg13], but in practice this resulted in a very similar
choice of thresholdi.e., 2.7 GeV for MRS compared to
Thus’ Working order by order ins in this approach, one is 2.56 Ge\; for CTEQ) While the charm contribution to the

failing to take account of these large logs. This is not only aStructure functions near the region of threshold was not too
practical concern in the sense that these large logg?iM?  important, this simple treatment was perfectly adequate.
at higher orders inrs can potentially be phenomenologically However, it is clear from its construction that it will not
important but is also a theoretical concern insofar as at eact§uffice as a good description of charm production in the re-
order in g the leading power of g?/M?) is the leading in  9ion of the charm threshold. In particular charm production
as part of the overall coefficient function with this @¥/M?)  has a sharp threshold at a chogeh rather than a smooth
behavior, and is really part of the leading-order expressioshreshold inW?.

for the structure function as a whole. The same reasoning Hence, some approach which extrapolates smoothly from
applies for the next-to-leading power of @{M2), etc. This  the FFNS at lowQ? to the ZM-VFNS at highQ? is required

is similar in principle to the problem of increasing powers of in order to produce a good description of the effect of heavy
In(L/x) with increasing powers ofs. It is more difficult in ~ quarks on structure functions over the whole rangeéf
one sense, in so much that in the expressions for the coefft-et us discuss how this may be achieved. In order to do this,
cient functions, these large logs iQt/M?) are hidden We first put the ZM-VFNS on a more sollq theoretical foot-
within very complicated expressions. However, it is far sim-ing. If we regard the quark masd® as being a soft scale,
pler in the particular limiQ?>M?2 because we know exactly then the factorization theorem tells us that

+1 +1
0i(, Q%M =23 CY QY uh) @ 1y (u? M? pu?)
They are not important fof)2<M? because the large logs are
destroyed by factors coming from the kinematical threshold. +0O(M?/Q?), (2.3
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whereb runs over the light partons and the massive quarkelements. These authors then defi#if&MP as the structure
We are able to remove the large logs @f/M? from the  function obtained from these asymptotic expressions for the
coefficient functions, and hence obtain the normal masslessoefficient functions and the parton distribution in E2.1).
coefficient functions, and absorb them into the definition ofThey then, through purely phenomenological motivation, de-
the parton distributions at the expense of having potentiafine a variable flavor number scherft5,16 by the formal
“higher twist” corrections of O(M?/Q?). While the parton  definition

distributions depend oM?, if the operators defining the
partons undergo ultraviolet operator regularization inNt&

scheme, then their evolution depends only on the anomalous . .
dimensions obtained from this ultraviolet regularization. I NS then extrapolates smoothly from one limit to the other,

These are independent of the mass of the heavy parton, aming ngjarantged to2 reduce to the correct.limit orderFt%Sorder
the evolution is as if fom;+1 massless quarks in thas a5(Q7) at highQ®, though only approximately t&

scheme. Hence we have the formal definition of the ZM_order by order at lovQ®.
VFNS, which will become exact fo§?>M?2.

However, we have one more degree of freedom in Eq. . A COMPLETE TREATMENT
(2.3 than in Eq.(2.1), i.e., we have the heavy parton distri- OF CHARM MASS CORRECTIONS
bution to parametrize at some arbitrary starting scale for evo-
lution, and also no apparent reference to the mass $tale
in the definition of the parton distributions. This is not, in
fact, true, since it can be shown that

FVFNS_ EZM-VFNS_ FASYMP 4 EFFNS (2.6)

Although we agree with Eq(2.5) and hence with the
results at highQ? regarding coefficient functions ifi4,15,

we believe one may be more ambitious. Rather than simply
accepting the uncertainty @®(M?/Q?) in Eq. (2.5), we can

be more systematic and demand that there is a scheme,
which uses the definition of the parton disgribuztions in Egs.

. . 2.3) and(2.4), but which is correct up t&(A“/M*). Insert-
where the operator matrix elemem$*(z,1?/M?) contain i(ng )Eq.(2(.4) i)nto Eqg.(2.3) and subtran:ting(] from E)q2.1), it

. 2 2 .
logs in (u*/M?), and are calculable order by order in per-ig"cjear that the difference between the FFNS and the ZM-
turbation theory[14,15. [We denote the matrix elements VENS, i.e., the error in the latter, is given by

relating the heavy quark distribution to thg-flavor light
parton distributions as"?(z,u?/M?) and those relating the  a\2/ 4.2 @ £( u2) = [ CFF(O% 2. O M?2
(n¢)-flavor light parton distributions to the-flavor light Mol (W) =[CalQTn.Q )

2 M2 ) =AM ) 0 £ (%), (2.4

parton distributions aAba’H(z,_,uZ/Mz) as in the above ref- —C?;H(QZ/MZ)@A')"(MZ/MZ)]
erenced.Hence, the partons in the ZM-VFNS can in fact be
generated from those in the FFNS at aff by using the @fgf(;ﬁ), (3.D

leading logarithmic expressions for the operator matrix ele-

ments and the expressid@.4), rather than using the four- wherec?(z,M?/Q?) is representative of the error in the ZM-

flavor evolution equations at all. Indeed, if the starting scaleyENS and is of O(M%/Q?). However, making use of Eq.
is chosen agu 2#M?, then strictly speaking all the leading (2.4) this difference can be written as

logs in (w 2/M?) should be included in the matching condi-

tion, which is just as complicated as using Ef.4) at all C?(MZ/MZ)(@(Aba(MZ/MZ))%@fgf“(#Z,MZ/MZ),

scales. However, if the scale at which evolution begins is (3.2
preciselyu?=M?2, then the matching condition for the par-

tons in the two schemes is a power seriegjrwith no logs.  and soc?(MZ/MZ)Qg(Aba(M2/,“2))*1 is precisely the cor-
Therefore, it simplest to use E@2.4) only to define the rection to the massless ZM-VFNS coefficient functions,
order-by-order parton distributions at the starting scale, angyhich is required to correct for th@(M?/Q?) errors in this

then to calculate the parton distributions at other scales b¥cheme. Thus, defining corrected+ 1-flavor coefficient
evolving usingn;+1 massless flavors. This procedure guar-functions by

antees the correctness of the ZM-VFNS calculation in the

limit Q2> M 2. Ci\{)F(Z,QZI,U/Z,QZ/MZ) — Crg+l(er2/M2) + Cla( M Z/MZ)
By comparing the expressiofi2.3) and(2.1) at Q?>M?2,
and using the relationshi2.4), one can calculate the FFNS ®(AP3A(M?/ u?))~1

coefficient functions, up t@(M?/Q?) corrections in terms

_ FF 2 2 2 2
of the massles$/S coefficient functions fom;+1 flavors =Cia Q7% Q7M7)

[14,15, i.e., ®(Aba(M2/M2))fl, (33)
Cla(2.Q% 2, QM) =Ci{ " Q¥ u?) @ AP M?) or alternatively
+O(M?/Q?). (2.5 CYF(2,Q% 2, Q%IM?) © AP2( 1 2IM?)
The detailed expressions of this form can be foundlisl, =CH(Q% u?,Q%M?), (3.9

where they are used to calculate t@g—o limit of the
heavy quark coefficient functions in terms of the known lightand demanding that the VFNS coefficient functions satisfy
quark coefficient functions and calculated operator matrixhis equality at allQ?, then our VFNS is guaranteed to give
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exactly the same all-orders result as the FFNS. Hence, weith the mass corrected coefficient functions to the appropri-
have the factorization theorem ate order, we should then get the mass corrected structure
functions correctly order by order. Unfortunately, the proce-
2 042 2/nn 2y VE/ ~27 2 np2; 2 dure is not quite as simple as this.
i QM5+ O(ATTM )_% Cib (Q7/ w7, M%) We see that the defining expression @f (z,Q%/M?) is
ntl o ro o in fact of exactly the same form as EQ.5), except that it is
@f " T (u M %) now exact at allQ? rather than having corrections of
O(M?/Q?), and that this time it is the;+ 1 flavor coeffi-
EE CFFO2 12 M2/ u? cient functions, which are the unknowns to be solved in
ia (Q ", M/ %) - )
a terms of the FFNS coefficient functions and the operator
n, 2 matrix elements, rather than the asymptotic form of the
®f, (k). (3.5 FFENS coefficient functions. However, this leaves us with an
) . ambiguity. The indexa runs over the gluon and the light
Thus_, Eq_.(3.5) gIves us a method for d_efmmg the s@ructu_re quarks, whileb also includes the heavy quark. Hence, while
function including a heavy quar_k., vxh|ch \{vh_ezn ertten N the asymptotic FFNS coefficient functions in E8.5 were
terms of then; flavor parton densities,(%) is identical at  gefined uniquely in terms of the light, + 1 coefficient func-
each orzderzims to the FENS, and thus is correct up to eITOrStions, solving Eq(3.3) for theC}gF(z,QZ/Mz) in terms of the
of O(A/M?), bgt where a_\ll partons evolve according to the ppns coefficient functions d
massless evolution equations and thus all loga3tV? are

automatically summed correctly. In order to demonstrate this, let us write out our equations

Bearing in mind this above result, it seems sensible thaf,, the \VENS in full. For the case where the photon couples
the best way to proceed for the calculation of structure func'directly to the heavy quarkd, we have two equations:
tions in the presence of a heavy quark is to use the FFNS up v '

to some scale ob(M?) and then switch to the scheme de- CEZ’S: C\IﬁZ'S@ASg ot nfC\F/iF;PS@Ang L [CYENS cYFP
fined by Eq.(3.5) above this scalgChanges of renormaliza- ’ '

tion scheme across threshold applying to situations of this ®Aﬁg (3.6
general type were first proposed[iti7].) We shall call this a

variable flavor number schem@®FNS). We note that our and

general procedure is completely independent of the choice of s VENS . ~VEP S VEPS. - ANS bs
renormalization/factorization scale, and that as long as weCHg =[Ciin"+Chi @ AfG+ Cly @ [Ajgn+ AL H]
choose our VFNS coefficient functions such that they satisfy VES_ rS

Eq. (3.4 order by order inx(u?), then correctness is guar- +Chg ®AggH- 3.7
?;r:i?ggﬁ;fniﬁeg}]giafgﬁ;;itgr?tsE;estir,ﬁég%tzoir?rf)%?ﬁe thv(?/here S, NS, and PS refer to the flavor singlet, nonsinglet,

schemes, for all scales and for both light and heavy quar nd pure singletsinglet minus nonsmglgt respectlyely. In
. . . ; . the case where the photon couples directly to a light quark,
structure functiond.This very simple choice automatically —

avoids having different scales for different components of V& have three equations. Denoting the massiéSscoeffi-

the complete structure function, and means that all mass efi€nt functions withn, light flavors byCia(ny) and the con-

fects are contained entirely within the coefficient functions tributions to the light flavor coefficient functions in the FFNS

- FF
It also agrees with the normal asymptotic choice ;8  due to heavy quark generation By," we have
=Q?2 and removes all problems of logs @?/u? (the solu-
tion of the evolution equations summing such termasd
2 2 H H 3
n*IMZ, and we are left just with the problems of@?(Mz). S 1+ CFFS_ QVENSG AS 1+ CVESg AS. 1 1 GVEPS
This choice is expressed explicitly in all our equations from ag T Cag "= Cag ®AggHT Cggm®Agg T Nilygq

oes not lead to a unique solu-
tion.

ChgtChg =Cyq @ Aggn 3.9

now on, though we will discuss the effect of different s VF,PSo AS

choices briefly in Sec. IV. Finally, as already mentioned, if ®Adgnt Car B Ag) 3.9
we choose the transition scale as precisef=Q%=M?,

then all the logs iQ?/M? disappear, and the matching con-

ditions between the partons in the two schemes in(Ed) CPS4+ CFRPS_ CVFPSo T ANS. 1 0 APS 14 CVFPSg APS
are a simple power series in(M?). Thus, performing the a9 mad aa” ©LAgqn* NAgqul* Con Ha
matching atM?, and solving order by order iay(Q?), as in +Cya N RALS  +CHE SR A L. (310

the strictly massless case, we are guaranteed to sum the logs

in Q%/M? correctly at zeroth order iM?/Q2. Combining  These are very similar to the E(.3)—(2.35 in [15] and,

as in those equations, we have implicitly divided all pure
singlet quantities coupling to quarks and all singlet quantities
coupling to gluons byn;. Also, as in these previous equa-

Of course, if we reach sufficiently lo®<, then we must intro- . A - - .
duce some finite renormalization scale in order to have a finitet'ons’ itis implicit that allﬁantltles on the left-hand side are

expression for heavy quark photoproduction. Since we only con€XPanded in tha; -flavor MS coupling constant, while those
siderQ?>1 Ge\?, we do not consider this problem in this paper. ON the right-hand side are expanded in terms of the (

3In the asymptotic expressions for the FFNS coefficient functionst 1)-flavor MS coupling. The relationship between the two
in [14], this choice leads to significant simplification. couplings was calculated i8] and corrected if19]. It is



57 ORDERED ANALYSIS OF HEAVY FLAVOR PRODUCTIO . .. 6875

1 perturbation theory, being constrained only by the require-
s n,+1(QY) = a0 (Q) + a5, (Q%) 3. T(In(Q%*/M?) ment that they are of the correct form @ — .
Of course, there cannot truly be an ambiguity in the order-
3 P S B R, by-order definition of the structure functions. In order to il-

+asn (Q7) —z | g Tin%(QYM?) lustrate this, consider the structure functiBr(x,Q?). We
also come back to the point concerning renormalization
scheme dependence. In order to maintain renormalization
scheme consistency, we must be very careful about the way
in which we order the expressions. Doing this correctly does
not remove the ambiguity in our definitions of the coefficient
functions, but it does render this ambiguity physically mean-
ingless, even order by order. Let us consider specifically the
where the coefficient of the leading log at each order inheavy quark contribution to the structure fUl’)CtiEE(X'QZ)
asn, (Q%) is the same in all schemes, but other coefficientdn the general VENS. In fact we will dISZCUSS its@f deriva-
depend on details of renormalization, in particular, whethefiV€: Since it is the evolution dFZZH(X:Q ) which is a more
the massM is the fixed or running mass. The particular Natural quantity. Taking the 1@ derl\éauve 0fF2(x,Q%)
choice above corresponds to a fixed heavy quark mass 8f'd keeping all terms up t@(a4(Q%)), multiplying the
NLO. VFENS parton distributions, we obtain

The difference between our expressions for the coefficient

functions and those ifl5] is that the coefficient functions on dFZ,H(Xin) dCYENS Q2/Mm?)

1
+ (5CAT+4CT5)IN(Q3/M?)

13 2
+ 25 TCi— g TiCa |+, (3.1

the right-hand side are the VFNS coefficient functions. Not o 2AH © ® (H(Q2) +H(Q?)),
only does this mean that the equations are meant to hold d In(Q%) d In(Q%)

including terms ofO(M?/Q?), and that we solve for the o (Q?)

coefficient functions on the right-hand side, but also that +& CYENSQ QM)

there is a difference between the coefficient functions, which 2m 2AH

couple to the heavy quark distribution and those coupling to 0 ne+1, ~2 0

the light quark distributions. For example, whit};"* and ®[Pgg®0y " (Q7)+Pqq

CYPNS must be identical in the limiQ2— o, they certainly % (H(Q?)+H(Q?)),]

do not have to be identical at modera®, and physical 0

intuition suggests they should not be. This means that unlike @ n,+1(Q%) dCyH5(Q%M?)

[15], we do not have five equations for five unknowns, but + o ( d In(Q?)

we have five equations for eight unknowns. In order to re-

duce to the correct ZM-VFNS at very high?, we must — dc\z";HSvJ(QZ/MZ)
choose definitions for the mass-corrected coefficient func- ®g, (Q%)+ d In(Q?)

tions, which reduce to the;+1 light parton coefficient

functions asQ?—, but this constraint still leaves a great —

deal of freedom. ®(H(Q2)+H(Q2))o>- (3.13

As an example let us consider what is in practice the most
important case, the equation for the boson-gluon fusion co-
efficient function for the heavy quark structure function Asymptotically, the second and third term in this expression
Fon(x,Q%, (3.6. The expansion ofCEFH'g begins at reduce to the required form for the leading-order expression
O(as(Q?)) as doeCy};s andA,, while Ag,, andCYN®  inthe ZM-VFNS. All other terms fall off to zero in this limit,
begin at zeroth order. Using the known expressions for th€0 we are guaranteed the correct asymptotic expression using
operator matrix elements, we obtain the lowest-order equahis prescription. However, at lo®@? the exact form of the
tion relating the FFNS coefficient functions and the VFNSexpression is highly sensitive to our particular choice of co-

coefficient functions efficient functions. This clearly means that we do not have a
truly well-ordered solution and this is because the true order-
Chhstz,0M?) =Cyh542,Q2/M?) + (IN(Q¥M?) ing of the coefficient function<Cy,(z,Q%M?) is not as

simple as just order by order iasyan(Qz) due to their

dependence on the quark mass. Indeed, their ordering is the
(3.12  crux of the problem, and we will explore this below.

In order to examine the true ordering of our expression,
whereP(2) is the lowest-order splitting function, amgis ~ we will express it in terms of unambiguously defined quan-
renormalization scheme dependent, bgt=0 in MS t!t|es, and. also in terms of those, where the ord_erlng is rela-
scheme. Hence, we have freedom in how we choose odively straightforward. Hence we will express it in terms of
zeroth-order heavy quark nonsinglet coefficient function, andn€ FFNS parton distributions, the mass-dependent coeffi-
this then determines our first-order mass-corrected gluon céient functionsC31,(z,Q?/M?), the operator matrix ele-
efficient function. More generally, we have freedom in howments and the coupling , (Q%). The FFNS parton distri-
we define each of the three coefficient functions coupling tdoutions are correctly ordered simply by solving their

the heavy quarlc{i"°, C{ii™S, andCy;"® at each order in  evolution equations to a given order. The operator matrix

+CrdPqg®Copin (Q%IM?),
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elements are ordered according to the poweam\‘ +1(Q?

minus the power of I®?M?), i.e., the leading- order term is
of the form
) n

(3.19

a’s,nf+1(Q2)

AS(z,Q%IM?) = 52,1k)5(1—z)+n§1 >

XIN"(Q%/M?3)a,(2).

Then;+ 1-flavor coupling constant is defined in terms of the

n;-flavor coupling in an analogous manner, i.e., the leading- d In(Q?)

order relation is

as,nf+1(Q2)
~ a5 Q)+ 3 az,:fl(QZ)( ) IN(Q2IM?). (3.19

First using the expression f@};5(z,Q%/M?) (3.12, but

only keeping the leading-order part of the operator matrix

element, i.e., leaving out the, and substituting into Eqg.
(3.13, we obtain

dFon(x,Q%)  dCYENAQYM?) vy
dzil:\((QS)): 2sz(QZ) @ HQI+HQ,
S,N¢+ (Q )
+a+ CYENSA QUM 2 P,
2 (H(Q?)+H(Q?),
+ozS,nme% dChiig(QYM?)
2 d|n(Q2)
VFNSO(QZ/
gy e
n+l snf-r—l(Q)
o QA
VFNSI(QZ _
2ZHm(Q) ®(H(Q2)+H(Q2))o-
(3.16

We can then be more detailed by using the explicit ex-

pressions for(H(z,Q2) +H(z,Q%), and g *(z,Q?) in
terms of the FFNS parton distributions, i.e.,

2
)
(H(z.Q9)+H(z,Q)o= In(Q*/M?)Pgg

©0,(Q?)
+O(az n (Q)IN*(Q*IM?))
(3.17

and
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0 (Q?)
g0 " H(z,.Q%)=07'(z,Q )——ln(QZ/Mz)QS’(Z,Qz)

+0(az, (Q1)INX(Q%IM?)), (3.18

and also the expression for thg-flavor coupling, (3.15.

Doing this and remembering thadCy5N>!(z,Q%/M?)/

d In(Q)=0(M?/Q?), then we obtain

a5n(Q) (dCEEL(QIM?)
2 d In(Q?)

dFou(x,Q ) 29" (Q?)
- 0

dC5H(Q¥M?)
d In(Q?)

as,nf(Qz)

T In(Q2/M )

2
)
®9,'(Q° )+ In(Q?/M?)

CVFNs,
2HH

X C O(Q2/M2)®P° ®P3,®9,'(Q%)

+O(M?1Q%)- O(az , (QH)IN*(Q*IM?)) |.

(3.19

Hence, as well as asymptotically reducing to the correct
leading-order expression, the prescription of keeping all
terms up toO(asvan(Qz)), which multiply the leading-

order (LO) VFNS parton distributions has resulted in a
unigue O(aslnf(Qz)) expression for the derivative of the

heavy quark coefficient function, which al¢and necessar-
ily) has the correct threshold behavior. However, it is clear
that theO(aﬁlnf(Qz)ln Q?/m?) expression, while having the
correct asymptotic limit, has behavior f@°~M? which is
sensitive to our choice of coefficient functions. In particular,
the behavior of these terms will not generally respect the
threshold in W2, It is clear that at higher orders in
a0, (Q?)IN(QM?), while we will obtain the correct

asymptotic behavior, our lowis@? behavior will be depen-
dent on the choice of coefficient functions.

If we were to use the expression for the structure function
itself, rather than its derivative, in the VFNS by combining
the lowest order ims,an(Qz) coefficient function with the

lowest-order VFNS parton distributions, i.e.,

Fo(x,Q)=CYiNSYQUM?) @ (H(Q2) +H(QY)o,
(3.20

then again we would be guaranteed the correct LO expres-
sion in the asymptotic limit. However, even the leading term
in ag, (Q%)IN(QM?) (when expressed in terms of the

FFENS parton distributions and operator matrix elemeigts
now completely dependent on the choice of coefficient func-
tion, and there is no requirement to have the correct thresh-
old behavior at all.

It should be no surprise that we have this problem. As
mentioned earlier in the FFNS, the coefficient functions to
all orders contain renormalization-scheme-independent
leading-order contributions. By working in the VFNS, we
have managed to extract the asymptotic form of this leading-
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order contribution in a relatively simple manner. However,calculated and the same size as the renormalization scheme

in order to have the full leading-order expression for theuncertainty. This seems perfectly satisfactory for this region.

structure functions in the VFNS in the threshold region, we Above Q?=M? we want to order our calculation as in the

need to extract all the information from the leading-ordermassless case so that in the asymptotic limiQé& M?, we

contribution to the FFNS coefficient functions. In principle, will obtain correctly ordered expressions. Therefore, we or-

the full LO FENS expression should contain the leading partgier the calculation by using up fo(agjan(Qz)) coefficient

of the coefficient functions at all orders iny , (Q%), and the  fynctions, when solving the evolution equations using up to

LO VFNS should include coefficient functions constructedo(a2:1+l(Q2)) anomalous dimensions, as required by
o ) Nt

from the full LO FFNS coefficient functions and the full LO o ormajization scheme consistency, e.g., the leading-order

operator matrix elements. Absolutely correct matching be'expression is

tween the FFNS and the VFNS @°=M? leads to the ab-

solutely correct renormalization scheme consistent descrip-

tion of both of these schemes. Thus, in practice the strictl

correct LO VFNS is no simpler than usingpthe strictly correcty F2:(x,.Q%)= Eb: CYRAMZQ?) @ fSTJ Y@y, 42

LO FFNS coefficient functions. This is extremely difficult

indeed, and in fact probably impossible, there being no clear

unique way in which we subtract out the leading-order,the NLO expression is

renormalization scheme invariant part of thl(a;"nf(Qz))

FFNS coefficient function except in the asymptotic limit. In-

2
deed, if we were to proceed further for our above example of _1 2 0 2 @sn+1(Q ) VE n 272
4F, 1(x,0%)/d In(Q?), we would find that our definition of " 21 Q%)=F2i(x Q9+ 2 | ———— C3i(M?/Q?)
the LO contribution atO(ag’nf(Qz)) would rely on being

able to extract an unambiguous LO, renormalization scheme ng+1l, ~2 VEO, x 122 Ng+1, ~2

. of +Cp(MAQ7) ®f ,
independent part out ofdC5;5{z,Q¥M?)/d In(Q?). op (Q)+CoIMIQY® ), (Q7)
Though this is simple in the limiQ2— [14,15, there does (4.3

not seem to be any good prescription for arbitr@d; There-

fore it appears as though the VFNS is only any advantage at

all in so much that it gives a definition of the charm parton€tc. We stress that this is not a choice, but a strict require-
distribution. There does not seem to be any tractable way tgent of obtaining ordered asymptotic, expressions for the
produce a prescription for Ca|cu|ating hea\/y quark structurstructure function itself or its |IQ2) derivative. Of course, in
functions, which both correctly sums the leading logarithmsthis region ofQ® we now have the ambiguity in the defini-

and which has absolutely correct, unique threshold behaviofion of the coefficient functions. Thus, since we are not per-
forming the strictly correct ordering, we have to make a

choice for these coefficient functions. We do this by defining
them order by order ims,an(Qz) using the Eqgs(3.6)-
Bearing in mind the difficulty, or indeed probable impos- (3,10, which guarantee correctness to all orders, and also by
sibility of producing the unambiguous well-ordered calcula-ysing the freedom to choose some coefficient functions, i.e.,
tion of structure functions, it is our aim to produce a pre-the three coefficient functions coupling to the heavy quarks,
scription for calculating heavy quark structure functionstg pring us as close to the really correct calculation as pos-
order by order ineg(Q?) in such a way that we obtain rela- gjpe.
tively simple expressions, yet maintain as much accuracy as |n perturbation theory it is not really the structure function
possible over the whole range ©F. Let us first consider the at a particular value o? for which we solve, but the evo-
region of Q*=M? and below. In this case if we work order |ytion at all Q2 in terms of the structure functions at some
by order inas 5, (Q?) in the FFNS, i.e., define theth-order  particularQ?. Bearing this in mind it seems sensible to con-

IV. A PRACTICAL VFNS

expression for the heavy quark structure function by strain our coefficient functions by making the slope of the
structure functions at a given order dn(Q?) to be continu-
n 2y\ n—m+1 . . . .
N 5 asn (Q%) ous across the transition point. In order to examine this con-
Fan(x,Q )Zmzo Ea: B — straint, let us again consider the Qf-derivative of

F2H(x,Q?). Approaching the transition point from below,
xcgﬂ’;’m”(M2/Q2)®f”mfa(Q2), our prescription gives the lowest ordeg,nf(Qz) expression
' for the In@Q?) derivative as

n=0—x, (4.1
2
we know that the strictly leading-order terms we ignore are  dFpp(X,Q%) asn(Q%) dChiig(Q¥M?) B 2
really an order ofxs , (Q?) down on those we keep, with no dIn(Q?) 2« d In(Q?) ®g, (Q7).
large InQ?%M?) enhancement, for these values@t. Adopt- (4.9

ing this procedure, when working ro(ag,nf(QZ)) we have
an error ofO(ag,'(Q?)) compared to théin principle) cor-  just above?=M? the In(@?) derivative of the LO expres-

rect calculation, which is the same size as terms not yesion in the VFNS is



6878 R. S. THORNE AND R. G. ROBERTS 57

sz,H(X,QZ) dC\z”ﬁﬂS'(’(Qz/M 2) p = At Ie_ading order in this pres.crip.tion t_he effect dis_cussed
din(Q3) d1n(Q%) ®(H(Q%)+H(Q%))o above is the only real complication, i.e., the choice for
CyEN>%z,Q%M?) is the only one to make. Above the tran-
as,nfﬂ(Qz) sition point the evolution equations for the partons are
5 CYRN>1Q%M?) now in terms ofn;+1 massless quarks, and the coupling
constant becomes thdS coupling forn;+1 massless fla-
®[pgg® ggf+l(Q2)+ pgq vors. But all parton distributions and all other zeroth-order
o coefficient functions are continuous across the transition.
@ (H(Q?+H(Q?).], (4.5 Of course, although we have determined the lowest-order

derivative of the coefficient functions on both sides of the

where at the transition point the coupling at this order isboundary, we must also discuss the value of the structure
continuous. Also we see that the artificial zeroth-order ternfunction itself atQ?*=M?. Using the zeroth-order expression
in Eq. (4.5 disappears aD?=M? [it is actually canceled in (4.2), the vanishing of the charm quark distribution @t

the complete calculation as seen in E&13—(3.19], and = M? leads to the charm structure function being zero there.
it is indeed possible to demand the continuity of the derivaLikewise the fact that at zeroth order in the FFNS the coef-
tive across the transition point. Using the constraint and ouficient functions for charm production all vanish leads to the
simple prescription for constructing the structure function inZeroth-order value of ,;(x,M?) being zero also. Thus, the
the two regions, we now have a unique form for the previ-two expressions are consistent. However, this is unsatisfac-
ously ambiguousc\z’ms'o(z,Qle 2. Using the fact that tory for two reasons. Firstly, the leading-ordgorder

2 B . . -
H(z,0%) +H(z,02%)),=0 atQ2=M2, we immediately ob- as(Q?)) derivative of the charm structure function is non-
t(air(l Q) +H(ZQD) Q y zero both above and belo®?=M?, provided x is low

enough that we are above the thresholdih Hence, start-
dCE':H'l(z Q2/M?) ing with a va!ue oszlH(x,MZ)z_O Woulzd Ieazd to negative
ner™ ., (4.6 Vvalues for this structure function fo@“<M*. Also, one
d In(Q%) would naturally expect the LO expression for a quantity to
be a reasonable approximation to the quantity itself. The
atQ?=M?, and we defin€y;>Yz,Q?/M?) by demanding value of F,;,(x,M?) is not zero, and so the zeroth-order
that it satisfy this relationship at a?>. As well as guaran- expression is not a good representation of the true value.
teeing the continuity of the evolution of the structure func-These problems come about because of a peculiarity of
tion, this definition also reduces to the correct form @&  F»(x,Q?) already discussed i{20]. In general its value at a
>M2, since in this limit dC5%l(z,0%M?)/d In(Q)  given Qf begins at zeroth order im(Qj), but the
—>ng(2) (as we shall see explicitly in Sec.)VThis means O(as(Q3)) term is also really part of the leading-order ex-
that the evolution will clearly reduce to the correct pression since it is renormalization-scheme independent. In
asymptotic form of a delta function in the lim®?— . contrast the derivative begins @&a<(Q?)), and all correc-
Above Q?=M? terms are not exactly as prescribed by thetions are renormalization scheme dependent and genuinely
absolutely correct procedure explained in the last section, bdtigher order. Thus, as argued[i20], the input should con-
they do explicitly maintain the correct threshold behaviortain both the zeroth-order term and t@éas(QS)) term, but
sincedC5i(z,Q¥M?)/d In(Q?) is zero forW2<4M?2. At the latter should play no part in the evolution.
leading order we have in principle an error@fa?(Q?)) at Adopting this procedure we can now specify our leading-
the transition point due to the truncation of the FFNS expan@rder exgress;ons for the charm structure function as follows.
sion atO(as » (Q?)) [where this error falls likeN?/Q?) as ~ Below Q°=M*we take the LO expression to be

we approach the correct asymptotic lifréind an error gen- e (Q?)
erated by the evolution, which is zero at the transition point, ~ £FFQy 02— _ CFFLO2/M2) 0 g™ (02
and grows like g, 1(Q?)IN(QYM?), but falls like 21 (%.Q7) 2m 24ig( QM) ©8,(Q7).

(M?/Q?) as we evolve up from this point. These errors are
quite minimal, always being small compared to the quantity,

i Icul h h | which is equal to th&)(as) value atQ?=M?2, and incorpo-
being calculated. From E¢3.12 we see that we have also aieq the LO evolution down from this scalep to small

. VF,NS, 2 2\. i H . . .
corr]nplete_ly_ definedCyiig>(z,Q%M?); ie., in the MS  corrections. Above Q2=M? the LO expression is
scheme it is

NS, 0 _
C\Z/,EH O(QZ/M2)®qu_

4.9

Fyox,Q%) =F5Ax,M?) + C3yE%(Q¥M?)
® (H(Q?)+H(Q?), (4.9

dChiy(2.Q%IM?) _ _
d In(Q?) , Whlch (up to the constant ternis of the sta_ndard forrf\4._2),
and incorporates the correct LO evolution. In practice the
(4.7 constant term becomes almost insignificant as soo@%s
>4M?. Now we should consider the NLO expressions.
though we have not yet made use of this coefficient function. At NLO the situation is rather more complicated because
However, we notice that each term in this coefficient func-more terms come into play. We now define FFNS expres-
tion separately has the correct threshold behavidin sions by including terms up to ordaﬁynf(QZ) relative to the

C2tig(z.Q%M?) = C3lig(2,Q%IM?)

—In(Q*M?)
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lowest-order parton distributions. The NLO VFENS expres-photon couples to a light quark, but where heavy quarks are
sion is defined as in E¢4.3) (up to a constant againAt this  generated. Let us examine the NLO expressions for the de-
order the situation becomes more complicated because thigvative of the heavy quark structure function. First consider
pure singlet FENS coefficient function becomes nonzero athe O(ag,nf(Qz)) expression for the derivative of the heavy
does the contribution due to coefficient functions, where theyuark structure function in the FFNS. This is

dF X, 2 Qs (Qz) 2 .
dzi:((QS)): = )(—B&CE,E;(QZ/M2>®gof<Q2>+c§'a;<Q2/M2)
_— n dCERa(QM3) |
@ (Pog @05/ (Q%) + PL@ Q)+ — g om— 205'(Q7)
dChLia(Q%IM?) asn(Q%) dCERL(QUMY)
zqun(QZ) ®20f(Q2))+ sz szn(Qz) ®9;'(Q?), (4.10

where3"(z,Q?) is the singlet light quark distributiohin the VFNS the situation is even more complicated. Taking the
derivative of the NLO expression, and ignoring those terms already ir{48), we obtain
dF,4(x,.Q%)  dCrHA(Q7)
din(Q%) — dIn(Q?)

ACYES(QD)  h i1 o ko2 o o = i
TSR ®0," (Q?)+CYLN(QYM?) [Pl .@(H(Q)+H(Q?):+PJ,@a;" (Q?)]

®(H(Q?) +H(Q2),+

dsn (Q? dCVF'l(QZ) .
0| I 4 it i

2

sny+1(Q?)
el {~ B [Cos(QUMA @ gy Q)+ CYLn(QYM2) @ (H(Q?) +H(Q))o]

+
2

+ CYEH QUM 0 [PRy® (H(Q?) +H(Q2)o+ Phg@dy Q%1+ CYg(QYMA) @ (PRie 30 (Q?)

+Pga’ l@gg Q@2+ CIER(QIM) B[P e (H(Q?) + H(Q))o+ Py ™
@30 Q) +P T egr Q] (4.12)

These expressions are very difficult to compare in generaparing the two expressions @=M?. As in the LO case we
However, expressing the four flavor quantities in terms ofcan equate the terms coupling to the gluon in the two expres-
the three flavor quantities, the two are identical at NLO insions, i.e.,

MS scheme aQ?=M? (the discontinuities in both the par- -

ton distributions and the coupling begin at NNLGhus, the ~ dC31i5(z,.Q%M?)
o - = CYRH(QYUMA)® Py + CYE%(QUM?)

heavy parton distributions(H(z,Q?) +H(z,Q%)), and d In(Q?)

(H(z,Q%) +H(z,Q?)), vanish at this point, and so do many Lne+1

other terms in Eq.(4.11). From the definition of ®qu ' (4.12
Cy5%(z,Q%), we can see that the term depending on

01(z,Q?) is the same in both expressions, and using the EqatQ2= M?, and this serves as a definition of the coefficient
(4.7 we can see thadCyii(z,Q%/d In(@)=0 at Q2  function Cyhih(z,Q%/M?) at this Q2. However, unlike the

—MZ2. Also in the combination- ﬁﬂ f(2)+ P f the fla- LQ case we cannot define the cqefficient fzuncti.on.at(}ﬁl

vor dependence cancels between fthe two ?grms so this co Simply by extending this expression to &F. This is be-

binatioel is the same in both expression©3 MZ, Pause it will not result in the correct asymptotic expression
P ’ for CY5L(2,Q%M?), ie., dC552(2,Q¥M2)/d In(Q) con-

Thus we have a great deal of simplification, when COMains a INnQ%M?) term which must be canceled. It is quite

easy to find the generalization of Eg.12), however. If one
differentiates both sides of E3.6), and keeps those terms

“We labelPJ,(z) by the number of flavors because it is the only of O(a?, (Q?) which survive axQ?— (all terms of the
leading-order splitting function which depends on this number. The o

decrease of this splitting function above a threshold accounts for thform dC\zl,'k:m(ZaQ_z/_Mz)/d |n(Q2) vanish in this limit, since
fact that there is a new parton distribution, and guarantees overalhe VFNS coefficient functions tend to constantben one
conservation of momentum in the evolution. obtains
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dCHRa(z.QUM?) e o o dAL(QYM?) Cyhe>12,Q%IM?) =C55542,Q%IM?) — CILR(QY/M?)
dinQy - Camin (QIMHE — e PS2 42112
®ALS1QYM?). (4.18
2 2 2

+CYENSA QM) @ dALg(QM?) Using the framework we have chosen to define the structure

2HH d In(Q?) functions, this discontinuity in the derivative of the heavy

1 quark structure function in the singlet sector is unavoidable.
+ In(QZ/MZ)C‘Z’Eﬂ(QZ/MZ) There are simply not enough degrees of freedom to avoid it.
3m ' In practice, since the evolution of the heavy quark structure

®ng’ 413 function is driven very largely by the gluon, since this dis-

continuity begins only at NLO, and since Ed4.16 and

where the last term comes about from the difference in thé4'l7) are not_too dl_ffer_enf[ aR"=M th_e effect is tiny. Of .
derivatives of the three and four flavor couplings. This ex-COUrse, any discontinuity is only an artifact of the manner in

pression guarantees the correct asymptotic expression fg\(hlch we are forced to do our fixed order calculations, and

VF,1 2/n12 ; .. would disappear if we were to work all orders. In fact one
1 M hile Eq.(4.1 h . L A .
C2yin(2,Q7/M"), while Eq.(4.12 guarantees the continuity can show that the discontinuity of the derivative in the sin-

of the NLO derivative oF24(x,Q%) in the gluon sector, and glet sector gets formally smaller as one works to higher or-

hence the definition oCy1(z,Q¥M?) must satisfy Eq. gers.

(4.12 at Q?=M? and Eq.(4.13 asQ*~<. In fact, atQ’ So now we have the definition of our NLO expressions
=M= the two expressions are identical, i.e., for the heavy-quark structure function both above and below
1 21ra2 threshold. In the FFNS the definition is the simple extension
dAy4(z,QM )=P° (2) (4.14 of Eq. (4.8), being just
d |n(Q2) a9 , . o (QZ)
s,n
and FEH(0Q%) = —5 — (Chig(QYM*)@g0'(Q?)
dA%y(2.Q4M?) B0 & pO 4+ pO g PO+ +CHE(QM2) ®071(Q?))
d In(Qz) =( qq qg qg g9
s ) FF.202/M 2\ & 4 ( 2
— By T PIN(QHMZ) + P, H 5] Capg(QTMY)®g,(QY)
(4.19 +CEF2(QUMY)@30(Q2), (4.19

and we have the very neat result that E413 is the gen- o o .
eralization of Eq(4.12) for all Q2, andCY i (z,Q¥M?) is ~ Which is equal to the)(as) (i.e., NLO) value for the struc-
defined by Eq(4.13. ’ ture function atQ?=M? and incorporates the NLG.e.,

The above definition ofC¥}if(z,Q%M?), when substi- O(az,(Q?)) evolution down from this scaléup to small
tuted into Eg. (3.6), determines the expression for correctiong. The VFNS NLO expression is
C3H5(z.Q%/M?) which will be used at NNLO. However, we

X ; 2\4 2
have now used up our single degree of freedom involved_vg 1 2 [as(M ) FF.2 Ng,np2 FE2
with the heavy quark structure function at NLO. Looking at For (x,Q%) = 2 (C21ig(1) @Gy (M) +Copig(1)
the terms coupling to the singlet quark distribution in the two - VEO  ~2in
expressiong4.10 and (4.11), we find that the first contains ®3,(M9))+Ca1ip(QIM?)
dCEF2(2,Q%M?2 ®(H(Q2)+IT(Q2)) +CVF,O(Q2/M2)
CERL(Q%M?) @ PS + Z’Q“I(n Qz) ' 416 v
(Q o o, (@)
+ +—
while the second contains ®HQ)+THQI) 27
Chrig(QYM2) @ P+ CErR QM) @ PP L, X CYRNSA QM) @ (H(Q?) +H(Q?)),
(417 tgn,+1(Q?)

_ _ . + ————— CYRAQ¥MY)egr 1 (Q?)
There is no degree of freedom in either of these equations, 2 2Hg 0 '
and no reason for them to be equalgft=M?, and they are 4.20
not. Indeed there was no further degree of freedom in the '

relationships(3.6) and(3.7) required of the heavy quark co- which again, up to the constant term, which is the NLO input

efficient fl\J,ECtions'z Up2 to this order the only one available yhe | 5 part of the input now being included automatically
was forC;14(2,Q°/M?), and this has been determined by g of the standard form and incorporates the correct NLO
imposing the continuity of the evolution of the structure g\lution across the transition point.

funcgionzin the gluon sector. Indeed, looking at E8.7) at At this order we have to make some decision about how
O(a5(Q%)), we see that we have already determinedye treat the light quark sector. The lowest-order contribution

Cyhg>Az.QM?), e, the heavy quark makes to a light sector FFNS coefficient
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function is for the nonsinglet coefficient function at In principle both sides should also contain a term?(Q3)
O(a;nf(QZ)). Thus in the matching conditions between thefor the genuinely light NLO input, wher®j is the scale at
FFNS coefficient functions and those in the VFNS in theWhich the inputs are chosen. Such a term is always ignored,
light quark sector, there are no mass-dependent correctio@d would be very small. In practice all th@(aZ(Q?))

to the VENS coefficient functions I@(QS’”M(QZ))_ Hence, terms in the above expression are extremely small as well.

2/2 i ; i
the evolution of the light quark coefficient functions aboveThe O(a5(Q%)) evolution derived from the above equations

. . 2_ 2 - _
Q2=M2 s exactly as in the massless+ 1 flavor case. Nev- 'S not precisely continuous &°~M" due to terms of in

2 2 H
ertheless, we must decide on the form of the structure func\é%rpspe,Ns,?(z %%\;v'\e/:lrzs)/d In((()gfz) %i/stiscontliDr:Eﬁeanill dgj
tion at Q?>=M? and below this transition point. For the ~ ~2aq \* ' y

[ease as we go to higher orders, and these mass-dependent
terms get absorbed by higher-order mass-dependent VFNS
rc]:oefficient functions. We note that leaving tﬁkﬁaﬁynf(Qz))

term out of of Eq.(4.21) would also lead to a discontinuous

evolution (actually more sp since the evolution would take
account ofn; massless flavors below threshold, byt 1

heavy quark structure function we have been keeping hea
quark coefficient functions to one order higherag(Q?) in
the FFNS than in the VENS. This has been for the reaso
that the explicit InQ? dependence in the coefficient func-
tions means that they contribute to theQA) derivative of
the structure function at effectively one higher order in
a4(Q?) than the VFNS coefficient functions, and also be_mas_sleﬁs flavors ahbol\_/ehthreshlc(nld. inl ‘
cause the lack of the usual zeroth-order coefficient funCtiorﬂio:smr?azeatngLc(())r; E‘iiégﬂgggfguep?getﬁ;n%g;Struit;rrlfs l::cz;”
makes thei’)(as,nf(QZ)) coefficient function the LO one, the The first nonzero FpFNS coefficient functiongjg not a| '
2 2 : ppear
O(as,,(Q7)) the NLO one, etc. For the light structure func- ng) o2 (Q?)), and so do not contribute to the evolution
tions there is a zeroth-order coefficient function, so the sec- ~

ond argument no longer holds. However, the former one stil xpressions belov@?=M?2 and then,+1 massless flavor

does, i.e., diff(_erentiatingzthe Sxpression_ for the light q“arkexpressions abov@2=M?2. Continuity of both the structure
stzructurze functloanFe'\Ilg\@ :LV' ?”d keeping terms of order ¢ntion and its evolution are automatic.
a2, (Q7) thendC5g512,Q%M?)/d In(Q?) appears in the One could in principle work to progressively higher or-
expression. This contribution accounts for the effect of theders, but of course in practice the NNLO splitting functions
heavy quark to the evolution turning on @ increases. For and the NNLO FENS coefficient functions are all unknown
this reason we continue to keep the coefficient functions conat present. Nevertheless, we outline the procedure to be
taining heavy quarks to one higher order than those wittadopted at all orders. For the heavy quark structure function
only light quarks even in the light sector. there is essentially nothing new as we progress to higher
For the heavy quark structure function, because we hadrders. Atnth nontrivial order we include all FFNS coeffi-
terms of higher order imrs(Q?) below Q® than above i(t’;a’;n cient functions up to ordes , (Q%), and all VFNS coeffi-
order to impose continuity of the structure function ; : n—1 2 )
=M?2, we had to put a contribution to the VFNS expressioncIent functions up to 9rdeas,nf+1(Q 3 "; the VFNS ex
which is constant, and one orderdq higher than the rest of Pression we always include the(as(M?)) term which
the expressior(we also justified this from renormalization €NSUres cor12t|nu2|ty of the structure function. We determine
scheme consistengyWe now have to adopt a similar proce- Capin ~(2,Q“/M?) by demanding continuity of the deriva-
dure for the light quark expressions. The NLO expression fofive of the structure function ab(ag) in the gluon sector,
the nonsinglet structure function f@?<M? is and this determination predetermin ";*g(z,QZ/MZ) and
Cyhq(z.Q¥M?) by using Egs. 3.6) and (3.7 to

ntil NNLO. So at NLO we just use the; massless flavor

FSZYNSJ(XyQZ) _ CNS,nf,O® fNS,nf(Qz) + CNS,nf|O® fTS,nf(Qz)

249 0 249 O(a;‘,nf(QZ)). At O(aian(Qz)) the coefficient function
g, (Q%) NSl NSP CXFH'E{(;,QZ/Mz) becomes the sum of the nonsinglet and
+ e Cz'qaf’ ®@f, Q%) pure singlet coefficient functions. Neither the conditiBr6)

nor the continuity of the structure function and its derivatives

asn (Q%))? determine these two contributions separately, so we are free
| -0 Chiq QM2 to separate them as we wish, using the condition that each
2m ' tends to the correct asymptotic limit. It would also be desir-
NS, able to choose each so that they respect the kinematic thresh-
®fy Q7). @29 yresp
That for Q2=M?2 is equal to For the light quark structure function the procedure at
higher orders is also straightforward. Ath nontrivial order
F\Z’E'NS'J(X,QZ)zCgié‘f”‘O@fgS“f”(QzHCgia“f“’o we include all pure light quark contributions to coefficient
' ) ' functions belowQ?=M? up to orderag,;fl(QZ); all mass
a’s,nf+1(Q )

NSn;+1,1 dependent FFNS coefficient functions up to ordggf(Qz),

NSNf+1, ~2
®f1 (Q )+ 277_ 2,09

and all VFNS coefficient functions up to ordef, " ;(Q?).
as(M9)\* s In the VFNS expression we always include t¥éa2(M?))

om | Caaa 1) term which ensures continuity of the structure function.
Starting with the(’)(aénf+1(Q2)) coefficient function, we

NS,n
@fy (M?). (4.22 determineCy 1™ *(z,Q¥M?) by demanding continuity of

®fg|S,nf+1(Q2)+
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TABLE . Prescription for the order by order iny(Q?) determination of the VFNS coefficient functions
for F,(x,Q2).

Order of
equality Eq. Coefficient functions determined
ad(Q?) 3.9 Cyia?
ag(Q?) 3.6 CyuN®0 [by continuity of @F,y/d In Q%2 at
O(as(Q*)], C3iig
(3.9 Chaat
(3.9 Coag
a?(Q?) (3.6 CY5iy* [by continuity of @F,y /d In Q?)yz in gluon
sector atO(a(Q?)], C33
(3.7 CaHa
(3.9 Clin >
29 o
(3.10 Cyhe™?
ad(Q?) (3.6 Cy5i*[by continuity of @F,/d In Q32 in gluon
sector atO(a3(Q?)], CY3
(3.7 CaHa
(3.8 Coaa
(3.9 Cyqi [by continuity of @F,;/d In Q)2 in gluon
sector atO(a3(Q?)], CY5J
(3.10 Cyhes?
ag(Q?) (3.6 CYq ' [by continuity of @F,p/d In Q)2 in
gluon sector av(d(Q?)], CLHig
(3.7) Caiq
(3.8 Coaq
(3.9 Cyghi~* [by continuity of @F,; /d In Q%2 in gluon
sector atO(a2(Q?)], C3y
(3.10 Coaa

the derivative of the light structure function@a?(Q?)) in  €rs. We believe that our prescription is the best available at
the gluon sector, analogously to the heavy quark sector. WitRresent, and we see no easy way to improve upon it. We will
this one degree of freedom eliminated in this way, all otheld@monstrate the results using our prescription in the next
VFNS coefficient functions are determined uniquely order bysection, and see that indeed they do seem to work very well.
order in ag by Egs.(3.8—(3.10, i.e., this determination of Let us briefly discuss the effect of choosing a

C\Z’,’;ﬁ’l(z,QZ/Mz) predetermines C\z/,z’;(z,QZ/MZ) and renormalization/factorization scale other than our simple

. 2_ 2 B . .
CVF.PSn 2IM?) b . Eas. (3.9 d (3.10 t qhome ofu=Q". As already mentloned our defining equa-
295 (2Q7/M%) by using Egs. (3.9 and (310 to tions for the coefficient functions are of exactly the same

O(ag(Q?). .
Thus, we have completely defined our prescription forform’ .e., EQs.(3.6-(3.10, but now both the FFNS and

A ; i 2 02 2
calculating order by order for the structure function VFNS cozeiﬂmzent;‘un%tlong \rl]wllhdepenqmn ’Qh' anﬁu.
F,(x,Q?). We can sum it up in the form of a table. This is -€ting #“=x(Q",M?), with the requirement that the tran-

shown in Table I. This method uniquely determines allSition point is atQ® such tha_t:"“z_z'v_'z (else thezrelatively
VFNS coefficient functions, and while not leading to abso-Simple matching of parton distributions af=M? will no
lutely correctly ordered expressions it is a relatively simplelonger hold, we can demand that we remove the ambiguity
prescription for obtaining order by order structure functionsin the VENS coefficient functions using exactly the same
which are very similar to the strictly correctly ordered ones,criteria as above, i.e., that the @f derivatives of the struc-
which reduce to the correctly ordered expressions in théure function in the gluon sector should be continuous across
asymptotic limit and which order by order are consistentthe transition point. The new scale will lead to different ex-
with all physical requirements. All prescriptions which obey pressions for the derivatives of the structure functions to
Egs.(3.6—(3.10 will be correct when summed to all orders, those above both because the valueudfin the terms is
but some ways of choosing the heavy quark coefficient funcdifferent and because the factors of
tions will clearly stay closer to the correct ordering than oth-(d In x?/d In Qz)ﬂzzﬂz(Qz,Mz) which implicitly appear when
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differentiating the structure function with respect@ are  with the higher-order heavy quark coefficient functions being

no longer unity. For example, repeating the procedure for thealculated explicitly{but needing explicit subtraction of di-

zeroth-order coefficient function as in Eqé.4) and (4.5  vergences in@Q?/M?) beyond leading ordgrHowever, we

will lead to note that ACOT do not usually use the scale choice
=Q? as we do. More common isu?=M?+0.5Q%(1

d In ©2(Q%,M?) —M?/Q?)2 [23], which grows more slowly than our choice

T dino? from the same value @?=M? and is x?=0.5Q? asymp-
totically.

dCi}is(z,.Q%M?) ACOT claims a smooth transition from the FFNS at low
= d In(Q?) ) (4.23 Q? order by order. Their “LO” expression for the structure
function is

Cain1Q¥M?) ® Pqye

where C5%1(z,Q%M?) is independent ofu?. Hence, the

LO 2\ _ ~AVFNS,G ~2/pn12 2y (.2
zeroth-order heavy quark coefficient function determined via F2R00QY)=Calin™ 1Q M) ® (H(1*) + H(#)o

our procedure is indeed scale dependent, but that its essential agn +1(u?) .

property, i.e., the correct threshold behavior is maintained, + ———— CYRSH QY u?,QUM?)
and that as soon d8d In x*(Q?M?)/d In Q%) tends to ondas 2m

. - 2_ 2 . . .

it must if x“=Q< asymptotically it tends to our previous ®ggf+1(lu2), 4.25

result. It is easy to see that these properties will be main-

tained for all other VFNS coefficient functions, the correctwhere from Eqs(3.12 and (4.24),

threshold behavior being guaranteed by the fact that it exists

in the FFNS coefficient functions. Hence, the exact, order byCh Hg (2,Q% u?,Q%/M?)

order form of the coefficient functions in our procedure does ¢ 2rna2 21ra2 0 -
depend on the choice of scale, as in all perturbative calcula- — C2Hg (2,Q%/M?) = (In(u?/M?) +¢,)Pq @ 28(%0—2)

tions in QCD, but the procedure can be implemented for a 4AM?2
general choice of scale with the essential features being pre- X| 1+ F) . (4.2

served. The further the scale choice is from our simpfe

=Q?, the further will be the deviation from our results at @ There are a number of odd features associated with these
given order(though, of course, all choices will converge to a expressions. Firstly, the “correct” threshold behavior comes
common result if we work to high enough order due to theahout only from a conspiracy of cancellation. Neither term in
scale independence of the whole structure fungtigor the Eq. (4.25 respects the physical threshold individually and
rest of this paper we will keep to the simple and phyS|ca”yC\2/"}:_|'gs’1(Z,QZ/,U,Z,QZ/M 2) has a part with a threshold W2

. . 2_ 2
motivated choice of.”=Q". and a part going like Eq4.24. In fact, since the first term in

Before demonstrating the results using our definition of 3Eq. (4.25 grows more quickly than the subtraction term in
VFENS, first let us mention another currently available VENS,ihe second term in Eq4.25, there will be nonzerdalbeit

the Aivazis, Collins, Olness, and Tun@ACOT) scheme ver . 2 2

; y smal) heavy quark structure function fa-<4M~<.
[21,22,23. Although there is currently no all-ordef84], or 500 o)l the necessary cancellation has taken place, the result
even NLO definition(for developments seg25], of the is very good. This can be seen in Fig. 8[a8], and also in

ACOT VFNS(WhiCh. we will denote by. ACO)’in print, W€ Fig. 1 which is calculated using the ACOT “LO” prescrip-
believe that the definition of the coefficient functions in th'stion, our choice of renormalization scale, and the parton dis-

scheme must be equivalent to that in E.5), i.e., the yih ions obtained from our best fisee later for details
VENS coefficient functions are related to those in the FFNS1 o1q is a smoother transition in Fig. 8[@B] than in Fig. 1

by the Equation$3.6)—(3.10. Indeed, at what they call LO, .05, ise their complicated choice of scale leags2depart-
the ACOT coefficient functions satisfy E.12). However, ing slowly from Mzgnd staying well belov)? agg henrz:e to

- , F.NS.0
they determine the expression 0} /> from the tree-level 0 growth of the charm parton distribution being effectively

diagram for a massive quark scattering from a boson, and fqt, ,ch siower than for the simpt@2= 2 choice. The effect

a photon this gives of the choice of renormalization scale on the speed of depar-
AM2 ture of the ACOT result from the LO FFNS result can be
1+ _2) seen nicely in Fig. 1 of26].
Q However, even though the cancellation of terms works
well, Eq. (4.25 is at odds with the usual way of defining a
LO expression, which usually only involves zeroth coeffi-
, (4.29 : . ; E
cient functions convoluted with the parton distributions ob-
N . tained from the one-loop evolution equations. It is clearly of
where the modified argument of the delta function followsmixed order, and indeed, part of the expression is in fact
from demanding the on-shell condition for the massiverenormalization scheme dependent, which is certainly not
quark, and the remaining factor follows from the partonggrrect for a LO expression. If we go @?>M?2, Eq.(4.26
model for the longitudinal structure functionF,  does not reduce to any fixed order expression in the ZM-
=4M?/Q%, which is added to the transverse component to/FNS, The first term in Eq4.26), represented by the dotted
give F,. Inserting into Eq(3.12) for arbitrary u then gives  |ine in Fig. 1, becomes the LO expression in the ZM-VFNS,

the expression fo€y;5(z,Q% u?,Q%/M?). Presumably the but the second belongs to the NLO expression. One can see

ACOT scheme works at higher orders in a similar mannerjn Fig. 1 that the total LO ACOT result is significantly dif-

CVENSQZ,Q2M?) = 28(Xo— 2)

M2 -1

Xo= 1+ ?
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Fg Leading Order Fg Next-to-leading Order
ACOT VFNS ACOT VFNS
.3 - Subtraction term 0.3 = Subtraction term
- charm quark
0.2 0.2
0.1 0.1
o i " | L NI il 0 |
3 3
1 1
0 3 (Gev?) 1 10 10
0.08 0.08
FC FC
2 2
x=0.05
0.06 - 0.06
m=13
o.04 - T e 0.04 —
0.02 - 0.02
0 =T L T 0 AR Ll L
2 2 ?
1 10 (Gev?) 1d 10 1 10 0 (Gev?) i 10

FIG. 1. Charm quark structure functiom:,zyc(x,Qz) for x
=0.05 andx=0.005 calculated using the ACOT “LO" prescrip-
tion, our input parton distributions evolved at LO and renormaliza-
tion scale,u2=Q2. Shown are the total, the two contributions due
to convolution of the coefficient functioy};5(z,Q%m2) with the
gluon distribution(the subtraction term making a negative contri-

bution), and the contribution directly due to the charm quark.

FIG. 2. Same as Fig. 1, but with the partons evolved at NLO.

distribution, but the NLO evolution would still be uncan-
celed. This effect can be seen in Fig. 9 28], where NLO
parton distributions are combined with what is called the LO
coefficient functions and in Fig. 2, where we do the same
thing using our parton distributions ané®=Q?. Here the
subtraction term only partially cancels the charm quark con-
> @ -VI=\ tribution and the total quickly departs from the continuation
=1000 GeV,. Similarly the derivative of Eq(4.25) leads to  of the FFNS structure function, and the effect increases at
terms both ofO(a p,+1) and O(a3, 1), and will have a  smallerx. The all-orders definition of the coefficient func-
renormalization scheme dependent part. This mixing of ortions in Egs.(3.6—(3.10, if indeed it is the all orders defi-
ders is not acceptable. nition in the ACOT scheme, guarantees that the correct low

Alternatively, with the choice ofé\z’FH*HS'O(z,QZ/Mz) Q2 pehavior will pe restorgd when working to all orders, but
made, the usual way of ordering the expansion for a structurt this scheme this behavior will come about only due to the
function leads to serious problems. Using what one wouldMixing of effects at different orders. At low orders the dis-
normally consider the LO expressionFJ,(x,Q?) crﬁ_pﬁn_cy IS stllltlarge. We rf‘fOtet tha: t?ﬁ MRRISt'SChébﬂatih
— AVENS, O ~2/p 2 2 2 which incorporates mass effects into the evolution, but has a
t?]rc(:egﬂol do(i(r?leMan)ft(hZ(g t()et):‘_iéﬁ:) v?/‘Zh :éSH (?(?gz)awcs)ggp similar definition of coefficient functions to ACOTthough
be very discontinuous @?=M? and a gr’eat deal too fast W'th. the usual ordering suffe_rs_ badly_ from this problem
) X . . . outlined above. At the transition point, where the heavy
just above this. This can easily be seen on Fig. 1 where this K start ntributing to the heavy quark coefficient func-
contribution is represented by the dotted line and labelle juark starts contributing € heavy q .

ion directly, there is a very distinct kink, and the total rises

“charm quark.” It deviates very quickly from both the : . . .
continuation of the FFNS expression and from the total’ =Y quickly above the continuation of the FFNS expression,

expression. Using the NLO expression ordered in> occ In Figs. 6 and 7 of their paper.
P ' 9 P We do not believe that the method used by ACQ@F
the usual mannet,the effect would be lessened, but . : ) . ! ,

. o . . . MRRS) is a satisfactory way in which to define the coeffi-
would still be significant. The subtraction piece in _. f : . d inlv d beli
AFF’S’]( 2/,2.0%/M?) would largely cancel the quick cient functions in a VFNS, and we certainly do not believe
CoHg (2.Q71%,Q gely q that it is unique. It is a choice, as our prescription is a choice,
growth generated by the LO evolution of the charm partonyng a5 we have discussed in Sec. 11, we do not believe that

any are strictly “correct.” However, using the ACOT choice
the calculation of the heavy quark coefficient functions pro-
51t is an expression of this general form that is used in the recenéeeds as though the heavy quark parton distribution is due to
global fits to datd27]. intrinsic presence of the heavy quark rather than it being

ferent from the asymptotic ZM-VFNS result even @f
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generated fronfat least mainly the gluon. In particular the the structure function has a smooth thresholdVfi Taking
heavy quark coefficient function contains no reference to thé¢he InQ? derivative of this is a straightforward matter and
kinematic threshold ifW?. This necessitates a mixing of results in

orders to get satisfactory results. We believe it is far more

FF, _ 2
useful to choose the heavy quark coefficient functions so that dCZC—gl(Z;) =|| P% (2)+2¢ 2(1—22)_ 166222) E
they reflect the physics and all automatically contain at least dinQ a9 1-z v
the correct form of lowQ? behavior, and our prescription 1+
guarantees this. +[—4ez(1-32)+ 166222]|n(m>
V. THE VENS IN PRACTICE - )
+[4ez(1-2z O(W-—4my), 5.2
We now discuss how our procedure is implemented in [4ez( Mo | & 2 62
practice. Of course, in practice the first heavy quark we en- . . . L
counter is the charm quark with.~1.5 GeV. First we con- and it is easy to see that in the lin@"—e,
sider the LO expression. Denotirkg= mE/Q2 the LO FFNS dCEE’Q}(z, €) o
heavy quark to gluon coefficient function is di—an—Hqu(Z)- (5.3
1+ NS, .
CEFlz.e)=| (POy(2)+4ez2(1—32) 85222)In< U) Hence, from Eq(4.6), we see thaﬁgié_“s c(z,_e) must indeed
’ 1-v tend to the simple fornz6(1—2) in this limit.

X Solving Eq.(4.6) for C55°qz,€) at arbitrarye is not too
O(W2—4m?), complicated. Taking moments of both sides the Mellin trans-

formation of C5-2°{z,€) is the product of the Mellin trans-
(5.1 formation ofd Chrg(z,€)/d In Q? and the inverse of the Mel-
lin transformation of(ng(Z)), which is

+(B8z(1-2)—1-4ez(1—2)v

whereW?=Q2(1/z— 1), the gluon quark center of mass en-
ergy,v is the velocity of the heavy quark or antiquark in the 1
photon-gluon center-of-mass frame, defined by=1 f 2" Py (2)dz=
—4mZ/W?, andPg (2) = (z2+(1-2)?). Thesev-dependent 0

terms ensure that the coefficient function tends to zercrhis leads to the following expression for the convolution of

smoothly ash?=4mZ is approached from below, and hence C5-N59z,€) with the heavy quark distribution,

n24+n+2

n(n+1)(n+2)° 5.4

= xo dCYi(z,€) (x\2 d[c(x/z,Q?)+c(x/z,Q? xo  dCEl(ze) [x
CEE,CNS, e)®(C(Q2)+c(Q2)):_L0dZ dzl,ngQZG (E) [c( %(X/Z)( Q )]+3fxodx 209(Z,€ (E

dInQ?

_ X chF, ,
X[C(X/Z,Q2)+C(x/z,Q2)]—zf %4z pco(Z:€)

dInQ?
X fl dz'r(z') X [c(x/zZ,Q%) +c(x/zZ ,Q?)] (5.5
x/z z7 , , , .
|
wherex,=(1+4¢) " andr(z) is given by ) Bh

Q= QALY .7

J7oo1) 3 V71

_ 12 Ml 2 e Y

r(z)=2z% COS( > InZ + ﬁsm( 3 In z) . (5.6 and

as4(Q%) =ay(Q?4), (5.8

Using this expression we are able to calculate the LQ e A, is defined for four flavors, and take for three fla-
contribution to the heavy quark structure function using a,qg

particular set of parton distributions. In practice we use those

obtained from a global fit to structure function data using the aH(QY)=as (Q%3) +as {(m?,4) —a (M2 )3).

NLO formalism (details latey. In order to get the LO parton ' (5.9
distributions, we simply take the same input parameteriza-

tions for the partons, but evolve them using the LO evolutionThis prescription precisely reproduces the results of sum-
equations. Our prescription for the L@,(Q?) across the ming the leading logs inQZ/mg) in Eq. (3.15. The results
charm threshold is to define of the LO contribution for the heavy quark coefficient func-
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Fe Leading Order Using thi;, along vyith Eq(5.3 and the definition(5.10, we
2 VENS see that in the limig— o
0.3 - FFNS
--------- ZM-VENS 1-7
0.2 | Cye (2, e)eng(Z)ln(T) +[8z(1-2)—1]
=Cyl (), (5.12

0.1

in the MS renormalization scheme.
, ‘ o - Fro\?;'\;cge arguments leading up to E4.12), it is clear
1 20 02 Gev) 17 Py thatCy . z,€) also tends to the correct asymptotic limit,

o.08 and |r)deed, all coeffluent_ fgnctlon are construc;e_d SO t_hat

this will be true. However, it is not possible to exhibit this in
F, _ such an explicit manner since the expression for
x=0.05 CYFNS, FF, : :

0.06 | 2cc ,€) depends orCzycg(z,e) for which there is no
analytic expressiof.Likewise, it would be extremely diffi-
cult to implementCyEl*>%(z,€) into the calculation pre-

0.04 | cisely. In practice we find that the contribution to the total

...................... heavy quark structure function of this term convoluted with
the heavy quark parton distribution is only a very small frac-

0.02 - tion of the total. Hence, we include this contribution to the
total heavy quark structure function in an approximate man-

L o o ner, being confident that it is very far.from being significant
s 0 0 cev) 17 25 at the present level of accuracy required.

FIG. 3. Charm quark structure functiorIF,Z,C(x,Qz) for x
=0.05 andx=0.005 calculated using our LO prescription, our in-

Using our NLO prescription we use our NLO partons to
calculate the heavy quark structure function. Our prescrip-
tion for the NLO as(Q?) is to defineas(Q?,n) by the stan-

put parton distributions evolved at LO and renormalization scaldard two loop extension of Eq5.7), and then to use Egs.

12=Q?2. Also shown are the continuation of the LO FFNS expres-

(5.8 and (5.9 once again. Equatiofb.9) does not sum all

sion and the ZM-VFNS expression both calculated using the samiading and next-to-leading logs iQ¢/mZ) absolutely cor-

parton distributions and same choice of scale.

rectly, but is an extremely accurate representation of the pre-
cise expression. The NLO charm structure function is shown

tion are shown in Fig. 3, along with the continuation of thein Fig. 4 along with the continuation of the NLO FFNS ex-
LO FFNS expression and also the LO ZM-VFNS expressionPression and the NLO ZM-VFNS result. As at LO the VENS
One can see that the LO VFNS expression departs ver§eparts very smoothly from the continuation of the FFNS
smoothly from the continuation of the LO FFNS expression expression. Although at this order we have not been able to
then rises above it, and in the limit of very hig}f becomes demand absolute continuity of the derivative of the structure
essentially identical to the LO ZM-VFNS result. This is pre- function acrosQ*=mZ, we see that there is no visible evi-
cisely the behavior we would expect. We also note that undence of discontinuity at all. In fact the transition from one
like other approaches, the expression does not rely on ar§cheme to the other is smoother than at LO. Also the VFNS

cancellation between terms.

stays closer to the continuation of the FFNS at higQérat

We now consider also the NLO expression for the heavythis order. This is as we would expect, since as one works to

quark structure function. As well as the LO coefficient func-

tion just introduced, we include tlﬁ@(asynfﬂ(Qz)) coeffi-
cient functions. The expression f@}:.(z,€) is as in Eq.

(4.7), and is in terms of quantities we have written explicitly

above in Egs(5.1) and(5.2), i.e.,

dC5tlz,e)
Coog(2,:€)=Cheg(z.€) = In(Q?/mY) W
(5.10

higher orders inxg in the FFNS, one automatically includes
more Ianlmﬁ) terms which are completely summed in the
VENS. At all orders the two schemes become identical inso-
far as physical quantities are concerned. At very h@gth
then our expression tends towards the NLO ZM-VFNS ex-
actly as required.

Of course, at highe®? we also have effects due to the
bottom quark which has,~5 GeV. BelowQ?=m? there is
no bottom quark distribution and we take account of the
bottom quark effects by using treating all diagrams including
bottom quarks in the fixed flavor scheme, and all other ef-

Hence, there are no new problems in implementingtects decouple. AQ?=mZ we switch to a VFNS for inclu-

CVF,l

bcq(Z,€). In the limit Q*>— o the first of these becomes

(1-2)e
z )+[82(1—z)—1].

(5.1))

Chig(z.e)— ng(z)ln(

We are grateful to Jack Smith and Steve Riemersma for provid-
ing the extensive program to compute tﬁ(aag) FFNS coefficient
functions[29].
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TABLE Il. Comparison of quality of fits for a wide variety of

F Nm-w'lead\l;fN(:der ) structure function dat#2,3,33,39—41 using our prescription for
0.3 | s FFNS heavy quarks at NLQ@TR) and the NLO fits MRRS and MR&)
o ZM-VENS and a NLO fit using the FFNS. We do not include the smallow-
Q? data in the second d2] in our fit in order to make a direct
0.2 comparison with the previous fits.
2
Data X
0.1 - Experiment points TR MRRS MRSR,;) FFNS
H1 F5P 193 135 133 149 147
0 ZEUSFSP 204 274 290 308 310
1
0.08 BCDMS F4P 174 262 271 320 291
. NMC F4P 130 144 145 135 158
i NMC F4¢ 130 112 119 99 130
0.06 E665F’2‘p 53 61 60 62 61
E665 ng 53 53 54 60 51
SLAC F5P 70 98 96 95 99
0.04 -
no real difficulty. We have also demonstrated that the results
0.02 - have precisely the properties that our theoretical arguments
in the previous section lead us to expect. In order to make
0 T N even more concrete statements regarding the suitability of

1 10 Q; (G'e;,z‘)‘ ‘ 18 - “103 our VFENS for the calculation of structure functions, we will
now discuss a comparison with data.

FIG. 4. Same as Fig. 3, but with NLO prescriptions and NLO
parton distributions. VI. PHENOMENOLOGICAL RESULTS

sion of the bottom quark effects. Analogously to the charm USing the prescription for heavy partons discussed above,
quark this involves switchingta 5 flavor coupling constant, We can calculate the full structure functions in terms of input

defined by parton densities for the light quarks and gluon. The input
scale is chosen a@§=1 Ge\?, and the input parton distri-
a;51(Q2)=a;1(Q2,5)+as_l(mﬁ,4)—afs—1(mﬁ,5), butions are then determined by performing a best fit to a

51 wide variety of structure function and related data. Hence we
(5.13 repeat the type of procedure adopted by MRS and CTEQ

and beginning the evolution of the bottom quark density. Thd@nd othersin their global determination of parton distribu-
VFNS coefficient functions are defined using a generalizations- We note that apart from the massgsandm, , which
tion of Eqs.(3.6—(3.10. There are now two heavy quarks in We fix at 1.35 GeV and 4.3 GeV, respectively, the heavy
the definition of the fixed flavor number scheme, so we havé&luark contributions to structure functions have no free pa-
two extra equations fo€5,s and C553, and there are now fl_argftelrlsf V'\I'/he overall dtﬁscrlpu?tn Off 'f[rr‘]e ??ta.tlhs tihct)wr;) n
extra VENS coefficients such YES or CEEPS Also, the . oorg, 1w tve Bompars the quaiy of fhe T Wi fal ob-
- - bg 2bc - ' tained using the FFNS approathhe MRS (R) fit [30],
finite operator matrix elements will depend on both the, 1.1 uses the ZM-VENS prescription with a phenomeno-
charm and bottom mass effects. However, exactly the samggicaily motivated smoothing function and an alternative
principles as outlined in the last section apply for determm-VFNS the Martin-Roberts-Ryskin-StirlingMRRS) ap-

. . . . . 2 1

ing the VENS coefficient functions. At low ordersin(Q%)  pnroach. There is a clear improvement when compared to the

there is no mixing between the charm mass effects and thl‘—eFNS for all experiments where charm makes any real con-
bottom mass effects. Hence, the VFNS charm coefficients

functions we have mentioned explicitly above remain the

same aboveszmﬁ (except for a completely negligible
change inC5%0*®") and the bottom quark coefficient func-

tions are obtained simply by replacimg. with m, and n;

"We note that we do not alter the values B§(x,Q?) for the
HERA data to take account of our predictions for(x,Q?), as

2 .
+1-flavor splitting functions withn,+2-flavor splitting should really be done. THe, (x,Q7) values used ii2] and[3] are
functi At hiah d the VENS ch ffici tobtalned using a NLO-ire,(Q<) calculation, and so are not very
unctions. 'gher oraers the charm Coemcient yigo ent from ours in general, and the number of points affected is

functions change abov@’=mg, acquiringm, dependent relatively small. Hence the quality of the overall fit is very insensi-

CorreCtionS(in particular C;Eﬁs comes into EXiStenaeand tive to the neg|ect of this small correction.

bottom coefficient functions acquire charm mass corrections. 8Because of the additional computing time required, this fit is not
Thus, we have described how one may implement ougs exhaustive as the others. Nevertheless, we are convinced that it is

prescription for the VFNS in practice, showing that there isextremely close to the best possible fit.
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tribution to the structure function, a large improvement com- e f o 'mzl‘zoc‘ev‘ R tooT T T
pared to the MRS (R fit for the HERA and BCDMS data, 2r m =135 GeV
though a slight worsening for New Muon Collaboration 10%L T MELOON g
(NMC) data, and a small, but definite improvement, when R W
compared to the Martin-Roberts-Ryskin-Stirling/RRS) i
fit. We can understand these features as follows. It is gen-
eral problem for the NLO fit to generate large enough E -
dF,(x,Q?)/dIn Q? for smallishx and highQ? in all schemes W ]
[a problem cured by correct inclusion of leading Ix{1/ L e v o
termg. However, this problem is worst in the FFNS, since 10 | =27 T
the rate of growth of charm is smaller at higH, than in the P R
other schemes as seen in Fig. 4. Hence, the fit using the Al e
FFENS is worse for the HERA and NMC data than the VFNS
fit. We can understand the improvement of the VFNS fit over
the ZM-VFNS for the HERA data by the fact that much of
the data lies near the threshold region, and the shape of the Lo
structure function predicted by the ZM-VENS is incorrect in 107}
this region, i.e., the slope ofiF,(x,Q?)/dIn Q* changes g
abruptly atQ?= mg rather than smoothly over a wide range
of Q2. However, we note that the artificially large charm at |
x~0.04 andQ?~ 15 GeV? in the ZM-VFNS actually helps :
the ZM-VFNS fit to NMC data slightly. As far as the
BCDMS data is concerned, charm only comprises a very L P
small proportion of the total structure function for this data, -3 AN AR S
but the errors on the data are extremely small, so producing 1 10 (Gev) 1¢°
the correct form of charm will have some effect on the fit.
The fact that the VFNS does give the best fit is some indi- FIG. 5. Our prediction folF,¢(x,Q?) using our NLO prescrip-
cation of its appropriateness. The small, but definite im-ion, the NLO partons obtained from our global fit, and three dif-
provement over the MRRS approach also adds support to odgrent values fromm, compared with the EMC and HERA data.
particular VFNS approach. - .
Full details of a comprehensive global analysis using thid"e @t about 1.5 GeV, and a value very similar to this that
procedure will be presented in a future publication. How—ShOUId be used over the whole range.
ever, here we will concentrate on those data which describg. ON€ €an compare our results with those for the FFNS and
the charm contribution to the structure function only. TheZM'VFNS _shown in Fig. 5 of[26] (with m.=1.5 GeV).
component, . has been measured at intermediatealues From this figure it Seems as thopgh the FFNS tends_ to un-
by European Muon CollaboratigEMC) [32] (via the detec- dershoot most data pc_Jlnts, partlcul_arly the EMC pomt_s at
tion of inclusive muongand at small by the H1[4] and moderatex, though this could be improved by choosing
ZEUS [5] collaborations at HERAthrough measuring® ~ OWer Mc. The ZM-VENS curve maiches HERA data well,
andD* cross sections The latter indicate that as much as but is clearly th% wrong shape for the EMC data, especially
2025 % of the totaF,(x,Q?) is due toF ,.(x,Q?). While those points aQ _<3 Ge\? not shqvvn in this figure, where
these data Oﬁz,c(X,Qz) are not included as part of the gen- the ZM-VFNS fails hopele'ssly. This is only WhaF one Wguld
eral fitting procedure, we can compare them with our theo &XPect from the construction of the ZM-VFNS, i.e., a disre-

retical predictions. The results are shown in Fig. 5. A verygard for the correct physics near threshold. Hence, the EMC
good description of both the small and mediwrdata is charm data in particular seem to favor a VFENS calculation.

achieved for a charm mass af,.=1.35 GeV® although The HERA data on charm itself are not yet precise enough to
=1. X L

there is a strong suggestion that a slightly higher mass woul istinguish strongly between approgches, but as seen above,
be preferred, i.e., the curves far,=1.5 GeV give a rather € factzthat the charm component IS a large part .Of t_he_ total
better description. In fact it is Cthe data f@?~2 Ge\? .FZ(X'Q ) values means that global fits are more d|sc_r|m[nat—
which strongly favor this higher value afi;. Since in this Ing, and favor the VFNS apprpagh. lllustrating this final
region of Q2 the theoretical approach is fmambiguous ie point, in Fig. 6 we show the relative importance of thg charm
the true result must be very similar to the FFNS calculationand bottom components to the total structure function, and

: o }?ote the large fraction which is due to charm in the HERA
these points may be thought of as determining the value Yow x region. The bottom contributes no more thad % in

any currently accessible rangeofand Q2.

®The fit is not as good as the leading order renormalization scale v/||. THE LONGITUDINAL STRUCTURE FUNCTION
consisten{LORSOQ fit [31,20, which includes In(2{) corrections,
but not yet charm mass corrections. Finally we discuss our prediction for the heavy quark con-
©There is also a single EMC data point &=0.422 and tribution to the longitudinal structure function. Although
Q?=78Ge\? not shown in Fig. 5, which hasF,.(x,Q?) there are no data directly available on this quantity, we feel
=0.00274-0.00152 compared to a prediction of 0.0003. that it is an important issue. This is because the implemen-
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0.4 ] L asynM(Qz) would need to be included. Also, if one includes
FSF, any zeroth-order coefficient function, using the expression
0.3 Lo B (3.6) for the O(asvnM(Qz)) gluon coefficient function re-

T sults in C4(z2,Q%M?) having a component which is

renormalization scheme dependent.

. Hence, we choose not to have any zeroth-order contribu-
tion to the longitudinal coefficient functions. As with
F,(x,Q%) our VFNS coefficient functions are then deter-
= mined entirely by the requirements of reduction to the ZM-
VFNS order by order a®Q®?—« and continuity with the
FFNS across the bounda®?=M?. Therefore, the prescrip-
tion for the VFNS longitudinal structure function is very
similar to that forF,(x,Q?), except that the relative order of
0.08 A B e e T LAAM B e e heavy quark coefficient functions abo?=Q? and light
quark coefficients at all Q> is one higher, i.e.,

= Q=125 (GeV
0.2 | 25 Q )

b
Fo/F, O(aSYnM(QZ)) is leading order, etc. The prescription for the
006 I- 7 FFNS structure function at fixed order is then very straight-
T, 5 forward, i.e.,
. QP=2500 (GeV)
0.04 |- 3007 7

n s (QZ) n—-m+1
o= 2,3 [

n FRn—-m+1) n
xCE ™ D(MQ*)f ! (Q),

L,ia

n=0—oo, (7.0

for both the heavy and light quark structure functions. The

FIG. 6. The ratiosF,./F, andF,,/F, at fixed values 0fQ? general form of the expression aba@é=M? is the same as

resulting from our NLO parton distributions and taking, this, i.e.,

=1.35 GeV andn,=4.3 GeV. The experimental data point shows n a +1(Q2) n—m+1
the estimate from Ref[4] for F,./F, in the kinematic range F" (x,Q%)= 2 E ( SNy

10 Ge\P< Q2< 100 Ge\~. LR m=o G 27

VF,n—m+1/n12/~2 N+l ~2
tation is a little different from the case &f,(x,Q?), also < CLib (MTQT &1, (Q7),
because the charm contribution has a very important bearing n=0—%. (7.2
on the total longitudinal structure function, contributing up to
about 35% in the ZM-VFNS for example, and finally be- Since the expressions are now of an identical form both sides
cause our results are very different from those in other way$f the transition poinfwhich was impossible foF 5(x,Q?)
of implementing a variable flavor number scheme. because of the requirement of zeroth-order heavy quark co-
As for F,(x,Q?), and for the same reasons, there is noefficient functions above&?=M?], and are identical to all
way we can obtain théhypothetical absolutely correctly orders, continuity of the structure functions themselves is
ordered expression. Therefore, as in this previous case wguaranteed order by order ing(Q?) across the transition
want some relatively simple prescription which will reflect point. However, as in the case B§(x,Q?) the heavy quark
the physics involved correctly. There is a lot of similarity coefficient functions at each order have to be determined
between our order-by-order prescription for the heavy quarkising some prescriptiofiT his ambiguity has no effect on the
contribution toF| (x,Q?) and that forF,(x,Q?), and the continuity of the structure function since ath order in the
equations that the VFNS coefficient functions must satisfy inexpression for the structure function tmth-order heavy
terms of the operator matrix elements and the FFNS coeffiquark coefficient functions only appear coupling to the
cient functions are once again Eq8.6)—(3.10. One large zeroth-order heavy quark distribution, which vanishes at
difference between the two is the fact that in a zero-mas®?=M?2.)
formulation there are no zeroth-order in(Q?) coefficient As with F,(x,Q?) it would be nice to demand both con-
functions for the longitudinal structure function, and hencetinuity of the structure function and its I®? derivative
the O(as(Q?)) coefficient functions are leading order and across the transition point. Since the expressions for the
renormalization scheme independent. All previous imple-sstructure function are of exactly the same form both above
mentations of a VFN$22,23,28 have included a zeroth- and belowQ?=M? in this casgessentially because there are
order heavy quark longitudinal coefficient function, i.e., theno zeroth-order terms in the longitudinal structure fungtion
term in Eq.(4.24 which «4M?/Q?. This procedure means we can now attempt to equate theQA derivatives of the
that there is a coefficient function at lower order than the oneth-order terms in both expressions rather than making the
which becomes leading order in the ZM-VFNS limit, and derivative of thenth-order VFNS expression match on to the
hence in order to reach this limit with the LO VFNS expres-nth-order derivative in the FFNS as was necessary for
sion coefficient functions at both zeroth and first order inF,(x,Q?). As in the previous case we have enough choice to
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demand only that this is true in the gluon sector, but againby  4¢ (x,Q%) [ @sn (Q?
far the dominant contribution to this derivative comes from LAY ) Cliig(Q4M?)
this sector. However, now we have an additional problem dinQ 2m
compared to the previous case. This can be seen by examin- — 8"g™(02) + P& a"( 02
ing the lowest-order expressions. ® (= Bo'90 (Q7)+Pygg ®g (Q7)
In the FFNS the lowest-order ex| i
lowe pression for the heavy +qu®28f(Q2)), 7.7)
qguark structure function is
2 and in the VFNS
£0 0000 = ¥ e g o g Q) 2
LH(X 5 CLHg 90 ' dF_4(x,Q%) [ @sn+1(Q )\ 2 (L QM)
(7.3 d In Q? 27 Lg(Q
while in the VFENS, it is ®(— Bofﬂ nf(Q2)+ P0nf+1®gof(Q )
g, nf+1(Q2 VFl 5 nf+l 5 + PO ®Enf(Q2))+ CVF,l (QZ/MZ)
H(XQ)_—W Clhig(M?1Q%) ® (Q%) L.HH
®[Pgg®dy " (Q?)
+CH(MAQA) @ (H(QY)+H(QY))p °
(7.4 +P2,® (H(Q) +H(Q?)]
and from Eq.(3.6) we have nf+l(H (Q2)+H(Q?)o} (7.9
\L/Fng(z M2/Q?)= CEFﬁlg(z,M%QZ) From previous arguments it is clear that the terms

. «C/4(2.Q¥M?) in each equation are equal @=M?2.

+v

—|42(1- 2)v — 8ez2In , The vamshmg_ of the heg_vy quark distribution at this scale,
1-v leads to the single condition

(7.9 CYhin(z. D= (7.9

b 272 /2 . I
for thze charm quark, where agaia=mc/Q” and 6(W" in order to match thes@(ag(Qz)) contributions to the de-
—4m;) is implied whenever appears. Clearly the structure riyative. Thus, we have this condition, along with the fact
functions are the same &2=M?2. It is also clear that the thatC\"":},(z,Q%M?) must reduce to the correct asymptotic
O(a(Q?) expression for the IQ? derivative is the same on form in order to determin€%:4,(z,02/M?). It is clearly

. . L,HH
both sides, i.e., possible to choose forms f@)";};(z,Q%/M?) which satisfy
dE, 4(x,0Q2 2y dCFFL (027 M2 these conditions, but there is rather less guidance as to the
(;Trf Q? ) _ aS;Q ) LHHEIJEQQZ ) go(Q?). precise form required than fé¥,(x,Q?), where the condi-
o

tion at Q>=M? contained a component, which was clearly
identifiable as the asymptotic expression.

However, this expression, which vanishesQ&M2—x, is This indeterminacy is due to the fact that #%M?/ Q)
contributions to the derivative begin at one lower order than

lower order than the leading-order asymptotic expansion,h ic f her th h fi
which is O(a2(Q?)). It is this, rather than a zeroth-order the asymptotic form, rather than our chosen manner of im-

coefficient function, which truly reflects the fact that the phosing tl?ge matc?ing If we had fck[;osen to mzajc(:jhl(ﬂcﬁ% to
heavy quark longitudinal structure function has behawort e lota (as(Q )) expression fodF ,(x,Q%)/d In Q% in

which begins at lower order than the massless expressmH1 e FFNS, rather than JUStzthe part coming from E4),

This O(ay(Q?)) derivative means that while the asymptotic " ed f?nalogouslgl i, HI(X E ), we w%ulddhave encgunttlared .

O(a2(Q?)) expression for the total derivative of the longitu- a difterent problem. In this case the _etermlne value o
s c/fl(z1) would have contained a  part

dinal structure function is renormalization scheme mdepen L.HRAS B ) VE, nf+11

dent, it contains a part which vanishes@&¥M2—oc which ~ *dCL5(2.Q%/M?)/d In Q?, which containsC/ (2),

is renormalization scheme dependent. This is different to thénd the asymptotic limit would therefore appear more natu-

(7.6

case forF,,(x,Q?), where the leading asymptotic and rally. ~ However,  the  full  expression  for
O(M?/Q?) parts of the derivative are both of the same orderdCEFH%(Z,QZ/MZ)/d In Q% and consequently the full ex-
i.e., O(as(Q?)). pression forC"i,(z,Q%/M?) implied, containsO(M?/Q?)

If we treat the O(ag(Q?) component of parts which are renormalization scheme dependsinice
dF_ u(x,Q%)/d In Q? as a superleading part which is trivi- they are subleading to th@(as(Q?)) expressioh This is
ally continuous acros®?=M?, and then examine the form not satisfactory in the definition of the leading order VFNS
of the O(«2(Q?)) terms coming from the derivatives of Eqs. coefficient function, and the renormalization scheme depen-
(7.3) and(7.4), then since each of the leading-order expres-dent part of the expression should be removed. However,
sions is renormalization scheme independent, then so are tigere is no unique way to do this, and hence the definition of
contributions obtained in the expressions for the derlvatlvesC\(FHh(z M2/Q?) would be just as ambiguous as when using

Explicitly we obtain, in the FFNS, our chosen matching condition.
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Hence, we have to live with the fact that there is no com-

0.08 Leading Order
pletely satisfactory way to determit® ;,(z,Q%/M?) from . VENS x=0.005
physical arguments. We choose to impose &), as well B e E;‘;r;“ quark compt. m=1.35
as the fact tha€"1},(z,Q¥M?) must reduce to the correct ~ 0.06 |- """ Vs

asymptotic form, and also choose the coefficient function so

that a smooth threshold M?2 is automatically incorporated.
A simple choice satisfying all these requirements is

Clhin(2 QM) =3v(1-M%Q%z. (710 ;4L

In practice this ambiguity has little effect phenomenologi-
cally, since the vast majority of the LO expression for 0

F 4(x,Q?) comes from the gluon contribution which is de- * 0 Q@) i 10’
termined uniquely. Using Eq3.6) we have now also defined 0.02
CVF.2 21012 c =0.05
Cllhg(z2,QIM?), i.e, K Xm=1.35
\L/FHZQ(Z QZ/MZ) EFHZQ(Z,QZ/MZ)_|n(Q2/M2)ng 0.015 -
®Cin(QYM?), (7.13)
0.01

in MS scheme, although we do not have to make use of this
yet. The fact thatC"ji;(z,Q%/M?) reduces to the correct

0.005 ~
asymptotic limit guarantees tha;%(z,Q%M?) does.
As far as the light quark contrlbuuon is concerned, the
coefficient functions are identical above and bel®@? 0 . - = o
=M?2, and the only effect is the change of the evolution of 1 10 Q (GeV ) T 10

the parton distributions and in the running of the coupling.
The InQ? derivatives of these LO light quark distributions

. . 2 2 . .
which are entlre_ly OfO(C.Ys(Q )), are not quite continuous ut parton distributions evolved at LO and renormalization scale
across the transition point because of the flavor dependen(E;p:Qz_ Also shown are the continuation of the LO FENS expres-

Ofo Bo and of the Iowezs’t'order splitting functions, i.e., of gjon and the ZM-VFNS expression both calculated using the same

Pgg(2). As in the O(a5(Q%) derivative for F,;(x,Q%), parton distributions and same choice of scale.

there is continuity in the gluon sector, but not in the quark

sector. Phenomenologically the discontinuity is very small,quickly, then turning over and going to zero @Z/mg

and becomes formally smaller as we work to higher orders.. . |f, as is more likely, the LO expression is taken to
The result of our leading-order calculation®f .(x,Q%),  include both the zeroth-order an@(ay(Q?)) coefficient

using the same LO parton distributions as before, is shown ifunctions, so that the correct asymptotic LO limit is reached,
Fig. 7, along with the LO FFNS and the LO ZM-VFNS ihencVF 1(z,€) is defined by Eq(3.12, i.e.

results. As in the case df,.(x,Q%) one can see that the L

transition from the FFENS result is extremely smooth, and of . 4m§ R

course, the the correct asymptotic limit is reached. We note  C\'¢g(z.€)= ct Fo(z.€)— 2 Pea®28(Xo—2)

that at lowQ? the VFNS result forF .(x,Q?) is very dif-

ferent indeed from that in the ZM-VFNS. This leads to a X (IN(Q%/m32) +¢,y). (7.13
very significant difference between the results for the total

FL(x,Q?) in the two different schemes, and important phe-As well as this introducing incorrect renormalization scheme
nomenological implications. We also show explicitly the dependence into a leading-order expressida c,), it has
contribution made by the charm quark distribution. At high unfortunate phenomenological consequences. The VFNS dif-
Q? this is unambiguously defined, and at I®@¥ it is very  fers from the FFNS expression by

small indeed. Therefore, the ambiguity in the 6% heavy

FIG. 7. Charm quark structure functioﬂF,ch(x,Qz) for x
=0.05 andx=0.005 calculated using our LO prescription, our in-

o = 0
quark contribution is not really significant. 4€25(%9—2)®[(c(Q?) +c(Q?)o— as4(Q?)Pqq
A very important difference should be noted between this 92 4) 2
approach and previous VFNS approaches at this point. As XIn(Q/m3) ® go(Q)], (7.19

already mentioned, all previous approaches have used

zeroth-order charm quark coefficient function of the form where we have useMiS scheme. These two terms are in-

tended to largely cancel at and just ab@ye= mg, ensuring
CI\_/ O(z,6)=4gez5(RXo—2). (7.12  arelatively smooth transition as in the ACOT prescription
for the LO expression fonlc(x,Qz). The procedure works
If one were to regard the LO expression @[’C(X,QZ) as well in the case oin,C(x,QZ), and the transition is quite
just this coefficient function convoluted with the heavy quarksmooth, as we have seen. However, the cancellation is not
distribution function then the behavior would be ratherexact(otherwise we would just have the FFNSc(z,Q?)
strange, having a sharp threshold @=mZ, growing  +¢(z,Q%))o~ e 4( Q) PO INQMY)®GHQY) for Q? just
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abovem?Z, but the resummation of the logs in the evolution full NLO expressions in both the FFNS and VFNS up to
of the charm quark distribution leads to differences appear©(a3(Q?)). From the conditions we have already imposed

ing. To a rough approximation, using Eqs.(3.6—(3.10, it is guaranteed that all new terms
o o o we introduce which behave like2(Q?), i.e., those depend-
(c(z,Q%) +¢(2,Q%))o~ a5 Q%) PygIn(Q/my) ©go(Q%) ing ondC\72/d In Q?, will be continuous across the tran-

~ 2)In(0Ym2))2P° & P%4e g%(Q2), 71 sition point. Again this is straightforward to check. If we
(a5 QUIN(QTMe))™Pqe® Pgg Go(Q°) (7.19 examine theO(a3(Q?)) contributions to the expressions

i.e., containing rather more terms than E@s10 and(4.11).
4e(as/(Q9)IN(QYM?))?28(X0—2) ® P ® Pla® g5(Q?). However, as with Eqg4.10 and(4.11) many of these terms

(7.16 vanish atQ?=M?, because the heavy parton distribution

, _ o o vanishes here, also because in this @¥g\;"(z,1)=0, and
For Q~5-10 GeV this expression is comparable in size 10 also because many other terms are the same in both expres-
the FENS component of the full expression far«(x,Q%),  sjons. A long, but entirely straightforward calculation reveals
which ~ ag5(Q®) with damping due to kinematic factors that if we require continuity of the derivative in the gluon
[and which is more than 10 times smaller than the LO FFNSsector, we have the requirement that
component forFZ’C(x,Qz)]. However, it falls away quickly
at larger Q2. This leads to the LO VFNS expression for

VF,S,2 £2/n 12 0 _ ~FF2 2/nm12y RN ot
FLc(x,Q?) increasing very quickly above the FFNS expres- CLVHHZ(Q IM)®Paq=CL1ig(2,. Q7M7) (B, o)

sion above the transition point, dramatically slowing, or per- FF.1 2/n12v N+l N
haps even falling a@?~5m?, and then smoothly approach- +CLig(2. QM (B A1)
ing the correct asymptotic limit. l.e., there is a very —CEF;}(QZ/MZ)

pronounced unphysical bulge in the valueFch(x,Qz) cal- o

culated in this way. When one calculat®s=F_./(F (P pliy, (7.17

—F_¢), which exhibits the relative rate of growth &f_ % %

e e T T At 2 07 . So 100G, 35 80 (@) e o
=3m?. NN . :
very clearly in Fig. 9 of 28], where the effect is particularly implication of the asymptotic form required of the heavy

e ! -2 quark coefficient function in the condition %=M?2, but
dramgtlc, since the evolution of the heavy quark dIStrIbUtlonthe condition is no longer that the coefficient function is zero
there is even quicker than MS, and is at NLO. However,

. 3 at this value ofQ2. We can understand where the nonzero
the treatment of coefficient functions follows the same genioims come from quite easily. If we had used the whole of

eral principles as ACOT, and the same type of effect, if 3 2 . -
somewhat smallefthe reduction depending very strongly on the O(as'”f(Q )) expression for the derivative of the heavy

the particular choice of renormalization scale—one whichduark structure function in the FFNS, and equated this to our

departs extremely slowly fronm? as Q2 increases could YENS —expression, then —the —asymptotic - form = of
remove the effegtwill be clearly seen in their expressiots. CL#HR(Z, QM )FFvgouId ha2ve appeared naturally in the ex-
Even in the absence of detailed data, this type of effect seemfgession fordCi yi,/d In Q. However, by examination of
sufficient to rule out this approach as a suitable way to ordeexpression fordC{:%/d In Q* contained within Eq.(3.6),
a VFNS expression. we would find that the definition ofC)\*{z,Q%/M?)
We now consider the NLO expressions for the longitudi-would also need to contain terms of the sort in E417), as
nal structure functions. For both heavy and light quark strucwell as others which vanish &= M?, in order to reduce to
ture functions both above and bel®?=M?, we add to the  the correct asymptotic limit. However, in an analogous fash-
LO expressions thé)(aﬁ(Qz)) coefficient functions convo- ion to our previous discussion at leading order, we do not use
luted with the LO parton distributions and th®(as(Q?)) this technique since parts of th@(M?/Q?) corrections to
coefficient functions convoluted with the NLO parton distri- dCfﬁ%/d In Q? are properly of NNLO, i.e., are renormaliza-
butions. Let us first consider the heavy quark coefficiention scheme dependent in such a way as to compensate for
function. It is guaranteed by satisfying E¢8.6)—(3.10 or-  the renormalization scheme variation of the NLO terms. This
der by order inas(Q?), while also satisfying the correct would require an ambiguous subtraction procedure for these
relations between parton distributions and the coupling, thagerms, and we would have no more real information than that
this procedure will lead to structure functions, which arecontained in Eq(7.17) and the asymptotic condition.
continuous acros®?=M?2. This is straightforward, if a little Hence, as for thé(as n + 1(Q?)) coefficient function, we
tedious to check. Continuity of the derivative of the heavynake a simple choice for the coefficient function which sat-
quark structure function across the threshold is not guaransfieg Eq.(7.17, which reduces to the correct asymptotic
teed, but depends on the particular choice of the heavy qualityit and which explicitly contains the correct threshold be-
coefficient functions. We can compare the derivatives of thg,5vior. Once again we multiply the asymptotic limit, which
makes no appearance @&=M?, by (1-M?/Q?)v. We
multiply the terms appearing in E7.17), but which must
Y0 fact, since as we see in Fig. Lyt 0.005 the subtraction term  disappear asymptotically, iy %/Q? (in this case the thresh-
is larger than the heavy parton distribution, the effect will be nega-0ld behavior is automatically contained in the expressions
tive. Hence we obtain
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VES - M ne412 M2 0.1 tion: the asymptotic form is put in by hand and multiplied by
C/iiz.Q4Mm ):(1— QT)UCquq’ (2)+ o2 (Pgg) (1—M?/Q?)v, while there are nonzero terms @=M?,
which are multiplied byv to ensure that they vanish as

®[CE’F;{ZQ(Q2/M2)(33f+1—,88f) Q?=M?—x. The calculation is straightforward, and we do
FEd oo a2 g bl o not present details here. As for the heavy quark structure
+Clng(QIMA (B, "= B," function, the®(a(Q?))In Q? derivative in the singlet quark
. . . . 2_ 2 . . .
 AFF1 A2/a12 1ng+1 ol sector is slightly discontinuous §°=M?*, but again this is
CLhg(QM )®(ng ng )] corrected at next order by inclusion of tﬁt{ag(Qz)) coef-

(7.19 ficient functions.
Now that the NLO prescription for the longitudinal struc-

- . . . - 2 -
This definition is ambiguous at 10WQ”, but as at leading y,re function is completely defined we can examine the re-
order the total heavy quark structure function at NLO is to-g s, Using our NLO coefficient function@.18 and(7.11)

tally dominated by the gluon contribution. We also note that : :
the ambiguity introduced at LO from the definition of the and the NLO partons obtained from the best fit, we calculate

heavy quark coefficient function is very largely negated atthe NLO charm quark longitudinal structure function. This is

. . VENS. 21 oy ~ “shown in Fig. 8 along with the continuation of the NLO
N_LO fby tk\‘,‘EVZ'nCIU‘;"onZOfCLvHH (2.QIM?) Iln thﬁ_ e;(pres FFNS expression and the NLO ZM-VFNS result. Once again
sion for Cyq (Z,’Q_ IM?) (7.1D..As we work to higher or- o \ENS increases above the FFNS result very smoothly,
ders, the ambiguity formally disappears. We also note th

- VRS 2 o attjespite the discontinuity in the I@? derivative in the singlet
the coefficient functiorC,s}{z,Q?/M?) is the sum of the quark sector, which is now demonstrably minute. At very

nonsinglet and pure singlet coefficient functions. We are fre‘high Q2 our expression tends towards the ZM-VFNS as re-
to separate them as we wish, using the condition that eaquuired’ but as at LO the two become very different at lower
tends to the correct asymptotic limit. It would also be desir-Qz_ As in the case oF ,(x;Q?) at NLO, the difference be-
able to choose each so that they respect the kinematic thresfjyeen the VENS and the continuation of the FENS is re-
old. The choice has no bearing on the expression for thg,ced compared to the difference at LO for the same rea-
structure function, but a simple choice is to let the nonsingletyns. Hence, we have every reason to consider our
part contain all parts-v, and to split the other part simply in - rescription for the longitudinal structure functions quite sat-
terms of the asymptotic form. isfactory.
Comparing theD(a(Q?) expressions for the derivative | fact we can compare to some data. A£0.1 the
of the heavy quark structure function, which are proportiona\/FNS, ZM-VFNS, and FFNS values for the tof (x,Q?)
to the singlet quark distribution, then as for the NLO deriva-are very similar. However, the NMC collaboration have pro-
tive for FZ’H(X,QZ) we see that continuity is not achieved. guced data for 0.1%x>0.0045 and 1.3 GeAk Q?
The diff(_arenpe between the VFNS expression and the FFNS:20.6 Ge\? [33], Q2 increasing ax increases. These data
expression Is are in the region, where our VFNS prescription produces
very different results to the ZM-VFN&ut almost identical
2(By'~ gfﬂ)CE:HF:qS'%QZ/M2)®ng(Q2)' (719 o the FFNS for FL.c(x,Q?), and hence significantly differ-
ent results for the total longitudinal structure function. Usin
Where_CEZ'PS'%Z’QZ/M2):C?./,FHES'2(Z'Q2/M2)- This NLO  he parton distributions ob?ained from our best global fit, w%
effect is very small, an_d as fcﬁzyH(x,Qz) the effect disap- produce predictions forR(x,Q2)=F(x,Q2)/(F,(x,Q?)
pears as we work to higher orders. , _ —F_(x,Q?) using the ZM-VFNS and the VFNS, and com-
For the light quark structure functions, there is one ch0|cepare data. The results are shown in Fig. 9. The kink in both
to make. There is a mass dependent contribution to the nory,es at the lowest values comes about because for all
singlet coefficient function aO(aﬁ(Qz)), but the form of  yata points other than that &t=0.0045, ax decrease€?
the VENS coefficient function is determined entirely by Eq. a1so decreases smoothly, while for this point the extraction
(3.8. In essence the mass dependent correction tgfR(x,Q2) relies on an extrapolation and tG¥ is actually
CNSM2(z) contains a piece which becomes constant asympaimost identical to that for the=0.008 point. The kink in
totically, which repr_ese”t%Ns'sz'Z_(z) —C'SM%z), and @ {he ZM-VFNS expression ap?= m2=1.8 Ge\f is due to all
piece which grows like IrQ“/M?) which takes account of the  .harm coefficient functions turning on discontinuously at this
difference between the¢+1 andn; flavor couplings. The  hoint. Comparing to the data it is clear that the ZM-VFNS
O(ag(Q?)In Q” derivative is slightly discontinuous @  ¢yrve is much too large for most of therange, while down
=M?, but this is corrected by inclusion of th@(3(Q%)  to x=0.01 the VFNS curve matches the data quite well.
coefficient functions. For the pure singlet and gluon coeffi-Thus, there is strong evidence for including charm mass ef-
cient functions coupling to light partons, there are no massects in the longitudinal structure function, and our prescrip-
dependent corrections in the FFNS@(tag,nf(Qz)), and we  tion seems reasonably successful. Other VFNS prescriptions
simply use the same coefficient functions above and belowvould lead toR(x,Q?) somewhere between the two curves.
Q2=M2. Continuity of the NLO structure functions is then The theory is clearly below the data for the lowrsind Q?
automatic. However, the pure singlet coefficient functionpoints, where the charm contribution ®(x,Q?) is ex-
C\L/,FdES'Q(ZQZ/M %) becomes nonzero at this order. It can betremely small, i.e., the VENS and ZM-VFNS curves are al-
determined by demanding continuity of theQ? derivative ~ most identical. The smaliness B{(x,Q?), and the decrease
of the structure function in the gluon sector. This results in avith decreasingc at constaniQ? in this region are largely
similar procedure as for the heavy to heavy coefficient funcdue to a negative small contribution fromCEfi’g(z), which
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0.08 Next-to-leading Order 0.8 FQ%= 13 5 15 2 3 5 10 20
F¢ . VENS x=0.005 R Next-to-leading Order
L | - Charm quark compt. mc=1 35 VENS
0.06 |- o5 + ------------ ZM-FFNS
0.4
0.04 —
0.2 -
0.02
0 '
0 L ‘ L
1 1072 x 10t
0.02 FIG. 9. Our prediction foR(x,Q?) using our NLO prescription,
Fp x=9‘?§5 the NLO partons obtained from our global fit ang.=1.35 GeV
i M=t compared with the NMC datfB3]. Also shown is the prediction
0.015 obtained using the same parton distributions but for the NLO ZM-
VFNS prescription. The curves are computed ustg=1.3 GeV?
o 01 for x<0.0077 andQ?= 262" for x=0.0077.
C/iy H(z.QM?) by using Egs. (3.6 and (3.7) to
0.005 - O(a2"(Q?). The comments concerning the separation of
C/il(z,Q¥M?) into nonsinglet and pure singlet parts in
0 Sec. IV apply again.

For the light quark structure function the procedure at
higher orders is also straightforward. As with the

FIG. 8. Same as Fig. 7, but with NLO prescriptions and NLO (Q(agnfﬂ(Q?)) coefficient function we determine

parton distributions. C";h(z.Q?M?) by demanding continuity of the derivative

of the light function in the gluon sector, analogously to the
becomes increasingly important asand Q fall. Thus, the  heavy quark sector. With this one degree of freedom elimi-
difference between the theory and data for the two lowest nated in this way, all other VFNS coefficient functions are
points is perhaps a sign of the failure of the NLOdgQ?)  determined uniquely order by order i n,+1(Q?) by Egs.

calculation of structure functions at smalf*? - - o VE.D 2 np2
As with F,(x,Q?) the NLO calculation is the best that (3.8—(3.10, I.e., this determination &I q4(z,Q/M) pre

can be done explicitly with the present knowledge of struc determine<C5674(z,Q% M?) andC/46°""(2,Q%/M?) by

ture functions. However, as in this previous case, we outlin&!Sing Eqs(3.9) and(3.10 to O(ag " H(Q?).

the procedure for all orders. The general form of the expres- Thus, we have completely defined our prescription for
sions is presented in Eq&Z.1) and(7.2), and for the heavy calculating the structure functiofi (x,Q?) order by order.
quark structure function nothing essentially new compared té\s for F»(x,Q?) we can sum it up in a simple diagram,
the LO and NLO prescriptions occurs. Ath nontrivial or- ~ shown in Table Ill. The generalization to the case of two
der we determin€\'\",(z,Q%/M?) by demanding continuity heavy quarkg follows .the same lines as for the case of
of the InQ? derivative of the structure function in the gluon F2(x,Q?) which was discussed at the end of Sec. V. For
sector, and by demanding the correct asymptotic form. ARQ*<mj the bottom quark effects are all treated via FFNS
each order the correct asymptotic form will not appear in thecoefficient functions, while in the region abo@¥=mj, we
continuity conditions and need to be introduced by handhave a variable flavor scheme for both the charm and bottom
Each time we multiply by (+ M%Q?)y. At each order quark. For high orders ia5(Q?) there will be mixing of the
there will also be terms introduced by the continuity demanceffects of the two quarks, but for the orders currently avail-
which must vanish a®?—%, and we multiply these by able in practice the mixing is extremely small indeed, as with
M2/Q%. At every order this determination of F,(x,Q?), and the bottom coefficient functions are essen-
C\L/Fﬂfh(z,QZ/M 2) predeterminesC‘L’F,g,g+1(z,Q2/M2) and tially the same as those for charm with.—m, and with

' ' five flavors rather than four.

Our prescription uniquely determines all VFNS coeffi-
cient functions, and as fdf,(x,Q?), while not leading to
absolute correctly ordered expressions, it is a relatively
simple prescription for obtaining order-by-order structure
functions, which are very similar to the hypothetical strictly
which has been extracted using a NLO fit in the FFIZB More- correct ones, which reduzce to the _correct asymptotic form
over, this gluon is not constrained at lang@and is highly inconsis- order by order Imsvnf+1(Q ), and which are consistent with
tent with largex data. From the momentum sum rule this means itsphysical requirements order by order. All ways of satisfying
form at smallx is also much different to a well constrained gluon. both Egs.(3.6)—(3.10 and the correct asymptotic limits will

2The curve labele®Rqcp in Fig. 10 of the NMC papef33] con-
tains little information. ForF (x,Q?) it uses a LO formulg34]
(and hence does not contain the important NLO smadiffect),
which assumes our massless quarks at&ll along with a gluon
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TABLE lIl. Prescription for the order by order in,(Q?) determination of the VFNS coefficient functions B[ (x,Q?). In each case
CYEE{(Z,MZ/QZ) is determined by introducing the asymptotic form multiplied by-(¥2/Q?)v and multiplying the terms determined by
continuity by M?/Q?.

Order of
equality Eq. Coefficient functions determined
ag(Q?) (3.6 Cllig
(3 8) C\L/F,NS,l
: »dq
VF,1
(3.9 cyrl
a?(Q?) (3.6 Cfiyt [by continuity of @F 4 /d In Q32 in gluon sector
at 0(a2(Q?)], 'y
37 Cla
3.8 C\L/F,NS,Z
(3.9 c‘{ﬁg
' a9
VF,PS,2
(3.10 cyr
a(Q?) (3.6 Ci? [by continuity of @F_ /d In Q?)yzin gluon sector
at 0(ag(QM))], C%y
(3.7 cly
(3.8 (o
(3.9 C\%% [y continuity of @F ;/d In Q92 in gluon sector
at O(a3(Q)1, CV’ys
VF,PS,3
(3.10 cy
a?(Q?) (3.6 "t [by continuity of @F /d In Q@)yz in gluon
sector atO(a2(Q%)], !y
3.7 Clig
3.9 e
(3.9 Cl%i* [by continuity of @F;/d InQ)yz in gluon
sector atO(ag(Q?)], ;4
VF,PS
(3.10 cYrpsn

be correct in a certain sengprovided they are consistent u? by well-defined, calculable matrix elements, which con-
with ordering within a given renormalization schembut tain logs inu?/M?. In particular the heavy quark distribution
many will have behavior which is unsatisfactory Q¢ not  is determined entirely in terms of the light parton distribu-
much larger thaiM?, and we have seen an example of this.tions. The matrix elements can then be used to define the
As with F,(x,Q% we believe our prescription to be very n.+1 flavor parton distributions in terms of the flavor
suitable. distributions at some scal@n practiceu?=M?2 is by far the
most convenient and the evolution upwards can take place
VIIl. SUMMARY AND CONCLUSION in terms of n{+1 massless flavors with the correct

In this paper we have constructed an order by ordergn asymptotic I_imits being guaranteed. If the massless 1
prescription for calculating the neutral current structure funcilavor coefficients functions are used, then the correct
tion including the effects of a massive quark. For the regiorfSymptotic limit for the structure functions is also reached.
Q2<M?2 this has essentially just been the normal FFNS, The main problem lies in obtaining the correct description
where the heavy quark is not treated as a constituent of th@ the region not too far abov@?=M?. We have demon-
hadron, but all heavy quarks in the final state are generategfrated that this is achieved to all orders by defining the
via the electroweak boson interacting with light partons. Formass-dependent coefficient functions abo@é=M? in
Q?>M? we have to solve the problem of summing largeterms of the operator matrix elements and the FFNS coeffi-
logs in Q%/M? and u?/M?2, which appear at all orders in cient functions as in Eqg3.6)—(3.10. However, we have
ag(u?). The easiest way to do this is to to treat the heavyalso demonstrated that since there are more degrees of free-
quark as a parton, in which case the logs will be summediom on the right-hand side of these equations than on the
automatically, when one solves the evolution equations fofeft, the additional ones all being coefficient functions cou-
the partons. If one chooses the parton distributions abovgling to heavy quarks, there is freedom in precisely how the
u?=M?2 to evolve as though massless and in th&s  coefficient functions may be chosen. Although in a true well-
scheme, then the new;+ 1 flavor parton distributions are ordered calculation, this ambiguity disappears, this manner
determined in terms of the FFNS parton distributions at allof ordering is at the very least extremely complicated, in-
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volving parts of the FFNS from all orders i(u?) at each FFNS and VFNS coefficients are related by equations of the
order in the calculation, and in practice is probably impos-form C{J,=C/F,A®®A", In all cases there will be ambiguity
sible, there being no unique prescription for ordering thein definitions of the heavy parton coefficient functions, but
O(M?/Q?) terms. Hence we choose to order our calculationthese can always be eliminated by demanding as much con-
as in the normal order by order ia(x?) manner, choosing tinuity of the InQ>derivative order by order iney(Q?) as
the very simple natural scaje’=Q?, which puts all of the possible.
mass effects into the coefficient functions and guarantees the Let us briefly discuss problems which arise in other ap-
correct asymptotic limit order by order ins(Q?). We then  proaches to heavy quark structure functions. Betal. do
determine the precise form of our heavy quark coefficieninot provide a detailed prescription for the region@f just
functions by demanding continuity, not only of the structureaboveM?. They have a means of extrapolating the structure
functions atQ?=M? (which is automatil; but also the con-  function from the FFNS result @2<M? to the ZM-VFNS
tinuity of the |I’IQ2 derivative of the structure function. In result atQZ/MZ—mc in a way which guarantees smoothness
practice this exact continuity is only possible for those termg14,15, but it seems phenomenologically motivated, with no
proportional to the gluon, but this is by far the dominantstrict definition of the ordering and certainly no expressions
contribution. Our constraint then determines our prescriptioffor parton distributions and coefficient functions in the inter-
for dealing with heavy quarks completely, and incorporatesnediate region. The ACOT group have a prescription, which
the correct qualitative threshold behavior into every coeffisinyolves switching fromn; to n;+1 massless flavors in the
cient function at each order afy(Q?), not relying on can- evolution, and a way of determining the VFNS coefficient
cellations between terms with incorrect behavior and of dif-functions[22,23 which at low orders appears to be the same
ferent orders to obtain satisfactory results. In practice thes prescribed in Eqg3.6)—(3.10. However, their way of
most important of our results are the zeroth-order coefficiengliminating the free choices in the heavy quark coefficient
function forF,¢(x,Q%), Eq.(4.6), which exhibits the correct functions involves assuming that the behavior is as if there is
threshold behavior iW? as well as reducing to the correct intrinsic charm in the proton at all scales above the transition
asymptotic form, and the absence of a zeroth-order coeffipoint, rather than charm being generated almost entirely
cient function forFL,C(x,QZ), the O(ag(Q?)) coefficient  from the gluon. This leads to coefficient functions having
functions being Eq47.5 and(7.10, which again exhibit the thresholds inQ?=M? rather tharW?=4M2, and a mixing
correct threshold behavior and asymptotic limits. of orders being requiretand a complicated renormalization
We display the results obtained using our prescription foiscale being advantagedus order to ensure cancellations
neutral current structure functions in Figs. 3, 4, 7, and 8and that smooth behavior occurs, e.g., er(u?)) gluon
finding that they exhibit exactly the type of behavior we coefficient function must appear at the same time as the
would expect, i.e., smoothly deviating from the FFENS at lowzeroth-order quark coefficient function. This mixing of or-
Q?, and tending towards the;+1 massless results at high ders is incorrect, being at odds with well-ordered asymptotic
Q?, in all cases. In particular we notice that the bump in theexpressions, but removing it results in a lack of smoothness
charm quark longitudinal structure function aQ? in the structure functions. Even when this mixing is retained,
~10 GeV?, which occurs in other variable flavor number the behavior of the longitudinal structure function is still not
schemes is absent here. We also see that our predictiogmooth. The MRRS procedufg8] is based on the leading
agree very well with the current data on the charm structurgog limit of Feynman diagrams, rather than the renormaliza-
function which exists from 1.5 GAAXQ?<100 GeV¥, im-  tion group and as such incorporates mass-dependent effects
plying a charm quark mass of 1.45 GeV. We note that in the evolution, but seems more difficult to define formally
comparisons of theoretical predictions with the completeto all orders inag. The definition of the heavy quark coef-
range of data on the charm structure function appear verficient functions uses similar reasoning to ACOT, but in this
rarely (in particular, detailed comparison with EMC data is case with ordering such that it reduces to the correct well-
frequently omittegl and we strongly encourage this as theordered form asymptotically. These coefficient functions
best constraint on any theory. along with the imposition of this correct ordering lead to an
The general technique can be applied to all other quantitinphysical lack of smoothness in the structure functions
ties in perturbative QCD, which require the convolution of (which is made slightly worse by the mass-dependent contri-
coefficient functions with parton distributions. We can al- butions to the evolution particularly for the longitudinal
ways choose the parton distributions to evolve as thougBtructure function. Our prescription has none of the above
there aren;+1 massless flavors in th&lS scheme, factor problems. It is well defined to all orders, reduces to correct
these into the mass dependent operator matrix elements amall-ordered expressions at both low and high, and ex-
the FFNS parton distributions, and then obtain the coefficienhibits precisely the behavior one would expect. Hence, we
functions in the variable flavor scheme in terms of those irbelieve that our prescription is the best currently available to
the fixed flavor scheme by equating the parts proportional talescribe the heavy quark contribution to structure functions.
each FFNS parton distribution. Indeed, the expressions Before finishing let us mention a couple of points in
(3.6—(3.10 are not exclusive to neutral current structurewhich our treatment is incomplete. Firstly, we have assumed
functions, but apply to all quantities, which can be written asthat there is no intrinsic charm in the nucleon. Equati®n)
the sum of convolutions of coefficient functions with single is formally correct up to the quoted error, but this error has
parton distributions. In the Appendix we discuss the case oin unknown numerical factor and may be enhanced by func-
the charged current structure functions as an example. Fadions of x. It appears that for intrinsic charm the numerical
expressions involving more than one parton distribution, théactor of this “higher twist” correction is rather large and
generalization is clear, e.g., for proton-proton scattering th¢hat the contribution is enhanced by a factor of-() 2.
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Therefore, at large, where the leading twist contributionto ¢S + cFFS=cVFSgAS | +n.CVFPSg AS |+ CVFPS
S . ag " “~dg qag ggH " 'fraq qg.H qH

the charm structure function is not large anyway, it seems as

though the “higher twist” intrinsic charm may constitute an DA%, (A3)

important part of the total charm structure funct{@3]. The

treatment of this correction is outside the scope of this paper",1nd

which deals only with the “leading twist” contribution to PS ~FFP VEPS_ APS VEPS_ APS . ~VES

the structure function, and we believe it is not naturally dealt Cag™ Caq = NiCqq" ®Agqn+ Can B ANg+ Cog

with in any other VFNS. However, it seems very unlikely QAS (A4)

that in most of the region, where there is current data on the 94.H

charm structure function, or where the charm contribution ist is not only the absence of the nonsinglet coefficient func-

a sizable fraction of the total structure function, that thistions which is different, the ordering of the other coefficient

“higher twist” contribution plays any significant role at all. functions also changes, in particuldb> _ , i#j, begins at

Using the type of values expected for this intrinsic charm , idy* . , i
(see. e.g.[36)), then adding to our values does bring the zeroth order. This changes the form of the relationship be

ST . : .~ _tween the FFNS and the VFNS coefficient functions. For
=0.422 predlcuon_ in line W.'th the .E.MC data pqlnt, raises example, examination ¢fA1) reveals that we have the trivial
the x=0.237 predictions quite significantijout neither re-

ally helps or hinders the comparison to the three data p)(;)intsequallty

raises thex=0.133 predictions a litti§tending to make the CPPl(2,Q02/M2)=CF L (2,Q02/M?) (A5)
. . .Y 2Hg\ 4 2Hg\ < '

comparison a little wor9e and has negligible effect for

lowerx. Hence, thex=0.422,Q?=78 Ge\? EMC data point  whereas now we have the nontrivial relationship
may be seen as some evidence for this “higher twist” intrin-

sic charm. CHa(z.Q%/M?) = CYE(z.Q¥M?) — (IN(Q¥M?) + ¢, PY
Finally we note that throughout this paper, we have com- VF.PS,0
pletely ignored the problem of enhancement of higher orders ®Coqn (AB)

in ag by In(1k) terms. These terms certainly do have the - .
; I . e.g., the zeroth-order coefficient function for a charm quark
potential to alter quantitatively the results of this paper. Cor-

! ; i o to interact with aW™ to produce a strange quark is undeter-
rectly including the leading In(%) terms within the context : . ! ) .

. . mined. As in the previous case we determine this zeroth-
of only massless quarks is a complicated procedure, though o : : :
) : o order heavy quark coefficient function by demanding conti-
it does appear to improve the description of smaltlata

e X nuity of the InQ? derivative of the structure function, in the
[20]. Some results on heavy quark coefficient functions, : .
P . : gluon sector(again at lowest order we have complete conti-
which include leading In(X) terms already exiqt37,38. It . g ; :
: ) ; nuity), along with demanding the correct asymptotic result.
would clearly be desirable to extend this work and to includ ; S >
both the correct treatment of leading In(L/terms and a nlike the neutral current case, this time it is the strange
e 9 L . quark (or down quark structure function on which the con-
correct description of heavy quark results within a single

framework. Work alona these lines is currently in proaress dition is imposed, rather than the charm quark structure func-
' 9 y In prog ‘tion. This is because at lowest order the charm quark struc-

ture function is completely independent of the charm quark
APPENDIX: CHARGED CURRENT STRUCTURE distribution, whereas the light quark structure functions do
FUNCTIONS depend on it. However, in complete analogy with the neutral

The treatment of the charged current structure functiorfUrrent case, our constraint results in
follows exactly the same reasoning as for the neutral current dCF(2,Q%/M?)
case. Let us considdf,(x,Q?). Equations(3.6—(3.10 are VFPS.042/M2) g PO = 249 %
. . 2 . C2qH Q )® qg 2 )
derived in exactly the same way, but now take a different ’ In(Q%)
form because there are no nonsinglet coefficient functions. . .
For the case where a heavy quark is produced directly by th\ghere the left-hand side automatically has the correct thresh-

. . . O
interaction with theW boson, which we call the heavy quark Olg t;ehawor ‘and the right-hand side-Pgy(z) as
structure function, we have Q“/M“—ce. Using this explicitly in(A6) then results in the

Cy57(2.Q%/M?) reducing to the correct massletS limit

Chg = Cl S0 AS, 1+ GG PRRAY, 1+ CIEPR AR, asQ?/M2—w, as it must by construction.
(A1) This procedure can be repeated at all orders in exactly the
same way as for the neutral current structure function. This
and time there are only two coefficient functions to be deter-

VF,P
Chy = CHi S AL+ CHE P [ Afgn + NeAfo ]+ CYe°

(A7)

mined, C3y1fX2,.Q%M?) as we have just seen, and which
exists at all orders, an@y55Yz,Q%/M?). The latter begins

@qu b (A2) at O(ai(Qz)) and will be determined by demanding conti-

' nuity of the InQ? derivative of the structure function, where

We note that what we have denoted the charm quark stru& heavy quark is produced directly at the interaction vertex
ture function here may be interpreted physically as the unlikef the W boson ai®(a3(Q?)). The extension to the longitu-
sign dimuon contribution. In the case where Weboson dinal charged current structure function is also easily
directly produces a light quark, which we call the light quark achieved using the above results and the discussion of the
structure function, we have longitudinal neutral current structure function in Sec. VII.
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