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Ordered analysis of heavy flavor production in deep-inelastic scattering
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Rutherford Appleton Laboratory, Chilton, Didcot, Oxon., OX11 0QX, United Kingdom

~Received 29 September 1997; published 16 April 1998!

At low Q2, charm production in deep-inelastic scattering is adequately described by assuming generation in
electroweak boson-light parton scattering~dominantly boson-gluon fusion!, which naturally incorporates the
correct threshold behavior. At highQ2 this description is inadequate, since it does not sum logs inQ2/mc

2, and
is replaced by the treatment of the charm quark as a light parton. We show how the problem of going from one
description to the other can be solved in a satisfactory manner to all orders. The key ingredient is the constraint
of matching the evolution of the physical structure functionF2 order by order inas(Q

2), in addition, to the
matching of the value ofF2 itself. This leads to new expressions for the coefficient functions associated with
the charm parton, which are unique in incorporating both the correct threshold and asymptotic behaviors at
each order in perturbation theory. The use of these improved coefficients leads to an improvement in global fits
and an excellent description of the observedF2,charm. @S0556-2821~98!05709-9#

PACS number~s!: 13.60.Hb, 11.10.Gh, 12.38.Bx
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I. INTRODUCTION

The factorization theory in QCD@1# has existed for many
years, and has been one of the triumphs of quantum fi
theory. However, in its original form it does not take accou
of a number of possible complications; i.e., it exists only
massless particles, and its ordering does not take accou
possible enhancements at high orders inas at smallx. Until
the past few years, both of these complications were no
any real phenomenological importance. The lowest value
x probed were large enough that it was unimportant to c
sider smallx enhancement. Also, the up, down, and stran
quarks were considered light enough to be treated as m
less, whenever one was within the realm of perturbat
QCD. Furthermore, there were little data on the charm c
tribution to the structure function and it was generally suc
small component of the total structure function that it cou
be treated very approximately.

Both of the above complications have recently becom
great deal more important due to the advent of the DESYep
collider HERA. This now probes structure functions at f
lower values ofx than any previous experiments, as low
x;1025 @2,3#, and the treatment of structure function
should really take proper account of any smallx complica-
tions. Also, the smallx structure functions now have a con
tribution due to the charm structure function, which is f
from insignificant, i.e., it can be more than 20% of the to
structure function and, moreover, in the past couple of ye
direct measurement of the charm structure function has
become possible@4,5#. This has made it essential to treat t
contribution to the structure function due to massive qua
in a correct manner.

In this paper we propose a new method for the treatm
of heavy quarks in structure functions. We begin by desc
ing the features a correct treatment must exhibit at both h
and lowQ2, and the techniques used in either of these lim
We then give a discussion of the correct way to take acco
of heavy quarks in a well-ordered manner over the full ran
of Q2, showing how this relates to present treatments, an
particular demonstrating that one may choose to evolve
570556-2821/98/57~11!/6871~28!/$15.00
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partons according to the massless evolution equations. H
ever, we shall see that the detailed construction of the c
ficient functions required is extremely difficult if not impos
sible. Therefore, we provide instead a prescription
calculating structure functions including heavy quark effec
which is somewhat simpler than the strictly correct tre
ment, and which is directly analogous to the normal man
in which one calculates order by order for massless parto
but which is in practice essentially identical to the stric
correct treatment. Finally, we will present the results o
comparison of our method to data: both that for full structu
functions and for the charm component to the structure fu
tions. These comparisons turn out to be very good. We a
make predictions for the charm component of the longitu
nal structure function. Complications due to leading ln(1/x)
terms at all orders inas are ignored, and while a correc
treatment of structure functions should of course deal w
this problem, we feel that this would overcomplicate o
presentation, and besides we wish to compare directly w
normal next-to-leading order~NLO! in as approaches. A pa-
per which takes account of both smallx complications and
massive partons is in preparation.

II. STRUCTURE FUNCTIONS WITH MASSIVE QUARKS

We consider the case ofnf massless quarks and on
heavy quark. One of the simplest ways to deal with hea
flavor production in deep-inelastic scattering is to treat
mass of the heavy quark,M , as a hard scale@6#. In this case
thenf light quarks are always treated as partons, but all ot
quarks are never treated as partons at any scale: the
section for production of heavy quarks is expressed enti
in terms of coefficient functions depending on the hea
quark mass convoluted with parton distributions which on
depend on light partons, i.e.,

s i~x,Q2,M2!5(
a

Cia
FF~Q2/m2,Q2/M2! ^ f a

nf~m2!

1O~L2/M2!, ~2.1!
6871 © 1998 The American Physical Society
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6872 57R. S. THORNE AND R. G. ROBERTS
wheres i(x,Q2,M2) is the cross section for scattering off
particular quark, either heavy or light, anda runs over the
light partons, i.e., the gluon and thenf light quarks. This
approach is very well-defined in theoretical terms, essenti
being a simple generalization of the usual factorization th
rem, with Eq.~2.1! being valid to all orders up to the highe
twist corrections ofO(L2/M2).

This approach is adopted by a number of groups@7#, and
is usually known as the fixed flavor number scheme~FFNS!.
It is normally used in the particular renormalization schem
where all diagrams with no heavy quark lines are renorm
ized in the modified minimal subtraction (MS) scheme,
while those with heavy quarks are renormalized at zero m
mentum. This is particularly convenient because the effec
the heavy particle decouples from the light sector, in parti
lar the coupling is the three flavorMS coupling and the light
parton distributions evolve as in the three flavorMS scheme.
The Cia

FF(z,Q2/m2,Q2/M2) have all been calculated t
O(as) @6,8,9# andO(as

2) @10# in this scheme, though ana
lytic expressions only exist atO(as).

In principle this approach is a very good way to calcula
the effects of heavy quarks in structure functions. At ea
order it incorporates the kinematical threshold in the lig
parton-photon center of mass energyŴ2[Q2(z2121)
>4M2 in a smooth manner~which then guarantees the sam
smooth threshold in the invariant mass of the hadronic re
nantW2, up to proton mass corrections! and the coefficient
functions are calculated order by order in precisely the sa
manner as the light particle coefficient functions~though the
actual calculations are rather more difficult!. However, it
does have one major shortcoming. As one calculates
higher orders inas , one encounters higher powers
ln(Q2/M2) and ln(m2/M2). Letting m25Q2, and thus elimi-
nating all logs inQ2/m2, then forQ2→` the coefficients at
mth-order in@as(Q

2)/2p#m have the series expansion

Cia
FF,m~z,Q2/M2!5 (

n50

m

f n~z!lnn~Q2/M2!. ~2.2!

Thus, working order by order inas in this approach, one is
failing to take account of these large logs. This is not onl
practical concern in the sense that these large logs inQ2/M2

at higher orders inas can potentially be phenomenological
important,1 but is also a theoretical concern insofar as at e
order inas the leading power of ln(Q2/M2) is the leading in
as part of the overall coefficient function with this ln(Q2/M2)
behavior, and is really part of the leading-order express
for the structure function as a whole. The same reason
applies for the next-to-leading power of ln(Q2/M2), etc. This
is similar in principle to the problem of increasing powers
ln(1/x) with increasing powers ofas . It is more difficult in
one sense, in so much that in the expressions for the co
cient functions, these large logs in (Q2/M2) are hidden
within very complicated expressions. However, it is far si
pler in the particular limitQ2@M2 because we know exactl

1They are not important forQ2!M2 because the large logs ar
destroyed by factors coming from the kinematical threshold.
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how to sum the logarithms inQ2, i.e., we solve the renor
malization group equation for fixed order inas .

Thus, in order to sum these large logs inQ2/M2, it
is convenient to consider the heavy quark to be a parton
for its distribution function to satisfy the renormaliza
tion group@Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DG-
LAP!# equations as do the light partons. An extreme
simple approach which incorporates this idea is the ze
mass variable flavor number scheme~ZM-VFNS!. This
treats the massive parton as being infinitely massive be
some threshold inm2, and totally massless above the thres
old, i.e., all coefficient functions coupling directly to th
charm quark turn on at the threshold, the evolution of
charm quark begins at this threshold, and the number of
vors in the coefficient functions, anomalous dimensions a
the running coupling constant increases by one tonf11 dis-
continuously at the threshold. Despite the simplicity of t
approach, this procedure must in principle be done with c
if the correct results are to be obtained in the asympto
limits @11# ~see below for details!. In particular, the decou-
pling theorem tells one how the coupling constant m
change in order to get the correct results well below thre
old. Also, the parton distributions just above the chos
threshold must be carefully defined in terms of those be
threshold in order to guarantee that the correct result is
tained asQ2→`. In practice at low orders the situation
relatively simple, e.g., if the threshold is chosen to be p
cisely m25M2, then at NLO, the light parton distribution
are continuous across the threshold~in MS scheme! and the
evolution of the charm parton distribution begins from ze
At higher orders the parton distributions must change disc
tinuously across the threshold and in particular the cha
evolution must begin from a nonzero value.

For many years the above approach was that most c
monly used in global fits. The collaboration on theoretic
and experimental QCD~CTEQ! used the approach at NLO
as explained above@12#, while the Martin-Roberts-Stirling
~MRS! collaboration motivated their choice of threshold b
phenomenological considerations rather than the strict th
retical ones@13#, but in practice this resulted in a very simila
choice of threshold~i.e., 2.7 GeV2 for MRS compared to
2.56 GeV2 for CTEQ!. While the charm contribution to the
structure functions near the region of threshold was not
important, this simple treatment was perfectly adequa
However, it is clear from its construction that it will no
suffice as a good description of charm production in the
gion of the charm threshold. In particular charm producti
has a sharp threshold at a chosenm2, rather than a smooth
threshold inW2.

Hence, some approach which extrapolates smoothly fr
the FFNS at lowQ2 to the ZM-VFNS at highQ2 is required
in order to produce a good description of the effect of hea
quarks on structure functions over the whole range ofQ2.
Let us discuss how this may be achieved. In order to do t
we first put the ZM-VFNS on a more solid theoretical foo
ing. If we regard the quark massM2 as being a soft scale
then the factorization theorem tells us that

s i~x,Q2,M2!5(
b

Cib
nf11

~Q2/m2! ^ f b
nf11

~m2,M2/m2!

1O~M2/Q2!, ~2.3!
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whereb runs over the light partons and the massive qua
We are able to remove the large logs inQ2/M2 from the
coefficient functions, and hence obtain the normal mass
coefficient functions, and absorb them into the definition
the parton distributions at the expense of having poten
‘‘higher twist’’ corrections ofO(M2/Q2). While the parton
distributions depend onM2, if the operators defining the
partons undergo ultraviolet operator regularization in theMS
scheme, then their evolution depends only on the anoma
dimensions obtained from this ultraviolet regularizatio
These are independent of the mass of the heavy parton,
the evolution is as if fornf11 massless quarks in theMS
scheme. Hence we have the formal definition of the Z
VFNS, which will become exact forQ2@M2.

However, we have one more degree of freedom in
~2.3! than in Eq.~2.1!, i.e., we have the heavy parton distr
bution to parametrize at some arbitrary starting scale for e
lution, and also no apparent reference to the mass scaleM2

in the definition of the parton distributions. This is not,
fact, true, since it can be shown that

f b
nf11

~z,m2,M2/m2!5Aba~M2/m2! ^ f a
nf~m2!, ~2.4!

where the operator matrix elementsAba(z,m2/M2) contain
logs in (m2/M2), and are calculable order by order in pe
turbation theory@14,15#. @We denote the matrix elemen
relating the heavy quark distribution to thenf-flavor light
parton distributions asAHa(z,m2/M2) and those relating the
(nf)-flavor light parton distributions to thenf-flavor light
parton distributions asAba,H(z,m2/M2) as in the above ref-
erences.# Hence, the partons in the ZM-VFNS can in fact
generated from those in the FFNS at allm2 by using the
leading logarithmic expressions for the operator matrix e
ments and the expression~2.4!, rather than using the four
flavor evolution equations at all. Indeed, if the starting sc
is chosen asm̃ 2ÞM2, then strictly speaking all the leadin
logs in (m̃ 2/M2) should be included in the matching cond
tion, which is just as complicated as using Eq.~2.4! at all
scales. However, if the scale at which evolution begins
preciselym25M2, then the matching condition for the pa
tons in the two schemes is a power series inas with no logs.
Therefore, it simplest to use Eq.~2.4! only to define the
order-by-order parton distributions at the starting scale,
then to calculate the parton distributions at other scales
evolving usingnf11 massless flavors. This procedure gu
antees the correctness of the ZM-VFNS calculation in
limit Q2@M2.

By comparing the expressions~2.3! and~2.1! at Q2@M2,
and using the relationship~2.4!, one can calculate the FFN
coefficient functions, up toO(M2/Q2) corrections in terms
of the masslessMS coefficient functions fornf11 flavors
@14,15#, i.e.,

Cia
FF~z,Q2/m2,Q2/M2!5Cib

nf11
~Q2/m2! ^ Aba~m2/M2!

1O~M2/Q2!. ~2.5!

The detailed expressions of this form can be found in@15#,
where they are used to calculate theQ2→` limit of the
heavy quark coefficient functions in terms of the known lig
quark coefficient functions and calculated operator ma
.
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elements. These authors then defineFASYMP as the structure
function obtained from these asymptotic expressions for
coefficient functions and the parton distribution in Eq.~2.1!.
They then, through purely phenomenological motivation,
fine a variable flavor number scheme@15,16# by the formal
definition

FVFNS5FZM-VFNS2FASYMP1FFFNS. ~2.6!

This then extrapolates smoothly from one limit to the oth
being guaranteed to reduce to the correct limit order by or
in as(Q

2) at highQ2, though only approximately toFFFNS

order by order at lowQ2.

III. A COMPLETE TREATMENT
OF CHARM MASS CORRECTIONS

Although we agree with Eq.~2.5! and hence with the
results at highQ2 regarding coefficient functions in@14,15#,
we believe one may be more ambitious. Rather than sim
accepting the uncertainty ofO(M2/Q2) in Eq. ~2.5!, we can
be more systematic and demand that there is a sche
which uses the definition of the parton distributions in Eq
~2.3! and~2.4!, but which is correct up toO(L2/M2). Insert-
ing Eq. ~2.4! into Eq. ~2.3! and subtracting from Eq.~2.1!, it
is clear that the difference between the FFNS and the Z
VFNS, i.e., the error in the latter, is given by

ci
a~M2/m2! ^ f a

nf~m2!5@Cia
FF~Q2/m2,Q2/M2!

2Cib
nf11

~Q2/m2! ^ Aba~m2/M2!#

^ f a
nf~m2!, ~3.1!

whereci
a(z,M2/Q2) is representative of the error in the ZM

VFNS and is ofO(M2/Q2). However, making use of Eq
~2.4! this difference can be written as

ci
a~M2/m2! ^ „Aba~M2/m2!…21

^ f b
nf11

~m2,m2/M2!,
~3.2!

and soci
a(M2/m2) ^ „Aba(M2/m2)…21 is precisely the cor-

rection to the massless ZM-VFNS coefficient function
which is required to correct for theO(M2/Q2) errors in this
scheme. Thus, defining correctednf11-flavor coefficient
functions by

Cib
VF~z,Q2/m2,Q2/M2!5Cib

nf11
~z,Q2/m2!1ci

a~M2/m2!

^ „Aba~M2/m2!…21

5Cia
FF~Q2/m2,Q2/M2!

^ „Aba~m2/M2!…21, ~3.3!

or alternatively

Cib
VF~z,Q2/m2,Q2/M2! ^ Aba~m2/M2!

5Cia
FF~Q2/m2,Q2/M2!, ~3.4!

and demanding that the VFNS coefficient functions sati
this equality at allQ2, then our VFNS is guaranteed to giv
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6874 57R. S. THORNE AND R. G. ROBERTS
exactly the same all-orders result as the FFNS. Hence,
have the factorization theorem

s i~x,Q2,M2!1O~L2/M2!5(
b

Cib
VF~Q2/m2,M2/m2!

^ f b
nf11

~m2,M2/m2!

[(
a

Cia
FF~Q2/m2,M2/m2!

^ f a
nf~m2!. ~3.5!

Thus, Eq.~3.5! gives us a method for defining the structu
function including a heavy quark, which when written
terms of thenf flavor parton densitiesf a

nf(m2) is identical at
each order inas to the FFNS, and thus is correct up to erro
of O(L2/M2), but where all partons evolve according to t
massless evolution equations and thus all logs inm2/M2 are
automatically summed correctly.

Bearing in mind this above result, it seems sensible t
the best way to proceed for the calculation of structure fu
tions in the presence of a heavy quark is to use the FFNS
to some scale ofO(M2) and then switch to the scheme d
fined by Eq.~3.5! above this scale.~Changes of renormaliza
tion scheme across threshold applying to situations of
general type were first proposed in@17#.! We shall call this a
variable flavor number scheme~VFNS!. We note that our
general procedure is completely independent of the choic
renormalization/factorization scale, and that as long as
choose our VFNS coefficient functions such that they sat
Eq. ~3.4! order by order inas(m

2), then correctness is gua
anteed. However, we believe that it is sensible to choose
renormalization and factorization scale to bem25Q2 in both
schemes, for all scales and for both light and heavy qu
structure functions.2 This very simple choice automaticall
avoids having different scales for different components
the complete structure function, and means that all mass
fects are contained entirely within the coefficient function
It also agrees with the normal asymptotic choice ofm2

5Q2 and removes all problems of logs ofQ2/m2 ~the solu-
tion of the evolution equations summing such terms! and
m2/M2, and we are left just with the problems of ln(Q2/M2).3

This choice is expressed explicitly in all our equations fro
now on, though we will discuss the effect of differe
choices briefly in Sec. IV. Finally, as already mentioned
we choose the transition scale as preciselym2[Q25M2,
then all the logs inQ2/M2 disappear, and the matching co
ditions between the partons in the two schemes in Eq.~2.4!
are a simple power series inas(M2). Thus, performing the
matching atM2, and solving order by order inas(Q

2), as in
the strictly massless case, we are guaranteed to sum the
in Q2/M2 correctly at zeroth order inM2/Q2. Combining

2Of course, if we reach sufficiently lowQ2, then we must intro-
duce some finite renormalization scale in order to have a fi
expression for heavy quark photoproduction. Since we only c
siderQ2.1 GeV2, we do not consider this problem in this pape

3In the asymptotic expressions for the FFNS coefficient functi
in @14#, this choice leads to significant simplification.
e
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with the mass corrected coefficient functions to the appro
ate order, we should then get the mass corrected struc
functions correctly order by order. Unfortunately, the proc
dure is not quite as simple as this.

We see that the defining expression forCia
VF(z,Q2/M2) is

in fact of exactly the same form as Eq.~2.5!, except that it is
now exact at allQ2, rather than having corrections o
O(M2/Q2), and that this time it is thenf11 flavor coeffi-
cient functions, which are the unknowns to be solved
terms of the FFNS coefficient functions and the opera
matrix elements, rather than the asymptotic form of t
FFNS coefficient functions. However, this leaves us with
ambiguity. The indexa runs over the gluon and the ligh
quarks, whileb also includes the heavy quark. Hence, wh
the asymptotic FFNS coefficient functions in Eq.~2.5! were
defined uniquely in terms of the lightnf11 coefficient func-

tions, solving Eq.~3.3! for theCia
VF(z,Q2/M2) in terms of the

FFNS coefficient functions does not lead to a unique so
tion.

In order to demonstrate this, let us write out our equatio
for the VFNS in full. For the case where the photon coup
directly to the heavy quark,H, we have two equations:

CHg
FF,S5CHg

VF,S
^ Agg,H

S 1nfCHq
VF,PS

^ Aqg,H
S 1@CHH

VF,NS1CHH
VF,PS#

^ AHg
S ~3.6!

and

CHq
FF,S5@CHH

VF,NS1CHH
VF,PS# ^ AHq

PS1CHq
VF,PS

^ @Aqq,H
NS 1nfAqq,H

PS #

1CHg
VF,S

^ Agq,H
S , ~3.7!

where S, NS, and PS refer to the flavor singlet, nonsing
and pure singlet~singlet minus nonsinglet!, respectively. In
the case where the photon couples directly to a light qua
we have three equations. Denoting the masslessMS coeffi-
cient functions withnf light flavors byCia(nf) and the con-
tributions to the light flavor coefficient functions in the FFN
due to heavy quark generation byCia

FF we have

Cqq
NS1Cqq

FF,NS5Cqq
VF,NS

^ Aqq,H
NS , ~3.8!

Cqg
S 1Cqg

FF,S5Cqq
VF,NS

^ Aqg,H
S 1Cqg

VF,S
^ Agg,H

S 1nfCqq
VF,PS

^ Aqg,H
S 1CqH

VF,PS
^ AHg

S , ~3.9!

and

Cqq
PS1Cqq

FF,PS5Cqq
VF,PS

^ @Aqq,H
NS 1nfAqq,H

PS #1CqH
VF,PS

^ AHq
PS

1Cqq
VF,NS

^ Aqq,H
PS 1Cqg

VF,S
^ Agq,H

S . ~3.10!

These are very similar to the Eq.~2.31!–~2.35! in @15# and,
as in those equations, we have implicitly divided all pu
singlet quantities coupling to quarks and all singlet quantit
coupling to gluons bynf . Also, as in these previous equa
tions, it is implicit that all quantities on the left-hand side a
expanded in thenf -flavor MS coupling constant, while thos
on the right-hand side are expanded in terms of thenf

11)-flavor MS coupling. The relationship between the tw
couplings was calculated in@18# and corrected in@19#. It is

e
-

s
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as,nf11~Q2!5as,nf
~Q2!1as,nf

2 ~Q2!
1

3p
Tf ln~Q2/M2!

1as,nf

3 ~Q2!
1

p2 S 1

9
Tf

2ln2~Q2/M2!

1
1

12
~5CATf14CfTf !ln~Q2/M2!

1
13

48
TfCf2

2

9
TfCAD1¯ , ~3.11!

where the coefficient of the leading log at each order
as,nf

(Q2) is the same in all schemes, but other coefficie
depend on details of renormalization, in particular, whet
the massM is the fixed or running mass. The particul
choice above corresponds to a fixed heavy quark mas
NLO.

The difference between our expressions for the coeffic
functions and those in@15# is that the coefficient functions o
the right-hand side are the VFNS coefficient functions. N
only does this mean that the equations are meant to
including terms ofO(M2/Q2), and that we solve for the
coefficient functions on the right-hand side, but also t
there is a difference between the coefficient functions, wh
couple to the heavy quark distribution and those coupling
the light quark distributions. For example, whileCHH

VF,NS and
Cqq

VF,NS must be identical in the limitQ2→`, they certainly
do not have to be identical at moderateQ2, and physical
intuition suggests they should not be. This means that un
@15#, we do not have five equations for five unknowns, b
we have five equations for eight unknowns. In order to
duce to the correct ZM-VFNS at very highQ2, we must
choose definitions for the mass-corrected coefficient fu
tions, which reduce to thenf11 light parton coefficient
functions asQ2→`, but this constraint still leaves a gre
deal of freedom.

As an example let us consider what is in practice the m
important case, the equation for the boson-gluon fusion
efficient function for the heavy quark structure functio
F2,H(x,Q2), ~3.6!. The expansion ofC2,Hg

FF,S begins at
O„as(Q

2)… as doesC2,Hg
VF,S andAHg

S , while Agg,H
S andC2,HH

VF,NS

begin at zeroth order. Using the known expressions for
operator matrix elements, we obtain the lowest-order eq
tion relating the FFNS coefficient functions and the VFN
coefficient functions

C2,Hg
FF,S,1~z,Q2/M2!5C2,Hg

VF,S,1~z,Q2/M2!1„ln~Q2/M2!

1crs…Pqg
0

^ C2,HH
VF,NS,0~Q2/M2!,

~3.12!

wherePqg
0 (z) is the lowest-order splitting function, andcrs is

renormalization scheme dependent, butcrs50 in MS
scheme. Hence, we have freedom in how we choose
zeroth-order heavy quark nonsinglet coefficient function, a
this then determines our first-order mass-corrected gluon
efficient function. More generally, we have freedom in ho
we define each of the three coefficient functions coupling
the heavy quarkCHH

VF,NS, CHH
VF,PS, andCqH

VF,PS at each order in
n
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perturbation theory, being constrained only by the requ
ment that they are of the correct form asQ2→`.

Of course, there cannot truly be an ambiguity in the ord
by-order definition of the structure functions. In order to
lustrate this, consider the structure functionF2(x,Q2). We
also come back to the point concerning renormalizat
scheme dependence. In order to maintain renormaliza
scheme consistency, we must be very careful about the
in which we order the expressions. Doing this correctly do
not remove the ambiguity in our definitions of the coefficie
functions, but it does render this ambiguity physically mea
ingless, even order by order. Let us consider specifically
heavy quark contribution to the structure functionF2(x,Q2)
in the general VFNS. In fact we will discuss its lnQ2 deriva-
tive, since it is the evolution ofF2,H(x,Q2) which is a more
natural quantity. Taking the lnQ2 derivative ofF2,H(x,Q2)
and keeping all terms up toO„as(Q

2)…, multiplying the
VFNS parton distributions, we obtain

dF2,H~x,Q2!

d ln~Q2!
5

dC2,HH
VF,NS,0~Q2/M2!

d ln~Q2!
^ „H~Q2!1H̄~Q2!…0

1
as,nf11~Q2!

2p
C2,HH

VF,NS,0~Q2/M2!

^ @Pqg
0

^ g0
nf11

~Q2!1Pqq
0

^ „H~Q2!1H̄~Q2!…0#

1
as,nf11~Q2!

2p S dC2,Hg
VF,1~Q2/M2!

d ln~Q2!

^ g0
nf11

~Q2!1
dC2,HH

VF,NS,1~Q2/M2!

d ln~Q2!

^ „H~Q2!1H̄~Q2!…0D . ~3.13!

Asymptotically, the second and third term in this express
reduce to the required form for the leading-order express
in the ZM-VFNS. All other terms fall off to zero in this limit,
so we are guaranteed the correct asymptotic expression u
this prescription. However, at lowQ2 the exact form of the
expression is highly sensitive to our particular choice of c
efficient functions. This clearly means that we do not hav
truly well-ordered solution and this is because the true ord
ing of the coefficient functionsC2,Hb

VF (z,Q2/M2) is not as
simple as just order by order inas,nf11(Q2) due to their
dependence on the quark mass. Indeed, their ordering is
crux of the problem, and we will explore this below.

In order to examine the true ordering of our expressi
we will express it in terms of unambiguously defined qua
tities, and also in terms of those, where the ordering is re
tively straightforward. Hence we will express it in terms
the FFNS parton distributions, the mass-dependent co
cient functionsC2,Hb

VF (z,Q2/M2), the operator matrix ele-
ments and the couplingas,nf

(Q2). The FFNS parton distri-
butions are correctly ordered simply by solving the
evolution equations to a given order. The operator ma
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elements are ordered according to the power ofas,nf11(Q2)

minus the power of ln(Q2/M2), i.e., the leading-order term i
of the form

Aab
0 ~z,Q2/M2!5dabd~12z!1 (

n51

` S as,nf11~Q2!

2p
D n

3 lnn~Q2/M2!an~z!. ~3.14!

Thenf11-flavor coupling constant is defined in terms of t
nf-flavor coupling in an analogous manner, i.e., the leadi
order relation is

as,nf11~Q2!

5as,nf
~Q2!1 (

n51

`

as,nf

n11~Q2!S Tf

3p D n

lnn~Q2/M2!. ~3.15!

First using the expression forC2,Hg
VF,1(z,Q2/M2) ~3.12!, but

only keeping the leading-order part of the operator ma
element, i.e., leaving out thecrs, and substituting into Eq
~3.13!, we obtain

dF2,H~x,Q2!

d ln~Q2!
5

dC2,HH
VF,NS,0~Q2/M2!

d ln~Q2!
^ „H~Q2!1H̄~Q2!…0

1
as,nf11~Q2!

2p
C2,HH

VF,NS,0~Q2/M2! ^ Pqq
0

^ „H~Q2!1H̄~Q2!…0

1
as,nf11~Q2!

2p S dC2,Hg
FF,1~Q2/M2!

d ln~Q2!

2
dC2,HH

VF,NS,0~Q2/M2!

d ln~Q2!
^ Pqg

0 ln~Q2/M2! D
^ g0

nf11
~Q2!1

as,nf11~Q2!

2p

3
dC2,HH

VF,NS,1~Q2/M2!

d ln~Q2!
^ „H~Q2!1H̄~Q2!…0 .

~3.16!

We can then be more detailed by using the explicit
pressions for„H(z,Q2)1H̄(z,Q2)…0 and g0

nf11(z,Q2) in
terms of the FFNS parton distributions, i.e.,

„H~z,Q2!1H̄~z,Q2!…05
as,nf

~Q2!

2p
ln~Q2/M2!Pqg

0

^ g0
nf~Q2!

1O„as,nf

2 ~Q2!ln2~Q2/M2!…

~3.17!

and
-

x

-

g0
nf11

~z,Q2!5g0
nf~z,Q2!2

as,nf
~Q2!

6p
ln~Q2/M2!g0

nf~z,Q2!

1O„as,nf

2 ~Q2!ln2~Q2/M2!…, ~3.18!

and also the expression for thenf-flavor coupling,~3.15!.
Doing this and remembering thatdC2,HH

VF,NS,1(z,Q2/M2)/
d ln(Q2)5O(M2/Q2), then we obtain

dF2,H~x,Q2!

d ln~Q2!
5

as,nf
~Q2!

2p
S dC2,Hg

FF,1~Q2/M2!

d ln~Q2!
^ g0

nf~Q2!

2
as,nf

~Q2!

6p
ln~Q2/M2!

dC2,Hg
FF,1~Q2/M2!

d ln~Q2!

^ g0
nf~Q2!1

as,nf
~Q2!

2p
ln~Q2/M2!

3C2,HH
VF,NS,0~Q2/M2! ^ Pqq

0
^ Pqg

0
^ g0

nf~Q2!

1O~M2/Q2!•O„as,nf

2 ~Q2!ln2~Q2/M2!…D .

~3.19!

Hence, as well as asymptotically reducing to the corr
leading-order expression, the prescription of keeping
terms up toO„as,nf11(Q2)…, which multiply the leading-
order ~LO! VFNS parton distributions has resulted in
unique O„as,nf

(Q2)… expression for the derivative of th
heavy quark coefficient function, which also~and necessar
ily ! has the correct threshold behavior. However, it is cl
that theO„as,nf

2 (Q2)ln Q2/m2
… expression, while having the

correct asymptotic limit, has behavior forQ2;M2 which is
sensitive to our choice of coefficient functions. In particul
the behavior of these terms will not generally respect
threshold in Ŵ2. It is clear that at higher orders in
as,nf

(Q2)ln(Q2/M2), while we will obtain the correct

asymptotic behavior, our lowishQ2 behavior will be depen-
dent on the choice of coefficient functions.

If we were to use the expression for the structure funct
itself, rather than its derivative, in the VFNS by combinin
the lowest order inas,nf11(Q2) coefficient function with the
lowest-order VFNS parton distributions, i.e.,

F2,H~x,Q2!5C2,HH
VF,NS,0~Q2/M2! ^ „H~Q2!1H̄~Q2!…0 ,

~3.20!

then again we would be guaranteed the correct LO exp
sion in the asymptotic limit. However, even the leading te
in as,nf

(Q2)ln(Q2/M2) ~when expressed in terms of th
FFNS parton distributions and operator matrix elements! is
now completely dependent on the choice of coefficient fu
tion, and there is no requirement to have the correct thre
old behavior at all.

It should be no surprise that we have this problem.
mentioned earlier in the FFNS, the coefficient functions
all orders contain renormalization-scheme-independ
leading-order contributions. By working in the VFNS, w
have managed to extract the asymptotic form of this leadi
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order contribution in a relatively simple manner. Howev
in order to have the full leading-order expression for t
structure functions in the VFNS in the threshold region,
need to extract all the information from the leading-ord
contribution to the FFNS coefficient functions. In principl
the full LO FFNS expression should contain the leading pa
of the coefficient functions at all orders inas,nf

(Q2), and the
LO VFNS should include coefficient functions construct
from the full LO FFNS coefficient functions and the full LO
operator matrix elements. Absolutely correct matching
tween the FFNS and the VFNS atQ25M2 leads to the ab-
solutely correct renormalization scheme consistent desc
tion of both of these schemes. Thus, in practice the stri
correct LO VFNS is no simpler than using the strictly corre
LO FFNS coefficient functions. This is extremely difficu
indeed, and in fact probably impossible, there being no c
unique way in which we subtract out the leading-ord
renormalization scheme invariant part of theO„as,nf

n (Q2)…

FFNS coefficient function except in the asymptotic limit. I
deed, if we were to proceed further for our above example
dF2,H(x,Q2)/d ln(Q2), we would find that our definition of
the LO contribution atO„as,nf

2 (Q2)… would rely on being

able to extract an unambiguous LO, renormalization sche
independent part out of dC2,Hg

FF,S,2(z,Q2/M2)/d ln(Q2).

Though this is simple in the limitQ2→` @14,15#, there does
not seem to be any good prescription for arbitraryQ2. There-
fore it appears as though the VFNS is only any advantag
all in so much that it gives a definition of the charm part
distribution. There does not seem to be any tractable wa
produce a prescription for calculating heavy quark struct
functions, which both correctly sums the leading logarith
and which has absolutely correct, unique threshold behav

IV. A PRACTICAL VFNS

Bearing in mind the difficulty, or indeed probable impo
sibility of producing the unambiguous well-ordered calcu
tion of structure functions, it is our aim to produce a pr
scription for calculating heavy quark structure functio
order by order inas(Q

2) in such a way that we obtain rela
tively simple expressions, yet maintain as much accurac
possible over the whole range ofQ2. Let us first consider the
region ofQ25M2 and below. In this case if we work orde
by order inas,nf

(Q2) in the FFNS, i.e., define thenth-order
expression for the heavy quark structure function by

F2,H
n ~x,Q2!5 (

m50

n

(
a

S as,nf
~Q2!

2p
D n2m11

3C2,Ha
FF,n2m11~M2/Q2! ^ f m,a

nf ~Q2!,

n50→`, ~4.1!

we know that the strictly leading-order terms we ignore
really an order ofas,nf

(Q2) down on those we keep, with n

large ln(Q2/M2) enhancement, for these values ofQ2. Adopt-
ing this procedure, when working toO„as,nf

n (Q2)… we have

an error ofO„as,nf

n11(Q2)… compared to the~in principle! cor-

rect calculation, which is the same size as terms not
,

e
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ts
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ar
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-
-
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e
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calculated and the same size as the renormalization sch
uncertainty. This seems perfectly satisfactory for this regi

AboveQ25M2 we want to order our calculation as in th
massless case so that in the asymptotic limit ofQ2@M2, we
will obtain correctly ordered expressions. Therefore, we
der the calculation by using up toO„as,nf11

n (Q2)… coefficient

functions, when solving the evolution equations using up
O„as,nf11

n11 (Q2)… anomalous dimensions, as required

renormalization scheme consistency, e.g., the leading-o
expression is

F2,i
0 ~x,Q2!5(

b
C2,ib

VF,0~M2/Q2! ^ f 0,b
nf11

~Q2!, ~4.2!

the NLO expression is

F2,i
1 ~x,Q2!5F2,i

0 ~x,Q2!1(
b

S as,nf11~Q2!

2p
C2,ib

VF,1~M2/Q2!

^ f 0,b
nf11

~Q2!1Cb
VF,0~M2/Q2! ^ f 1,b

nf11
~Q2! D ,

~4.3!

etc. We stress that this is not a choice, but a strict requ
ment of obtaining ordered asymptotic, expressions for
structure function itself or its ln(Q2) derivative. Of course, in
this region ofQ2 we now have the ambiguity in the defin
tion of the coefficient functions. Thus, since we are not p
forming the strictly correct ordering, we have to make
choice for these coefficient functions. We do this by defini
them order by order inas,nf11(Q2) using the Eqs.~3.6!–
~3.10!, which guarantee correctness to all orders, and also
using the freedom to choose some coefficient functions,
the three coefficient functions coupling to the heavy quar
to bring us as close to the really correct calculation as p
sible.

In perturbation theory it is not really the structure functio
at a particular value ofQ2 for which we solve, but the evo
lution at all Q2 in terms of the structure functions at som
particularQ2. Bearing this in mind it seems sensible to co
strain our coefficient functions by making the slope of t
structure functions at a given order inas(Q

2) to be continu-
ous across the transition point. In order to examine this c
straint, let us again consider the lnQ2-derivative of
F2,H(x,Q2). Approaching the transition point from below
our prescription gives the lowest orderas,nf

(Q2) expression

for the ln(Q2) derivative as

dF2,H~x,Q2!

d ln~Q2!
5

as,nf
~Q2!

2p

dC2,Hg
FF,1~Q2/M2!

d ln~Q2!
^ g0

nf~Q2!.

~4.4!

Just aboveQ25M2 the ln(Q2) derivative of the LO expres-
sion in the VFNS is
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dF2,H~x,Q2!

d ln~Q2!
5

dC2,HH
VF,NS,0~Q2/M2!

d ln~Q2!
^ „H~Q2!1H̄~Q2!…0

1
as,nf11~Q2!

2p
C2,HH

VF,NS,0~Q2/M2!

^ @Pqg
0

^ g0
nf11

~Q2!1Pqq
0

^ „H~Q2!1H̄~Q2!…0#, ~4.5!

where at the transition point the coupling at this order
continuous. Also we see that the artificial zeroth-order te
in Eq. ~4.5! disappears atQ25M2 @it is actually canceled in
the complete calculation as seen in Eqs.~3.13!–~3.19!#, and
it is indeed possible to demand the continuity of the deri
tive across the transition point. Using the constraint and
simple prescription for constructing the structure function
the two regions, we now have a unique form for the pre
ously ambiguousC2,HH

VF,NS,0(z,Q2/M2). Using the fact that
„H(z,Q2)1H̄(z,Q2)…050 at Q25M2, we immediately ob-
tain

C2,HH
VF,NS,0~Q2/M2! ^ Pqg

0 5
dC2,Hg

FF,1~z,Q2/M2!

d ln~Q2!
, ~4.6!

at Q25M2, and we defineC2,HH
VF,NS,0(z,Q2/M2) by demanding

that it satisfy this relationship at allQ2. As well as guaran-
teeing the continuity of the evolution of the structure fun
tion, this definition also reduces to the correct form forQ2

@M2, since in this limit dC2,Hg
FF,1(z,Q2/M2)/d ln(Q2)

→Pqg
0 (z) ~as we shall see explicitly in Sec. V!. This means

that the evolution will clearly reduce to the corre
asymptotic form of a delta function in the limitQ2→`.
Above Q25M2 terms are not exactly as prescribed by t
absolutely correct procedure explained in the last section,
they do explicitly maintain the correct threshold behav
sincedC2,Hg

FF,1(z,Q2/M2)/d ln(Q2) is zero forŴ2,4M2. At
leading order we have in principle an error ofO„as

2(Q2)… at
the transition point due to the truncation of the FFNS exp
sion atO„as,nf

(Q2)… @where this error falls like (M2/Q2) as
we approach the correct asymptotic limit# and an error gen-
erated by the evolution, which is zero at the transition po
and grows like as,nf11(Q2)lnn(Q2/M2), but falls like

(M2/Q2) as we evolve up from this point. These errors a
quite minimal, always being small compared to the quan
being calculated. From Eq.~3.12! we see that we have als
completely definedC2,Hg

VF,NS,1(z,Q2/M2); i.e., in the MS
scheme it is

C2,Hg
VF,1~z,Q2/M2!5C2,Hg

FF,1~z,Q2/M2!

2 ln~Q2/M2!
dC2,Hg

FF,1~z,Q2/M2!

d ln~Q2!
,

~4.7!

though we have not yet made use of this coefficient functi
However, we notice that each term in this coefficient fun
tion separately has the correct threshold behavior inŴ2.
s
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At leading order in this prescription the effect discuss
above is the only real complication, i.e., the choice
C2,HH

VF,NS,0(z,Q2/M2) is the only one to make. Above the tran
sition point the evolution equations for the partons a
now in terms ofnf11 massless quarks, and the coupli
constant becomes theMS coupling fornf11 massless fla-
vors. But all parton distributions and all other zeroth-ord
coefficient functions are continuous across the transition

Of course, although we have determined the lowest-or
derivative of the coefficient functions on both sides of t
boundary, we must also discuss the value of the struc
function itself atQ25M2. Using the zeroth-order expressio
~4.2!, the vanishing of the charm quark distribution atQ2

5M2 leads to the charm structure function being zero the
Likewise the fact that at zeroth order in the FFNS the co
ficient functions for charm production all vanish leads to t
zeroth-order value ofF2,H(x,M2) being zero also. Thus, th
two expressions are consistent. However, this is unsatis
tory for two reasons. Firstly, the leading-order„order
as(Q

2)… derivative of the charm structure function is no
zero both above and belowQ25M2, provided x is low
enough that we are above the threshold inW2. Hence, start-
ing with a value ofF2,H(x,M2)50 would lead to negative
values for this structure function forQ2,M2. Also, one
would naturally expect the LO expression for a quantity
be a reasonable approximation to the quantity itself. T
value of F2,H(x,M2) is not zero, and so the zeroth-ord
expression is not a good representation of the true va
These problems come about because of a peculiarity
F2(x,Q2) already discussed in@20#. In general its value at a
given Q0

2 begins at zeroth order inas(Q0
2), but the

O„as(Q0
2)… term is also really part of the leading-order e

pression since it is renormalization-scheme independen
contrast the derivative begins atO„as(Q

2)…, and all correc-
tions are renormalization scheme dependent and genui
higher order. Thus, as argued in@20#, the input should con-
tain both the zeroth-order term and theO„as(Q0

2)… term, but
the latter should play no part in the evolution.

Adopting this procedure we can now specify our leadin
order expressions for the charm structure function as follo
Below Q25M2 we take the LO expression to be

F2,H
FF,0~x,Q2!5

as,nf
~Q2!

2p
C2,Hg

FF,1~Q2/M2! ^ g0
nf~Q2!,

~4.8!

which is equal to theO(as) value atQ25M2, and incorpo-
rates the LO evolution down from this scale~up to small
corrections!. AboveQ25M2 the LO expression is

F2,H
VF,0~x,Q2!5F2,H

FF,0~x,M2!1C2,HH
VF,0 ~Q2/M2!

^ „H~Q2!1H̄~Q2!…0 , ~4.9!

which ~up to the constant term! is of the standard form~4.2!,
and incorporates the correct LO evolution. In practice
constant term becomes almost insignificant as soon asQ2

.4M2. Now we should consider the NLO expressions.
At NLO the situation is rather more complicated becau

more terms come into play. We now define FFNS expr
sions by including terms up to orderas,nf

2 (Q2) relative to the
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lowest-order parton distributions. The NLO VFNS expre
sion is defined as in Eq.~4.3! ~up to a constant again!. At this
order the situation becomes more complicated because
pure singlet FFNS coefficient function becomes nonzero
does the contribution due to coefficient functions, where
ra
o
in
-

y

on
E

o

m

ly
h

r t
er
-

he
s
e

photon couples to a light quark, but where heavy quarks
generated. Let us examine the NLO expressions for the
rivative of the heavy quark structure function. First consid
theO„as,nf

2 (Q2)… expression for the derivative of the heav
quark structure function in the FFNS. This is
the
dF2,H~x,Q2!

d ln~Q2!
5S as,nf

~Q2!

2p
D 2S 2bnf

0 C2,Hg
FF,1~Q2/M2! ^ g0

nf~Q2!1C2,Hg
FF,1~Q2/M2!

^ „Pgg
0,nf ^ g0

nf~Q2!1Pgq
0

^ S0
nf~Q2!…1

dC2,Hg
FF,2~Q2/M2!

d ln~Q2!
^ g0

nf~Q2!

1
dC2,Hq

FF,2~Q2/M2!

d ln~Q2!
^ S0

nf~Q2! D 1
as,nf

~Q2!

2p

dC2,Hg
FF,1~Q2/M2!

d ln~Q2!
^ g1

nf~Q2!, ~4.10!

whereSnf(z,Q2) is the singlet light quark distribution.4 In the VFNS the situation is even more complicated. Taking
derivative of the NLO expression, and ignoring those terms already in Eq.~4.5!, we obtain

dF2,H~x,Q2!

d ln~Q2!
5

dC2,HH
VF,0 ~Q2!

d ln~Q2!
^ „H~Q2!1H̄~Q2!…11

as,nf11~Q2!

2p S dC2,HH
VF,1 ~Q2!

d ln~Q2!
^ „H~Q2!1H̄~Q2!…0

1
dC2,Hg

VF,1~Q2!

d ln~Q2!
^ g0

nf11
~Q2!1C2,HH

VF,0 ~Q2/M2! ^ @Pqq
0

^ „H~Q2!1H̄~Q2!…11Pqg
0

^ g1
nf11

~Q2!# D
1S as,nf11~Q2!

2p
D 2

$2bnf

0 @C2,Hg
VF,1~Q2/M2! ^ g0

nf11
~Q2!1C2,HH

VF,1 ~Q2/M2! ^ „H~Q2!1H̄~Q2!…0#

1C2,HH
VF,1 ~Q2/M2! ^ @Pqq

0
^ „H~Q2!1H̄~Q2!…01Pqg

0
^ g0

nf11
~Q2!#1C2,Hg

VF,1~Q2/M2! ^ „Pgq
0

^ S0
nf11

~Q2!

1Pgg
0,nf11

^ g0
nf11

~Q2!…1C2,HH
VF,0 ~Q2/M2! ^ @Pqq

NS,1,nf11
^ „H~Q2!1H̄~Q2!…01Pqq

PS,1,nf11

^ S0
nf11

~Q2!1Pqg
1,nf11

^ g0
nf11

~Q2!#%. ~4.11!
res-

nt

ion

e

s

These expressions are very difficult to compare in gene
However, expressing the four flavor quantities in terms
the three flavor quantities, the two are identical at NLO
MS scheme atQ25M2 ~the discontinuities in both the par
ton distributions and the coupling begin at NNLO!. Thus, the
heavy parton distributions„H(z,Q2)1H̄(z,Q2)…0 and
„H(z,Q2)1H̄(z,Q2)…1 vanish at this point, and so do man
other terms in Eq. ~4.11!. From the definition of
C2,HH

VF,0 (z,Q2), we can see that the term depending
g1(z,Q2) is the same in both expressions, and using the
~4.7! we can see thatdC2,Hg

VF,1(z,Q2)/d ln(Q2)50 at Q2

5M2. Also in the combination2bnf

0 f (z)1Pgg
0,nf ^ f the fla-

vor dependence cancels between the two terms, so this c
bination is the same in both expressions atQ25M2.

Thus we have a great deal of simplification, when co

4We labelPgg
0 (z) by the number of flavors because it is the on

leading-order splitting function which depends on this number. T
decrease of this splitting function above a threshold accounts fo
fact that there is a new parton distribution, and guarantees ov
conservation of momentum in the evolution.
l.
f

q.

m-

-

paring the two expressions atQ25M2. As in the LO case we
can equate the terms coupling to the gluon in the two exp
sions, i.e.,

dC2,Hg
FF,2~z,Q2/M2!

d ln~Q2!
5C2,HH

VF,1 ~Q2/M2! ^ Pqg
0 1C2,HH

VF,0 ~Q2/M2!

^ Pqg
1,nf11, ~4.12!

at Q25M2, and this serves as a definition of the coefficie
function C2,HH

VF,1 (z,Q2/M2) at this Q2. However, unlike the
LO case we cannot define the coefficient function at allQ2

simply by extending this expression to allQ2. This is be-
cause it will not result in the correct asymptotic express
for C2,HH

VF,1 (z,Q2/M2), i.e., dC2,Hg
FF,2(z,Q2/M2)/d ln(Q2) con-

tains a ln(Q2/M2) term which must be canceled. It is quit
easy to find the generalization of Eq.~4.12!, however. If one
differentiates both sides of Eq.~3.6!, and keeps those term
of O„as,nf

2 (Q2)… which survive asQ2→` ~all terms of the

form dC2,ba
VF (z,Q2/M2)/d ln(Q2) vanish in this limit, since

the VFNS coefficient functions tend to constants!, then one
obtains

e
he
all
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dC2,Hg
FF,2~z,Q2/M2!

d ln~Q2!
5C2,HH

VF,NS,1~Q2/M2! ^
dAHg

1 ~Q2/M2!

d ln~Q2!

1C2,HH
VF,NS,0~Q2/M2! ^

dAHg
2 ~Q2/M2!

d ln~Q2!

1
1

3p
ln~Q2/M2!C2,HH

VF,0 ~Q2/M2!

^ Pqg
0 , ~4.13!

where the last term comes about from the difference in
derivatives of the three and four flavor couplings. This e
pression guarantees the correct asymptotic expression
C2,HH

VF,1 (z,Q2/M2), while Eq.~4.12! guarantees the continuit
of the NLO derivative ofF2,H(x,Q2) in the gluon sector, and

hence the definition ofC2,HH
VF,1 (z,Q2/M2) must satisfy Eq.

~4.12! at Q25M2 and Eq.~4.13! as Q2→`. In fact, atQ2

5M2 the two expressions are identical, i.e.,

dAHg
1 ~z,Q2/M2!

d ln~Q2!
5Pqg

0 ~z!, ~4.14!

and

dAHg
2 ~z,Q2/M2!

d ln~Q2!
5~Pqq

0
^ Pqg

0 1Pqg
0

^ Pgg
0,nf11

2b0
nf11Pqg

0 !ln~Q2/M2!1Pqg
1,nf11,

~4.15!

and we have the very neat result that Eq.~4.13! is the gen-
eralization of Eq.~4.12! for all Q2, andC2,HH

VF,1 (z,Q2/M2) is
defined by Eq.~4.13!.

The above definition ofC2,HH
VF,1 (z,Q2/M2), when substi-

tuted into Eq. ~3.6!, determines the expression fo
C2,Hg

VF,2(z,Q2/M2) which will be used at NNLO. However, we
have now used up our single degree of freedom invol
with the heavy quark structure function at NLO. Looking
the terms coupling to the singlet quark distribution in the t
expressions~4.10! and ~4.11!, we find that the first contains

C2,Hg
FF,1~Q2/M2! ^ Pgq

0 1
dC2,Hq

FF,2~z,Q2/M2!

d ln~Q2!
, ~4.16!

while the second contains

C2,Hg
VF,1~Q2/M2! ^ Pgq

0 1C2,HH
FF,0 ~Q2/M2! ^ Pqq

1,PS,nf11.
~4.17!

There is no degree of freedom in either of these equatio
and no reason for them to be equal atQ25M2, and they are
not. Indeed there was no further degree of freedom in
relationships~3.6! and~3.7! required of the heavy quark co
efficient functions. Up to this order the only one availab
was for C2,HH

VF (z,Q2/M2), and this has been determined b
imposing the continuity of the evolution of the structu
function in the gluon sector. Indeed, looking at Eq.~3.7! at
O„as

2(Q2)…, we see that we have already determin

C2,Hq
VF,PS,2(z,Q2/M2), i.e.,
e
-
for

d
t

s,

e

d

C2,Hq
VF,PS,2~z,Q2/M2!5C2,Hq

FF,S,2~z,Q2/M2!2C2,HH
VF,0 ~Q2/M2!

^ AHq
PS,2~Q2/M2!. ~4.18!

Using the framework we have chosen to define the struc
functions, this discontinuity in the derivative of the hea
quark structure function in the singlet sector is unavoidab
There are simply not enough degrees of freedom to avoi
In practice, since the evolution of the heavy quark struct
function is driven very largely by the gluon, since this di
continuity begins only at NLO, and since Eqs.~4.16! and
~4.17! are not too different atQ25M2 the effect is tiny. Of
course, any discontinuity is only an artifact of the manner
which we are forced to do our fixed order calculations, a
would disappear if we were to work all orders. In fact o
can show that the discontinuity of the derivative in the s
glet sector gets formally smaller as one works to higher
ders.

So now we have the definition of our NLO expressio
for the heavy-quark structure function both above and be
threshold. In the FFNS the definition is the simple extens
of Eq. ~4.8!, being just

F2,H
FF,1~x,Q2!5

as,nf
~Q2!

2p
„C2,Hg

FF,1~Q2/M2! ^ g0
nf~Q2!

1C2,Hg
FF,1~Q2/M2! ^ g1

nf~Q2!…

1S as,nf
~Q2!

2p
D 2

„C2,Hg
FF,2~Q2/M2! ^ g0

nf~Q2!

1C2,Hq
FF,2~Q2/M2! ^ S0

nf~Q2!…, ~4.19!

which is equal to theO(as
2) ~i.e., NLO! value for the struc-

ture function atQ25M2 and incorporates the NLO„i.e.,
O(as,nf

2 (Q2)… evolution down from this scale~up to small

corrections!. The VFNS NLO expression is

F2,H
VF,1~x,Q2!5S as~M2!

2p D 2

„C2,Hg
FF,2~1! ^ g0

nf~M2!1C2,Hq
FF,2~1!

^ S0
nf~M2!…1C2,HH

VF,0 ~Q2/M2!

^ „H~Q2!1H̄~Q2!…01C2,HH
VF,0 ~Q2/M2!

^ „H~Q2!1H̄~Q2!…11
as,nf11~Q2!

2p

3C2,HH
VF,NS,1~Q2/M2! ^ „H~Q2!1H̄~Q2!…0

1
as,nf11~Q2!

2p
C2,Hg

VF,1~Q2/M2! ^ g0
nf11

~Q2!,

~4.20!

which again, up to the constant term, which is the NLO inp
~the LO part of the input now being included automatically!,
is of the standard form and incorporates the correct N
evolution across the transition point.

At this order we have to make some decision about h
we treat the light quark sector. The lowest-order contribut
the heavy quark makes to a light sector FFNS coeffici
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function is for the nonsinglet coefficient function
O„as,nf

2 (Q2)…. Thus in the matching conditions between t

FFNS coefficient functions and those in the VFNS in t
light quark sector, there are no mass-dependent correc
to the VFNS coefficient functions toO„as,nf 11

(Q2)…. Hence,
the evolution of the light quark coefficient functions abo
Q25M2 is exactly as in the masslessnf11 flavor case. Nev-
ertheless, we must decide on the form of the structure fu
tion at Q25M2 and below this transition point. For th
heavy quark structure function we have been keeping he
quark coefficient functions to one order higher inas(Q

2) in
the FFNS than in the VFNS. This has been for the rea
that the explicit ln(Q2) dependence in the coefficient fun
tions means that they contribute to the ln(Q2) derivative of
the structure function at effectively one higher order
as(Q

2) than the VFNS coefficient functions, and also b
cause the lack of the usual zeroth-order coefficient func
makes theO„as,nf

(Q2)… coefficient function the LO one, the

O„as,nf

2 (Q2)… the NLO one, etc. For the light structure fun

tions there is a zeroth-order coefficient function, so the s
ond argument no longer holds. However, the former one
does, i.e., differentiating the expression for the light qu
structure function belowQ25M2 and keeping terms of orde
as,nf

2 (Q2) thendC2,qq
FF,NS,2(z,Q2/M2)/d ln(Q2) appears in the

expression. This contribution accounts for the effect of
heavy quark to the evolution turning on asQ2 increases. For
this reason we continue to keep the coefficient functions c
taining heavy quarks to one higher order than those w
only light quarks even in the light sector.

For the heavy quark structure function, because we
terms of higher order inas(Q

2) below Q2 than above it, in
order to impose continuity of the structure function atQ2

5M2, we had to put a contribution to the VFNS expressi
which is constant, and one order inas higher than the rest o
the expression~we also justified this from renormalizatio
scheme consistency!. We now have to adopt a similar proce
dure for the light quark expressions. The NLO expression
the nonsinglet structure function forQ2,M2 is

F2,q
FF,NS,1~x,Q2!5C2,qq

NS,nf ,0^ f 0
NS,nf~Q2!1C2,qq

NS,nf ,0^ f 1
NS,nf~Q2!

1
as,nf

~Q2!

2p
C2,qq

NS,nf ,1^ f 0
NS,nf~Q2!

1S as,nf
~Q2!

2p
D 2

C2,qq
FF,NS,2~Q2/M2!

^ f 0
NS,nf~Q2!. ~4.21!

That for Q2>M2 is equal to

F2,q
VF,NS,1~x,Q2!5C2,qq

NS,nf11,0
^ f 0

NS,nf11
~Q2!1C2,qq

NS,nf11,0

^ f 1
NS,nf11

~Q2!1
as,nf11~Q2!

2p
C2,qq

NS,nf11,1

^ f 0
NS,nf11

~Q2!1S as~M2!

2p D 2

C2,qq
FF,NS,2~1!

^ f 0
NS,nf~M2!. ~4.22!
ns
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r

In principle both sides should also contain a term}as
2(Q0

2)
for the genuinely light NLO input, whereQ0

2 is the scale at
which the inputs are chosen. Such a term is always igno
and would be very small. In practice all theO„as

2(Q2)…
terms in the above expression are extremely small as w
TheO„as

2(Q2)… evolution derived from the above equation
is not precisely continuous atQ25M2 due to terms of in-
verse powers of Q2/M2 present in
dC2,qq

FF,NS,2(z,Q2/M2)/d ln(Q2). This discontinuity will de-
crease as we go to higher orders, and these mass-depe
terms get absorbed by higher-order mass-dependent V
coefficient functions. We note that leaving theO„as,nf

2 (Q2)…
term out of of Eq.~4.21! would also lead to a discontinuou
evolution~actually more so!, since the evolution would take
account ofnf massless flavors below threshold, butnf11
massless flavors above threshold.

Finally at NLO the light quark pure singlet structure fun
tions have no complications due to the heavy quarks at
The first nonzero FFNS coefficient functions do not app
until O„as,nf

3 (Q2)…, and so do not contribute to the evolutio

until NNLO. So at NLO we just use thenf massless flavor
expressions belowQ25M2 and thenf11 massless flavor
expressions aboveQ25M2. Continuity of both the structure
function and its evolution are automatic.

One could in principle work to progressively higher o
ders, but of course in practice the NNLO splitting functio
and the NNLO FFNS coefficient functions are all unknow
at present. Nevertheless, we outline the procedure to
adopted at all orders. For the heavy quark structure func
there is essentially nothing new as we progress to hig
orders. Atnth nontrivial order we include all FFNS coeffi
cient functions up to orderas,nf

n (Q2), and all VFNS coeffi-

cient functions up to orderas,nf11
n21 (Q2). In the VFNS ex-

pression we always include theO„as
n(M2)… term which

ensures continuity of the structure function. We determ
C2,HH

VF,n21(z,Q2/M2) by demanding continuity of the deriva
tive of the structure function atO(as

n) in the gluon sector,
and this determination predeterminesC2,Hg

VF,n(z,Q2/M2) and
C2,Hq

VF,n(z,Q2/M2) by using Eqs. ~3.6! and ~3.7! to

O„as,nf

n (Q2)…. At O„as,nf11
2 (Q2)… the coefficient function

C2,HH
VF,n (z,Q2/M2) becomes the sum of the nonsinglet a

pure singlet coefficient functions. Neither the condition~3.6!
nor the continuity of the structure function and its derivativ
determine these two contributions separately, so we are
to separate them as we wish, using the condition that e
tends to the correct asymptotic limit. It would also be des
able to choose each so that they respect the kinematic thr
old.

For the light quark structure function the procedure
higher orders is also straightforward. Atnth nontrivial order
we include all pure light quark contributions to coefficie
functions belowQ25M2 up to orderas,nf

n21(Q2); all mass

dependent FFNS coefficient functions up to orderas,nf

n (Q2),

and all VFNS coefficient functions up to orderas,nf11
n21 (Q2).

In the VFNS expression we always include theO„as
n(M2)…

term which ensures continuity of the structure functio
Starting with theO„as,nf11

2 (Q2)… coefficient function, we

determineC2,qH
VF,n21(z,Q2/M2) by demanding continuity of



s
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TABLE I. Prescription for the order by order inas(Q
2) determination of the VFNS coefficient function

for F2(x,Q2).

Order of
equality Eq. Coefficient functions determined

as
0(Q2) ~3.8! C2,qq

VF,NS,0

as(Q
2) ~3.6! C2,HH

VF,NS,0 @by continuity of (dF2,H /d ln Q2)M2 at
O„as(Q

2)…#, C2,Hg
VF,1

~3.8! C2,qq
VF,NS,1

~3.9! C2,qg
VF,1

as
2(Q2) ~3.6! C2,HH

VF,S,1 @by continuity of (dF2,H /d ln Q2)M2 in gluon
sector atO„as

2(Q2)…#, C2,Hg
VF,2

~3.7! C2,Hq
VF,2

~3.8! C2,qq
VF,NS,2

~3.9! C2,qg
VF,2

~3.10! C2,qq
VF,PS,2

as
3(Q2) ~3.6! C2,HH

VF,S,2 @by continuity of (dF2,H /d ln Q2)M2 in gluon
sector atO„as

3(Q2)…#, C2,Hg
VF,3

~3.7! C2,Hq
VF,3

~3.8! C2,qq
VF,3

~3.9! C2,qH
VF,2 @by continuity of (dF2,i /d ln Q2)M2 in gluon

sector atO„as
3(Q2)…#, C2,qg

VF,3

~3.10! C2,qq
VF,PS,3

¯ ¯ ¯

as
n(Q2) ~3.6! C2,HH

VF,Sn21 @by continuity of (dF2,H /d ln Q2)M2 in
gluon sector atO„as

n(Q2)…#, Cs,Hg
VF,n

~3.7! C2,Hq
VF,n

~3.8! C2,qq
VF,n

~3.9! C2,qH
VF,n21 @by continuity of (dF2,i /d ln Q2)M2 in gluon

sector atO„as
n(Q2)…#, C2,qg

VF,n

~3.10! C2,qq
VF,PSn
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the derivative of the light structure function atO„as
n(Q2)… in

the gluon sector, analogously to the heavy quark sector. W
this one degree of freedom eliminated in this way, all oth
VFNS coefficient functions are determined uniquely order
order in as by Eqs.~3.8!–~3.10!, i.e., this determination o
C2,qH

VF,n21(z,Q2/M2) predetermines C2,qg
VF,n(z,Q2/M2) and

C2,qq
VF,PS,n(z,Q2/M2) by using Eqs. ~3.9! and ~3.10! to
O„as

n(Q2)….
Thus, we have completely defined our prescription

calculating order by order for the structure functio
F2(x,Q2). We can sum it up in the form of a table. This
shown in Table I. This method uniquely determines
VFNS coefficient functions, and while not leading to abs
lutely correctly ordered expressions it is a relatively sim
prescription for obtaining order by order structure functio
which are very similar to the strictly correctly ordered one
which reduce to the correctly ordered expressions in
asymptotic limit and which order by order are consiste
with all physical requirements. All prescriptions which ob
Eqs.~3.6!–~3.10! will be correct when summed to all order
but some ways of choosing the heavy quark coefficient fu
tions will clearly stay closer to the correct ordering than o
th
r
y

r

l
-

s
,
e
t

-
-

ers. We believe that our prescription is the best available
present, and we see no easy way to improve upon it. We
demonstrate the results using our prescription in the n
section, and see that indeed they do seem to work very w

Let us briefly discuss the effect of choosing
renormalization/factorization scale other than our sim
choice ofm25Q2. As already mentioned our defining equ
tions for the coefficient functions are of exactly the sam
form, i.e., Eqs.~3.6!–~3.10!, but now both the FFNS and
VFNS coefficient functions will depend onM2, Q2, andm2.
Letting m25m2(Q2,M2), with the requirement that the tran
sition point is atQ2 such thatm25M2 ~else the relatively
simple matching of parton distributions atm25M2 will no
longer hold!, we can demand that we remove the ambigu
in the VFNS coefficient functions using exactly the sam
criteria as above, i.e., that the lnQ2 derivatives of the struc-
ture function in the gluon sector should be continuous acr
the transition point. The new scale will lead to different e
pressions for the derivatives of the structure functions
those above both because the value ofm2 in the terms is
different and because the factors
(d ln m2/d ln Q2)m25m2(Q2,M2) which implicitly appear when
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differentiating the structure function with respect toQ2 are
no longer unity. For example, repeating the procedure for
zeroth-order coefficient function as in Eqs.~4.4! and ~4.5!
will lead to

C2,HH
VF,NS,0~Q2/M2! ^ Pqg

0
^ S d ln m2~Q2,M2!

d ln Q2 D
5

dC2,Hg
FF,1~z,Q2/M2!

d ln~Q2!
, ~4.23!

where C2,Hg
FF,1(z,Q2/M2) is independent ofm2. Hence, the

zeroth-order heavy quark coefficient function determined
our procedure is indeed scale dependent, but that its esse
property, i.e., the correct threshold behavior is maintain
and that as soon as„d ln m2(Q2,M2)/d ln Q2

… tends to one~as
it must if m25Q2 asymptotically! it tends to our previous
result. It is easy to see that these properties will be ma
tained for all other VFNS coefficient functions, the corre
threshold behavior being guaranteed by the fact that it ex
in the FFNS coefficient functions. Hence, the exact, order
order form of the coefficient functions in our procedure do
depend on the choice of scale, as in all perturbative calc
tions in QCD, but the procedure can be implemented fo
general choice of scale with the essential features being
served. The further the scale choice is from our simplem2

5Q2, the further will be the deviation from our results at
given order~though, of course, all choices will converge to
common result if we work to high enough order due to t
scale independence of the whole structure function!. For the
rest of this paper we will keep to the simple and physica
motivated choice ofm25Q2.

Before demonstrating the results using our definition o
VFNS, first let us mention another currently available VFN
the Aivazis, Collins, Olness, and Tung~ACOT! scheme
@21,22,23#. Although there is currently no all-orders@24#, or
even NLO definition ~for developments see@25#, of the
ACOT VFNS ~which we will denote by ACOT! in print, we
believe that the definition of the coefficient functions in th
scheme must be equivalent to that in Eq.~3.5!, i.e., the
VFNS coefficient functions are related to those in the FF
by the Equations~3.6!–~3.10!. Indeed, at what they call LO
the ACOT coefficient functions satisfy Eq.~3.12!. However,
they determine the expression forC2,HH

VF,NS,0 from the tree-level
diagram for a massive quark scattering from a boson, and
a photon this gives

ĈHH
VF,NS,0~z,Q2/M2!5zd~ x̂02z!S 11

4M2

Q2 D ,

x̂05S 11
M2

Q2 D 21

, ~4.24!

where the modified argument of the delta function follo
from demanding the on-shell condition for the mass
quark, and the remaining factor follows from the part
model for the longitudinal structure function,FL
54M2/Q2, which is added to the transverse component
give F2 . Inserting into Eq.~3.12! for arbitrarym then gives
the expression forĈ2,Hg

VF,S,1(z,Q2/m2,Q2/M2). Presumably the
ACOT scheme works at higher orders in a similar mann
e

a
tial
d,

-
t
ts
y
s
a-
a
re-

a
,

S

or

o

r,

with the higher-order heavy quark coefficient functions be
calculated explicitly@but needing explicit subtraction of di
vergences in (Q2/M2) beyond leading order#. However, we
note that ACOT do not usually use the scale choicem2

5Q2 as we do. More common ism25M210.5Q2(1
2M2/Q2)2 @23#, which grows more slowly than our choic
from the same value atQ25M2 and ism250.5Q2 asymp-
totically.

ACOT claims a smooth transition from the FFNS at lo
Q2 order by order. Their ‘‘LO’’ expression for the structur
function is

F2,H
LO ~x,Q2!5Ĉ2,HH

VF,NS,0~Q2/M2! ^ „H~m2!1H̄~m2!…0

1
as,nf11~m2!

2p
Ĉ2,Hg

VF,S,1~Q2/m2,Q2/M2!

^ g0
nf11

~m2!, ~4.25!

where from Eqs.~3.12! and ~4.24!,

Ĉ2,Hg
VF,S,1~z,Q2/m2,Q2/M2!

5C2,Hg
FF,S,1~z,Q2/M2!2„ln~m2/M2!1crs…Pqg

0
^ zd~ x̂02z!

3S 11
4M2

Q2 D . ~4.26!

There are a number of odd features associated with th
expressions. Firstly, the ‘‘correct’’ threshold behavior com
about only from a conspiracy of cancellation. Neither term
Eq. ~4.25! respects the physical threshold individually a
Ĉ2,Hg

VF,S,1(z,Q2/m2,Q2/M2) has a part with a threshold inŴ2

and a part going like Eq.~4.24!. In fact, since the first term in
Eq. ~4.25! grows more quickly than the subtraction term
the second term in Eq.~4.25!, there will be nonzero~albeit
very small! heavy quark structure function forW2,4M2.
Once all the necessary cancellation has taken place, the r
is very good. This can be seen in Fig. 8 of@23#, and also in
Fig. 1 which is calculated using the ACOT ‘‘LO’’ prescrip
tion, our choice of renormalization scale, and the parton d
tributions obtained from our best fit~see later for details!.
There is a smoother transition in Fig. 8 of@23# than in Fig. 1
because their complicated choice of scale leads tom2 depart-
ing slowly fromM2 and staying well belowQ2 and hence to
the growth of the charm parton distribution being effective
much slower than for the simpleQ25m2 choice. The effect
of the choice of renormalization scale on the speed of de
ture of the ACOT result from the LO FFNS result can
seen nicely in Fig. 1 of@26#.

However, even though the cancellation of terms wo
well, Eq. ~4.25! is at odds with the usual way of defining
LO expression, which usually only involves zeroth coef
cient functions convoluted with the parton distributions o
tained from the one-loop evolution equations. It is clearly
mixed order, and indeed, part of the expression is in f
renormalization scheme dependent, which is certainly
correct for a LO expression. If we go toQ2@M2, Eq. ~4.26!
does not reduce to any fixed order expression in the Z
VFNS. The first term in Eq.~4.26!, represented by the dotte
line in Fig. 1, becomes the LO expression in the ZM-VFN
but the second belongs to the NLO expression. One can
in Fig. 1 that the total LO ACOT result is significantly dif
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6884 57R. S. THORNE AND R. G. ROBERTS
ferent from the asymptotic ZM-VFNS result even atQ2

51000 GeV2. Similarly the derivative of Eq.~4.25! leads to
terms both ofO(as,nf11) andO(as,nf11

2 ), and will have a

renormalization scheme dependent part. This mixing of
ders is not acceptable.

Alternatively, with the choice ofĈ2,HH
VF,NS,0(z,Q2/M2)

made, the usual way of ordering the expansion for a struc
function leads to serious problems. Using what one wo
normally consider the LO expression,F2,H

0 (x,Q2)
5ĈHH

VF,NS,0(Q2/M2) ^ „H(m2)1H̄(m2)…, has only a sharp
threshold inQ2 and the rate of growth ofF2,H(x,Q2) would
be very discontinuous atQ25M2 and a great deal too fas
just above this. This can easily be seen on Fig. 1 where
contribution is represented by the dotted line and labe
‘‘charm quark.’’ It deviates very quickly from both the
continuation of the FFNS expression and from the to
expression. Using the NLO expression ordered
the usual manner,5 the effect would be lessened, b
would still be significant. The subtraction piece
Ĉ2,Hg

FF,S,1(z,Q2/m2,Q2/M2) would largely cancel the quick
growth generated by the LO evolution of the charm par

5It is an expression of this general form that is used in the rec
global fits to data@27#.

FIG. 1. Charm quark structure function,F2,c(x,Q2) for x
50.05 andx50.005 calculated using the ACOT ‘‘LO’’ prescrip
tion, our input parton distributions evolved at LO and renormali
tion scalem25Q2. Shown are the total, the two contributions d
to convolution of the coefficient functionC2,Hg

VF,1(z,Q2/mc
2) with the

gluon distribution~the subtraction term making a negative cont
bution!, and the contribution directly due to the charm quark.
r-

re
d

is
d

l
n

n

distribution, but the NLO evolution would still be uncan
celed. This effect can be seen in Fig. 9 in@23#, where NLO
parton distributions are combined with what is called the L
coefficient functions and in Fig. 2, where we do the sa
thing using our parton distributions andm25Q2. Here the
subtraction term only partially cancels the charm quark c
tribution and the total quickly departs from the continuati
of the FFNS structure function, and the effect increases
smallerx. The all-orders definition of the coefficient func
tions in Eqs.~3.6!–~3.10!, if indeed it is the all orders defi-
nition in the ACOT scheme, guarantees that the correct
Q2 behavior will be restored when working to all orders, b
in this scheme this behavior will come about only due to
mixing of effects at different orders. At low orders the di
crepancy is still large. We note that the MRRS scheme@28#,
which incorporates mass effects into the evolution, but ha
similar definition of coefficient functions to ACOT~though
with the usual ordering!, suffers badly from this problem
outlined above. At the transition point, where the hea
quark starts contributing to the heavy quark coefficient fu
tion directly, there is a very distinct kink, and the total ris
very quickly above the continuation of the FFNS expressi
as seen in Figs. 6 and 7 of their paper.

We do not believe that the method used by ACOT~or
MRRS! is a satisfactory way in which to define the coef
cient functions in a VFNS, and we certainly do not belie
that it is unique. It is a choice, as our prescription is a choi
and as we have discussed in Sec. III, we do not believe
any are strictly ‘‘correct.’’ However, using the ACOT choic
the calculation of the heavy quark coefficient functions p
ceeds as though the heavy quark parton distribution is du
intrinsic presence of the heavy quark rather than it be

nt

-

FIG. 2. Same as Fig. 1, but with the partons evolved at NLO



th
f
or
th
a

n

i
en

n-
e

er
ce

d

ns-

-

-

of
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generated from~at least mainly! the gluon. In particular the
heavy quark coefficient function contains no reference to
kinematic threshold inŴ2. This necessitates a mixing o
orders to get satisfactory results. We believe it is far m
useful to choose the heavy quark coefficient functions so
they reflect the physics and all automatically contain at le
the correct form of lowQ2 behavior, and our prescriptio
guarantees this.

V. THE VFNS IN PRACTICE

We now discuss how our procedure is implemented
practice. Of course, in practice the first heavy quark we
counter is the charm quark withmc'1.5 GeV. First we con-
sider the LO expression. Denotinge5mc

2/Q2 the LO FFNS
heavy quark to gluon coefficient function is

C2,cg
FF,1~z,e!5F „Pqg

0 ~z!14ez~123z!28e2z2
…lnS 11v

12v D
1„8z~12z!2124ez~12z!…v Gu~Ŵ224mc

2!,

~5.1!

whereŴ25Q2(1/z21), the gluon quark center of mass e
ergy,v is the velocity of the heavy quark or antiquark in th
photon-gluon center-of-mass frame, defined byv251
24mc

2/Ŵ2, andPqg
0 (z)5„z21(12z)2

…. Thesev-dependent
terms ensure that the coefficient function tends to z
smoothly asŴ254mc

2 is approached from below, and hen
LO

os
th

iza
io
e

e
at
st

n
-

o

the structure function has a smooth threshold inW2. Taking
the lnQ2 derivative of this is a straightforward matter an
results in

dC2,cg
FF,1~z,e!

d ln Q2 5F S Pqg
0 ~z!12e

z~122z2!

12z
216e2z2D 1

v

1@24ez~123z!116e2z2# lnS 11v
12v D

1@4ez~12z!#vGu~Ŵ224mc
2!, ~5.2!

and it is easy to see that in the limitQ2→`,

dC2,cg
FF,1~z,e!

d ln Q2 →Pqg
0 ~z!. ~5.3!

Hence, from Eq.~4.6!, we see thatC2,cc
FF,NS,0(z,e) must indeed

tend to the simple formzd(12z) in this limit.
Solving Eq.~4.6! for C2,cc

FF,NS,0(z,e) at arbitrarye is not too
complicated. Taking moments of both sides the Mellin tra

formation ofC2,cc
FF,NS,0(z,e) is the product of the Mellin trans

formation ofdC2,cg
FF,1(z,e)/d ln Q2 and the inverse of the Mel

lin transformation of„Pqg
0 (z)…, which is

E
0

1

zn21Pqg
0 ~z!dz5

n21n12

n~n11!~n12!
. ~5.4!

This leads to the following expression for the convolution
C2,cc

FF,NS,0(z,e) with the heavy quark distribution,
C2,cc
FF,NS,0~e! ^ „c~Q2!1 c̄~Q2!…52E

x

x0
dz

dC2,cg
FF,1~z,e!

d ln Q2 S x

zD
2 d@c~x/z,Q2!1 c̄~x/z,Q2!#

d~x/z!
13E

x

x0
dx

dC2,cg
FF,1~z,e!

d ln Q2 S x

zD
3@c~x/z,Q2!1 c̄~x/z,Q2!#22E

x

x0
dz

dC2,cg
FF,1~z,e!

d ln Q2

3E
x/z

1

dz8r ~z8!
x

zz8
@c~x/zz8,Q2!1 c̄~x/zz8,Q2!#, ~5.5!
a-

m-

c-
wherex05(114e)21 and r (z) is given by

r ~z!5z1/2FcosSA7

2
ln

1

zD 1
3

A7
sinSA7

2
ln

1

zD G . ~5.6!

Using this expression we are able to calculate the
contribution to the heavy quark structure function using
particular set of parton distributions. In practice we use th
obtained from a global fit to structure function data using
NLO formalism~details later!. In order to get the LO parton
distributions, we simply take the same input parameter
tions for the partons, but evolve them using the LO evolut
equations. Our prescription for the LOas(Q

2) across the
charm threshold is to define
a
e
e

-
n

as~Q2,n!5
b0

n

4p ln~Q2/LQCD
2 !

, ~5.7!

and

as,4~Q2!5as~Q2,4!, ~5.8!

i.e., LQCD is defined for four flavors, and take for three fl
vors

as,3
21~Q2!5as

21~Q2,3!1as
21~mc

2,4!2as
21~mc

2,3!.
~5.9!

This prescription precisely reproduces the results of su
ming the leading logs in (Q2/mc

2) in Eq. ~3.15!. The results
of the LO contribution for the heavy quark coefficient fun
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tion are shown in Fig. 3, along with the continuation of t
LO FFNS expression and also the LO ZM-VFNS expressi
One can see that the LO VFNS expression departs v
smoothly from the continuation of the LO FFNS expressio
then rises above it, and in the limit of very highQ2 becomes
essentially identical to the LO ZM-VFNS result. This is pr
cisely the behavior we would expect. We also note that
like other approaches, the expression does not rely on
cancellation between terms.

We now consider also the NLO expression for the hea
quark structure function. As well as the LO coefficient fun
tion just introduced, we include theO„as,nf11(Q2)… coeffi-

cient functions. The expression forC2,cg
VF,1(z,e) is as in Eq.

~4.7!, and is in terms of quantities we have written explicit
above in Eqs.~5.1! and ~5.2!, i.e.,

C2,cg
VF,1~z,e!5C2,cg

FF,1~z,e!2 ln~Q2/mc
2!

dC2,cg
FF,1~z,e!

d ln~Q2!
.

~5.10!

Hence, there are no new problems in implement
C2,cg

VF,1(z,e). In the limit Q2→` the first of these becomes

C2,cg
FF,1~z,e!→Pqg

0 ~z!lnS ~12z!e

z D1@8z~12z!21#.

~5.11!

FIG. 3. Charm quark structure function,F2,c(x,Q2) for x
50.05 andx50.005 calculated using our LO prescription, our i
put parton distributions evolved at LO and renormalization sc
m25Q2. Also shown are the continuation of the LO FFNS expre
sion and the ZM-VFNS expression both calculated using the s
parton distributions and same choice of scale.
.
ry
,

-
ny

y
-

g

Using this, along with Eq.~5.3! and the definition~5.10!, we
see that in the limite→`

C2,cg
VF,1~z,e!→Pqg

0 ~z!lnS 12z

z D1@8z~12z!21#

5C2,qg
nf11,1

~z!, ~5.12!

in the MS renormalization scheme.
From the arguments leading up to Eq.~4.12!, it is clear

that C2,cc
VF,NS,1(z,e) also tends to the correct asymptotic lim

and indeed, all coefficient function are constructed so t
this will be true. However, it is not possible to exhibit this
such an explicit manner since the expression
C2,cc

VF,NS,1(z,e) depends onC2,cg
FF,2(z,e) for which there is no

analytic expression.6 Likewise, it would be extremely diffi-
cult to implementC2,cc

VF,NS,1(z,e) into the calculation pre-
cisely. In practice we find that the contribution to the to
heavy quark structure function of this term convoluted w
the heavy quark parton distribution is only a very small fra
tion of the total. Hence, we include this contribution to t
total heavy quark structure function in an approximate m
ner, being confident that it is very far from being significa
at the present level of accuracy required.

Using our NLO prescription we use our NLO partons
calculate the heavy quark structure function. Our presc
tion for the NLOas(Q

2) is to defineas(Q
2,n) by the stan-

dard two loop extension of Eq.~5.7!, and then to use Eqs
~5.8! and ~5.9! once again. Equation~5.9! does not sum all
leading and next-to-leading logs in (Q2/mc

2) absolutely cor-
rectly, but is an extremely accurate representation of the
cise expression. The NLO charm structure function is sho
in Fig. 4 along with the continuation of the NLO FFNS e
pression and the NLO ZM-VFNS result. As at LO the VFN
departs very smoothly from the continuation of the FFN
expression. Although at this order we have not been abl
demand absolute continuity of the derivative of the struct
function acrossQ25mc

2, we see that there is no visible ev
dence of discontinuity at all. In fact the transition from on
scheme to the other is smoother than at LO. Also the VF
stays closer to the continuation of the FFNS at higherQ2 at
this order. This is as we would expect, since as one work
higher orders inas in the FFNS, one automatically include
more ln(Q2/mc

2) terms which are completely summed in th
VFNS. At all orders the two schemes become identical in
far as physical quantities are concerned. At very highQ2

then our expression tends towards the NLO ZM-VFNS e
actly as required.

Of course, at higherQ2 we also have effects due to th
bottom quark which hasmb'5 GeV. BelowQ25mb

2 there is
no bottom quark distribution and we take account of t
bottom quark effects by using treating all diagrams includ
bottom quarks in the fixed flavor scheme, and all other
fects decouple. AtQ25mb

2 we switch to a VFNS for inclu-

6We are grateful to Jack Smith and Steve Riemersma for pro
ing the extensive program to compute theO(as

2) FFNS coefficient
functions@29#.
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sion of the bottom quark effects. Analogously to the cha
quark this involves switching to a 5 flavor coupling constant
defined by

as,5
21~Q2!5as

21~Q2,5!1as
21~mb

2,4!2as
21~mb

2,5!,

~5.13!

and beginning the evolution of the bottom quark density. T
VFNS coefficient functions are defined using a generali
tion of Eqs.~3.6!–~3.10!. There are now two heavy quarks
the definition of the fixed flavor number scheme, so we h
two extra equations forC2,bg

FF,S andC2,bq
FF,S, and there are now

extra VFNS coefficients such asC2,bg
VF,S or C2,bc

FF,PS. Also, the
finite operator matrix elements will depend on both t
charm and bottom mass effects. However, exactly the s
principles as outlined in the last section apply for determ
ing the VFNS coefficient functions. At low orders inas(Q

2)
there is no mixing between the charm mass effects and
bottom mass effects. Hence, the VFNS charm coefficie
functions we have mentioned explicitly above remain
same aboveQ25mb

2 ~except for a completely negligible
change inC2,cc

FF,NS,1! and the bottom quark coefficient func
tions are obtained simply by replacingmc with mb and nf
11-flavor splitting functions withnf12-flavor splitting
functions. At higher orders the VFNS charm coefficie
functions change aboveQ25mb

2, acquiring mb dependent
corrections~in particularC2,cb

FF,PS comes into existence!, and
bottom coefficient functions acquire charm mass correctio

Thus, we have described how one may implement
prescription for the VFNS in practice, showing that there

FIG. 4. Same as Fig. 3, but with NLO prescriptions and NL
parton distributions.
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no real difficulty. We have also demonstrated that the res
have precisely the properties that our theoretical argum
in the previous section lead us to expect. In order to m
even more concrete statements regarding the suitability
our VFNS for the calculation of structure functions, we w
now discuss a comparison with data.

VI. PHENOMENOLOGICAL RESULTS

Using the prescription for heavy partons discussed abo
we can calculate the full structure functions in terms of inp
parton densities for the light quarks and gluon. The inp
scale is chosen asQ0

251 GeV2, and the input parton distri-
butions are then determined by performing a best fit to
wide variety of structure function and related data. Hence
repeat the type of procedure adopted by MRS and CT
~and others! in their global determination of parton distribu
tions. We note that apart from the massesmc andmb , which
we fix at 1.35 GeV and 4.3 GeV, respectively, the hea
quark contributions to structure functions have no free
rameters. The overall description of the data is shown
Table II.7 We compare the quality of the fit with that ob
tained using the FFNS approach,8 the MRS (R2) fit @30#,
which uses the ZM-VFNS prescription with a phenomen
logically motivated smoothing function and an alternati
VFNS, the Martin-Roberts-Ryskin-Stirling~MRRS! ap-
proach. There is a clear improvement when compared to
FFNS for all experiments where charm makes any real c

7We note that we do not alter the values ofF2(x,Q2) for the
HERA data to take account of our predictions forFL(x,Q2), as
should really be done. TheFL(x,Q2) values used in@2# and@3# are
obtained using a NLO-in-as(Q

2) calculation, and so are not ver
different from ours in general, and the number of points affecte
relatively small. Hence the quality of the overall fit is very insen
tive to the neglect of this small correction.

8Because of the additional computing time required, this fit is
as exhaustive as the others. Nevertheless, we are convinced tha
extremely close to the best possible fit.

TABLE II. Comparison of quality of fits for a wide variety o
structure function data@2,3,33,39–41# using our prescription for
heavy quarks at NLO~TR! and the NLO fits MRRS and MRS(R2)
and a NLO fit using the FFNS. We do not include the small-x, low-
Q2 data in the second of@2# in our fit in order to make a direc
comparison with the previous fits.

Experiment
Data

points

x2

TR MRRS MRS(R2) FFNS

H1 F2
ep 193 135 133 149 147

ZEUS F2
ep 204 274 290 308 310

BCDMS F2
mp 174 262 271 320 291

NMC F2
mp 130 144 145 135 158

NMC F2
md 130 112 119 99 130

E665F2
mp 53 61 60 62 61

E665F2
md 53 53 54 60 51

SLAC F2
ep 70 98 96 95 99
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6888 57R. S. THORNE AND R. G. ROBERTS
tribution to the structure function, a large improvement co
pared to the MRS (R2) fit for the HERA and BCDMS data
though a slight worsening for New Muon Collaboratio
~NMC! data, and a small, but definite improvement, wh
compared to the Martin-Roberts-Ryskin-Stirling~MRRS!
fit.9 We can understand these features as follows. It is g
eral problem for the NLO fit to generate large enou
dF2(x,Q2)/dln Q2 for smallishx and highQ2 in all schemes
@a problem cured by correct inclusion of leading ln(1/x)
terms#. However, this problem is worst in the FFNS, sin
the rate of growth of charm is smaller at highQ2, than in the
other schemes as seen in Fig. 4. Hence, the fit using
FFNS is worse for the HERA and NMC data than the VFN
fit. We can understand the improvement of the VFNS fit o
the ZM-VFNS for the HERA data by the fact that much
the data lies near the threshold region, and the shape o
structure function predicted by the ZM-VFNS is incorrect
this region, i.e., the slope ofdF2(x,Q2)/dln Q2 changes
abruptly atQ25mc

2 rather than smoothly over a wide rang
of Q2. However, we note that the artificially large charm
x;0.04 andQ2;15 GeV2 in the ZM-VFNS actually helps
the ZM-VFNS fit to NMC data slightly. As far as th
BCDMS data is concerned, charm only comprises a v
small proportion of the total structure function for this da
but the errors on the data are extremely small, so produ
the correct form of charm will have some effect on the
The fact that the VFNS does give the best fit is some in
cation of its appropriateness. The small, but definite
provement over the MRRS approach also adds support to
particular VFNS approach.

Full details of a comprehensive global analysis using t
procedure will be presented in a future publication. Ho
ever, here we will concentrate on those data which desc
the charm contribution to the structure function only. T
componentF2,c has been measured at intermediatex values
by European Muon Collaboration~EMC! @32# ~via the detec-
tion of inclusive muons! and at smallx by the H1 @4# and
ZEUS @5# collaborations at HERA~through measuringD
and D* cross sections!. The latter indicate that as much a
20–25 % of the totalF2(x,Q2) is due toF2,c(x,Q2). While
these data onF2,c(x,Q2) are not included as part of the ge
eral fitting procedure, we can compare them with our th
retical predictions. The results are shown in Fig. 5. A ve
good description of both the small and mediumx data is
achieved for a charm mass ofmc51.35 GeV,10 although
there is a strong suggestion that a slightly higher mass wo
be preferred, i.e., the curves formc51.5 GeV give a rather
better description. In fact it is the data forQ2;2 GeV2

which strongly favor this higher value ofmc . Since in this
region of Q2 the theoretical approach is unambiguous, i
the true result must be very similar to the FFNS calculati
these points may be thought of as determining the value

9The fit is not as good as the leading order renormalization s
consistent~LORSC! fit @31,20#, which includes ln(1/x) corrections,
but not yet charm mass corrections.

10There is also a single EMC data point atx50.422 and
Q2578 GeV2 not shown in Fig. 5, which hasF2,c(x,Q2)
50.0027460.00152 compared to a prediction of 0.0003.
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mc at about 1.5 GeV, and a value very similar to this th
should be used over the whole range.

One can compare our results with those for the FFNS
ZM-VFNS shown in Fig. 5 of@26# ~with mc51.5 GeV!.
From this figure it seems as though the FFNS tends to
dershoot most data points, particularly the EMC points
moderatex, though this could be improved by choosin
lower mc . The ZM-VFNS curve matches HERA data we
but is clearly the wrong shape for the EMC data, especia
those points atQ2,3 GeV2 not shown in this figure, where
the ZM-VFNS fails hopelessly. This is only what one wou
expect from the construction of the ZM-VFNS, i.e., a disr
gard for the correct physics near threshold. Hence, the E
charm data in particular seem to favor a VFNS calculati
The HERA data on charm itself are not yet precise enoug
distinguish strongly between approaches, but as seen ab
the fact that the charm component is a large part of the t
F2(x,Q2) values means that global fits are more discrimin
ing, and favor the VFNS approach. Illustrating this fin
point, in Fig. 6 we show the relative importance of the cha
and bottom components to the total structure function, a
note the large fraction which is due to charm in the HER
low x region. The bottom contributes no more than;4% in
any currently accessible range ofx andQ2.

VII. THE LONGITUDINAL STRUCTURE FUNCTION

Finally we discuss our prediction for the heavy quark co
tribution to the longitudinal structure function. Althoug
there are no data directly available on this quantity, we f
that it is an important issue. This is because the implem

le

FIG. 5. Our prediction forF2,c(x,Q2) using our NLO prescrip-
tion, the NLO partons obtained from our global fit, and three d
ferent values frommc compared with the EMC and HERA data.
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tation is a little different from the case ofF2(x,Q2), also
because the charm contribution has a very important bea
on the total longitudinal structure function, contributing up
about 35% in the ZM-VFNS for example, and finally b
cause our results are very different from those in other w
of implementing a variable flavor number scheme.

As for F2(x,Q2), and for the same reasons, there is
way we can obtain the~hypothetical! absolutely correctly
ordered expression. Therefore, as in this previous case
want some relatively simple prescription which will refle
the physics involved correctly. There is a lot of similari
between our order-by-order prescription for the heavy qu
contribution to FL(x,Q2) and that forF2(x,Q2), and the
equations that the VFNS coefficient functions must satisfy
terms of the operator matrix elements and the FFNS co
cient functions are once again Eqs.~3.6!–~3.10!. One large
difference between the two is the fact that in a zero-m
formulation there are no zeroth-order inas(Q

2) coefficient
functions for the longitudinal structure function, and hen
the O„as(Q

2)… coefficient functions are leading order an
renormalization scheme independent. All previous imp
mentations of a VFNS@22,23,28# have included a zeroth
order heavy quark longitudinal coefficient function, i.e., t
term in Eq.~4.24! which }4M2/Q2. This procedure mean
that there is a coefficient function at lower order than the o
which becomes leading order in the ZM-VFNS limit, an
hence in order to reach this limit with the LO VFNS expre
sion coefficient functions at both zeroth and first order

FIG. 6. The ratiosF2,c /F2 and F2,b /F2 at fixed values ofQ2

resulting from our NLO parton distributions and takingmc

51.35 GeV andmb54.3 GeV. The experimental data point show
the estimate from Ref.@4# for F2,c /F2 in the kinematic range
10 GeV2,Q2,100 GeV2.
ng

s

e

k

n
fi-

s

e

-

e

-

as,nf 11
(Q2) would need to be included. Also, if one include

any zeroth-order coefficient function, using the express
~3.6! for the O„as,nf 11

(Q2)… gluon coefficient function re-

sults in CL,Hg
VF,1 (z,Q2/M2) having a component which is

renormalization scheme dependent.
Hence, we choose not to have any zeroth-order contr

tion to the longitudinal coefficient functions. As wit
F2(x,Q2) our VFNS coefficient functions are then dete
mined entirely by the requirements of reduction to the Z
VFNS order by order asQ2→` and continuity with the
FFNS across the boundaryQ25M2. Therefore, the prescrip
tion for the VFNS longitudinal structure function is ver
similar to that forF2(x,Q2), except that the relative order o
heavy quark coefficient functions aboveM25Q2 and light
quark coefficients at all Q2 is one higher, i.e.,
O„as,nf 11

(Q2)… is leading order, etc. The prescription for th
FFNS structure function at fixed order is then very straig
forward, i.e.,

FL,i
n ~x,Q2!5 (

m50

n

(
a

S as,nf
~Q2!

2p
D n2m11

3CL,ia
FF~n2m11!~M2/Q2! ^ f m,a

nf ~Q2!,

n50→`, ~7.1!

for both the heavy and light quark structure functions. T
general form of the expression aboveQ25M2 is the same as
this, i.e.,

FL,i
n ~x,Q2!5 (

m50

n

(
a

S as,nf11~Q2!

2p
D n2m11

3CL,ib
VF,n2m11~M2/Q2! ^ f m,b

nf11
~Q2!,

n50→`. ~7.2!

Since the expressions are now of an identical form both s
of the transition point@which was impossible forF2(x,Q2)
because of the requirement of zeroth-order heavy quark
efficient functions aboveQ25M2#, and are identical to all
orders, continuity of the structure functions themselves
guaranteed order by order inas(Q

2) across the transition
point. However, as in the case ofF2(x,Q2) the heavy quark
coefficient functions at each order have to be determi
using some prescription.~This ambiguity has no effect on th
continuity of the structure function since atnth order in the
expression for the structure function thenth-order heavy
quark coefficient functions only appear coupling to t
zeroth-order heavy quark distribution, which vanishes
Q25M2.!

As with F2(x,Q2) it would be nice to demand both con
tinuity of the structure function and its lnQ2 derivative
across the transition point. Since the expressions for
structure function are of exactly the same form both abo
and belowQ25M2 in this case~essentially because there a
no zeroth-order terms in the longitudinal structure functio!,
we can now attempt to equate the lnQ2 derivatives of the
nth-order terms in both expressions rather than making
derivative of thenth-order VFNS expression match on to th
nth-order derivative in the FFNS as was necessary
F2(x,Q2). As in the previous case we have enough choice
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demand only that this is true in the gluon sector, but again
far the dominant contribution to this derivative comes fro
this sector. However, now we have an additional probl
compared to the previous case. This can be seen by exa
ing the lowest-order expressions.

In the FFNS the lowest-order expression for the hea
quark structure function is

FL,H
0 ~x,Q2!5

as,nf
~Q2!

2p
CL,Hg

FF1 ~M2/Q2! ^ g0
nf~Q2!,

~7.3!

while in the VFNS, it is

FL,H
0 ~x,Q2!5

as,nf11~Q2!

2p
CL,Hg

VF,1 ~M2/Q2! ^ g0
nf11

~Q2!

1CL,HH
VF,1 ~M2/Q2! ^ „H~Q2!1H̄~Q2!…0

nf11,

~7.4!

and from Eq.~3.6! we have

CL,Hg
VF,1 ~z,M2/Q2!5CL,Hg

FF,1 ~z,M2/Q2!

5F4z~12z!v28ez2lnS 11v
12v D G ,

~7.5!

for the charm quark, where againe5mc
2/Q2 and u(Ŵ2

24mc
2) is implied wheneverv appears. Clearly the structur

functions are the same atQ25M2. It is also clear that the
O„as(Q

2)… expression for the lnQ2 derivative is the same on
both sides, i.e.,

dFL,H~x,Q2!

d ln Q2 5
as~Q2!

2p

dCL,Hg
FF,1 ~Q2/M2!

d ln Q2 ^ g0~Q2!.

~7.6!

However, this expression, which vanishes asQ2/M2→`, is
lower order than the leading-order asymptotic expans
which is O„as

2(Q2)…. It is this, rather than a zeroth-orde
coefficient function, which truly reflects the fact that th
heavy quark longitudinal structure function has behav
which begins at lower order than the massless express
ThisO„as(Q

2)… derivative means that while the asympto
O„as

2(Q2)… expression for the total derivative of the longit
dinal structure function is renormalization scheme indep
dent, it contains a part which vanishes asQ2/M2→` which
is renormalization scheme dependent. This is different to
case for F2,H(x,Q2), where the leading asymptotic an
O(M2/Q2) parts of the derivative are both of the same ord
i.e.,O„as(Q

2)….
If we treat the O„as(Q

2)… component of
dFL,H(x,Q2)/d ln Q2 as a superleading part which is triv
ally continuous acrossQ25M2, and then examine the form
of theO„as

2(Q2)… terms coming from the derivatives of Eq
~7.3! and ~7.4!, then since each of the leading-order expr
sions is renormalization scheme independent, then so ar
contributions obtained in the expressions for the derivativ
Explicitly we obtain, in the FFNS,
y

in-

y

n,

r,
n.

-

e

r,

-
the
s.

dFL,H~x,Q2!

d ln Q2 5S as,nf
~Q2!

2p
D 2

CL,Hg
FF,1 ~Q2/M2!

^ „2b0
nfg0

nf~Q2!1Pgg
0,nf ^ g0

nf~Q2!

1Pgq
0

^ S0
nf~Q2!…, ~7.7!

and in the VFNS

dFL,H~x,Q2!

d ln Q2 5S as,nf11~Q2!

2p
D 2

$CL,Hg
VF,1 ~Q2/M2!

^ „2b0
nf11g0

nf~Q2!1Pgg
0,nf11

^ g0
nf~Q2!

1Pgq
0

^ S0
nf~Q2!…1CL,HH

VF,1 ~Q2/M2!

^ @Pqg
0

^ g0
nf11

~Q2!

1Pqq
0

^ „H~Q2!1H̄~Q2!…0]

2b0
nf11

„H~Q2!1H̄~Q2!…0% ~7.8!

From previous arguments it is clear that the ter
}CL,Hg

VF,1 (z,Q2/M2) in each equation are equal atQ25M2.
The vanishing of the heavy quark distribution at this sca
leads to the single condition

CL,HH
VF,1 ~z,1!50, ~7.9!

in order to match theseO„as
2(Q2)… contributions to the de-

rivative. Thus, we have this condition, along with the fa
that CL,HH

VF,1 (z,Q2/M2) must reduce to the correct asymptot
form, in order to determineCL,HH

VF,1 (z,Q2/M2). It is clearly

possible to choose forms forCL,HH
VF,1 (z,Q2/M2) which satisfy

these conditions, but there is rather less guidance as to
precise form required than forF2,H(x,Q2), where the condi-
tion at Q25M2 contained a component, which was clear
identifiable as the asymptotic expression.

This indeterminacy is due to the fact that theO(M2/Q2)
contributions to the derivative begin at one lower order th
the asymptotic form, rather than our chosen manner of
posing the matching. If we had chosen to match Eq.~7.8! to
the totalO„as

2(Q2)… expression fordFL,H(x,Q2)/d ln Q2 in
the FFNS, rather than just the part coming from Eq.~7.7!,
i.e., analogously toF2,H(x,Q2), we would have encountere
a different problem. In this case the determined value
CL,HH

VF,1 (z,1) would have contained a pa
}dCL,Hg

FF,2 (z,Q2/M2)/d ln Q2, which containsCL,qq
VF,nf11,1(z),

and the asymptotic limit would therefore appear more na
rally. However, the full expression fo
dCL,Hq

FF,2 (z,Q2/M2)/d ln Q2, and consequently the full ex
pression forCL,HH

VF,1 (z,Q2/M2) implied, containsO(M2/Q2)
parts which are renormalization scheme dependent@since
they are subleading to theO„as(Q

2)… expression#. This is
not satisfactory in the definition of the leading order VFN
coefficient function, and the renormalization scheme dep
dent part of the expression should be removed. Howe
there is no unique way to do this, and hence the definition
CL,HH

VF,1 (z,M2/Q2) would be just as ambiguous as when usi
our chosen matching condition.
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Hence, we have to live with the fact that there is no co
pletely satisfactory way to determineCL,HH

VF,1 (z,Q2/M2) from
physical arguments. We choose to impose Eq.~7.9!, as well
as the fact thatCL,HH

VF,1 (z,Q2/M2) must reduce to the correc
asymptotic form, and also choose the coefficient function
that a smooth threshold inŴ2 is automatically incorporated
A simple choice satisfying all these requirements is

CL,HH
VF,1 ~z,Q2/M2!5 8

3 v~12M2/Q2!z. ~7.10!

In practice this ambiguity has little effect phenomenolo
cally, since the vast majority of the LO expression f
FL,H

0 (x,Q2) comes from the gluon contribution which is d
termined uniquely. Using Eq.~3.6! we have now also define
CL,Hg

VF,2 (z,Q2/M2), i.e.,

CL,Hg
VF,2 ~z,Q2/M2!5CL,Hg

FF,2 ~z,Q2/M2!2 ln~Q2/M2!Pqg
0

^ CL,HH
VF,1 ~Q2/M2!, ~7.11!

in MS scheme, although we do not have to make use of

yet. The fact thatCL,HH
VF,1 (z,Q2/M2) reduces to the correc

asymptotic limit guarantees thatCL,Hg
VF,2 (z,Q2/M2) does.

As far as the light quark contribution is concerned, t
coefficient functions are identical above and belowQ2

5M2, and the only effect is the change of the evolution
the parton distributions and in the running of the couplin
The lnQ2 derivatives of these LO light quark distribution
which are entirely ofO„as

2(Q2)…, are not quite continuous
across the transition point because of the flavor depend
of b0 and of the lowest-order splitting functions, i.e.,
Pgg

0 (z). As in the O„as
2(Q2)… derivative for F2,i(x,Q2),

there is continuity in the gluon sector, but not in the qua
sector. Phenomenologically the discontinuity is very sm
and becomes formally smaller as we work to higher orde

The result of our leading-order calculation ofFL,c(x,Q2),
using the same LO parton distributions as before, is show
Fig. 7, along with the LO FFNS and the LO ZM-VFN
results. As in the case ofF2,c(x,Q2) one can see that th
transition from the FFNS result is extremely smooth, and
course, the the correct asymptotic limit is reached. We n
that at lowQ2 the VFNS result forFL,c(x,Q2) is very dif-
ferent indeed from that in the ZM-VFNS. This leads to
very significant difference between the results for the to
FL(x,Q2) in the two different schemes, and important ph
nomenological implications. We also show explicitly th
contribution made by the charm quark distribution. At hi
Q2 this is unambiguously defined, and at lowQ2 it is very
small indeed. Therefore, the ambiguity in the lowQ2 heavy
quark contribution is not really significant.

A very important difference should be noted between t
approach and previous VFNS approaches at this point.
already mentioned, all previous approaches have use
zeroth-order charm quark coefficient function of the form

ĈL,cc
VF,0~z,e!54gezd~ x̂02z!. ~7.12!

If one were to regard the LO expression forFL,c(x,Q2) as
just this coefficient function convoluted with the heavy qua
distribution function then the behavior would be rath
strange, having a sharp threshold atQ25mc

2, growing
-

o

-

is

f
.

ce

k
l,
.

in

f
te

l
-

s
s
a

r

quickly, then turning over and going to zero asQ2/mc
2

→`. If, as is more likely, the LO expression is taken
include both the zeroth-order andO„as(Q

2)… coefficient
functions, so that the correct asymptotic LO limit is reach
then ĈL,cg

VF,1(z,e) is defined by Eq.~3.12!, i.e.,

ĈL,cg
VF,1~z,e!5ĈL,cg

FF,1~z,e!2
4mc

2

Q2 Pqg
0

^ zd~ x̂02z!

3„ln~Q2/mc
2!1crs…. ~7.13!

As well as this introducing incorrect renormalization sche
dependence into a leading-order expression~via crs!, it has
unfortunate phenomenological consequences. The VFNS
fers from the FFNS expression by

4ezd~ x̂02z! ^ @„c~Q2!1 c̄~Q2!…02as,4~Q2!Pqg
0

3 ln~Q2/mc
2! ^ g0

4~Q2!], ~7.14!

where we have usedMS scheme. These two terms are i
tended to largely cancel at and just aboveQ25mc

2, ensuring
a relatively smooth transition as in the ACOT prescripti
for the LO expression forF2,c(x,Q2). The procedure works
well in the case ofF2,c(x,Q2), and the transition is quite
smooth, as we have seen. However, the cancellation is
exact ~otherwise we would just have the FFNS!, „c(z,Q2)
1 c̄(z,Q2)…0'as,4(Q

2)Pqg
0 ln(Q2/mc

2)^g0
4(Q2) for Q2 just

FIG. 7. Charm quark structure function,FL,c(x,Q2) for x
50.05 andx50.005 calculated using our LO prescription, our i
put parton distributions evolved at LO and renormalization sc
m25Q2. Also shown are the continuation of the LO FFNS expre
sion and the ZM-VFNS expression both calculated using the s
parton distributions and same choice of scale.
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6892 57R. S. THORNE AND R. G. ROBERTS
abovemc
2, but the resummation of the logs in the evolutio

of the charm quark distribution leads to differences appe
ing. To a rough approximation,

„c~z,Q2!1 c̄~z,Q2!…02as,4~Q2!Pqg
0 ln~Q2/mc

2! ^ g0
4~Q2!

'„as,4~Q2!ln~Q2/mc
2!…2Pqg

0
^ Pgg

0,4
^ g0

4~Q2!, ~7.15!

at moderateQ2. Inserting this into Eq.~7.14! leads to

4e„as,4~Q2!ln~Q2/mc
2!…2zd~ x̂02z! ^ Pqg

0
^ Pgg

0,4
^ g0

4~Q2!.

~7.16!

For Q2'5 – 10 GeV2 this expression is comparable in size
the FFNS component of the full expression forFL,c(x,Q2),
which ;asg0

4(Q2) with damping due to kinematic factor
@and which is more than 10 times smaller than the LO FF
component forF2,c(x,Q2)#. However, it falls away quickly
at larger Q2. This leads to the LO VFNS expression fo
FL,c(x,Q2) increasing very quickly above the FFNS expre
sion above the transition point, dramatically slowing, or p
haps even falling atQ2;5mc

2, and then smoothly approach
ing the correct asymptotic limit. I.e., there is a ve
pronounced unphysical bulge in the value ofFL,c(x,Q2) cal-
culated in this way. When one calculatesRc5FL,c /(F2,c
2FL,c), which exhibits the relative rate of growth ofFL,c
andF2,c , the effect is demonstrated much more clearly a
distinct hump peaking at aboutQ253mc

2. This can be seen
very clearly in Fig. 9 of@28#, where the effect is particularly
dramatic, since the evolution of the heavy quark distribut
there is even quicker than inMS, and is at NLO. However
the treatment of coefficient functions follows the same g
eral principles as ACOT, and the same type of effect
somewhat smaller~the reduction depending very strongly o
the particular choice of renormalization scale—one wh
departs extremely slowly frommc

2 as Q2 increases could
remove the effect! will be clearly seen in their expressions.11

Even in the absence of detailed data, this type of effect se
sufficient to rule out this approach as a suitable way to or
a VFNS expression.

We now consider the NLO expressions for the longitu
nal structure functions. For both heavy and light quark str
ture functions both above and belowQ25M2, we add to the
LO expressions theO„as

2(Q2)… coefficient functions convo-
luted with the LO parton distributions and theO„as(Q

2)…
coefficient functions convoluted with the NLO parton dist
butions. Let us first consider the heavy quark coeffici
function. It is guaranteed by satisfying Eqs.~3.6!–~3.10! or-
der by order inas(Q

2), while also satisfying the correc
relations between parton distributions and the coupling,
this procedure will lead to structure functions, which a
continuous acrossQ25M2. This is straightforward, if a little
tedious to check. Continuity of the derivative of the hea
quark structure function across the threshold is not gua
teed, but depends on the particular choice of the heavy q
coefficient functions. We can compare the derivatives of

11In fact, since as we see in Fig. 1 atx50.005 the subtraction term
is larger than the heavy parton distribution, the effect will be ne
tive.
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full NLO expressions in both the FFNS and VFNS up
O„as

3(Q2)…. From the conditions we have already impos
using Eqs.~3.6!–~3.10!, it is guaranteed that all new term
we introduce which behave likeas

2(Q2), i.e., those depend
ing ondCL,Hg(q)

F~V!R,2 /d ln Q2, will be continuous across the tran
sition point. Again this is straightforward to check. If w
examine theO„as

3(Q2)… contributions to the expression
then both in the FFNS and VFNS these are very involv
i.e., containing rather more terms than Eqs.~4.10! and~4.11!.
However, as with Eqs.~4.10! and~4.11! many of these terms
vanish atQ25M2, because the heavy parton distributio

vanishes here, also because in this caseCL,HH
VF,NS,1(z,1)50, and

also because many other terms are the same in both ex
sions. A long, but entirely straightforward calculation reve
that if we require continuity of the derivative in the gluo
sector, we have the requirement that

CL,HH
VF,S,2~Q2/M2! ^ Pqg

0 5CL,Hg
FF,2 ~z,Q2/M2!~b0

nf11
2b0

nf !

1CL,Hg
FF,1 ~z,Q2/M2!~b1

nf11
2b1

nf !

2CL,Hg
FF,1 ~Q2/M2!

^ ~Pgg
1,nf11

2Pgg
1,nf !, ~7.17!

at Q25M2. So atO„as
2(Q2)…, as atO„as(Q

2)…, there is no
implication of the asymptotic form required of the hea
quark coefficient function in the condition atQ25M2, but
the condition is no longer that the coefficient function is ze
at this value ofQ2. We can understand where the nonze
terms come from quite easily. If we had used the whole
theO„as,nf

3 (Q2)… expression for the derivative of the heav

quark structure function in the FFNS, and equated this to
VFNS expression, then the asymptotic form
CL,HH

FF,2 (z,Q2/M2) would have appeared naturally in the e
pression fordCL,Hg

FF,3 /d ln Q2. However, by examination o

expression fordCL,Hg
FF,3 /d ln Q2 contained within Eq.~3.6!,

we would find that the definition ofCL,HH
VF,NS,2(z,Q2/M2)

would also need to contain terms of the sort in Eq.~7.17!, as
well as others which vanish atQ25M2, in order to reduce to
the correct asymptotic limit. However, in an analogous fa
ion to our previous discussion at leading order, we do not
this technique since parts of theO(M2/Q2) corrections to
dCL,Hg

FF,3 /d ln Q2 are properly of NNLO, i.e., are renormaliza
tion scheme dependent in such a way as to compensat
the renormalization scheme variation of the NLO terms. T
would require an ambiguous subtraction procedure for th
terms, and we would have no more real information than t
contained in Eq.~7.17! and the asymptotic condition.

Hence, as for theO„as,nf11(Q2)… coefficient function, we
make a simple choice for the coefficient function which s
isfies Eq. ~7.17!, which reduces to the correct asymptot
limit, and which explicitly contains the correct threshold b
havior. Once again we multiply the asymptotic limit, whic
makes no appearance atQ25M2, by (12M2/Q2)v. We
multiply the terms appearing in Eq.~7.17!, but which must
disappear asymptotically, byM2/Q2 ~in this case the thresh
old behavior is automatically contained in the expression!.
Hence we obtain
-
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CL,HH
VF,S,2~z,Q2/M2!5S 12

M2

Q2 D vCL,qq
nf11,2

~z!1
M2

Q2 ~Pqg
0 !21

^ @CL,Hg
FF,2 ~Q2/M2!~b0

nf11
2b0

nf !

1CL,Hg
FF,1 ~Q2/M2!~b1

nf11
2b1

nf !

2CL,Hg
FF,1 ~Q2/M2! ^ ~Pgg

1,nf11
2Pgg

1,nf !#.

~7.18!

This definition is ambiguous at lowQ2, but as at leading
order the total heavy quark structure function at NLO is
tally dominated by the gluon contribution. We also note th
the ambiguity introduced at LO from the definition of th
heavy quark coefficient function is very largely negated
NLO by the inclusion ofCL,HH

VF,NS,1(z,Q2/M2) in the expres-
sion for CHg

VF,2(z,Q2/M2) ~7.11!. As we work to higher or-
ders, the ambiguity formally disappears. We also note
the coefficient functionCL,HH

VF,S,2(z,Q2/M2) is the sum of the
nonsinglet and pure singlet coefficient functions. We are f
to separate them as we wish, using the condition that e
tends to the correct asymptotic limit. It would also be des
able to choose each so that they respect the kinematic th
old. The choice has no bearing on the expression for
structure function, but a simple choice is to let the nonsing
part contain all parts}v, and to split the other part simply in
terms of the asymptotic form.

Comparing theO„as
3(Q2)… expressions for the derivativ

of the heavy quark structure function, which are proportio
to the singlet quark distribution, then as for the NLO deriv
tive for F2,H(x,Q2) we see that continuity is not achieve
The difference between the VFNS expression and the FF
expression is

2~b0
nf2b0

nf11
!CL,Hq

FF,PS,2~Q2/M2! ^ S0
nf~Q2!, ~7.19!

where CHq
FF,PS,2(z,Q2/M2)5CL,Hq

VF,PS,2(z,Q2/M2). This NLO
effect is very small, and as forF2,H(x,Q2) the effect disap-
pears as we work to higher orders.

For the light quark structure functions, there is one cho
to make. There is a mass dependent contribution to the n
singlet coefficient function atO„as

2(Q2)…, but the form of
the VFNS coefficient function is determined entirely by E
~3.8!. In essence the mass dependent correction
CNS,nf ,2(z) contains a piece which becomes constant asy
totically, which representsCNS,nf11,2(z)2CNS,nf ,2(z), and a
piece which grows like ln(Q2/M2) which takes account of the
difference between thenf11 andnf flavor couplings. The
O„as

3(Q2)…ln Q2 derivative is slightly discontinuous atQ2

5M2, but this is corrected by inclusion of theO„as
3(Q2)…

coefficient functions. For the pure singlet and gluon coe
cient functions coupling to light partons, there are no m
dependent corrections in the FFNS atO„as,nf

2 (Q2)…, and we

simply use the same coefficient functions above and be
Q25M2. Continuity of the NLO structure functions is the
automatic. However, the pure singlet coefficient functi
CL,qH

VF,PS,2(z,Q2/M2) becomes nonzero at this order. It can
determined by demanding continuity of the lnQ2 derivative
of the structure function in the gluon sector. This results i
similar procedure as for the heavy to heavy coefficient fu
-
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tion: the asymptotic form is put in by hand and multiplied b
(12M2/Q2)v, while there are nonzero terms atQ25M2,
which are multiplied byv to ensure that they vanish a
Q25M2→`. The calculation is straightforward, and we d
not present details here. As for the heavy quark struct
function, theO„as

3(Q2)…ln Q2 derivative in the singlet quark
sector is slightly discontinuous atQ25M2, but again this is
corrected at next order by inclusion of theO„as

3(Q2)… coef-
ficient functions.

Now that the NLO prescription for the longitudinal stru
ture function is completely defined we can examine the
sults. Using our NLO coefficient functions~7.18! and~7.11!,
and the NLO partons obtained from the best fit, we calcul
the NLO charm quark longitudinal structure function. This
shown in Fig. 8 along with the continuation of the NL
FFNS expression and the NLO ZM-VFNS result. Once ag
the VFNS increases above the FFNS result very smoot
despite the discontinuity in the lnQ2 derivative in the singlet
quark sector, which is now demonstrably minute. At ve
high Q2 our expression tends towards the ZM-VFNS as
quired, but as at LO the two become very different at low
Q2. As in the case ofF2(x;Q2) at NLO, the difference be-
tween the VFNS and the continuation of the FFNS is
duced compared to the difference at LO for the same r
sons. Hence, we have every reason to consider
prescription for the longitudinal structure functions quite s
isfactory.

In fact we can compare to some data. Atx,0.1 the
VFNS, ZM-VFNS, and FFNS values for the totalFL(x,Q2)
are very similar. However, the NMC collaboration have pr
duced data for 0.11.x.0.0045 and 1.3 GeV2,Q2

,20.6 GeV2 @33#, Q2 increasing asx increases. These dat
are in the region, where our VFNS prescription produc
very different results to the ZM-VFNS~but almost identical
to the FFNS! for FL,c(x,Q2), and hence significantly differ-
ent results for the total longitudinal structure function. Usi
the parton distributions obtained from our best global fit,
produce predictions forR(x,Q2)5FL(x,Q2)/„F2(x,Q2)
2FL(x,Q2)… using the ZM-VFNS and the VFNS, and com
pare data. The results are shown in Fig. 9. The kink in b
curves at the lowestx values comes about because for
data points other than that atx50.0045, asx decreasesQ2

also decreases smoothly, while for this point the extract
of R(x,Q2) relies on an extrapolation and theQ2 is actually
almost identical to that for thex50.008 point. The kink in
the ZM-VFNS expression atQ25mc

251.8 GeV2 is due to all
charm coefficient functions turning on discontinuously at t
point. Comparing to the data it is clear that the ZM-VFN
curve is much too large for most of thex range, while down
to x50.01 the VFNS curve matches the data quite w
Thus, there is strong evidence for including charm mass
fects in the longitudinal structure function, and our prescr
tion seems reasonably successful. Other VFNS prescript
would lead toR(x,Q2) somewhere between the two curve
The theory is clearly below the data for the lowestx andQ2

points, where the charm contribution toR(x,Q2) is ex-
tremely small, i.e., the VFNS and ZM-VFNS curves are
most identical. The smallness ofR(x,Q2), and the decrease
with decreasingx at constantQ2 in this region are largely
due to a negative smallx contribution fromCL,ig

nf ,2(z), which
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becomes increasingly important asx andQ2 fall. Thus, the
difference between the theory and data for the two lowex
points is perhaps a sign of the failure of the NLO-in-as(Q

2)
calculation of structure functions at smallx.12

As with F2(x,Q2) the NLO calculation is the best tha
can be done explicitly with the present knowledge of str
ture functions. However, as in this previous case, we out
the procedure for all orders. The general form of the expr
sions is presented in Eqs.~7.1! and ~7.2!, and for the heavy
quark structure function nothing essentially new compare
the LO and NLO prescriptions occurs. Atnth nontrivial or-
der we determineCL,HH

VF,n (z,Q2/M2) by demanding continuity
of the lnQ2 derivative of the structure function in the gluo
sector, and by demanding the correct asymptotic form.
each order the correct asymptotic form will not appear in
continuity conditions and need to be introduced by ha
Each time we multiply by (12M2/Q2)v. At each order
there will also be terms introduced by the continuity dema
which must vanish asQ2→`, and we multiply these by
M2/Q2. At every order this determination o
CL,HH

VF,n (z,Q2/M2) predeterminesCL,Hg
VF,n11(z,Q2/M2) and

12The curve labeledRQCD in Fig. 10 of the NMC paper@33# con-
tains little information. ForFL(x,Q2) it uses a LO formula@34#
~and hence does not contain the important NLO smallx effect!,
which assumes our massless quarks at allQ2, along with a gluon
which has been extracted using a NLO fit in the FFNS@2#. More-
over, this gluon is not constrained at largex and is highly inconsis-
tent with largex data. From the momentum sum rule this means
form at smallx is also much different to a well constrained gluo

FIG. 8. Same as Fig. 7, but with NLO prescriptions and NL
parton distributions.
-
e
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to

t
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CL,Hq
VF,n11(z,Q2/M2) by using Eqs. ~3.6! and ~3.7! to
O„as

n11(Q2)…. The comments concerning the separation
CL,HH

VF,n (z,Q2/M2) into nonsinglet and pure singlet parts
Sec. IV apply again.

For the light quark structure function the procedure
higher orders is also straightforward. As with th
O„as,nf11

2 (Q2)… coefficient function we determine

CL,qH
VF,n (z,Q2/M2) by demanding continuity of the derivativ

of the light function in the gluon sector, analogously to t
heavy quark sector. With this one degree of freedom eli
nated in this way, all other VFNS coefficient functions a
determined uniquely order by order inas,nf11(Q2) by Eqs.

~3.8!–~3.10!, i.e., this determination ofCL,qH
VF,n (z,Q2/M2) pre-

determinesCL,qg
VF,n11(z,Q2/M2) andCL,qq

VF,PS,n11(z,Q2/M2) by
using Eqs.~3.9! and ~3.10! to O„as

n11(Q2)….
Thus, we have completely defined our prescription

calculating the structure functionFL(x,Q2) order by order.
As for F2(x,Q2) we can sum it up in a simple diagram
shown in Table III. The generalization to the case of tw
heavy quarks follows the same lines as for the case
F2(x,Q2) which was discussed at the end of Sec. V. F
Q2,mb

2 the bottom quark effects are all treated via FFN
coefficient functions, while in the region aboveQ25mb

2, we
have a variable flavor scheme for both the charm and bot
quark. For high orders inas(Q

2) there will be mixing of the
effects of the two quarks, but for the orders currently ava
able in practice the mixing is extremely small indeed, as w
F2(x,Q2), and the bottom coefficient functions are esse
tially the same as those for charm withmc→mb and with
five flavors rather than four.

Our prescription uniquely determines all VFNS coef
cient functions, and as forF2(x,Q2), while not leading to
absolute correctly ordered expressions, it is a relativ
simple prescription for obtaining order-by-order structu
functions, which are very similar to the hypothetical strict
correct ones, which reduce to the correct asymptotic fo
order by order inas,nf 11

(Q2), and which are consistent with
physical requirements order by order. All ways of satisfyi
both Eqs.~3.6!–~3.10! and the correct asymptotic limits wil

s

FIG. 9. Our prediction forR(x,Q2) using our NLO prescription,
the NLO partons obtained from our global fit andmc51.35 GeV
compared with the NMC data@33#. Also shown is the prediction
obtained using the same parton distributions but for the NLO Z
VFNS prescription. The curves are computed usingQ251.3 GeV2

for x<0.0077 andQ25262x1.09 for x>0.0077.
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TABLE III. Prescription for the order by order inas(Q
2) determination of the VFNS coefficient functions forFL(x,Q2). In each case

CL,aH
VF,n (z,M2/Q2) is determined by introducing the asymptotic form multiplied by (12M2/Q2)v and multiplying the terms determined b

continuity byM2/Q2.

Order of
equality Eq. Coefficient functions determined

as(Q
2) ~3.6! CL,Hg

VF,1

~3.8! CL,qq
VF,NS,1

~3.9! CL,qg
VF,1

as
2(Q2) ~3.6! CL,HH

VF,S,1 @by continuity of (dFL,H /d ln Q2)M2 in gluon sector
atO„as

2(Q2)…#, CL,Hg
VF,2

~3.7! CL,Hq
VF,2

~3.8! CL,qq
VF,NS,2

~3.9! CL,qg
VF,2

~3.10! CL,qq
VF,PS,2

as
3(Q2) ~3.6! CL,HH

VF,S,2 @by continuity of (dFL,H /d ln Q2)M2 in gluon sector
atO„as

3(Q2)…#, CL,Hg
VF,3

~3.7! CL,Hq
VF,3

~3.8! CL,qq
VF,3

~3.9! CL,qH
VF,2 @by continuity of (dFL,i /d ln Q2)M2 in gluon sector

atO„as
3(Q2)…#, CL,qg

VF,3

~3.10! CL,qq
VF,PS,3

¯ ¯ ¯

as
n(Q2) ~3.6! CL,HH

VF,S,n21 @by continuity of (dFL,H /d ln Q2)M2 in gluon
sector atO„as

n(Q2)…#, CL,Hg
VF,n

~3.7! CL,Hq
VF,n

~3.8! CL,qq
VF,n

~3.9! CL,qH
VF,n21 @by continuity of (dFL,i /d ln Q2)M2 in gluon

sector atO„as
n(Q2)…#, CL,qg

VF,n

~3.10! CL,qq
VF,PS,n
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be correct in a certain sense~provided they are consisten
with ordering within a given renormalization scheme!, but
many will have behavior which is unsatisfactory forQ2 not
much larger thanM2, and we have seen an example of th
As with F2(x,Q2) we believe our prescription to be ver
suitable.

VIII. SUMMARY AND CONCLUSION

In this paper we have constructed an order by order inas
prescription for calculating the neutral current structure fu
tion including the effects of a massive quark. For the reg
Q2,M2 this has essentially just been the normal FFN
where the heavy quark is not treated as a constituent of
hadron, but all heavy quarks in the final state are gener
via the electroweak boson interacting with light partons. F
Q2.M2 we have to solve the problem of summing lar
logs in Q2/M2 and m2/M2, which appear at all orders in
as(m

2). The easiest way to do this is to to treat the hea
quark as a parton, in which case the logs will be summ
automatically, when one solves the evolution equations
the partons. If one chooses the parton distributions ab
m25M2 to evolve as though massless and in theMS
scheme, then the newnf11 flavor parton distributions are
determined in terms of the FFNS parton distributions at
.

-
n
,

he
ed
r

y
d
r

ve

ll

m2 by well-defined, calculable matrix elements, which co
tain logs inm2/M2. In particular the heavy quark distributio
is determined entirely in terms of the light parton distrib
tions. The matrix elements can then be used to define
nf11 flavor parton distributions in terms of thenf flavor
distributions at some scale~in practicem25M2 is by far the
most convenient!, and the evolution upwards can take pla
in terms of nf11 massless flavors with the corre
asymptotic limits being guaranteed. If the masslessnf11
flavor coefficients functions are used, then the corr
asymptotic limit for the structure functions is also reache

The main problem lies in obtaining the correct descripti
in the region not too far aboveQ25M2. We have demon-
strated that this is achieved to all orders by defining
mass-dependent coefficient functions aboveQ25M2 in
terms of the operator matrix elements and the FFNS coe
cient functions as in Eqs.~3.6!–~3.10!. However, we have
also demonstrated that since there are more degrees of
dom on the right-hand side of these equations than on
left, the additional ones all being coefficient functions co
pling to heavy quarks, there is freedom in precisely how
coefficient functions may be chosen. Although in a true we
ordered calculation, this ambiguity disappears, this man
of ordering is at the very least extremely complicated,
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volving parts of the FFNS from all orders inas(m
2) at each

order in the calculation, and in practice is probably impo
sible, there being no unique prescription for ordering
O(M2/Q2) terms. Hence we choose to order our calculat
as in the normal order by order inas(m

2) manner, choosing
the very simple natural scalem25Q2, which puts all of the
mass effects into the coefficient functions and guarantees
correct asymptotic limit order by order inas(Q

2). We then
determine the precise form of our heavy quark coeffici
functions by demanding continuity, not only of the structu
functions atQ25M2 ~which is automatic!, but also the con-
tinuity of the lnQ2 derivative of the structure function. In
practice this exact continuity is only possible for those ter
proportional to the gluon, but this is by far the domina
contribution. Our constraint then determines our prescript
for dealing with heavy quarks completely, and incorpora
the correct qualitative threshold behavior into every coe
cient function at each order ofas(Q

2), not relying on can-
cellations between terms with incorrect behavior and of d
ferent orders to obtain satisfactory results. In practice
most important of our results are the zeroth-order coeffic
function forF2,c(x,Q2), Eq. ~4.6!, which exhibits the correc
threshold behavior inŴ2 as well as reducing to the corre
asymptotic form, and the absence of a zeroth-order co
cient function for FL,c(x,Q2), the O„as(Q

2)… coefficient
functions being Eqs.~7.5! and~7.10!, which again exhibit the
correct threshold behavior and asymptotic limits.

We display the results obtained using our prescription
neutral current structure functions in Figs. 3, 4, 7, and
finding that they exhibit exactly the type of behavior w
would expect, i.e., smoothly deviating from the FFNS at lo
Q2, and tending towards thenf11 massless results at hig
Q2, in all cases. In particular we notice that the bump in
charm quark longitudinal structure function atQ2

'10 GeV2, which occurs in other variable flavor numb
schemes is absent here. We also see that our predic
agree very well with the current data on the charm struct
function which exists from 1.5 GeV2,Q2,100 GeV2, im-
plying a charm quark mass of;1.45 GeV. We note tha
comparisons of theoretical predictions with the compl
range of data on the charm structure function appear v
rarely ~in particular, detailed comparison with EMC data
frequently omitted!, and we strongly encourage this as t
best constraint on any theory.

The general technique can be applied to all other qua
ties in perturbative QCD, which require the convolution
coefficient functions with parton distributions. We can a
ways choose the parton distributions to evolve as tho
there arenf11 massless flavors in theMS scheme, factor
these into the mass dependent operator matrix elements
the FFNS parton distributions, and then obtain the coeffic
functions in the variable flavor scheme in terms of those
the fixed flavor scheme by equating the parts proportiona
each FFNS parton distribution. Indeed, the expressi
~3.6!–~3.10! are not exclusive to neutral current structu
functions, but apply to all quantities, which can be written
the sum of convolutions of coefficient functions with sing
parton distributions. In the Appendix we discuss the case
the charged current structure functions as an example.
expressions involving more than one parton distribution,
generalization is clear, e.g., for proton-proton scattering
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FFNS and VFNS coefficients are related by equations of
form Ciab

FF 5Cicd
VF AcaAdb. In all cases there will be ambiguity

in definitions of the heavy parton coefficient functions, b
these can always be eliminated by demanding as much
tinuity of the lnQ2-derivative order by order inas(Q

2) as
possible.

Let us briefly discuss problems which arise in other a
proaches to heavy quark structure functions. Buzaet al. do
not provide a detailed prescription for the region ofQ2 just
aboveM2. They have a means of extrapolating the struct
function from the FFNS result atQ2,M2 to the ZM-VFNS
result atQ2/M2→` in a way which guarantees smoothne
@14,15#, but it seems phenomenologically motivated, with
strict definition of the ordering and certainly no expressio
for parton distributions and coefficient functions in the inte
mediate region. The ACOT group have a prescription, wh
involves switching fromnf to nf11 massless flavors in th
evolution, and a way of determining the VFNS coefficie
functions@22,23# which at low orders appears to be the sam
as prescribed in Eqs.~3.6!–~3.10!. However, their way of
eliminating the free choices in the heavy quark coefficie
functions involves assuming that the behavior is as if ther
intrinsic charm in the proton at all scales above the transit
point, rather than charm being generated almost enti
from the gluon. This leads to coefficient functions havi
thresholds inQ25M2 rather thanŴ254M2, and a mixing
of orders being required~and a complicated renormalizatio
scale being advantageous! in order to ensure cancellation
and that smooth behavior occurs, e.g., theO„as(m

2)… gluon
coefficient function must appear at the same time as
zeroth-order quark coefficient function. This mixing of o
ders is incorrect, being at odds with well-ordered asympto
expressions, but removing it results in a lack of smoothn
in the structure functions. Even when this mixing is retain
the behavior of the longitudinal structure function is still n
smooth. The MRRS procedure@28# is based on the leading
log limit of Feynman diagrams, rather than the renormali
tion group and as such incorporates mass-dependent ef
in the evolution, but seems more difficult to define forma
to all orders inas . The definition of the heavy quark coe
ficient functions uses similar reasoning to ACOT, but in th
case with ordering such that it reduces to the correct w
ordered form asymptotically. These coefficient functio
along with the imposition of this correct ordering lead to
unphysical lack of smoothness in the structure functio
~which is made slightly worse by the mass-dependent con
butions to the evolution!, particularly for the longitudinal
structure function. Our prescription has none of the abo
problems. It is well defined to all orders, reduces to corr
well-ordered expressions at both low and highQ2, and ex-
hibits precisely the behavior one would expect. Hence,
believe that our prescription is the best currently available
describe the heavy quark contribution to structure functio

Before finishing let us mention a couple of points
which our treatment is incomplete. Firstly, we have assum
that there is no intrinsic charm in the nucleon. Equation~2.1!
is formally correct up to the quoted error, but this error h
an unknown numerical factor and may be enhanced by fu
tions of x. It appears that for intrinsic charm the numeric
factor of this ‘‘higher twist’’ correction is rather large an
that the contribution is enhanced by a factor of (12x)21.
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Therefore, at largex, where the leading twist contribution t
the charm structure function is not large anyway, it seem
though the ‘‘higher twist’’ intrinsic charm may constitute a
important part of the total charm structure function@35#. The
treatment of this correction is outside the scope of this pa
which deals only with the ‘‘leading twist’’ contribution to
the structure function, and we believe it is not naturally de
with in any other VFNS. However, it seems very unlike
that in most of the region, where there is current data on
charm structure function, or where the charm contribution
a sizable fraction of the total structure function, that th
‘‘higher twist’’ contribution plays any significant role at al
Using the type of values expected for this intrinsic cha
~see, e.g.,@36#!, then adding to our values does bring thex
50.422 prediction in line with the EMC data point, rais
the x50.237 predictions quite significantly~but neither re-
ally helps or hinders the comparison to the three data poin!,
raises thex50.133 predictions a little~tending to make the
comparison a little worse!, and has negligible effect fo
lowerx. Hence, thex50.422,Q2578 GeV2 EMC data point
may be seen as some evidence for this ‘‘higher twist’’ intr
sic charm.

Finally we note that throughout this paper, we have co
pletely ignored the problem of enhancement of higher ord
in as by ln(1/x) terms. These terms certainly do have t
potential to alter quantitatively the results of this paper. C
rectly including the leading ln(1/x) terms within the context
of only massless quarks is a complicated procedure, tho
it does appear to improve the description of smallx data
@20#. Some results on heavy quark coefficient functio
which include leading ln(1/x) terms already exist@37,38#. It
would clearly be desirable to extend this work and to inclu
both the correct treatment of leading ln(1/x) terms and a
correct description of heavy quark results within a sin
framework. Work along these lines is currently in progre

APPENDIX: CHARGED CURRENT STRUCTURE
FUNCTIONS

The treatment of the charged current structure funct
follows exactly the same reasoning as for the neutral cur
case. Let us considerF2(x,Q2). Equations~3.6!–~3.10! are
derived in exactly the same way, but now take a differ
form because there are no nonsinglet coefficient functio
For the case where a heavy quark is produced directly by
interaction with theW boson, which we call the heavy quar
structure function, we have

CHg
FF,S5CHg

VF,S
^ Agg,H

S 1nfCHq
VF,PS

^ Aqg,H
S 1CHH

VF,PS
^ AHg

S ,

~A1!

and

CHq
FF,S5CHH

VF,PS
^ AHq

PS1CHq
VF,PS

^ @Aqq,H
NS 1nfAqq,H

PS #1CHg
VF,S

^ Agq,H
S . ~A2!

We note that what we have denoted the charm quark st
ture function here may be interpreted physically as the un
sign dimuon contribution. In the case where theW boson
directly produces a light quark, which we call the light qua
structure function, we have
as

r,

lt

e
s

-
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Cqg
S 1Cqg

FF,S5Cqg
VF,S

^ Agg,H
S 1nfCqq

VF,PS
^ Aqg,H

S 1CqH
VF,PS

^ AHg
S , ~A3!

and

Cqq
PS1Cqq

FF,PS5nfCqq
VF,PS

^ Aqq,H
PS 1CqH

VF,PS
^ AHq

PS1Cqg
VF,S

^ Agq,H
S . ~A4!

It is not only the absence of the nonsinglet coefficient fun
tions which is different, the ordering of the other coefficie
functions also changes, in particularC2,qiqj

PS , iÞ j , begins at

zeroth order. This changes the form of the relationship
tween the FFNS and the VFNS coefficient functions. F
example, examination of~A1! reveals that we have the trivia
equality

C2,Hg
FF,1~z,Q2/M2![C2,Hg

FF,1~z,Q2/M2!, ~A5!

whereas now we have the nontrivial relationship

C2,qg
FF,1~z,Q2/M2!5C2,qg

VF,1~z,Q2/M2!2„ln~Q2/M2!1crs)Pqg
0

^ C2,qH
VF,PS,0, ~A6!

e.g., the zeroth-order coefficient function for a charm qu
to interact with aW2 to produce a strange quark is undete
mined. As in the previous case we determine this zero
order heavy quark coefficient function by demanding con
nuity of the lnQ2 derivative of the structure function, in th
gluon sector~again at lowest order we have complete con
nuity!, along with demanding the correct asymptotic resu
Unlike the neutral current case, this time it is the stran
quark ~or down quark! structure function on which the con
dition is imposed, rather than the charm quark structure fu
tion. This is because at lowest order the charm quark st
ture function is completely independent of the charm qu
distribution, whereas the light quark structure functions
depend on it. However, in complete analogy with the neu
current case, our constraint results in

C2,qH
VF,PS,0~Q2/M2! ^ Pqg

0 5
dC2,qg

FF,1~z,Q2/M2!

ln~Q2!
, ~A7!

where the left-hand side automatically has the correct thre
old behavior and the right-hand side→Pqg

0 (z) as
Q2/M2→`. Using this explicitly in~A6! then results in the
C2,qg

VF,1(z,Q2/M2) reducing to the correct masslessMS limit

asQ2/M2→`, as it must by construction.
This procedure can be repeated at all orders in exactly

same way as for the neutral current structure function. T
time there are only two coefficient functions to be det
mined, C2,Hq

VF,PS(z,Q2/M2) as we have just seen, and whic
exists at all orders, andC2,HH

VF,PS(z,Q2/M2). The latter begins
at O„as

2(Q2)… and will be determined by demanding con
nuity of the lnQ2 derivative of the structure function, wher
a heavy quark is produced directly at the interaction ver
of theW boson atO„as

3(Q2)…. The extension to the longitu
dinal charged current structure function is also eas
achieved using the above results and the discussion of
longitudinal neutral current structure function in Sec. VII.
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