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Abstract

This paper studies a model of memory. The model takes into account that memory capacity
is limited and imperfect. We study how agents with such memory limitations, who have very little
information about their choice environment, play games. We introduce the notion of a Limited
Memory Equilibrium (LME) and show that play converges to an LME in every generic normal
form game. Our characterization of the set of LME suggests that players with limited memory
do (weakly) better in games than in decision problems. We also show that agents can do quite
well even with severely limited memory, although severe limitations tend to make them behave
cautiously.
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1 Introduction

It is widely acknowledged that memory limitations a ect behavior. In this
paper we develop a model of memory which explicitly takes into account
that memory capacity is limited. Even this limited capacity is imperfect, in
the sense that arbitrary items in memory may be forgotten. We study how
individuals with such memory limitations play games.

We suppose that a player’s memory contains, for each of her strategies, a
record of a finite number of the most recent payo s obtained. New informa-
tion leads to the deletion of old information. Players do not actively select
which payo s to store in their memories. Nor do they store “processed” in-
formation in the form of summary statistics of their past experiences. The
players are not sophisticated. By not storing processed information, they
are probably not making e cient use of their limited memory. When they
think back they only recall the most recent payo s they have experienced
from each strategy.

The players repeatedly play the same normal form game in which each
knows only the strategies available to her. At each stage the players first
choose a strategy and then receive a payo . The payo each player obtains
depends on the chosen strategy profile. At the time of making their choices
the players do not know the choices of others. The players are not assumed
to know the payo functions of other players, or even the strategies available
to their opponents. They need not even observe the strategy profile chosen
by their opponents. In fact, they do not even need to know that they are
playing a game.

The players choose among their strategies on the basis of what they re-
member about the performance of di erent strategies. We suppose that how
an agent evaluates any particular strategy is monotonic in payo s. Roughly
speaking, monotonicity requires that an agent evaluates a strategy as bet-
ter if it has given higher payo s. An example of a monotonic rule is the
evaluation of each strategy according to the average payo that the strategy
has received in the past. Other examples of monotonic rules are evaluations
according to the minimum payo or the maximum payo that the strategy
has received in the remembered past. We suppose that the players choose, at
each time, the strategy they evaluate as being the best. That is, we assume
the players are myopic.1

Our first result concerns the model in which agents have limited memory

1Myopia may also explain why the players do not attempt to store summary statistics:
The e cient storage of information, for possible use in the future, cannot possibly be a
concern of a myopic agent.
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capacity but are not forgetful in the sense that they do not forget arbitrary
items in their memory.2 We define a limited memory equilibrium (LME) as a
strategy profile which is associated with an absorbing state of the dynamics
describing how memory and play evolve over time. We show that a strategy
profile is an LME if and only if each player obtains at least her maxmin
payo s.3 We are also able to show that play must converge to an LME,
starting from any initial state, if players use any monotonic evaluation rule.
This result contrasts with that obtained by Sarin (2000) who shows that,
in a decision problem, a player converges to choose her maxmin strategy.4

Intuitively, the (weakly) superior performance of agents in games as opposed
to decision problems arises for two reasons. On the one hand, payo s are
deterministic in the games that we consider and on the other hand players
may, unsuspectingly, influence and improve the nonstationary environment
they face, whereas in the multi-armed bandits they cannot possibly alter the
stationary environment with which they are confronted.

The remainder of the paper is concerned with agents who have a limited
memory capacity and who are forgetful. A forgotten payo is replaced by a
possible payo . We refer to a strategy profile that forgetful players may play
as a stable limited memory equilibrium (SLME). The set of strategy profiles
that are SLME is contained in the set of strategy profiles that are LME. In
general, the set of SLME depend on the specific monotonic evaluation rule
used by the players. In particular, we show that the set of SLME depend
on the cardinal properties of payo s. We proceed by providing results on
specific monotone rules whose behavior depends only on the ordinal proper-
ties of the remembered payo s. We show that if players use the maximum
rule, and have a large enough memory, then the unique SLME in games of
common interest is the strategy profile that induces the Pareto—optimal out-
come. If players use the minimum rule we show that the strategy profile in
which each player plays her maxmin strategy is an SLME and that it is the
unique SLME if maxmin play constitutes a Nash equilibrium. This implies,
for example, that such players will choose the risk—dominant equilibrium in
2x2 games in which risk- and payo —dominance conflict.

Next we introduce a class of games, defined by iterated uniform domi-
nance (IUD), in which SLME arise independently of the particular monotone

2This model is studied in decision problems in Sarin (2000).
3The maxmin payo for a player is the highest minimum payo she can guarantee

herself when using only pure strategies. The strategy that ensures a player her maxmin
payo is referred to as her maxmin strategy.

4For other justifications of maxmin strategies, see Barbera and Jackson (1988), Gilboa
and Schmeidler (1989) and Sarin and Vahid (1999).
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evaluation rule used. We say a strategy is uniformly dominated if there
exists another strategy whose minimum payo is larger than the maximum
payo that may be obtained from . Eliminating a uniformly dominated
strategy may make another strategy uniformly dominated. If we iteratively
eliminate all of the strategies that are uniformly dominated then we obtain
the set of strategies that survive the process of IUD. If this set is a single-
ton, we say that the game is solvable by IUD.5 For the class of uniformly
dominance solvable games, we find that the unique Nash equilibrium is an
SLME regardless of evaluation rules and memory capacities. For the larger
class of dominance solvable games, we show that if players use the minimum
evaluation rule, the Nash equilibrium is an SLME.

In contrast with this paper and Sarin (2000), Sela and Herreiner (1999)
consider the case where the agent remembers only what has happened in a
finite number of the most recent periods. The di erent models of memory
are coupled with di erent assumptions regarding what the agent knows and
what she observes. In Sarin the agent knows only her available strategies
and observes only the payo from the chosen strategy. In Sela and Herreiner
the agent knows the payo matrix including the possible states of the world
and observes the chosen state of the world. In the terminology of the current
literature on learning, the Sarin model can be considered a “reinforcement”
model of limited memory whereas the Sela and Herreiner model can be
considered a “belief” model of limited memory.

A richer “belief” model of memory is considered by Mullainathan (1998)
who focuses on rehearsal (recalling a memory increases future recall prob-
abilities) and association (events more similar to current events are easier
to recall). The agents are assumed to know more about their environment
than in Sela and Herreier and use Bayes’ rule to update their beliefs. Mul-
lainathan uses his model to explain certain regularities in income and con-
sumption data, and some aspects of asset pricing. Papers that have implicit
belief models of memory include Hurkens (1995) and Young (1993) who as-
sume that players are selected from populations to play a game. When called
upon to play, a player samples a fixed number of the choices her opponents
made in the recent past. This finite sample forms the player’s memory of the
past play of the game. The agent best replies to her memory. After making
a choice the individual forgets everything. The model is used to explain the

5This solution concept has been independently suggested by Friedman and Shenker
(1998), who refer to the set of strategies surviving IUD as the serially unoverwhelmed set.
Chen (1999) has found the solution concept to be of use for explaining experimental data
of public goods pricing mechanisms and Greenwald, Friedman and Shenker (1998) have
studied its relevance in network contexts.
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evolution of mutually consistent behavior in a population. More sophisti-
cated players with memory limitations have been studied by Aumann and
Sorin (1989), Lehrer (1988, 1994) and Sabourian (1998).

Osborne and Rubinstein (1998) consider “reinforcement” type model of
memory in which agents have about the same level of sophistication as the
agents we consider. They know the set of available actions but do not
know that they are playing a game. They choose each action a fixed, finite
number of times and evaluate each action according to the sum of payo s
it has given. The action thought to be the best is chosen. They introduce
an equilibrium notion relevant for such players and study its properties. To
compare our model with theirs, it is useful to consider the initial memory
of our players. One possibility is that their initial memory arises exactly
according to the Osborne and Rubinstein procedure, in which each agent
chooses each action a fixed, finite number of times. In contrast to Osborne
and Rubinstein, we allow that agents evaluate the payo s in their memory
in a large variety of ways. The evaluation rule they consider is a specific
monotone rule. Also, in contrast to their static equilibrium notion, the
equilibrium notion(s) introduced in this paper are derived as the limiting
(absorbing) states of the large class of dynamics we consider and in which the
memories of the players are endogenously evolving. Osborne and Rubinstein
do not provide an analysis of how the equilibrium comes about. This is done
in a paper by Sethi (2000) who describes the dynamics in a large population
setting.

This paper is organized as follows. The next section presents the basic
model. Section 3 characterizes LME. Section 4 introduces additional forget-
fulness and focuses on SLME, and Section 5 provides results about SLME in
games solvable by IUD and by iterated strict dominance. Section 6 discusses
possible extensions and limitations and Section 7 concludes.

2 The Model

Consider a finite normal form game = ( ), where = (1 )
denotes the set of players with typical element . = × is the set of
possible strategy profiles in the game and is player ’s set of strategies.
A typical element of is given by =

¡ ¢
where denotes

the strategy of player and specifies the strategies of players other
than player . is the set of strategy combinations available to players
other than . We shall suppose that player has available strategies and
sometimes we shall number the strategies from 1 . By we denote
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the payo players receive from alternative strategy profiles. Specifically, the
payo that player obtains in the strategy profile is given by ( ) =¡ ¢

. That is, : <, and = × . Clearly, : < .
The players have limited memories. Each player associates with each

strategy payo s. These will be the most recent payo s the player
has obtained from the choice of the strategy. Let

³ ´
denote the

payo s that player associates with strategy at time = 0 1 2 which
when no confusion may result we shall simplify as . Let ( ) be
the th element of this vector, = 1 2 . Furthermore, let ( ) =¡ ¡

1

¢ ¡ ¢¢
be the state of player ’s memory at time . We

shall suppose that the initial contents of the memory of the players is given
and satisfies the condition that for each player , each , and each ,
( 0) = ( ) for some . That is, each payo that the agent has

in her initial memory of strategy is a payo that can actually obtain.
This restriction on initial memory can be thought of requiring a certain
degree of realism, and it can be justified by assuming that each agent has
been endowed with a number of random observations from the actual game
matrix. Alternatively, we may suppose that the initial conditions are realized
as a consequence of a period in which the players experiment with all of their
strategies.

Such memory allocation supposes that players recall only their payo ex-
periences with di erent strategies, and that they recall only the most recent
payo experiences with any particular strategy.6 Payo s obtained earlier
are forgotten. As some strategies may not have been chosen for a long time,
such memory use implies that the decision maker recalls as many payo s
from recently chosen strategies as from those she has chosen only in the
distant past.7 Modelling memory allocation in this manner makes compar-
isons between di erent strategies straightforward: The decision maker has
only to compare payo vectors with the same number of elements. Con-
siderations involved in comparing strategies regarding which the agent has
di erent amounts of information do not have to be addressed in this model.

Each player evaluates her strategies according to a monotonic evaluation
rule. An evaluation rule is monotonic if it evaluates a strategy as better if
it has yielded higher payo s in the (remembered) past.

6Observe that we assume that players experience no problems in retrieving objects in
their memory.

7 In Section 6 we discuss models of memory allocation in which the decision maker
remembers a di erent number of payo s from di erent strategies.
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Definition 1 An evaluation rule : < < is monotonic if whenever
( ) = ( ), not necessarily equal to , then for all 0, < ,
( + ) ( ), and if 0 then ( + ) ( ).

An example of a monotonic evaluation rule arises when a player evaluates
a strategy according to the average payo it has given her in her remembered
past. We call this evaluation rule the average rule. Another monotonic
evaluation rule arises when an agent evaluates each strategy according the
minimum payo it has given her in the remembered past. We shall call
this the minimum rule. Yet another monotonic evaluation rule lets an agent
evaluate a strategy according to the maximum payo it has given her in the
remembered past. We shall call this the maximum rule.8

We shall assume that at each time each player chooses the strategy which
she evaluates as being best. That is, agents are assumed to be myopic. In the
context of our model, myopia can be justified as the agents have very little
information about the payo functions they are facing and, as a consequence,
experience large amounts of subjective uncertainty.9 We shall suppose that
if a player evaluates more than one strategy as being best, then the player
will choose each of these strategies with positive probability bounded away
from zero.10 Let

( ( )) =
©

: ( ( )) = max
© ¡

( 1 )
¢ ¡

( )
¢ªª

be the set of strategies whose evaluation is the highest at time . With
this notation we can easily define a player’s decision rule: At time + 1
player plays strategy with probability 0 if ( ( )) and with some
probability ( ) 0 if ( ( )) where

P
( ) = 1.

A state at time is described by the contents of all players’ memories
at that time, i.e., by ( ) = × ( ). Let M denote all possible con-
stellations of . Note that, ( ) does not reveal which strategy profile
will be played in period . Rather it induces a distribution over the set of
strategy profiles according to which players will play in . The support of
this distribution is given by B( ( )) = × ( ( )). This, in turn, induces
a probability distribution overM. The definitions of the game, of players’

8Pessimistic players (i.e. players who always “expect the worst”) would tend to adopt
the minimum rule, while optimistic players (i.e. players who always “expect the best”)
would tend to adopt the maximum rule.

9Sonsino (1998) has shown that “strong” uncertainty may lead a non—myopic agent
to behave in a myopic manner. Ellison (1997) has studied situations in which a rational
non—myopic player may behave in a myopic manner.
10Players are assumed to randomize independently of other players in such situations.
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memories, evaluation and decision rules together define a Markov process
on a finite state spaceM.

3 Limited Memory Equilibrium

The equilibrium concept we develop in this section is appropriate to describe
the strategy profiles that players with limited memories will converge to play
if each uses some monotonic evaluation rule.11 We begin by characterizing
the absorbing states ofM. Let ( ) denote an —vector consisting of ( )
in every component. We say a game is generic if all payo s any specific player
can get are distinct.

Lemma 1 In generic games a state is absorbing if and only if
( ) B( ) is a singleton, i.e., B( ) = { } for some , and
( ) ( ) = ( ) for all player .

Proof If : From ( ) it follows that if players play the state of memory
does not change and ( ) ensures that players do play .

Only if : Suppose there was an absorbing state not fulfilling ( ) or
( ). If ( ) was not fulfilled there would be a positive probability for at
least one player to experience di erent payo s from one and the same
strategy which, in generic games, implies a positive probability for her
memory to change. If ( ) was not fulfilled but ( ) was, ( ) would
change with probability 1 for some player . ¤

We shall refer to a strategy profile as a limited—memory equilibrium
(LME) if it is played in an absorbing state.

Definition 2 A strategy profile is an LME if there exists an absorbing
state with B( ) = { }.

LME need not exist in all games. For example, an LME fails to exist in
the usual, non—generic, version of matching pennies.12 It is, however, possi-
ble to see that LME exist in all generic games.13 An easy way to see this is
11Di erent players may use di erent evaluation rules.
12 If agents play one of the pure-strategy profiles for periods, one of the agents (the

loser) will evaluate her alternative strategy as at least as good as the currently used one
such that B( ) will no longer be a singleton.
13A definition of equilibrium that would allow for existence in all games would require

us to introduce a setwise analogue of the definition of LME, based on absorbing sets rather
than absorbing states. A setwise equilibrium notion, however, would lead to significantly
more cumbersome notation, without adding significantly to the insight. We choose, rather,
to focus mainly on generic games where all absorbing sets are singletons as shown below.
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to note that in generic games the maxmin strategy for each player is unique.
The strategy profile in which each agent plays her maxmin strategy is an
LME as the next result reveals. The result characterizes the set of LME in
terms of payo s the players obtain in them. Let min( ) denote the minimal
payo can give to player , i.e., min( ) = min ( ) and let

min( ) be the —vector consisting of min( ) in every component. The
maximal payo can give is defined analogously and denoted by max( ).
By maxmin = max min( ) we denote player ’s maxmin payo . The
strategy yielding this payo is denoted by maxmin (as we focus in the fol-
lowing on generic games, we know that there is only one such strategy).

Proposition 1 In generic games, a strategy profile is an LME if and only
if ( ) maxmin for all .

Proof If : Let ( ) = ( ) and let (e ) = min(e ) for all strategies e
other than and for all . Note that maxmin min(e ) as no two
payo s are equal. As ( ) maxmin it follows that ( ) (e )
for all e and all . By monotonicity of it follows that ( ) =

© ª
for all . Hence, by Lemma 1 the result follows.

Only if : Suppose the opposite. That is, suppose that some player
gets less than her maxmin payo in a strategy profile which is an
LME. This implies that ( ) = ( ). Since ( ) ( maxmin) it
follows by monotonicity of that ( ). Hence, by Lemma 1
cannot have been an LME.¤

Proposition 1 characterizes LME in terms of payo s each player must
obtain. This makes it easy to check whether a strategy profile is an LME.
The result shows that the players cannot do “too badly” in any LME. Specif-
ically, in an LME each player obtains a payo at least as high as her maxmin
payo .

An example which illustrates Proposition 1 and which also reveals that
LME do not have to be Nash equilibria, is obtained by considering the
Prisoner’s Dilemma game. The payo from mutual cooperation is greater
for each player than the maxmin payo and hence mutual cooperation is an
LME. For example, cooperation can be sustained in an LME when all players
remember from the strategy “defect” only the mutual defection payo .

In non—generic games, a pure Nash equilibrium is not necessarily an
LME. To see this, simply consider a degenerate 2x2 game in which the row
player receives the same payo for all strategy combinations. The column
player prefers left over right when the row player plays up and vice versa

8
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for down. This game has two Nash equilibria in pure strategies but neither
is an LME. To see this consider the equilibrium ( ). Obviously, the
row player’s memory state is time—invariant. As the row player always as-
signs positive probability to both his strategies, there is always a positive
probability that the column player’s memory for strategy left will change.
Hence, the equilibrium is not an LME.

While not every Nash equilibrium is necessarily an LME, every strict
equilibrium is an LME. To see this, consider ( ) (e ) for all e
and for all player . Now consider a state where ( ) = ( ) for all and
where (e ) = (e ) for all e and for all . By monotonicity of it
follows that B( ) = { } such that cannot be left. Hence, the strict Nash
equilibrium is also an LME.

In the next proposition show that players who use monotonic evaluation
rules converge to some LME. The intuition of the result is simple. First we
show that play cannot converge to an outcome that is not an LME (which
is easy). In the next step we rule out cycles. The intuition for why we
can do this is that agents switch from one strategy to another only when
the evaluation of the currently used strategy has deteriorated. So a cycle
would imply endless deterioration of the evaluations of each strategy that is
used in the cycle. Given the finite nature of agents’ memory this is clearly
impossible. While this is straightforward and easy to show the proof is
slightly more complicated since we also have to rule out cycles that results
from randomizations where agents have the same evaluation for two or more
strategies.

Proposition 2 In generic games, starting from any initial state, play con-
verges to an LME with probability 1.

Proof First, we show that play cannot converge to any state that is not an
LME. Suppose play converges to a state in which (at least) one player
gets a payo below her maxmin payo maxmin. Then her memory
would contain only this payo after at most periods. But then the
agent would evaluate her maxmin strategy as better, because she uses
a monotonic evaluation rule. Hence play cannot converge to any state
in which any player gets a payo below her maxmin payo .

Next, we argue that play cannot cycle among strategies. Suppose
that play cycles between some strategies which includes strategy

for player . Consider, first, cycles in which
³ ´

6= ¡ ¢
for

all 6= at any time. In this case, each time the agent returns to
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choose a strategy, the evaluation of it must have strictly declined.
This is because a player only leaves a strategy after its evaluation has
strictly declined, given that the evaluations of unplayed strategies stay
unchanged. Hence, the next time the player chooses a strategy it must
be evaluated as strictly worse. Given that the game is finite and that
the memory of each player is finite, the evaluation of any strategy
cannot keep strictly declining infinitely often.

Hence, if play was to cycle (perhaps, probabilistically), then some
player must return to a state in which she evaluates two (or more)
strategies equally. If this were not the case then player would return
to a strategy infinitely often when its evaluation had strictly declined.
But this cannot happen by the argument in the preceding paragraph.
Hence, if we show that no player can choose a strategy infinitely often
because it is evaluated the same as some other strategy, then the proof
of the Proposition is complete.

Lemma 2 No player can return to a state in which
³ ´

=
¡ ¢¡ ¢

for all , 6= 6= , an infinite number of times, with probability 1.

Proof Suppose not. That is, suppose play returns to a state in which³ ´
=

¡ ¢ ¡ ¢
for some 6= 6= , infinitely often.

Then, will choose both and infinitely often as she chooses each
strategy she evaluates the best with positive probability at each time.
Let

³ ´
(resp.

¡ ¢
) denote the set of payo s player re-

members from (resp. ) in and let#
³ ´

(resp. #
¡ ¢

)

denote the number of di erent payo s in
³ ´

(resp.
¡ ¢

).

Clearly, either #
³ ´

1 or #
¡ ¢

1 or both, as other-

wise she could not evaluate and the same because all her payo s
are distinct. This, however, implies that also some other player(s)
must be randomizing among strategies they evaluate the same oth-
erwise player would not experience di erent payo s for a strategy
that is used in the cycle. And we know that there is an that
is used with #

¡ ¢
1. So we have now established that the

cycle under consideration has at least two players randomizing. As
these randomizations are independent of each other, there is always
a positive probability that player obtains identical payo s from
consecutive choices of . From such an “event” the player would

10
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end up remembering only one payo from . If the agent continues to
evaluate and the same, consider another sequence of rounds
in which the player obtains the same payo from the other strategy.
Such a sequence of play, which has positive probability, ensures that
the player remembers only one payo from and one payo from .
Over the infinite repetition of the game, such an event has probability
1 (if the players continue to evaluate the two strategies the same). At
that time, or earlier, player will not evaluate the two strategies the
same. Hence, no player can return to a state in which she evaluates
two or more strategies as being the best infinitely often. ¤
Hence, play must at some time settle upon an LME. ¤

The conclusions reached in Propositions 1 and 2 contrast in a surpris-
ing way with the result obtained in Sarin (2000) concerning games against
nature. Sarin shows that, in a game against nature, a player converges to
choose the strategy that gives her the maxmin payo . That is, the player
converges to her maxmin strategy. First, he shows that the individual can-
not converge to play any strategy other than her maxmin strategy. Suppose
to the contrary. Then she will experience from this strategy a long enough
run of the worst possible payo from this strategy so that the worst payo is
all the decision maker remembers from this strategy. At this time, or earlier,
the individual must evaluate her maxmin strategy (or some other strategy)
as being better. Hence, the individual cannot converge to play any strat-
egy other than her maxmin strategy. Next, consider a state in which the
player currently evaluates the maxmin strategy as being the best and eval-
uates every other strategy as being worse than the maxmin strategy could
possibly be evaluated. In such a state the individual chooses the maxmin
strategy forever. Sarin shows that such a state is reached from any other
state with probability one.

Proposition 2 shows that players may converge to play strategies other
than their maxmin strategies if the payo s they obtain by these strategies
are higher than their maxmin payo s. Hence, when facing a game envi-
ronment agents do (weakly) better than when facing the decision theoretic
environment. Intuitively, this happens since players may (unsuspectingly)
influence the nonstationary game environment they face. What is surprising
is that they only influence it in a way that “improves” it. That is, play-
ers only “reinforce” strategy profiles that lead to outcomes better than the
maxmin outcomes. Another reason for the superior performance in games
is that other players (typically) choose deterministically, whereas in a game
against nature, the other player (“nature”) chooses stochastically. Hence,
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players do (weakly) better in nonstationary deterministic environments than
in stationary stochastic environments.14

4 Stable LME

So far we have studied players whose memory capacity is limited. In this
section we shall assume that memory is also imperfect, in the sense that
arbitrary items in the memory may be forgotten at any time.15 Specifically,
we shall assume that each item, in each player’s memory, is forgotten with
some small probability , and is forgotten independently of the others.16

Further, we suppose that if an item associated with strategy is forgotten,
then it is replaced by an arbitrary payo which is obtainable from using
this strategy. This can be justified by assuming that the agent has some
vague notion of what a strategy can or cannot achieve.17 We shall refer
to the event that one element of the memory is altered as a mistake or a
mutation.18

Without noise, a player’s memory changes only for the strategy she used
in the last period, i.e., if she used strategy in period , then (e ) =
(e + 1) for all e 6= . In the presence of mutations, each entry in a

player’s memory ( ) may be altered at each point in time. With such
noise in players’ memories, we obtain a process that is aperiodic and
irreducible and, therefore, has a unique stationary distribution for every

0. We will focus on the limit invariant distribution lim 0 .
By standard arguments (see, e.g., Kandori, Mailath and Rob (1993), Young
(1993)) we know only states which are elements of absorbing sets under ,
which in our case are all singletons in generic games, can appear in the
support of . These states are called stochastically stable states as only
they will be observed with positive probability in the long run. A limited—

14 It would be interesting to study game environments where each strategy combination
is associated with a lottery rather than with deterministic payo s.
15Recall that there are × items in player ’s memory.
16We could assume that items change with di erent probabilities and, as long as all

probabilities are of the same order of magnitude, this would not a ect the results. Further
alternatives are discussed in the section 6.
17This assumption ensures that the perturbed Markov process which we are going to

analyse operates on the same state space as the unperturbed process. This helps us keeping
the notation simple. The payo could, for example, be drawn from some distribution over
all possible payo s. Our results would be robust to di erent replacement rules as long as
the payo s are drawn from a distribution with the same range of payo s.
18There is evidence that items in memory periodically “mutate” (see, e.g., Schacter

1996).
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memory equilibrium which is played in a stochastically stable state will be
called a stable limited—memory equilibrium (SLME).

Definition 3 A strategy profile is an SLME if it is an LME and if there
is a state inducing which has positive probability under .

The set of SLME, in general, depends on the exact specification of the
evaluation rule . That is, for a given game and a given size of players’
memories, SLME may be di erent for di erent evaluation rules. Further-
more, for a given evaluation rule the set of SLME can be di erent for games
with identical best reply correspondences. To illustrate this, consider a 2x2
game with two strict equilibria ( ) and ( ) which are the
only LME, i.e. the only strategy profiles played in absorbing states of .
Also, suppose that the evaluation rule is the average rule, that is larger
than one, and that players are locked in equilibrium ( ).

In order to identify SLME we need to analyze how many mutations are
required to switch from one state to the other and how many are required to
switch back. Roughly speaking, the state which can be reached with fewer
mutations will be the stochastically stable one. So, suppose that one element
of the row player’s memory changes such that she switches to strategy .
The next period’s outcome is ( ). This will change the row player’s
evaluation of strategy and the column player’s evaluation of strategy

. However, to what extent the evaluations change depends on the exact
payo s yielded by the strategy combination ( ). Given that the row
player earns less than in the previously played equilibrium she will surely
return to play . Now, if the column player’s payo for ( ) is
only slightly less than the ( )—equilibrium payo she may continue
playing strategy . If, however, the column player’s payo is significantly
lower then she may switch to . This can induce further movements,
away from the previously played equilibrium. Accordingly, SLME depend
not only on the ordinal ranking of payo s.

Consequently, in this section we restrict our attention to specific evalu-
ation rules. In particular, we consider monotonic evaluation rules which, in
contrast to the average rule, induce an ordinal ranking among strategies. In
the next section, we study SLME in classes of games without restricting the
evaluation rules used by the players.

The following result concerns common interest games in which there is a
payo vector that strongly Pareto dominates all other feasible payo s. The
result shows that if players have a large enough memory (relative to the
number of players) and use the optimistic maximum rule then the unique
Pareto—e cient outcome is the unique SLME.
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Proposition 3 Suppose that players use the maximum evaluation rule and
that . Then, in generic —player common interest games, the strategy
profile inducing the Pareto—optimal outcome is the unique SLME.

Proof Let be the set of absorbing states in which is played. We first
show that from any state outside of , a state can be reached
with at most simultaneous mutations. This happens if each player
replaces one element of ( ) by ( ). This induces the players
to switch simultaneously to in the next period as the evaluation of
instantaneously assumes its maximum, which is greater than the

maximum evaluation of any other strategy. Obviously, once they play
, they will continue to play such that they will reach a state in
with ( ) = ( ) for all players . Next, consider how many

mutations are necessary to leave . In order to make at least one
player change her strategy, all elements of ( ) have to be replaced
by values lower than ( ), i.e. she has to experience simultaneous
mutations. It follows by standard arguments (see, e.g., Vega-Redondo
(1997), Young (1993)) that only states in are stochastically stable.
¤

This proposition illustrates that players may benefit from being opti-
mistic and having larger memories (or playing with only a few other play-
ers). To see the impact of memory size, relative to the number of players, on
the result, suppose that . The e cient outcome can still be reached
with mutations. However, depending on the exact payo s, it could now
be possible that one player erases her complete memory of payo s obtained
from (which requires less than mutations), and keeps playing an alter-
native strategy e for the next periods. After this time span all other
players will remember only (e ) for their equilibrium strategies .
As these payo s may be lower than the maximum of payo s remembered for
some other strategies e , it is possible that some of these players also turn
away from the equilibrium strategy such that the dynamics will move fur-
ther away from the e cient outcome. Hence, without knowing more about
the payo function of the game, it is impossible to predict the SLME.

Our next result is also concerned with players using the maximum rule
and playing certain games where the interests of the players are aligned. We
refer to this class as games with strong common interest.

Definition 4 A game is a game of strong common interest if it has a
unique equilibrium and if e = argmax ( ) implies (e )
( ) for all and .
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This definition ensures that all players’ payo s weakly increase if a single
player deviates from a non—Nash strategy profile to her best reply. Hence,
individual best replies are in the common interest of all players. It is obvious
that in generic games of strong common interest the unique Nash equilibrium
is also the unique Pareto—e cient outcome, i.e., the class of games with
strong common interest is contained in the class of games with common
interest.19

Proposition 4 Suppose that players use the maximum evaluation rule. Then,
in generic —player games of strong common interest, the unique equilibrium
is an SLME. If 1 then it is also the unique SLME.

Proof We will show that a state in which the equilibrium is played can be
reached from any other state by a sequence of one—shot mutations. The
first claim in the Proposition then follows by standard arguments. To
construct this sequence, consider any state in which some LME 0 6=
is played. As 0 is not an equilibrium there exists at least one player
who could obtain a higher payo by deviating to her best reply. One
mutation is su cient to induce this deviation. As soon as this occurs,
she will switch to her best reply while all other players will continue
to play 0 . (Their new payo s have increased). Thus, the dynamics
will reach a new LME. An arbitrary amount of time can pass. And,
if the new LME is also not a the unique Nash equilibrium, a further
single mutation can be constructed in the same way. Eventually, by
finiteness, the dynamics will reach an absorbing state inducing . In
order to prove the second claim, suppose players are currently in a state
inducing . It is su cient to show that cannot be left with a sequence
of one-shot mutations. Imagine a mutation which makes one player
switch her strategy. Obviously, this will decrease her payo , and, as
she still remembers the equilibrium payo , she will immediately switch
back. Furthermore, all other players will experience payo s lower than
their equilibrium payo s for their equilibrium strategies. However, as

1 they still remember at least one equilibrium payo . As they
evaluate their memory by the maximum rule they will return to the
equilibrium strategy. Hence, after a single mutation the dynamics
always lead back to a state inducing .¤

The last part of the proof illustrates the role of memory size. If 1, a
single deviation cannot make the equilibrium payo s forgotten. With = 1,
19Our definition of games of strong common interest is related to Monderer and Shapley’s

(1996) definition of potential games.
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a single mutation may make player deviate from her equilibrium strategy
and induce others to also move away from the equilibrium strategy (in the
next round).

Both of our results on SLME depend on players being optimistic. Our
next result reveals that when players are pessimistic elements of risk avoid-
ance may have a strong enough impact to prevent them from coordinating
on a Pareto—dominant equilibrium. The next result considers players who
are pessimistic and use the minimum evaluation rule. It shows that being
pessimistic may lead to less e cient outcomes even if memories are large.
Note that the result applies for all generic games and all memory sizes. Let
maxmin denote the strategy profile in which each player plays her maxmin
strategy.

Proposition 5 Suppose players use the minimum rule. Then, in generic
games, maxmin is an SLME. If maxmin is, in addition, a Nash equilibrium
then it is the unique SLME.

Proof In order to prove the first statement, we show that a state in which all
players play their maxmin strategies can be reached from any other
state by a sequence of one—shot mutations. The claim then follows
by standard arguments. Consider a sequence of one—shot mutations
= 1 2

P
( 1). Each mutation replaces one element of player

’s memory of her strategy 6= maxmin. Specifically, each mutation
replaces one item (or, payo ) of player ’s memory of strategy by
the minimum payo that strategy can give. Once the sequence has
been completed, each player evaluates each strategy according to the
minimum payo it can give. This leads each player to choose her
maxmin strategy.

In order to prove the second statement, we show that the state in which
all players play their maxmin strategies requires at least two simultane-
ous mutations to be left. Suppose a single mutation would be su cient
to make player switch from her maxmin strategy to a di erent .
Note that this can only occur if player replaces an item in her mem-
ory for , i.e., if her evaluation of suddenly improves.20 After this
switch, all other players will continue to play their maxmin strategies
as they get a payo not smaller than their maxmin payo and as they
remember at least one smaller payo from each of their other strate-
gies. Since mutual maxmin is, by assumption, a Nash equilibrium it

20The evaluation of the maxmin strategy cannot fall below the maxmin payo .
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is a strict equilibrium, because the game is generic. Consider player
: will give her a strictly lower payo than her maxmin strategy
has given her previously (which she still remembers). Hence, she will
switch back to her maxmin strategy. Thus, the dynamics lead always
back into mutual maxmin play if there is only a single mutation.¤

Whereas Propositions 3 and 4 suggest that optimism (as implied by the
use of the maximum evaluation rule) leads to e ciency in some games,21

Proposition 5 shows that pessimism (as implied by the use of the minimum
rule) leads to potentially very bad outcomes in all games. Proposition 4
holds for all memory capacities. This implies that it also holds for the
limiting case of = 1, when all evaluation rules collapse into one. We
summarize two consequences of Proposition 3 for two much studied games
in the following corollary:22

Corollary 1 Suppose players use the minimum rule or that = 1. Then
the following statements hold:

a) In 2x2 Prisoners’ Dilemma games, the unique SLME is given by mu-
tual defection.

b) In symmetric 2x2 coordination games in which payo dominance and
risk dominance do not select the same equilibrium, the risk dominant equi-
librium is the unique SLME.

Proof a) As mutual defection is an equilibrium in dominant strategies the
claim follows immediately. b) Consider the game below with

and .

( ) is the payo dominant equilibrium and ( ) is the
risk dominant equilibrium if + + , in which case . Hence,
and are the maxmin strategies. ¤

5 Iterated Uniform Dominance

We begin this section with some definitions.
21Nice properties of optimism have recently been shown in a number of papers including

Gilboa and Schmeidler (1996) and Sarin and Vahid (1999).
22Note that the first statement can easily be extended to —person PD games where

each player has a dominant strategy.
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Definition 5 A strategy is uniformly dominated if there exists another
strategy such that min

¡ ¢
max( ).

That is, we say that strategy is uniformly dominated by strategy if
the minimum payo the latter can give is greater than the maximum payo
can give. Hence, while cooperation is (strictly) dominated by defection in

the Prisoner’s Dilemma, it is not uniformly dominated. Consider the game
below in which the row player has three strategies ( ) and the column
player has two strategies ( ).

4,4 6,2
2,1 3,6
5,3 2,2

In this game, is uniformly dominated for the row player. No other strate-
gies are uniformly dominated for either player.

We now develop the definition of the set of strategies that survive the
iterated elimination of uniformly dominated (IUD) strategies. Let ˜ 1 be
obtained from by deleting from the latter all strategies that are uniformly
dominated. Let ˜1 = × ˜ 1 denote the set of strategy profiles that may
be played after each player has removed the uniformly dominated strategies.
It is natural to call ˜1 the set of strategy profiles that survive one round of
removal of uniformly dominated strategies. Clearly, this set is non—empty.
In particular, in the Prisoner’s Dilemma no strategy is eliminated by one
round of removal of uniformly dominated strategies. In the game above, one
round of removal of strategies that are uniformly dominated leads to the
following reduced game

4,4 6,2
5,3 2,2

Next, we construct the set of strategies that survive the elimination of
uniformly dominated strategies in ˜1 and call this set of strategies ˜2. In
the above game this is given by

4,4
5,3

We similarly construct ˜3 ˜4 . Observe that ˜ +1 ˜ for any .
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Definition 6 The set of strategies which survive the iterated elimination of
uniformly dominated strategies (SIUD) is ˜ =1

˜ .

Clearly, ˜ is non—empty. In particular, it is obviously at least as large
as the set of strategies which survive the iterated removal of (strictly) dom-
inated strategies (SISD), which is known to be non—empty. It is equal to
in games in which there does not exist a uniformly dominated strategy,

as is the case in the Prisoner’s Dilemma. In the above game, however, the
iterated elimination of uniformly dominated strategies results in the unique
strategy profile ( ), which is also the unique Nash equilibrium.

Definition 7 A game is solvable by the iterated elimination of uniformly
dominated strategies if ˜ is a singleton.

It is easily seen that if a game is solvable by the iterated elimination of
uniformly dominated strategies, then the game has a unique Nash equilib-
rium. This is because the SISD is contained in the SIUD. As the former
is well known to be non—empty in all games, we know that if the latter is
a singleton, then the former must be also. But, we also know that Nash
equilibrium coincides with the SISD if it is a singleton. Hence, when the
SIUD is a singleton, it coincides with the Nash equilibrium.

Next, we provide a result providing some insight into how players with
limited memories play uniform dominance solvable games.

Proposition 6 In uniform dominance solvable games the unique equilib-
rium is an SLME.

Proof We will show that a state in which the equilibrium is played can be
reached from any other state with a series of one—shot mutations. From
this the claim follows immediately. Let ( ) be the set of players which
eliminates strategies in the th iteration of eliminating uniformly dom-
inated strategies and let ( ) be the set of eliminated strategies. Note
first that strategies in (1) are never played. Nevertheless, players can
remember outcomes in which strategies in (1) are played, for exam-
ple, because of the initial conditions. We start the construction of the
sequence of one—shot mutations by “erasing” these memories. More
precisely, we replace all ( ) which resulted from the use of strate-

gies in (1) by a payo that strategy can obtain in e1. Note that
this need not happen simultaneously. Rather, an arbitrary amount of
time can pass between mutations. When all payo s stemming from
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strategies in (1) have been replaced, it is obvious that players in (2)
will no longer play strategies in (2). (Strategies in (2) have not
been eliminated in the first round because they give a maximal payo
higher than the minimum payo of all other strategies. However, as
they can be eliminated in the second round, it is clear that they give
this maximal payo only against strategies in (1). Otherwise they
could not be eliminated in the second round. But due to the muta-
tions players in (2) have now “forgotten” those payo s and remember
only payo s whose maximum is lower than the minimum of the pay-
o s they remember from some other strategy. Hence, they do not play
strategies in (2).) In the next subsequence of one—shot mutations
all players’ memories of payo s resulting from strategy combinations
containing strategies in (2) are replaced in the same fashion. As a
consequence players in (3) will no longer use strategies in (3). The
sequence of mutations is completed by repeating the same steps until,
eventually, players play equilibrium .¤

The above result places restrictions neither on the memory size of players
nor on the evaluation rule they use. However, without further assumptions,
we cannot show that players will play the equilibrium all the time as we
cannot prove uniqueness for the above case. The reason for this can be easily
illustrated. Suppose player experiences a single mutation which makes her
switch from to some other strategy e . As e is not a best response against
, it may happen that she immediately returns to . However, the single

instance of her playing e may have caused other players to re—evaluate their
equilibrium strategies. As a consequence of this, several players other than
may deviate from the equilibrium strategy in the following period (even if
herself has returned). Thus, to prove uniqueness, we need to know more
specific details of the game.

Next, we consider the class of games which are solvable by (standard)
iterative elimination of dominated strategies. As this class contains the class
of uniform dominance solvable games, it is not surprising that an analogous
result requires additional assumptions. The next proposition shows that the
Nash equilibrium in such games is an SLME if players use the minimum
evaluation rule.

Proposition 7 In dominance solvable games the unique equilibrium is an
SLME if players use the minimum rule (regardless of memory size) or if
= 1.

Proof The proof is analogous to the one of Proposition 6, and we use
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the same notation. The main di erence between dominance solvable
games and games solvable by uniform dominance is that in the former
players in (1) may use strategies in (1). More generally, players in
( ) may use strategies in ( ) in the reduced game e 1. Thus, the
sequence of one—shot mutations to reach has to be more elaborated.
We start the sequence of mutations by replacing for each strategy

(1) one of the remembered payo s by min( ). Between two
mutations an arbitrary amount of time can pass. When all mutations
of this first subsequence have occurred, players (1) who played
strategies in (1) will have switched to strategies in e 1 (where e 1

is now defined by applying the standard notion of strict dominance).
Next we proceed–as in the proof of Proposition 6–by replacing all
( ) which resulted from the use of a strategy in (1) by a pay-

o obtainable in e1. However, this does not yet ensure that players
(2) do not use strategies in (2). In order to make them switch

to strategies in e 2 additional mutations are required. But, as in the
first subsequence, one mutation per player is su cient to make them
switch. If one remembered payo of a strategy (2) is replaced

by min( ) there must be a strategy e 2 for which a greater pay-
o is remembered. Due to the minimum evaluation rule this implies
that the player switches to this strategy. As soon as the new strategy
profile is in e2 we again proceed as in the proof of Proposition 6. This
procedure can be repeated until the equilibrium is reached.¤

6 Discussion

There are two idealizations about memory that form the core of our model.
First, there is the particular model of limited memory capacity. According
to it, only a finite number of items could be remembered, and agents re-
membered the same number of items from each strategy, namely the most
recently experienced payo s from the respective strategies. Second, there is
the specific manner in which this finite memory capacity is imperfect: Each
item in the memory of a player is forgotten with small positive probabil-
ity which is independent across items, and the forgotten items are replaced
by other plausible items. We turn now to discuss these idealizations about
memory.

Given our finite brains and neural content there is compelling case to
suppose that memory capacity is limited. The assumption that the deci-
sion maker remembers the same number of payo s from each strategy was
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made largely for convenience–it made comparing (or evaluating) alterna-
tive strategies particularly easy since it only involved comparing vectors of
payo s of the same dimension. In certain contexts, however, it seems plau-
sible that a player remembers a di erent number of payo s from each of her
strategies. Also, di erent players probably remember di erent amounts of
information. Therefore, it would be nice if our results were to extend to
the situation in which the number of payo s an agent has in her memory
depended on who she was and on the strategy. That is, if was replaced by
a player and strategy specific, . We have not pursued such an extension
in this paper.

In some situations, it might be reasonable to assume that the amount of
memory allocated to strategies that are not played for a long while begins
to decay. This extension is allowed for in Sarin (2000), in which he argues
that the maxmin result is robust to assuming such decay. Further analysis
is required to see how this change would a ect the current model.

The assumption that the payo s remembered are the most recently expe-
rienced payo s from those strategies was to reflect the intuition that “more
recent happenings are better remembered” without giving up the first as-
sumption. Now suppose that an agent remembers only the most recent
payo s, irrespective of the strategy that was chosen. This requires us to
address how agents evaluate strategies from which they recall no payo s.
Potential ways of doing this are discussed in Sarin (2000).

The second important aspect of the analysis of this paper is that we
suppose that the items that are stored in memory are imperfectly stored.
There is plenty of evidence to suggest that people possibly forget any item
in their memory (see, e.g., Schacter 1996). More specifically, our model
supposed that each item in memory was forgotten with a small fixed prob-
ability. Intuitive arguments might suggest that agents forget more recent
items less frequently than those stored earlier23 and we could have supposed
that items stored earlier are forgotten with higher probability, as long as all
probabilities are of the same order of magnitude. While we believe that our
assumption that items are forgotten independently of one another and in-
dependently of the current state is a useful first approximation, there might
be reasons to make di erent assumptions for specific applications. In that
case one might want to introduce “state—dependent” forgetfulness.24

Another assumption we made was that an item that was forgotten was

23Of course, this is partially reflected in how agents utilize their memory in the basic
model. Recent payo s are remembered, earlier payo s are forgotten.
24This may change the standard results (see, e.g., Bergin and Lipman 1996).
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replaced, and furthermore, that it was replaced by an item that could pos-
sibly have been forgotten. We assumed that forgotten items are replaced
in this manner to ensure that the number of remembered payo s remained
constant for all strategies. We assumed realistic replacement as it allowed
us to work with the same finite state space and we thought it to be an useful
starting point in the study of how memory might a ect behavior.

7 Conclusion

The present study takes a first step in modelling how players with memory
limitations, who have very little information about their choice environment,
play games. Our preliminary results suggest, firstly, that players with lim-
ited memories tend to be cautious. This cautiousness is reflected by the
emergence of maxmin strategies in various settings. Second, players with
memory limitations tend to do weakly better in games with other players
than in a game with nature. Whereas in decision problems the player con-
verges to their maxmin payo s, in games players converge to at least their
maxmin payo s. Third, players with severe memory limitations ( = 1)
achieve quite a lot. For example, they learn to use dominant strategies and
will play equilibria in dominance solvable games. However, they fail to co-
ordinate on Pareto—e cient equilibria in common interest games and end
up playing the risk—dominant equilibrium. Pessimistic players who use the
minimum rule achieve very similar things as players with minimal memory.
For more optimistic players we have seen that a comparatively large memory
may improve their performance.

Finally, we have seen that in classes of games with especially obvious
solutions, i.e., in games which are solvable by iterated uniform dominance,
the behavior of players with limited memories is robust to memory sizes and
evaluation rules. For games with less obvious solutions this is not true.
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