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Abstract— In this paper we consider ways to alleviate neg-
ative estimated depth for the inverse depth parameterisation

of bearing-only SLAM. This problem, which can arise even if
the beacons are far from the platform, can cause catastrophic
failure of the filter. We consider three strategies to overcome this
difficulty: applying inequality constraints, the use of truncated
second order filters, and a reparameterisation using the negative
logarithm of depth. We show that both a simple inequality
method and the use of truncated second order filters are
succesful. However, the most robust peformance is achieved
using the negative log parameterisation.

I. INTRODUCTION

The work in this paper is motivated by a subset of Simul-

taneous Localisation and Mapping (SLAM) called bearing-

only SLAM. This is SLAM using a bearing-only sensor, as

opposed to a range-bearing sensor, and is more difficult than

the range-bearing case [1]–[3].

There has been a recent surge of interest in bearing-only

SLAM because it allows the use of a single camera as a

sensor. A camera has a number of advantages over range-

bearing sensors (such as SICK scanners). It is a cheap and

compact sensor, which is important in emerging areas such

as wearable robotics, telepresence and television [3]–[5],

where low cost and mobility are key. In addition, being

a passive sensor, it will not interfere with any devices

in its environment and is eye safe. A camera may also

leverage a growing number of computer vision techniques

when performing data association, and may recognise certain

features of its environment [6]–[9]. An example is the use

of image data to detect when loop closing has occured [10].

However, Bearing-only SLAM suffers from limited ob-

servability when attempting to initialise a new beacon (land-

mark) into the map [1], [9], [11]. Specifically, the observation

model is non-invertible, so a single observation is insufficient

to define a unique point in space [12]. Rather, it defines a

ray emanating from the sensor along which a beacon may

lie. The naïve approach of representing the initially unknown

range by a large variance leads to linearisation issues, and

difficulties in being processed correctly by the EKF [2], [3],

[12].

Several approaches have been developed for performing

beacon initialisation in bearing-only SLAM. Delayed ini-

tialisation delays initialising a beacon into the state until

the depth can be estimated well [84]. However this discards
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valuable orientation information. Range-parameterised (RP)

approaches treat the unknown depth as a multiple hypothesis

problem, however the storage and computation of multiple

hypotheses cannot easily be solved without introducing sub-

optimality or consistency issues [9], [13], [14]. Recently,

Davison proposed the inverse depth parameterisation (ID)

[15]. This is based on the observation that the filter equations

are less nonlinear if the filter parameterises the inverse of

the distance to the beacon, instead of the distance itself.

The method has the advantage of being able to cope with

a large range of depths, from the camera position to infinity

(i.e. sufficiently far away relative to the camera motion

that no parallax is observed). In addition the measurement

equation has low linearisation error at low parallax, allowing

the inverse depth estimation uncertainty to be accurately

modelled as a Gaussian. As a result, it has become a very

popular means of performing bearing-only SLAM. However

as will be shown later, it suffers from an issue with negative

depth.

ID and RP approaches suffer from a beacon ”pull-in

effect”, another serious problem which can also cause failure.

This well known but seldom documented effect occurs as a

result of apparent parallax that is actually the result of noise,

and is more pronounced under certain platform movement

[16]. While this paper does not address this problem, we

will comment on the robustness of our algorithms to this

effect.

The structure of the paper is as follows. Section II gives

an overview of inverse depth parameterisation, and discusses

the negative depth problem. Section III describes the use

of second order filters. Section IV presents two methods

to constrain the inverse depth to be positive; truncation of

the inverse depth distribution, and translation of the inverse

depth. Section V presents an alternative parameterisation

using logarithms. Section VI compares the parameterisations

and the effect of the second order filter on simulation data.

Finally, Section VII presents a summary and conclusions.

II. INVERSE DEPTH PARAMETERISATION

Consider a vehicle performing EKF-based planar 2D

bearing-only SLAM. At time k, the true state x(k) consists

of the vehicle pose xv(k) and the set of n static beacons

x1...n,

x(k) =
[

xT
v xT

1 . . . xT
n

]T

k
.

The mean and covariance of this estimate are

x̂(i|j) =
[

x̂T
v x̂T

1 . . . x̂T
n

]T

i|j
, (1)
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P(i|j) =













Pv PT
v1 . . . PT

vn

Pv1 P11 . . .
...

...
...

. . . PT
1n

Pvn P1n . . . Pnn













i|j

, (2)

where (i|j) denotes the estimate at time i given observations

up to and including time j [17]. Pv is the vehicle pose

covariance, Pnn is the nth beacon covariance, Pvj is the

cross correlation between the vehicle and the jth beacon,

and Pnj is the cross correlation between the nth and jth

beacons. The vehicle state x̂v is

x̂v(i|j) =
[

x̂v ŷv θ̂v

]T

i|j
,

with the associated covariance

Pv(i|j) =





Px PT
xy PT

xθ

Pxy Py PT
yθ

Pxθ Pyθ Pθ





i|j

.

Assume that at time m the vehicle first observes a new

beacon j whose true Cartesian position is xc
j . The bearing

from xv(m) to xc
j is θj . However, the distance dj is not

known. The estimated state x̂(m|m) is augmented according

to

x̂(m|m) =
[

x̂T
j−1 x̂T

j

]T

m|m

x̂j(m|m) =









x̂v

ŷv

ρ̂

θ̂j









m|m

, (3)

where ρ̂ is the inverse depth estimate, φj is the initial bearing

observation with variance Rφ, and θ̂j = θ̂v +φj . ρ̂ is chosen

to represent the mean of the inverse depth ranges we expect

beacons to be at; for a beacon whose range lies between

dmin and ∞, suitable heuristically-derived values from [15]

are ρ̂ = 1
2d−1

minand Rρ = 1
16d−2

min (for a 95% uncertainty

region). The initial covariance is

Pj(m|m) =









Px pT
xy 0 PT

xθ

pxy Py 0 PT
yθ

0 0 Rρ 0
Pxθ Pyθ 0 Pθ + Rφ









m|m

,

P
′

(m|m) =

[

P P∇T ℘

P∇℘ Pj

]

m|m

, (4)

where ∇℘ is the Jacobian of (3), P
′

(m|m) is the new

covariance for the entire state, Rφ is the variance of the

bearing sensor, and Rρ is the initial inverse depth variance,

chosen to encompass the inverse depth uncertainty region.

The observation function for the jth beacon is

φ = hj [x(k), v(k)] ,

where v(k) is zero-mean observation noise with known

variance Rφ.

Fig. 1. Example showing failure due to the inverse depth of two beacons
becoming negative. (Top) Close-up of the map just prior to failure. (Bottom)
Following the update the inverse depths ρ have become negative, which
maps to the positions shown behind the sensor in depth space (note the
barely visible ellipse inside the estimated vehicle triangle).

For ID this is

h [x(k), v(k)] =

arctan

(

yj − yv + sin(θj)ρ̂
−1
j

xj − xv + cos(θj)ρ̂
−1
j

)

k

− θv(k) + v(k). (5)

Once linearity is achieved (using the test in [18]), the

inverse depth is transformed into cartesian cartesian coor-

dinates using

x̂c
j = g(x̂j) =

[

x̂v + cos(θ̂j)ρ̂
−1
j

ŷv + sin(θ̂j)ρ̂
−1
j

]

, (6)

and the covariance transformed using

Pc(k|k) = ∇G(k)P(k|k)∇T G(k),

where ∇G is the Jacobian of g(·), and the c superscript

denotes this as the cartesian estimate.

The ID parameterisation is only defined for positive

depths. However, the Kalman filter update rule is linear

and takes no account of nonlinear constraints. Therefore,

the depth can become negative after an update, resulting

in catastrophic failure. This is illustrated in Fig. 1, which

shows a vehicle observing three beacons while performing

2D planar ID SLAM. After a single update the ranges of two
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of the beacons become negative, and the covariance ellipses

in depth space collapse behind the vehicle. In this paper

we consider three strategies for mitigating this phenomenon.

The first is the use of higher order filtering algorithms, the

second explores methods for enforcing inequality constraints

to filters, and the third approach involves reparameterising

the depth using logarithms.

III. HIGHER ORDER FILTERS

Because the EKF performs a first-order linearization of

the nonlinear system, the output distribution is often not

adequately described by the mean and covariance alone.

This can introduce large errors in the true posterior mean

and covariance, which in the case of the parameterisations

described in this paper may degrade their quality and lead

to negative depth in ID.

Including second order terms in the Kalman update may

reduce this effect, and increase the accuracy of the filter.

Work has been done to include higher order terms in SLAM

using the Unscented filter (UKF) [19]. Holmes [20] has

obtained better results this way, suggesting this strategy

could help to avoid the problem. However, computational

issues means that the UKF does not enjoy many of the

optimisation strategies used with SLAM [21], [22]. Various

schemes [23] have been deployed to address this, however

they lack theoretical rigour because correlation structure

between the vehicle and beacons, which is very important,

is not completely consistently maintained.

We use the alternative approach of truncated second order

filters [24]. Although these require the Hessian to be com-

puted, the sparseness of the observation Jacobian ∇H means

that the Hessian tensor is also sparse. The computational

form of the Gaussian second-order update is

S = ∇H(k)P(k|k−1)∇H
T (k)+R(k)+ 1

2
(∂2hP

2∂2h)

x̂(k|k) = x̂(k|k−1)+P(k|k−1)∇H
T (k)S−1

×[v− 1

2
(P(k|k−1)∂2h)] ,

P(k|k) = P(k|k−1)−P(k|k−1)∇H
T (k)S−1∇H(k)P(k|k−1)

where S is the innovation covariance and v is the innovation.

The structure of the Hessian, showing its sparsity, for a

beacon b is

Mb=

2

6
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Mvv 0 . . . MT
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7

7

7

7

5

,

where Mvv and Mbb are the vehicle and beacon derivatives

respectively, and Mvb are the mixed derivatives. Although

the equations are inconvenient to implement, the overall

computational costs remain O(n3).
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Fig. 2. Example from a run showing the application of the two constraint
approaches. The negative ID Gaussian (thick line) is either truncated
(dashed) or translated and inflated (solid).

Although the Second Order filter is theoretically more

accurate, it does not in itself guarantee avoidance of negative

inverse depth.

IV. INEQUALITY CONSTRAINTS

This section considers strategies that constrain negative

inverse depths ρ̂ to be positive.

A. Truncating the Inverse Depth Distribution

Shimada has developed a method to apply inequality

constraints based on the observation that the probability

outside of the constraints must be zero [25]. Assuming the

unconstrained distribution is Gaussian, the first two moments

of the constrained distribution can be readily calculated. The

effect is illustrated in Fig. 2.

Following an update, for all beacons with ρ close to 0
or negative we apply a constraint of the form ΦT x̂ ≤ 0,

where Φ is a vector the same size as x̂, with −1 for

elements corresponding to negative inverse depths and zeros

elsewhere.

B. Enforcing a Non-Negative Depth

The previous section considered truncation as an informa-

tion gain. However, another way to consider the problem is

that the EKF ρ̂ estimate is the linear minimum mean squared

error (MMSE), thus changing it increases the covariance.

Following an update, the following treatment is applied to

the state and covariance to make all negative depths positive.

An error term n(k) is computed, being the same size as

the state x̂, with zeros in all elements except those that

correspond to inverse depths ρ̂ ≤ ǫ,

ni(k) ∈

{

ǫ − ρ̂j(k|k) for ρ̂j(k|k) < 0

ǫi otherwise

x̂
′

(k|k) = x̂(k|k) + n(k),

P
′

(k|k) = P(k|k) + n(k)n(k)T ,

where ǫ is a small positive number (we used 10−6) instead

of 0 as (5) is not observable when ρ̂ = 0.

Thus the mean of negative inverse depths is translated to

ǫ, and the covariance is inflated to compensate, as shown

by the thin solid line in Fig. 2. Note that unlike truncation,
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Fig. 3. Plot showing the inverse depth and negative log parameterisations.

negative depth is not assumed to provide depth distribution

information in this case. Theoretically, it is possible for the

covariance of a beacon to grow without bound if its inverse

depth repeatedly becomes negative after each update, such

that the covariance increases faster than the Kalman update

can reduce it. However, we have not seen evidence of this

occuring in practice.

Rather than correct the estimate when negative depths

occur, an alternative approach is to parameterise the depth

such that negative values cannot occur. In the next section

we discuss one such parameterisation, the negative log pa-

rameterisation.

V. NEGATIVE LOG PARAMETERISATION

The negative log parameterisation is the same as in (3)-

(5), except instead of the inverse depth ρ, we parameterise

the depth as d = e−l. Thus the equivalent estimated state (3)

for the beacon j, first seen at time m is

x̂j(m|m) =









x̂v

ŷv

l̂

θ̂j









m|m

. (7)

The parameterisation is shown in Fig. 3. Unlike inverse

depth, the negative log curve is not asymptotic as depth

increases and thus cannot represent the full (0 . . .∞) range

of depths that inverse depth can. The parameterisation is

conceptually straightforward, as its components are the same

as for inverse depth, with the exception that the depth d is

given by d = e−l instead of ρ−1. Thus the initialisation of

a new beacon into the state follows that in (3) and (4), with

ρ̂ replaced by l̂. The initial inverse depth estimates {ρ̂i, Rρ}
are replaced by their equivalents {l̂i, Rl}, which likewise

are computed heuristically to encompass the mean l̂i and

variance Rl of the uncertainty region in l space.

Beacon updates and conversion to cartesian form are the

same as in (5) and (6) respectively, using e−l instead of ρ−1.

The disadvantage of the negative log parameterisation is

that it is not asymptotic with increasing depth. Therefore,

the initial depth and covariance estimate cannot encompass

as high a range as inverse depth can, i.e. d = (0, n] rather

than (0,∞), where n is a large number; for our experiments

with dmax & 103 the incidence of failures increases and the

accuracy decreases compared to inverse depth.

Fig. 4. Map of the run, in metres. The solid line represents the trajectory
of the vehicle, which starts at the bottom. The crosses are beacons. The
dashed lines represent building outlines that cause occlusions. These ensure
that observations are made at a variety of ranges.

VI. RESULTS

Because simulation studies provide ground truth, and a

controlled environment for comparing the algorithms, we

performed 2D simulations of a vehicle performing bearing-

only SLAM with known data association in the environment

shown in Fig. 4. The trajectory covers 106m at a constant

speed of 14ms−1. The true mean range at which beacons are

first initialised has a mean and variance of 45.6m and 646m2

respectively. The Monte Carlo simulations were run until

N = 1000 successful runs were obtained for each filter. A

run was unsuccessful (i.e. failed) if the (Gaussian-assumed)

observation likelihood [26] became less than 10−100 (effec-

tively zero) at any time step; failed runs are not represented

in the results. The average of the N successful runs was then

computed from

x̂(k|k) = 1

N

N
P

h=1

x̂
h(k|k) ,

P(k|k) = 1

N

N
P

h=1

P
h(k|k) .

We computed the normalised estimation error squared

(NEES) at each time step, and averaged them over the N

successful runs according to [27].

To investigate the contribution that including second order

terms can make, we performed all the experiments both

with and without second order updates. The vehicle was

modelled as a steered bicycle [28] receiving control inputs

uv(k) = 14m/s and steer angle us(k) at each time step, with

associated errors vv and vs. The linearised process model

∇F(k) and noise Q(k) for the vehicle are the same as in

[28].

△t, the time elapsed between k−1 and k was 0.02s for our

simulations and the vehicle wheelbase B = 2m. The sensor

range of the vehicle was 100m and the sensor sweep ±60◦.

The velocity and steer noise standard deviations were 0.5m

and 1◦ for the vehicle, and 1.15◦ for the bearing sensor.
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The initial parameterised depth distribution was computed

heuristically by parameterising 100 depths uniformly dis-

tributed between 1 and 100m, then computing the mean and

covariance of the distribution. This gives better results for

ID than using the distribution in [15], and makes the ID and

negative log parameterisations directly comparable on this

trajectory.

A. Inverse depth results

The Gaussian {ρ̂i, Rρ} values for inverse depth are

{0.0519, 0.0138}.
The environment causes the standard inverse depth pa-

rameterisation to consistently fail (i.e. 100% failure rate)

due to negative inverse depth at the beginning of the run,

as illustrated in Fig. 1. This occured regardless of whether

the Second Order filter was used. The truncated Gaussian

constraint (Section IV-A) did not prevent failure, though

it generally delayed it for up to a third of the run. The

truncated Gaussian constraint fails because the decrease

in the inverse depth covariance as a result of truncation

causes convergence to an incorrect depth, suggesting that

the concept of truncation (that negative depth is informative)

is inappropriate. The non-negative inverse depth constraint

described in Section IV-B was the only method successful at

preventing negative depth failure, and always converged in

our study. Thus, all the quantitative inverse depth results in

this paper use this method. When we tried the initial depth

distribution from [15], we came to the same conclusions.

Table II summarises the main strategies used, and for the

effective ones ranks their ability to increase robustness to

failure by beacon pull-in, the dominant failure mode after

negative depth.

B. Negative log results

The Gaussian
{

l̂i, Rl

}

values for negative log are

{−3.64, 0.861}. The ID depth bounds above could have

been chosen to encompass ∞, however as currently posed,

the negative log distribution cannot cope with an equiva-

lently large depth space; for dmax & 103 the performance

would become worse than inverse depth. The negative log

parameterisation appears to be sensitive to the choice of

{l̂i, Rl} (compared to the actual beacon depth distribution)

to a greater extent than inverse depth. This is likely to be due

to the the Gaussianity assumptions of the parameterisation

breaking down due to the shallower gradient of the param-

eterisation over ID. For environments with a greater depth

range, the negative log parameterisation would need to be

modified, either by remapping the depth space, or by using

an alternative distribution; a possibility is d = ae−bl, where

a, b > 1.

Fig. 5 shows that both parameterisations return consistent

estimates with similar accuracy for the vehicle pose. The

state estimate of the negative log parameterisation shows

greater consistency than inverse depth; Fig. 6 shows that the

NEES estimate is an order of magnitude lower. It also shows
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Fig. 5. Comparison between the inverse depth and negative log parameter-
isations using a Kalman update. Both estimates have similar accuracy and
uncertainty estimates (2σ bounds are shown as dashed lines).
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Fig. 6. NEES compared to the state size for the parameterisations.

that the period between 0 and 50 time steps is particularly

difficult for inverse depth, as there are few observations with

low parallax.

Table I shows the failure rate of the runs. As negative

depth has been eliminated, the failures are primarily caused

by beacon pull-in, mainly between 0 and 50 time steps. The

low failure rate of the negative log parameterisation shows

that it is far more robust to failures than inverse depth.

The uncertainty estimate and accuracy of the vehicle

poses using the second order filter are almost identical to

the first order case, however the state estimates become

vastly more consistent, as shown in Fig. 7. The negative log

parameterisation remains more consistent than inverse depth.

Neither parameterisation failed at all when using the second

order filter.

VII. CONCLUSION

In this paper we have considered several strategies for

overcoming the problem of negative depth in the inverse

TABLE I

FAILURE RATE OF THE PARAMETERISATIONS, MEASURED IN THE

COURSE OF OBTAINING 1000 SUCCESSFUL RUNS.

Parameterisation Failures Failure rate (%)

ρ
−1 Kalman update 65 6.1

e
−l Kalman update 7 0.7

ρ
−1 Second Order 0 0

e
−l Second Order 0 0
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Fig. 7. NEES compared to the state size for the parameterisations using a
Second Order filter TABLE II

SUMMARY OF THE METHODS USED AND THEIR EFFECTIVENESS

Method Effectiveness

Unconstrained Second Order filter ineffective

Inequality constraints ineffective

Ineq. constraints + Second Order filter ineffective

Translating the depth moderate

Translating the depth + Second Order filter high

Negative log parameterisation high

depth parameterisation of bearing-only SLAM. We exam-

ined three different strategies – second order filters, im-

plementations of inequalities and reparameterisations. Their

effectiveness is summarised in Table II. We found that it

is worth exploring alternative parameterisations to inverse

depth. The benefits include an increase in consistency and

robustness to pull-in failure, in addition to the elimination of

the negative depth failure mode. We have used a basic e−l

parameterisation to remove the discontinuity, and found that

it is as accurate as inverse depth, with improved consistency

in our simulations. This parameterisation has the shortcom-

ing of being unable to cope with very large variations in

depth observations (as may be encountered when running

outdoors). However, other similar parameterisations, for in-

stance d = ae−bl, where a, b > 1, may be tailored to avoid

this.

In further work, the cause of negative depth, and the

convergence of inverse depth with the positive depth con-

straint need to be investigated. The linearity of the negative

log parameterisation also needs to be investigated, and the

parameterisation tested on an environment with a greater

range of beacon depths. A multiple Gaussian approach, in

the same manner as Range Parameterisation, could be used

instead of a single Gaussian, as the parameterisation used

to represent each depth interval could be tailored to reduce

nonlinearity and provide optimum performance.
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