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Abstract In this paper we consider the wuse
of Covariance Union (CU) with multi-hypothesis
techniques (MHT) and Gaussian Mixture Models
(GMMs) to generalize the conventional mean and
More
specifically, we address the representation of multi-
modal information using multiple mean and covari-
ance estimates. A significant challenge is to define

covariance representation of information.

a rigorous fusion algorithm that can bound the com-
plexity of the filtering process. This requires a mech-
anism for subsuming subsets of modes into single
modes so that the complexity of the representation
satisfies a specified upper bound. We discuss how
this can be accomplished using CU. The practical
challenge is to develop efficient implementations of
the CU algorithm. Because of the novelty of the CU
algorithm, there are no existing real-time codes for
use in real applications. In this paper we address
this deficiency by considering a general-purpose im-
plementation of the CU algorithm based on general
nonlinear optimization techniques. Computational
results are reported.

Keywords: Covariance Intersection, Covariance Union,
Data Fusion, Kalman Filter, Multimodal distributions.

1 Introduction

Level-1 information management has matured signifi-
cantly over the last decade, with the development of
rigorous algorithms robust to the effects of unmodeled
correlations, and corrupt and/or spurious information,
in the context of general distributed data fusion net-
works. Despite the dramatic theoretical and practical
results in the Level-1 arena, very few inroads have been
made into higher level information management appli-
cations. This is due in large measure to the discrep-
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ancy between the relatively simple types of information
encountered in low level tracking and control applica-
tions, and the much more varied and richer forms of
information that must be processed in high level ap-
plications.

In this paper we explore a methodology for general-
izing the unimodal information representation scheme
used in Level-1 contexts to permit the representation of
information that has a more complicated multimodal
structure. This is accomplished using a set of unimodal
state estimates to capture the multiplicity of possible
states of the target of interest. The challenge is to
bound the computational complexity issues that arise
from this approach. In this paper we describe how a
mechanism called Covariance Union (CU)[6, 3] can be
applied to reduce the complexity of a multimodal rep-
resentation to satisfy a fixed complexity budget, while
rigorously guaranteeing information integrity.

The structure of the paper is as follows: Section 1
discusses the issue of information representation. Sec-
tion 2 discusses the need for an information compres-
sion mechanism to bound the computational complex-
ity of the fusion process. CU is shown to be a solution
to this problem. Section 3 discusses computational is-
sues that must be addressed in order for CU to be ap-
plied in practice. Practical algorithms for implement-
ing CU are described. Section 5 provides experimental
results demonstrating the application of CU. Section 6
discusses the results presented in the paper.

2 Information Representation

Determining how to represent information and uncer-
tainty is a key first step that impacts all aspects of the
data fusion problem. The representation must provide
both an estimate of the state of the target or system
of interest and its associated degree of error or uncer-
tainty, and the uncertainty must be defined in a form
that permits it to be empirically determined. There
must be a rigorous algorithm for fusing information in
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the representation, and the computational complexity
of the representation and its associated fusion algo-
rithms must be bounded for practical application.

By far the most widely used information represen-
tation is the mean and covariance form, where the
mean vector defines the best estimate of the state of
the target and the error covariance provides an upper
bound on the expected squared error associated with
the mean. For example, the measured position of an
object in two dimensions can be represented as a vec-
tor a consisting of the object’s estimated mean posi-
tion, e.g., a = [x, y]T, and an error covariance matrix
A that expresses the uncertainty associated with the
estimated mean. If the error in the estimated mean
vector is denoted as a, then the error covariance ma-
trix is an estimate of—is greater than or equal to—the
expected squared error, E[aa’]. The estimate is said
to be consistent (or conservative) if and only if A >
E[aaT] or, equivalently, A - E[aa’] is positive definite
or semidefinite (i.e., has no negative eigenvalues). The
full estimate of a target’s state is given by the mean
and covariance pair (a, A).

Given two mean and covariance estimates (a,A)
and (b, B), the data fusion problem consists of deter-
mining a fused estimate (c,C) that is guaranteed to
be consistent, and that summarizes the information in
the two estimates with error (in terms of the size of
C) less than or equal to that of either estimate. If
the two estimates are consistent and have a precisely
known degree of correlation, the Kalman filter can be
applied; otherwise, Covariance Intersection (CI) must
be used. Both algorithms guarantee consistent results
when used appropriately. The limitations of the mean
and covariance representation of information can be
found in a variety of practical contexts. For exam-
ple, suppose a vehicle is being tracked along a road
in an urban environment. Assuming that it travels at
a speed that is average for the road, its future posi-
tion can be predicted forward a short length of time
reasonably accurately; however, if it encounters a T-
junction that requires turning left or right, there are
two distinct possible future positions. The future state
can be represented with a single mean and covariance
estimate, but doing so requires establishing a mean po-
sition at the junction with a covariance large enough to
account for its position after a left or right turn. This
produces a clearly unsatisfactory result in which the
mean vector does not correspond to either of the pos-
sible states of the vehicle and consequently has a very
large error covariance. Intuitively it seems clear that a
better option would be to maintain information about
the two possible future states rather than subsuming
them into a single mean and covariance estimate.

Historically there have been two distinct approaches
for representing “multimodal” information (e.g., as in
the above example). One involves Multiple Hypothesis
Tracking (MHT), which maintains multiple mean and
covariance estimates corresponding to distinct possi-
ble states[l]. The other approach is to attempt to
maintain a parameterization of the Probability Den-
sity Function (PDF) that defines the uncertainty dis-

tribution associated with the state of the target. In
practice, PDF approximation methods typically only
represent the significant modes of the distribution in
terms of their means and covariances, thus making its
representation all but identical to MHT. A key distinc-
tion is that the PDF-based approach treats the set of
estimates as a union of Gaussian probability distribu-
tions. More specifically, the distribution is expressed
as a Gaussian Mixture Model (GMM) of the form:

N
p(x) = > piN {x; i, P} . (1)

=1

The reason for adopting this form is that GMMs
can conveniently approximate a wide class of PDFs
and are identical in implementation to MHT. Unfortu-
nately, representation is only one aspect of the overall
information management problem. There also must be
tractable algorithms for fusing information in a given
representation.

The fusion of a set S of mean and covariance
estimates—each defining a possible state of the target,
only one of which is guaranteed to be consistent—with
another set T' can be accomplished under the MHT in-
terpretation simply by forming the Cartesian product
S x T and applying the appropriate fusion algorithm
(Kalman or CI) to the pairs. Unfortunately, this yields
a combined estimate that has O(|S|*|T|), which implies
that the complexity of the fused estimate exceeds that
of the original estimates. This increasing complexity
will tend to exhaust available resources and therefore
must be mitigated.

3 Representation Compression

One of the most important features of the mean and
covariance representation of information is its constant
complexity. Specifically, the amount of information
required to describe the state of the target does not
increase as new information is incorporated. How-
ever, when the representation of state is generalized to
maintain one mean and covariance estimate for each of
the different modes, the update/fusion operation mul-
tiplies the number of modes. In order to manage the
complexity of the representation, some form of repre-
sentation compression must be applied.

In most MHT applications, the proliferation of hy-
potheses is managed by pruning the least likely ones
according to some measure. A practical problem with
pruning is that the likelihood measure typically in-
cludes many assumptions (e.g., PDF-related) that lead
to more loss of correct hypotheses than is expected, and
any loss of the hypothesis that corresponds to the true
state of the target undermines the rigor of the entire
information management framework. Therefore, prun-
ing cannot be the primary mechanism for the limiting
the representational complexity of our multimodal es-
timates.

If it is not possible to prune estimates (discard
modes), then the only alternative is to somehow co-
alesce similar modes to stay within a fixed representa-
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tional complexity budget. The key question is how to
achieve this coalescence such that the integrity of the
information is maintained. If it is assumed that one
mode of an estimate corresponds to the true state of
the target, and the others are spurious, then a mech-
anism called Covariance Union (CU) can be applied.
For example, given n modes represented by estimates
(a1,A1) ... (an, Ay), CU produces an estimate (u, U)
that is guaranteed to be consistent as long one of the
mode estimates (a;, A;) is consistent. This is achieved
by guaranteeing that the estimate (u, U) is consistent
with respect to each of the estimates:

U > Ai+(u—ap)(u—ap)
U > A2+(u—a2)(u—a2)T
U > A,+(u—a,)(u-— an)T (2)

where some measure of the size of U, e.g., determinant,
is minimized. The consistency of the CU estimate is
assured for each of the n inequalities because the dif-
ference between the mean u and a; is accounted for in
the covariance U by the addition of the square of that
difference to the covariance A,;.

Given a complexity budget of N modes, the fusion
of two N-mode estimates will produce a new estimate
with N? modes which must be reduced to N modes.
This can be achieved by applying a clustering algo-
rithm (e.g., standard k-means clustering based on a
covariance-weighted distance measure such as Maha-
lanobis). Each of the N clusters can be combined into
a single mean and covariance estimate using CU, and
the rigor of the framework is guaranteed because one
of the N estimates will be consistent as long as one of
the original N2 estimates was consistent.

This application of CU for mode reduction is appro-
priate for MHT-type applications. However, CU must
be generalized to accommodate weights/probabilities
associated with modes when the representation is in-
terpreted to be a Gaussian mixture approximation of
a multimodal probability distribution. This requires a
generalization of the definition of consistency for mul-
timodal estimates. We require that each probability
p; be greater than or equal to the actual probability
that estimate/mode i corresponds to the true state of
the target. The problem is that any small nonzero
probability implies that the associated estimate may
represent the true state of the target, so consistency
requires it to have the same influence on the CU re-
sult as an estimate with a much higher probability.
The only difference is that the final result can be in-
terpreted as having an associated probability that is
equal to min(1,), p;), where the min function is re-
quired because the weights are assumed to be conser-
vative and thus may sum to a value greater than unity.
Thus, the MHT case is equivalent to having no prob-
ability estimates, which requires unity to be assumed
for every mode.

4 Computational Methods

The Covariance Intersection optimization has simple
linear constraints that are compatible with any generic
constrained optimization package. In contrast, the
Covariance Union optimization problem has matrix-
valued semidefinite constraints which generally re-
quired specialized optimization techniques. For our
experiments, however, we have applied generic opti-
mization methods, which are discussed in this section.

The CU constraints contain a quadratic term, but a
simple rearrangement converts each constraint into a
linear matrix inequality (LMI) in u and U. Note that
the k' CU constraint in (2) can be rearranged as the
Schur complement (see A.5.5 of [2]) of the entry ‘1’ in:

{ (U - Ag) (u—ak)}

(u—ay)? 1

3)

This means that the semidefinite constraints in (2)
are equivalent to:

o=

The intersection of all of the constraints is repre-
sented as a larger block-diagonal inequality in which
the diagonal elements are the LMIs in (4). This
demonstrates that CU trace minimization is a standard
semidefinite programming (SDP) problem|[2], since
trace is linear. There is no such SDP formulation for
determinant minimization, so we vectorized the con-
straints by computing their eigenvalues. The resulting
optimization is non-smooth so we used the SolvOpt[4]
nonlinear non-smooth optimizer. SolvOpt is an imple-
mentation of Shor’s r-algorithm(5]. An initial feasible
solution is generated by setting u to zero and summing
the right-hand sides of the simplified constraints:

Ap ay

Uy = Z (Ay + ajay) (6)
k=1

We have developed several approximate solutions
which are much faster while still preserving consis-
tency. These solutions are suitable for real-time use
and are also good starting points for iterative improve-
ment. Most of them rely on separation of the u and
U optimizations to achieve computational savings. If
the u vector is fixed at a specific value then the prob-
lem is considerably simplified: find a minimal U such
that U > Fj where the F; are constant. This sim-
pler problem yields closed-form solutions when there
are only two estimates. For example, if determinant
is the measure used then U is computed directly via
simultaneous diagonalization:

U= (V) ! 'max(VIF, V,VIF, V) V™! (7)

where max is the component-wise maximum of two
diagonal matrices. V contains the generalized eigen-
vectors of F; and Fs.

One such approximation is to assume that real-life
applications produce estimates in which the optimal
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mean u is a convex combination of the input means.

This constrains u to a bounded region in R”. Indeed

if there are only two estimates (a, A) and (b, B) then

u is constrained to the line segment between a and b.

Let c = b —a,u = a+wc. The problem is reduced to:
Find a minimal U such that:

U > A+uwiec” (8)
U > B+(1-w)’cc (9)

This is convex in w and is easily solved via a simple
one-dimensional search.

In our experiments we observed that convex-
combination CU produces reasonably good approxima-
tions to the optimal values when applied to two esti-
mates in low dimensions. However, its performance
has not yet been fully characterized. We evaluated it
using determinant minimization on pairs of estimates
whose mean components and covariance eigenvalues
were randomly chosen on the interval (0,1), and the
dimensionality n varied from 2 to 20. For the two-
dimensional data, the determinant of U produced by
convex-combination CU was on average only 4% larger
than the optimal value. For n = 20 it was 20% larger.
The overall increase was roughly proportional to /n.

Another fast real-time approximation is derived by
noting that the optimal two-element CU update tends
to produce a u vector for which the two constraints are
similar in size and shape:

A+ (u—a)(u—a)" *B+ (u—b)(u-b)" (10)

This observation suggests a strategy in which u is fixed
at the point where the difference is minimized. Mini-
mization of the Frobenius norm leads to a closed-form
solution for u. Let ¢ = (a — b) /2. Then:

u= (a+b+((CTC)I+CCT)_1 (A—B)c) /2 (11)

We tested this solution with random data. It pro-
duces good estimates when the differences between the
estimates’ means is large compared to the differences
between the estimates’ covariance matrices.

Large problems with many estimates can be broken
down into a set of smaller problems by recursively solv-
ing two estimates at a time. For example, if there are
three estimates (aj, A1), (a2, Az), and (a3, Az) they
are separated into two smaller problems:

1. Compute (uy,U;p) as the union of (a;, A;) and
(az, Az).

2. Compute (ug,Us) as the union of (u;,U;) and
(ag,Ag).

3. (ug, Uy) is the solution.

The main advantage of this approach is that two-
element unions are solved quickly via convex combina-
tion CU using closed-form formulas such as equation
(7). As discussed in subsection 4.1, this method has
one serious drawback: it does not guarantee consis-
tency. It does guarantee that the covariance matrices
Uy, will never shrink and will most likely grow on every
iteration. However, there is no guarantee that Uy

Figure 1: Example: original input estimates.

will still be consistent with the earlier estimates when
it is re-centered at a new mean ugy;. Previous experi-
ments did not observe this effect due to the extra slack
provided by the (sub-optimal) convex-combination for-
mulation.

4.1 Consistency

Fast suboptimal CU methods are good approximations
in certain simple cases, but do not guarantee consis-
tency as the dimensionality and the number of modes
grows large. Even the optimal method described in the
next subsection does not maintain consistency with the
original input when the union is applied pairwise re-
cursively. This results directly from CU’s ability to
incorporate the mean shift of each estimate in the cur-
rent union, and inability to remember the mean shift
information from any previous union. As the sequence
of pairwise unions grows longer, the center of the union
grows farther away from the original estimates; eventu-
ally, some of those estimates may lie completely outside
the union of which they are supposed to be members.
To illustrate this, consider a simple 2D example.
Figure 1 shows a set of six input estimates, (ag, Ag);
each covariance is represented by its lo ellipse with
its mean centered at the +. As a baseline, Figure 2
superimposes the optimal union, given by
U>A;—(u—ag) (u— ak)T (12)

which is consistent with all six inputs. This result can
only be obtained when the union is calculated as a
batch operation. Figure 3 shows the result of the same
optimal method applied pairwise recursively. When
plotted in this manner, the union ellipse should enclose
at least all the input means; clearly, this union is not
consistent with all of the inputs. This can be verified
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Figure 2: Optimal CU calculated as a batch operation.
This result is consistent with all sixz inputs.

numerically as well, since the calculated union violates
the original constraints.

This behavior is true not only for a pairwise union
of multiple modes, but also for any sequence of union
operations, in which the result is used as input for an-
other union. To correct this, we change the CU con-
straint from its optimal form, as in (12), to the general
form,

Ay )"
Qe 1-— (677

(u—ag) (u—ag

U >

> (13)
by adding an «y, term for each input (ax, Ay), where ay,
must be solved for in the range (0,1). This form guar-
antees consistency with the input, for any sequence of
union operations, by finding the circumscribing ellipse,
completely enclosing the input ellipses.

Continuing with the example, Figure 4 shows the
general CU result when applied to the inputs as a single
batch operation. Figure 5 shows the same result, but
applied as a series of pairwise operations. While we
introduce uncertainty into the system by inflating the
covariance U, we can now guarantee that the results
of the current CU operation will maintain consistency
when used as input to another CU operation.

4.2 Implementation

The SolvOpt package is able to find a minimizing vec-
tor = according to a cost function f (z), which may
be optionally constrained by some function g (x). We
choose x to be the n elements of u plus the %
elements of the upper triangle of U 1.

IWhen finding the general form of CU, discussed in subsec-
tion 4.1, we include the aj, values for each of the m estimates in
vector x as well

Figure 3: Optimal CU method applied to input pairwise
recursively. The mean shift from each estimate to the
center of the union does not carry through successive
pairwise operations, and the result is inconsistent.

We minimize the determinant of the covariance, U,
subject to the constraint that

szU—Ak—(u—ak)(u—ak)T

have non-negative eigenvalues, for all k € [1,...
where m is the number of estimates given.

To find |U|, we perform an LU decomposition of
matrix U, to generate an upper triangular matrix W
and a lower triangular matrix L, such that LW = U.
L and W are given by

Ly =1 (15)
1 J
L = W <Uij — ZLikwkj> ;1> j(16)
i k=1
Wij = Uij - ZLika:j (17)
k=1

Then |U| = I} ;W,;. The complexity cost of this
operation is O (n?).

The single value SolvOpt uses to constrain the min-
imization must be nonpositive. Since we want to con-
strain the eigenvalues of (14) to be nonnegative for all
ke [l,...,m], we simply find the most negative of all
nk eigenvalues, Apin, and return —\,,;, as the con-
straint.

To compute the n eigenvalues of each Xy, we follow
a two-step procedure:

1. Find the Hessenberg form of Hy, = Hess (Xj)

2. Apply the QR transform to Hj until the eigenval-
ues are isolated on the diagonal
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Figure 4: General form of CU as a batch operation.

The Hessenberg form of a symmetric matrix is tridiago-
nal, which simplifies the actual eigenvalue calculations.
This technique works because the original matrix Xy
and its Hessenberg form Hj, have the same eigenvalues.

The QR algorithm iterates on Hjy until it ap-
proaches the Schur normal form, which contains the
eigenvalues on the diagonal.

Each QR decomposition of Hy results in Q, which
is orthogonal, and R, which is upper triangular, such
that QR = Hy. The algorithm proceeds as follows

QR Hk,s (18)
Hys11 = RQ (19)
for s =0,1,2,..., until Hy is in the Schur normal form.

As has been discussed, SolvOpt evaluates the cost
and constraint function callbacks to minimize |U| over
the n + w elements of u and the triangle of U.
To merge m estimates, the cost function performs
O (n3) operations, the constraints function O (mn3).
The number of iterations which SolvOpt must perform
varies widely, from 1500 to 15000, depending on the
batch dimensions and also the input data values. In
the next section we present results showing the overall
computational cost of this approach.

5 Experimental Results

In this section we present experimental results for dif-
ferent implementations of the optimal? CU algorithm,
using SolvOpt, written in both Matlab and C. We
have timed the application of CU on sets of random
data to explore actual execution times for various
dimensions n, and modes m. The times listed in the

2There appears to be no predictable significant effect on run-
ning time when the aj parameters are included for the general
form.

Figure 5: General form of CU as a series of pairwise
operations.

following tables were obtained on a single 1.5 GHz
Pentium computer.

Avg. execution times for Matlab (in secs)

Dimensions \ 2 Modes 4 Modes 8 Modes 16 Modes
2 0.91 1.21 1.94 2.22
4 22.76 10.75 12.78 21.63
6 40.95 80.58 55.68 74.41
8 230.50 204.36 231.83 276.55

Average execution times for C (in seconds)

Dimensions ‘ 2 Modes 4 Modes 8 Modes 16 Modes
2 <0.01 <0.01 0.01 0.03
4 0.43 0.62 1.89 2.73
6 2.42 6.25 14.18 30.61
8 11.50 37.05 63.16 146.87

These results show that the generality of the
SolvOpt algorithm incurs a significant computational
cost that makes it impractical for most real-time appli-
cations when the dimensionality and number of nodes
is high.

6 Discussion

In this paper we have examined the problem of rep-
resenting multimodal information using MHT and
GMMs. We have discussed the fusion of informa-
tion represented in the form of multiple mean and co-
variance estimates corresponding to distinct possible
states, or modes of a distribution, for a tracked target.
We have discussed how the fusion operation results in
a multiplicative increase in the complexity of the rep-
resentation that will grow exponentially over time un-
less bounded by a mechanism that can compress the
representation to a fixed number of modes. We have
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described how Covariance Union can be used to co-
alesce modes while preserving the rigor of the infor-
mation management framework. Experiments demon-
strate the effectiveness of our approach.

The main result of this paper is our SolvOpt-based
algorithm, with implementations in Matlab and C, for
computing CU solutions. Experimental results corrob-
orate the correctness of the algorithm, but they also
show that SolvOpt is not practical for real-time appli-
cations. It is expected, however, that our experimental
codes will prove useful in support of future research on
applications of CU.
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