2008 Sixth IEEE International Conference on Software Engineering and Formal Methods

Modelling Rational User Behaviour as Games between an Angel and a Demon

Rimvydas Ruks$énas, Paul Curzon
Queen Mary, University of London
Department of Computer Science
Mile End Road, London E1 4NS, UK

rimvydas@dcs.qmul.ac.uk, pc@dcs.qmul.ac.uk

Abstract

Formal models of rational user behaviour are essential
for user-centred reasoning about interactive systems. At an
abstract level, planned behaviour and reactive behaviour
are two important aspects of the rational behaviour of users
for which existing cognitive modelling approaches are too
detailed. In this paper, we propose a novel treatment of
these aspects within our formal framework of cognitively
plausible behaviour. We develop an abstract, formal model
of rational behaviour as a game between two opponents.
Intuitively, an Angel abstractly represents the planning as-
pects, whereas a Demon represents the reactive aspects of
user behaviour. The formalisation is carried out within the
MocHa framework and is illustrated by simple examples of
interactive tasks.

1. Introduction

We use interactive computer systems for online shop-
ping, banking, or interacting on social networking sites.
Since such systems have become ubiquitous in modern so-
ciety, they must be usable, secure and provide intended
services. Interactivity however implies that these systems’
properties do not solely depend on their software compo-
nents, but also on the actions of their human users. One
way to address this when verifying interactive systems is to
combine the formal models of both the system (device) and
aspects of its user behaviour [9, 10].

Our approach based on this idea has been successfully
used to detect a range of systematic user errors related to,
e.g., functional correctness [8] and security [20]. The ap-
proach relies on a generic user model (abstract cognitive
architecture) [7, 19] that formalises abstract cognitive prin-
ciples, such as a user entering an interaction with knowl-
edge of the task and its subsidiary goals, and choosing non-
deterministically between appropriate actions. While suc-
cessful, the approach is limited by the assumption that the

355

Ann Blandford
University College London
UCL Interaction Centre
Gower Street, London WCI1E 6BT, UK
A.Blandford@ucl.ac.uk

non-determinism in our current user model might only be
resolved demonically, i.e., in the worst possible way. This
is a plausible and useful assumption in some situations (e.g.,
reactive behaviour of novice users), however it does not eas-
ily capture more advanced aspects of user behaviour (e.g.,
aspects of expert behaviour).

More generally, the rational behaviour of humans in-
cludes both planned behaviour and reactive behaviour [6].
Similar views are also held in various agent-based for-
malisms [23]. Both planned and reactive behaviour aim to
reduce the distance between the user goals and the current
state of an interactive system. With planned behaviour, this
is achieved by moving the goals towards the current state,
whereas, with reactive behaviour, the current state is moved
towards the goal state by taking immediately doable actions.

In this paper, we argue that angelically (i.e., in the best
possible way) resolved non-determinism provides an alter-
native and more abstract way of formally modelling the
planning aspects of rational user behaviour. It works for
both immediate, and thus relatively simple, choices between
available alternatives and more advanced aspects such as or-
dering sequences of necessary actions. The simplicity of
this approach is achieved by explicitly modelling only task-
specific user actions, whereas the construction and analysis
of the “planning space” is implicitly carried out by the ver-
ification tool as part of the model checking process. This
allows us to focus on the area of interest of our work, sys-
tematic errors induced by a design, rather than problems
caused by the planning behaviour of individuals.

As a result, and in contrast to cognitive modelling,
e.g. [15, 12], our approach does not deal with the plan-
ning process per se. Instead, we can focus on the analysis
of whether the user behaviour, including planning aspects,
satisfies properties such as avoiding systematic errors when
performing an interactive task. We also show that care is
needed in relying on angelic non-determinism so that the
user modelled does not become an omniscient deity capa-
ble of overcoming all the flaws, imperfections and assump-
tions in the designs of user interfaces, thereby making the

978-0-7695-3437-4/08 $25.00 © 2008 IEEE

|IEEE
@) computer
DOI 10.1109/SEFM.2008.43 Soclef

ty

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

verification results meaningless and potentially misleading.

We formalise these ideas as a generic cognitive architec-
ture. It is built as a collection of agents where each agent
represents a different aspect of user behaviour, e.g., a reac-
tive agent, a planning agent, etc. We then interpret this cog-
nitive architecture as a game between cooperating and/or
competing agents.

For verification purposes, all agents are divided into two
coalitions: our agents represent the angelic aspects of user
behaviour, whereas the other agents represent the demonic
aspects. Thus we associate, e.g., the planning agent with
our coalition and the reactive agent with the other coali-
tion. The membership of some agents might depend on the
user type and/or particular scenarios. For example, in the
case of well-trained expert users, it is cognitively plausible
to assume that the “mode” agent making the choice between
the reactive and the planning modes of behaviour is angelic,
since such users are capable of planning their actions so that
the main task goal is achieved. On the other hand, novice
users might rely on the reactive behaviour based on inter-
face cues. Thus, their behaviour is more precisely captured
by viewing the mode agent as demonic.

Summarising, the main contribution of this work is
an abstract model of rational user behaviour based on
an appropriate combination of angelic and demonic non-
determinism. This cognitive architecture extends our earlier
work that relied on a solely demonic interpretation of non-
determinism in the user model. The extension (a) makes
the analysis based on a new model and its predictions more
precise and reliable, and (b) widens the range of interactive
scenarios that can be formally captured. At the same time,
the simplicity of our model facilitates the formal specifica-
tions of interactive systems and should make their verifica-
tion more viable in practice.

2. Problem

The basic idea of our approach is to develop an abstract
model of rational user behaviour that (a) is based on a com-
bination of the reactive and planned behaviour, and (b) is
sufficiently simple to be used for the (automated) reason-
ing and verification of interactive systems. Intuitively, the
angelic resolution of the available choices of action can be
viewed as an abstract representation of planned behaviour,
whereas the demonic resolution corresponds to reactive be-
haviour. It turns out, however, that even a choice between
several simple alternatives cannot be viewed as inherently
demonic or angelic.

In this section we discuss in detail this research chal-
lenge. Namely, we show that neither demonic nor angelic
non-determinism alone can adequately model the rational
choices of humans that are related to non-deliberate inter-
action faults in taxonomy of dependable computing [2]. To

356

module ATM1
external choice {none, balance, withdraw}
interface menu, show, release, wait : bool
atom ATMinterface
controls menu, show, release, wait
reads choice, menu, show, release, wait
awaits choice

init
[] true -> show’ := false; release’ := false;
menu’ := true; wait’ := false

update

[1 “(choice’ = none) ->
wait’ := true; menu’ := false

[] choice = balance ->
show’ := true; release’ := false;
menu’ := true; wait’ := false

[1 choice = withdraw ->
show’ := false; release’ := true;
wait’ := false

[] default ->
show’ := false; release’ := false;
wait’ := false

endatom

endmodule

Figure 1. ATM specification.

highlight the essence of the problem without cluttering it
with irrelevant details, we use a simple yet realistic task
scenario involving a cash point (ATM). Then we outline our
solution to the discussed problem. A formal model of ratio-
nal user behaviour is developed in the next section, based
on these observations.

Reactive modules [3] are used as the formal modelling
framework. The main reason for this is that the verification
environment based on it, MocHA [3], provides a natural way
of specifying agents and their coalitions, thus supporting
game-based modelling. We will explain the notation and its
meaning as we describe the example.

2.1. Example system: a cash point

We assume that our cash point provides two menu op-
tions: cash withdrawal and balance check. If the balance
option is selected, the machine shows the balance informa-
tion on the display. If the withdraw option is selected, the
requested amount of cash is provided. A MocHa specifica-
tion of this machine is given in Fig. 1 as the module ATM1.
In this paper, for ease of comprehension, we omit from our
specification authentication steps (inserting a card and en-
tering its PIN) and abstract away from modelling how the
desired amount of cash is selected.

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

The boolean variables menu, show, release and wait
specify whether the corresponding elements of ATM inter-
face—menu choices, balance information, released cash
and wait message—are displayed or otherwise available.
They are output variables and can be read by the environ-
ment (other modules). The input variable choice specifies
the two possible choices that users can make (or the absence
of any choice). It may only be read by the module.

MocHa modules consists of atoms. An atom defines the
next-state relation for the variables it controls. This rela-
tion is specified as a set of guarded commands: an action
may only be taken when its guard is true. For example, the
guarded command from Fig. 1

“(choice’= none) -> wait’:=true; menu’:=false

is executed only if the environment (user) has chosen one of
the menu options. In this case, the next values (primed vari-
ables) of wait and menu specify that a wait message is dis-
played at the same time as menu choices become unavail-
able. The next two commands in Fig. 1 specify appropri-
ate ATM responses—displaying the balance and releasing
cash—to the user’s menu selections. Note that the choice
between guarded commands is non-deterministic: if several
guards are true, any of those commands may be executed.
Finally, the guard default indicates that this action is taken
when all the other guards are false.

The initial values of variables are computed as specified
by the init sections of the atoms; their subsequent updates
are specified by the update sections. The variables in dif-
ferent atoms are updated in one round in an arbitrary order.
However, if an atom awaits some variables (choice in our
example), then the variables this atom controls are updated
after those it awaits. Thereby, the next values of the awaited
variables can be used in a computation round. For example,
the next value of choice used in the guard of the above
command ensures that it is evaluated once the user model
has exercised an opportunity to choose one of the menu al-
ternatives.

Next we specify the user model for this ATM.

User model. We assume that the user model (see Fig. 2)
may take four actions: choose either the balance or with-
draw option from menu, read the displayed balance infor-
mation and take the released cash. If none of these options
is available, the user model simply waits by doing nothing.
Reading balance information and taking cash are modelled
as the boolean variables read and take. The other vari-
ables used by the module ATMuser were explained above.

As can be seen from this specification, the user model is
non-deterministic—it can choose between the balance and
withdraw options. We show next that there is no simple
answer to the question of what is the most appropriate way
to interpret this non-determinism.

357

module ATMuser
external menu, show, release bool
interface choice {none,balance,withdraw};
read, take : bool
atom UserActions
controls choice, read, take
reads menu, show,release, choice,read, take
init

[] true -> choice’ := none;
read’ := false; take’ := false

update
[] menu & “show & “release ->

choice’ := balance
[] menu & “show & "release ->

choice’ := withdraw
[] show -> read’ := true; choice’ := none
[] release -> take’ := true; choice’ := none
[] default -> choice’ := none
endatom
endmodule

Figure 2. Simple ATM user model.

2.2. Modelling non-determinism

Angelic choice. Let us consider the angelic interpretation
first—the user is sufficiently smart to choose an alternative
that is relevant to the goal they try to achieve. At first, it
may seem that such a commonsensical assumption works as
intended. For example, consider an interaction the goal of
which is to withdraw cash. The corresponding assertion in
MocHa is expressed as the following formula in alternating
temporal logic (ATL) [1] where the variable take being true
specifies that the user has taken cash:

<< ATMuser >> F(take) (D)
Here the deviation from the analogous CTL formula is that
the path quantifier (angle brackets) is parametrised by the
atoms from ATMuser. Thus the above formula is true, if
the atom UserActions can eventually (operator F) take
the system into a state such that take is true, no matter
how the rest of the system behaves. In other words, non-
determinism in the atoms of ATMuser is interpreted in for-
mula (1) angelically.

As one would expect, model checking shows that (1) is
true for the parallel composition of ATM1 and ATMuser: the
user model is able to withdraw cash using this ATM. Con-
sider next a slightly more complicated task goal—both to
check balance and withdraw cash (for simplicity we assume
that the user does not care about the order of these actions):

<< ATMuser >> F(read & take)

2

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

Again, model checking shows that (2) is true. Unfortu-
nately, this time the positive outcome of verification is actu-
ally undesirable, since it hides an important property of the
interface design specified by ATM1. The latter is restrictive
in the sense that it allows one to check balance and withdraw
cash during the same interaction only if the first choice was
the balance option. Otherwise, once cash has been released,
the menu is no longer displayed making it impossible for the
user to check the balance. However, the angelic interpreta-
tion of non-determinism allows the user model to overcome
this design feature by guessing the “right” order of actions
and always taking it.

Such an outcome of user-centred verification would re-
sult in misleading conclusions about the usability of this
ATM design, since there is no cognitively plausible reason
to expect that a real person would favour any of the menu
options in this situation.

Next we look at what happens if one takes the demonic
view of users.

Demonic choice. The demonic interpretation is at the ba-
sis of our earlier work on generic user models [7, 19]. Its
justification relies on the fact that, in the same interactive
situations, people behave differently, depending on their
previous experience, the salience of device signals, etc., as
long as their actions are cognitively plausible. Thus, to be
able to detect a wider range of potential interaction prob-
lems, one has to assume the worst possible scenario. Es-
sentially, this amounts to asking—is it cognitively plausible
that someone will eventually take a “wrong” action for sys-
tematic reasons?

Such an approach solves the problem of the omniscient
user we identified above. Namely, the demonic analog
of formula (2) where ATMuser no longer necessarily co-
operates in reaching the desired state

<< >> F(read & take)

3)

is false. Thus, the demonic view of non-determinism allows
one to detect the potentially problematic aspect of our ATM
design. Unfortunately, it introduces a new problem—the
demonic analog of the previously true formula (1)

<< >> F(take) 4

is false. The analysis of our interactive system shows that
the user model now chooses (repeatedly) the worst possible
course of action, the balance menu option, instead of doing
the “right” thing—choosing the withdrawal option. Such
model behaviour of course does not reflect reality: normal
users do not maliciously behave contrary to their task goal.
The observed behaviour is simply an artefact of our mod-
elling choice to resolve non-deterministic situations demon-
ically.
Next we outline our solution to the discussed problem.

358

2.3. Towards a solution

The main problem with the simple approach discussed so
far is that it takes a fixed view (angelic or demonic) of users.
However, the nature of user choices in our example actually
depends on the task goal. More generally, human behaviour
varies within the population and depends on context and
situation [22]. To take this into account while still retaining
our abstract view of the planned and reactive behaviour, we
model user choice as the following two-step, decision and
action, process.

The decision step is angelic. Our user model decides
which available actions are or have become no longer rele-
vant to the task under execution and eliminates them from
further consideration. The angelic decision about the rel-
evance of actions represents abstractly the human ability
and propensity to act according to the context and situa-
tion. When the model operates in the planning mode, it
also selects an action to take. The angelic selection of the
next action represents abstractly the human ability to make
plans. To counterbalance the angelic power so that slips
are not eliminated from planned behaviour, only predictable
(see Sect. 3) and salient actions can be selected in this step
within our approach. The salience issues, however, are not
dealt with here (see our earlier work [18]).

The action step is demonic. In the reactive mode, our
user model executes one of the possible and still relevant
actions. The demonic choice now represents the human
propensity not to respond in a fixed way to the device
prompts, as long as the suggested actions are cognitively
plausible. In the planning mode, the model simply executes
the action selected in the decision step.

In our example, for the task of withdrawing cash, choos-
ing the balance option is an irrelevant action and can be
eliminated from further consideration by the angelic choice.
In this case, the user model would no longer be able to
choose the wrong action, even when behaving reactively.
Consequently, model checking (4) would not yield the
above false positive, correctly reflecting our commonsensi-
cal expectations. On the other hand, for the task of with-
drawing cash and checking the balance, both actions for
choosing a menu option are initially relevant. Thus the reac-
tive user model would execute them in an arbitrary (demon-
ically chosen) order. In this case, model checking would be
able to identify the peculiar feature of the design in Fig. 1
we discussed earlier.

Next we develop a formal model based on these intuitive
ideas.

3. Formal user model

In this section, we specify an abstract, generic cogni-
tive architecture that models rational user behaviour as dis-

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

cussed in Sect. 2. By modelling the planned behaviour, we
extend our earlier work [19] that dealt only with reactive be-
haviour. That work was based on a higher-order framework,
SAL [14]. This allowed us to develop a proper generic ar-
chitecture, which could be instantiated to derive a specific
user model for a concrete interactive system. The SAL
tools, however, resolve all instances of non-determinism
in the same way, either demonically or angelically, de-
pending on the property verified. Therefore, to be able to
combine both angelic and demonic non-determinism, we
use the MocHA framework here. Since MocHA does not
support higher-order specifications, we describe our cog-
nitive architecture as a generic template that can be later
expanded/modified to derive concrete user models.

Our cognitive architecture is parametrised by the task ac-
tions users might take and the task goal. The number of
task actions is defined as the MocHA constant $NACTS. In
the description below, we will refer to each task action by
its number j: (1. .$NACTS).

The state of the user model is specified by the variable
fin of the type Finished = {run, exit, abort}. The
value run indicates that the model is still performing a task,
while the other two values indicate that task execution has
been terminated, either upon achieving the task goal (value
exit) or abnormally (value abort). The latter arises when
there are no cognitively plausible actions to execute. The
mode of behaviour is specified by the variable beh of the
type Behaviour = {planned, react}.

The cognitive architecture consists of three MocHa mod-
ules: mode, decision and action. These modules are speci-
fied and explained below.

Mode of behaviour. The formal specification of the mode
component is given in Fig.3. GOAL is a placeholder that
denotes the task goal; other placeholders are indicated by
/.../. All the placeholders are to be expanded as neces-
sary when concrete interactive systems are specified. This
is the way we deal with developing a generic model without
a higher-order formalism.

The specification states that the user model stops plan-
ning (i.e., behaves reactively) once the task goal has been
achieved. In such a case, its behaviour may also include
the termination of an interaction (see below). Until then
the mode of behaviour is chosen non-deterministically (the
Mochna keyword nondet) in a way determined by the con-
crete system under verification (see below). This is a coarse
specification of the mode of behaviour. It can, however, be
refined, taking into account other cognitive factors and en-
vironment impact (e.g., interruptions).

The non-deterministic choice of mode provides a means
of modelling different classes of users. For example, we
may assume that expert users are sufficiently trained and
knowledgeable to plan their actions for achieving the task

359

module mode
external fin :
interface beh :
atom behaviour
controls beh
reads beh, fin, /.../

Finished; /.../
Behaviour

update
[] fin = run & GOAL -> beh’ := react
[fin = run & "“(GOAL) -> beh’ := nondet
endatom
endmodule
Figure 3. Mode module.
goal. They will tend to prefer the planning (angelic)

mode. Such behaviour is captured by resolving the non-
determinism in the mode module angelically. On the other
hand, the demonic resolution of this non-determinism better
captures the behaviour of novices who will tend to rely on
the reactive (demonic) mode of behaviour. By refining the
mode module, these user classes can be further fine-tuned.

Decision step. The decision step is formally specified in
Fig. 4. The module decision consists of two components:
an indexed collection of atoms, relevance_$j, each of
which models the decision about the relevance of the action
j, and the atom planning. As explained in Sect.2.3, we
assume that the non-deterministic choices will be resolved
angelically in the decision module.

The variable rel is an array of booleans such that
rel[$7j] specifies whether the j-th action is still relevant to
the task under execution. We assume that all task actions are
relevant initially, thus rel is initialised to true. Then, each
time the decision is made, any subset of the relevant task
actions may non-deterministically be judged as no longer
relevant. Note that the reverse decision is impossible: once
the user model judges an action as irrelevant, it remains so
during the task execution.

The atom planning models the selection of the next ac-
tion to execute, denoted by the variable plan. Setting this
variable to 0 indicates that no action has been planned (plan-
ning failed), which means that the user model executes the
next action reactively (see below). The atom consists of an
(indexed) collection of guarded commands. Each command
simply chooses an action by setting plan to the correspond-
ing index k. As explained earlier, this non-deterministic
choice will be modelled as angelic.

To counteract the omnipotency of the angelic choice,
only “predictable” actions may be chosen in this abstrac-
tion of planning. In the specification, the set of predictable
actions is denoted by the placeholder PREDICTABLE. In con-
crete systems, this placeholder is to be substituted with an

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

module decision
external fin :
interface rel :

Behaviour
(0..$NACTS)

Finished; beh :
Relevant; plan :

#foreach j = (1..$NACTS)
atom relevance_$j
controls rel[$j]
reads fin, rel[$j]

init
[true -> rel’[$j] := true
update
[1 fin = run & rel[$j] -> rel’[$j] := nondet
endatom
#endforeach
atom planning
controls plan, rel[0]
reads fin, plan
awaits beh
init
[] true -> plan’ := 0
update
#foreach k = PREDICTABLE
[fin = run & beh’ = planned -> plan’ := $k

#endforeach

[] true -> plan’ := 0
endatom

endmodule

Figure 4. Decision module.

appropriate subset of (1. .$NACTS).

Predictable actions are mental user actions and those
physical actions whose outcomes depend solely on the user
(e.g., taking the released cash, reading the balance infor-
mation). This contrasts with the actions whose outcomes
depend on the operation of the environment or device (e.g.,
choosing a menu option). However, we do not claim that the
above list is exhaustive. Further research may well identify
other instances of predictable actions. We further discuss
this when considering concrete examples in Sect. 4 and 5.

Action step. The action step models the execution of an
action. If there is an action planned in the decision step,
then that action is executed. Otherwise, one of the enabled
actions is non-deterministicaly chosen and executed.

This step is formally specified in Fig.5. There the
first guarded command in the update section is actually a
generic template for specifying concrete task actions. These
are derived by substituting (a) an action number for j, and
(b) the actual guard and body of the corresponding action
for the placeholders GUARD_j and BODY_j, respectively. In

360

module action
external rel : Relevant; plan :
beh : Behaviour; /.../
interface fin : Finished; /.../
atom actions
controls fin, /.../
reads fin, /.../
awaits beh, rel, plan

(0. .$NACTS);

init

[true -> fin’ := run; /.../

update

[1 (beh’ = react | plan’ = 0 | plan’ = j) &

fin = run & rel’[j] & GUARD_j -> BODY_j

[fin = run & beh’ = react & GOAL ->
fin’ := exit

[] "(£fin = run) -> fin’ := fin

[] default ->
fin’ := if WAIT then fin else abort fi;
Y

endatom

endmodule

Figure 5. Action module.

this template, its generic part

(beh’ = react | plan’ = 0 | plan’ =
fin = run & rel’[j]

i) &

states that the task action j can only be executed when the
user model is still performing the task, the action is judged
relevant and at least one of the following holds: (a) the
model operates in the reactive mode, or (b) planning has
failed, or (c) j has been planned in the decision step.

The second guarded command in Fig. 5 models the vol-
untary task completion once the task goal (placeholder
GOAL) has been achieved. In such a case, the user model
may terminate an interaction by setting fin to exit. The
third command simply states that, once an interaction has
been terminated, it remains so. Finally, the last command
models users either waiting or forced to terminate an in-
teraction when there are no enabled and still relevant task
actions to execute. In such a situation, the user model waits
for further prompts by doing nothing, if there is a cogni-
tively plausible reason (e.g., a “please wait” message) to do
so, or abnormally terminates by setting £in to abort, oth-
erwise. In the specification, the wait condition is denoted
by the placeholder WAIT.

Angel-demon games. There are three agents in the cog-
nitive architecture we just developed: mode, decision and
action. The decision agent has been specified assum-
ing that non-determinism is resolved angelically, whereas

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

the action agent has been specified assuming that non-
determinism is resolved demonically. On the other hand,
we have not made fixed assumptions about the nature of
non-determinism in the mode agent.

A safer position is to have weaker presumptions about
the capabilities of users and thus associate the mode agent
with the demon. In this case, the game takes place between
the decision agent on one (our) side and the mode and action
agents on the other side. The ATL formulas to be verified
are then of the following form:

<< decision >> property

In some scenarios, however, one might also want to con-
sider users that are capable of planning and carrying out
their plans. In this case, the game takes place between the
mode and decision agents on our side and the action agent
on the other side. Correspondingly, the ATL formulas to be
verified are of the following form:

<< mode, decision >> property

In the subsequent sections, we give concrete examples
that illustrate the game aspects of our cognitive architecture
by providing concrete instances of the above two formulas.

4. Reactive example: ATM revisited

Now we return to the cash-point example introduced in
Sect.2. We show that the analysis based on our new cog-
nitive architecture avoids the problems encountered previ-
ously. We start with the same ATM specification as before
(Fig. 1). However, the concrete user model is now derived
as an instantiation of our generic cognitive architecture by
replacing its placeholders and action template appropriately.

Cash-point user. Our user model includes five concrete
actions. The first four are those from the update section in
Fig. 1. They are used as replacements for the placeholders
in the action template from Fig. 5. For example, the guard
and the body of the first action

menu & “show & "release -> choice’ := balance

are substituted for GUARD_1 and BODY_1, respectively. The
fifth action is a new one:

wait -> choice’ := none

It models users waiting upon observing a “please wait” mes-
sage. The variable wait is substituted for the placeholder
WAIT as a wait condition, thus indicating that the user model
does not terminate an interaction when a wait message is
displayed in case of a delay in ATM response.

We also have to specify predictable actions. There are
no mental actions in this user model. Out of the five physi-
cal actions, we consider as predictable the two actions that

361

immediately achieve their goal (reading the balance infor-
mation and taking the released cash). Also, the wait action
can be viewed as predictable, since, by itself, it achieves
nothing. Thus, the set {3, 4, 5}, which represents these ac-
tions, is substituted for the placeholder PREDICTABLE.

The condition of users achieving the task goal (place-
holder GOAL) depends on the task performed. It will there-
fore be specified separately for each correctness property
analysed. The above instantiation (including GOAL) defines
the following specification, ATMuser, of ATM users:

ATMuser := mode || decision || action

Finally, the whole interactive system is defined as follows:

Systeml := ATMuser || ATM1

Verification. Here we consider an average ATM user and
do not assume that planning is involved in task execution.
Therefore, only the decision agent is assumed to be angelic.

We start with the task of checking the balance and with-
drawing cash. The task goal (GOAL) is thus read & take.
Recall that our previous verification in Sect.2.2 missed a
potentially undesirable feature of the design specified by
ATM1. This time, however, model checking shows that the
corresponding property

<< decision >> F(read & take)

(&)

is false as one would expect for the reasons already ex-
plained in Sect. 2.2. Thus, our new user model allows us to
identify problematic ATM designs that prevent users from
checking the balance once the released cash has been taken.

Let us now modify the ATM design so that this feature
is eliminated. This can be achieved by keeping the menu
options available once cash has been released. The only
change required to our ATM specification (ATM1) is adding
to the withdrawal action a relevant assignment to menu:

choice = withdraw ->
show’ := false; release’ := true;
wait’ := false; menu’ := true

This gives us new specifications, ATM2 and System2, of the
ATM and whole system, respectively. Now property (5) is
satisfied for the new system. This indicates that the users
interacting in a cognitively plausible way, as specified by
the user model, will be able to successfully perform this
task and achieve their goal with the interface design ATM2.
Similarly, the verification of property (4) shows that a
simpler task of withdrawing cash (or checking the balance)
can be successfully performed by the new user model. This
contrasts with our verification in Sect. 2.2, which indicated
an unrealistic problem (false positive) with the ATM design.
Summarising, the example demonstrates that analysis
based on our new cognitive architecture yields less false

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

module BoatDevicel

external m, b, push : bool
interface home : bool
atom Move
controls home
reads push, b
awaits b
init
[true -> home’ := true
update
[] push & b -> home’ := true
[] default -> home’ := b’
endatom
endmodule

Figure 6. Boat device specification.

positives. At the same time it allows one to detect poten-
tially problematic design features like the one in ATM1.

5. Planning example: river crossing

In this section, we present an example that illustrates
how our new cognitive architecture captures planned be-
haviour (problem solving) that is a part of task execution.
The example is based on the classical puzzle of the wolf,
the goat and the cabbage. The scenario is as follows.

A man arrives at a river. There is a boat at the bank,
which can be used to cross the river. The boat, however,
is big enough to contain only one of the man’s belongings.
Also, the wolf and the goat (and similarly the goat and the
cabbage) cannot be left on the same side, since one of the
pair will be eaten in each case. The man’s goal is to travel to
the other side with all the belongings safe. We extend this
classical scenario by assuming that the river crossing is a
part of a one-way road, thus the boat must be returned to its
home station after the transfer is finished. For that, there is
a device that moves the boat back. It is activated by pushing
a button at the exit on the other side.

Next we formally model the above scenario in MocHa
using our generic cognitive architecture.

Boat device. This device is specified in Fig. 6. A boolean
variable, home, indicates whether the boat is at home (this
side). The other three booleans, m, b and push, reflect the
man’s actions and are read by this specification. Thus, the
variables m and b are true when, respectively, the man and
the boat are on the other side, while push indicates whether
the button to activate the device has been pushed.

Initially the boat is at home. When it is on the other side
and the button is pushed, the boat is transferred home (first

362

action). In all other cases (second action), the value of home
depends on the man’s actions as reflected by the variable b.

User model. Again the user model is an instantiation of
our cognitive architecture. The man in our puzzle can cross
the river with any of the three belongings. The correspond-
ing actions to transfer, respectively, the wolf, the goat and
the cabbage are as follows:

m=w) & (b=m ->
m’ := "m; w := "w; b’ := "b; push’ := false
m=9) & Mb=m ->
m’ := "m; g’ := "g; b’ := "b; push’ := false
m=¢c) & (b=m ->
m’ := "m; ¢’ := "c; b’ := "b; push’ := false

As with m and b, the variables w, g and c are true when
the wolf, the goat and the cabbage, respectively, are on the
other side. Thus, the first action above states that the man
can take the wolf to the other side only when all three, the
man, the wolf and the boat, are on the same side. The other
two actions are analogous. If he wishes, the man can also
cross the river alone, specified as:

b=m->m" := "m; b’ := "b; push’ := false

Finally, the man can press the button to activate the boat
device at the exit on the other side:

m&b ->b’ := false; push’ := true

We use these five actions to instantiate our cognitive
architecture as explained earlier. Also, we consider the
first four actions as predictable, since their goal—crossing
the river with one of the belongings or alone—is imme-
diately achieved by performing them. On the other hand,
pressing the button does not by itself achieve the goal
of transferring the boat back. Thus, the set of the pre-
dictable actions, {1, 2, 3, 4}, is substituted for the place-
holder PREDICTABLE.

There is no reason for the man to wait in this puzzle.
Therefore, the wait condition false is substituted for the
placeholder WAIT. Finally, the man’s goal is to move to the
other side with all the belongings. This is specified as the
conditionm & w & g & c, which is substituted for GOAL.

Note that we had to specify explicitly only concrete task
actions such as crossing the river. Our cognitive architecture
is such that the problem solving aspects are automatically
dealt with during the model checking process.

Verification. Let us assume that this man is clever enough
to sequence transfers so that no one is eaten during the pro-
cess. In our approach, this assumption is simply represented
by viewing the mode agent as angelic.

The correctness property we want to verify consists of
two parts. One part, denoted done, states that the task has

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

been performed properly. In other words, the man with all
the belongings has moved to the other side and the boat is
at home. This condition is formally expressed as follows:

mé&wé&g & c & home

The other part, denoted safe, states that there is no dan-
ger for anyone to be eaten. This can be ensured if the man is
on the same side as the wolf and the goat (similarly for the
goat—cabbage pair). This condition is specified as follows:

(w=9) = m=w) & ((g=c)=>m=9)
The correctness property can then be expressed as
<< mode, decision >> (safe U done) (6)

Here U denotes the “until” operator. It states that the condi-
tion done is eventually achieved and, in every state before
that, the condition safe is true.

For BoatDevicel, model checking shows that prop-
erty (6) is false. The reason is that the man transfers all the
belongings to the other side and then simply terminates the
task without pressing the button to transfer the boat back.
This is an example of the widespread post-completion error.
It is a slip where a person terminates a task upon achieving
its main goal, notwithstanding the fact that there might be
subsidiary tasks necessary to perform for the proper com-
pletion of the main task. Our user model allows us to detect
that the design of the boat device is not good enough even
for a “clever” man to solve this puzzle properly, without
committing a post-completion error.

Now let us enhance the design of our boat device. Sup-
pose, there is a sensor installed at the exit that detects when
a person leaves and then automatically activates the device.
In our formal specification, this can be simply expressed by
modifying the first action in Fig. 6 as follows:

(push | fin’ = exit) & b -> home’ := true

Here the condition fin’ = exit models the sensor detect-
ing a leaving person.

Will this improvement affect the outcome of verification?
Indeed, model checking now shows that property (6) is true.
Thus, with the improved design, the river crossing task is
performed correctly by people capable of choosing an ap-
propriate order to transfer their belongings.

The focus of our work is not dealing with problems po-
tentially occurring in the planning process per se. Note,
however, that many interactions involve some aspects of
planning (problem solving). User interfaces might facili-
tate this process by, e.g., representing in some way the de-
cisions made. In other words, interactive tasks frequently
involve both planning behaviour and rather simple device
specific actions that might be easily affected by cognitive
slips. The example demonstrates that our approach can deal

363

with planned behaviour in a simple and elegant way, thus
facilitating the detection of errors due to cognitive slips in
interactive systems.

6. Conclusion

Related work. Our work falls within the scope of ap-
proaches to reasoning about the behaviour of interactive
systems known as syndetic modelling [9]. The latter com-
bines, and considers as central components, a formal user
model (e.g. [9, 5, 10]) and a formal specification of the de-
vice. Moher et al [13] also consider various types of users.
Contrary to ours, however, their approach requires a sep-
arate specification for each user type. Rushby e al [21]
focus on mode errors and the ability of pilots to track mode
changes. They formalise plausible mental models of sys-
tems, though these are essentially abstracted system mod-
els, not based on a cognitive structure.

Back et al [4] use a game based approach to reason about
interactive systems. They, however, assume that users are
able to choose the right alternatives in any circumstances,
i.e., their behaviour is purely angelic. Consequently, their
approach does not represent real people whose behaviour,
due to certain aspects of human cognition, can be seen as a
mix of angelic and demonic aspects.

Game based ideas are applied [16, 17] to the analysis
and construction of social procedures that involve multiple
agents such as voting and allocation of shared resources.
ATL and the MocHA environment is also used by van der
Hoek et al [11] to model social laws in multi-agent systems.

Summary. People normally do not act maliciously and
against their goals when performing interactive tasks. How-
ever, because of the limitations of human cognition, they do
not always perform necessary actions either. In this paper,
we presented a novel treatment of this dual nature of ratio-
nal user behaviour in interactive systems. Relying on game
based ideas, we developed an abstract cognitive architecture
as a collection of competing/co-operating agents. The an-
gelic planning agent represents abstractly the human ability
to choose and order their actions according the situation and
their goals. The demonic reactive agent represents the un-
predictability of human choices, as long as they seem cog-
nitively plausible. Finally, the mode agent represents the
choice between planned and reactive behaviour. Whether
this choice is angelic or demonic depends on a concrete sys-
tem and the type of its users one is modelling.

Our cognitive architecture describes fallible behaviour.
However, the model does not imply that mistakes will al-
ways be made. Erroneous behaviour only emerges if the
model is placed in an environment that allows it. The ar-
chitecture is generic in the sense that concrete user models

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

are derived as its instantiations by providing suitable argu-
ments. In this paper, we focused on modelling planning and
reactive behaviour. Other important issues such as cogni-
tive salience of actions had been dealt with in our earlier
work [18]. In a similar way, they can be incorporated into
the cognitive architecture presented here.

To illustrate our approach, we presented two simple ex-
amples' that involve reactive and planned behaviour. The
examples showed that our game based view of the cognitive
architecture allows us to avoid problems that are inherent
when all instances of non-determinism in the user model
are resolved in the same, either angelic or demonic, way.

One of the advantages of our approach is its abstract han-
dling of planned behaviour. There is no explicit representa-
tion of the planning process in our model. This activity is
encoded using angelic non-determinism and is carried out
as part of the model checking process. As a result, the
formal models become simpler and easier to comprehend,
while modelling and analysis can focus on cognitive slips
that occur during both reactive and planned behaviour in in-
teractive systems. At the same time, the simplicity of our
models makes their application more viable in practice.

Acknowledgments. We are grateful to Ralph-Johan Back
for the stimulating discussion on this topic. This re-
search has been funded by EPSRC grants EP/F02309X/1,
GR/S67494/01 and GR/S67500/01.

References

[1] R. Alur, T.A. Henzinger, and O. Kupferman, “Alternating-
time temporal logic”, ACM 49(5), 2002, pp. 672-713.
[2] A. AviZienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing”, IEEE Trans. Dependable and Secure Comput-
ing 1(1), 2004, pp. 11-33.
[3] R. Alur, T.A. Henzinger, EY.C. Mang, S. Qadeer, S.K. Raja-
mani, S. Tasiran, “Mocha: Modularity in model checking”,
CAV’98, LNCS 1427, Springer-Verlag, 1998, pp. 521-525.
[4] R.-J. Back, A. Mikhajlova, and J. von Wright, “Reason-
ing about interactive systems”, Proc. FM’99, LNCS 1709,
Springer-Verlag, 1999, pp. 1460-1476.
[5] H. Bowman and G. Faconti, “Analysing cognitive behaviour
using LOTOS and Mexitl”, Formal Aspects of Computing
11,1999, pp. 132-159.
[6] R. Butterworth and A. Blandford, “The principle of ratio-
nality and models of highly interactive systems”, Proc. IN-
TERACT 99, 10S Press, 1999, pp. 417—424.

"Mocua specifications of these are available from http://www.dcs.
gmul .ac.uk/research/imc/hum/examples/sefm08.zip.

364

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

P. Curzon and A.E. Blandford, “Detecting multiple classes
of user errors”, R. Little and L. Nigay (eds), Proc. EHCI’01,
LNCS 2254, Springer-Verlag, 2001, pp. 57-71.

P. Curzon, R. Ruksénas, and A.E. Blandford, “An approach
to formal verification of human-computer interaction”, For-
mal Aspects of Computing 19(4), 2007, pp. 513-550.

D.J. Duke, P.J. Barnard, D.A. Duce, and J. May, “Syndetic
modelling”, HCI 13(4), 1998, pp. 337-394.

D.J. Duke and D.A. Duce, “The formalization of a cognitive
architecture and its application to reasoning about human
computer interaction”, Formal Aspects of Computing 11,
1999, pp. 665-689.

W. van der Hoek, M. Roberts, and M. Woolridge, “Social
laws in alternating time: effectiveness, feasibility, and syn-
thesis”, Synthese 156, 2007, pp. 1-19.

D. Kieras and D.E. Meyer, “An overview of the EPIC ar-
chitecture for cognition and performance with application
to human-computer interaction”, Human-Computer Inter-
action 12(4), 1997, pp. 391-438.

T. Moher, V. Dirda, R. Bastide, and P. Palanque, ‘“Monolin-
gual, articulated modelling of users, devices and interfaces”,
Proc. DSVIS’96, Springer-Verlag, 1996.

L. de Moura, S. Owre, H. Ruess, J. Rushby, N. Shankar, M.
Sorea, and A. Tiwari, “SAL 2”, Proc. CAV’04, LNCS 3114,
Springer-Verlag, 2004, pp. 496-500.

A. Newell, Unified Theories of Cognition, Harvard Univer-
sity Press, 1990.

R. Parikh, “Social software”, Synthese 132,2002, 187-211.

M. Pauly, Logic for Social Software, PhD thesis, University
of Amsterdam, ILLC 2001-10, 2001.

R. Ruksénas, J. Back, P. Curzon, and A. Blandford,
“Verification-guided modelling of salience and cognitive
load”, submitted to Formal Aspects of Computing.

R. Ruksénas, P. Curzon, J. Back, and A. Blandford, “For-
mal modelling of cognitive interpretation”, Proc. DSVIS’07,
LNCS 4323, Springer-Verlag, 2007, pp. 123-136.

R. Ruksénas, P. Curzon, and A. Blandford, “Modelling and
analysing cognitive causes of security breaches”, Innova-
tions in Systems and Soft. Engineering 4(2), 2008, 143-160.

J. Rushby, “Analyzing cockpit interfaces using formal meth-
ods”, Elec. Notes in Theoretical Computer Science 43,2001.

L.A. Suchman, Plans and Situated Actions: The Problem
of Human-Machine Communication, Cambridge University
Press, 1987.

M. Wooldridge and N.R. Jennings, “Agent theories, archi-
tectures, and languages: a survey”, ECAI-94 Workshop on
Agent Theories, Architectures, and Languages, LNCS 890,
Springer-Verlag, 1995, pp. 1-39.

Authorized licensed use limited to: University College London. Downloaded on August 7, 2009 at 07:03 from IEEE Xplore. Restrictions apply.

