
FMIS 2007

Formal Modelling of Salience and Cognitive
Load ?

R. Rukšėnasa,1, P. Curzona,2, J. Backb,3, A. Blandfordb,4

a Dept. of Computer Science, Queen Mary, University of London, London, UK

b University College London Interaction Centre, London, UK

Abstract

Well-designed interfaces use procedural and sensory cues to increase the salience of appropriate actions and
intentions. However, empirical studies suggest that cognitive load can influence the strength of procedural
and sensory cues. We formalise the relationship between salience and cognitive load revealed by empirical
data. We add these rules to our abstract cognitive architecture developed for the verification of usability
properties. The interface of a fire engine despatch task used in the empirical studies is then formally verified
to validate the salience and load rules. Finally, we discuss how our formal modelling and verification suggest
further refinements of the rules derived from the informal analysis of empirical data.

Keywords: human error, formal verification, salience, cognitive load, model checking.

1 Introduction

The correctness of interactive systems depends on the behaviour of both human and
computer actors. Human behaviour cannot be fully captured by a formal model.
However, it is a reasonable, and useful, approximation to assume that humans
behave “rationally”: entering interactions with goals and domain knowledge likely
to help them achieve their goals. If problems are discovered resulting from rational
behaviour then such problems are liable to be systematic and deserve attention in
the design. Whole classes of persistent, systematic user errors may occur due to
modelable cognitive causes [14,11]. Often opportunities for making such errors can
be reduced with good design [6]. A methodology for detecting designs that allow
users, when behaving in a rational way, to make systematic errors will improve such
systems.

? This research is funded by EPSRC grants GR/S67494/01 and GR/S67500/01.
1 Email: rimvydas@dcs.qmul.ac.uk
2 Email: pc@dcs.qmul.ac.uk
3 Email: j.back@ucl.ac.uk
4 Email: a.blandford@ucl.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:rimvydas@dcs.qmul.ac.uk
mailto:pc@dcs.qmul.ac.uk
mailto:j.back@ucl.ac.uk
mailto:a.blandford@ucl.ac.uk


Rukšėnas, Curzon, Back and Blandford

When performing a familiar interactive routine, an intention can be formulated
well before the opportunity to execute the procedural steps that allow that intention
to be communicated. When environmental features suggest that an intention can
be communicated those features become cognitively salient and actions can be cog-
nitively cued. Well-designed interfaces increase the sensory salience of signals that
are used to cue actions that are frequently forgotten or are performed in the wrong
sequence. However, although sensory salience can be manipulated by making an
indicator bigger or louder or just in time, this does not ensure that the action will
be performed since the action may not be cognitively salient. A series of empirical
studies conducted by Back et al [1] has found that many slip errors are caused by
an inappropriate “springs to mind” response to environmental features (that cor-
respond to known actions). For example, the appearance of a text entry box may
prompt a user to start typing without initialising the box (i.e., moving the mouse
cursor and clicking inside the box). Accounts of many errors can be given in terms
of how people are allocating attentional resources. An individuals awareness of what
they have to do next can be driven by cues that are internal to the cognitive system
(goals and methods) or external to the cognitive system (cued in the environment).

Non-sensory cues, known as procedural cues (internal to the cognitive system),
can be used to retrieve previously formulated intentions (expert procedural knowl-
edge) enabling the next procedural step to be performed. Remembering that, and
so doing, after performing x always do y if z is true is an example of following a
procedural cue rule. Sensory cues (external to the cognitive system) can also be
used to retrieve intentions (expert procedural knowledge). For example, if sensory
cue p is attended to then it may indicate that q should be the next step if r is true.

People make slip errors frequently, but do not make them every time. Empiri-
cal studies [1] suggest that cognitive load can influence the frequency of errors by
affecting the strength of procedural and sensory cues. In this paper, we formalise
the relationship between salience and cognitive load revealed by the informal anal-
ysis of empirical data. We then incorporate these rules into our abstract cognitive
architecture [9,15] developed earlier from abstract cognitive principles, such as a
user entering an interaction with knowledge of the task and its subsidiary goals,
and choosing non-deterministically between appropriate actions. This extension re-
fines non-determinism by introducing a hierarchy of choices governed by the salience
(strength) of procedural and sensory cues, and the level of cognitive load imposed
by the task performed.

As a validation step for our extension, we formally model the fire engine despatch
task used in the empirical studies [1]. One reason for doing this is to check whether
the systematic errors identified during the experiments can also be detected by the
formal verification of the same task, thus indicating that our extended cognitive
architecture generates behaviours corresponding to those of real people. Another
reason is that possible mismatches between the two sets of behaviours can sug-
gest refinements to our salience and load rules and their formalisation within the
cognitive architecture.

Summarising, the main contribution of this paper is the following:

• An investigation into the formal modelling of salience and cognitive load.

2



Rukšėnas, Curzon, Back and Blandford

• A formalisation of the connection between salience and cognitive load revealed
by empirical studies.

• An extension of our verification framework involving salience and load rules, and
a hierarchy of salience levels.

• A formal modelling, as a validation step, of the task used earlier in our empirical
studies.

Related work. There is not much related work on salience and cognitive
load. Cartwright-Finch and Lavie [7] developed theory that a high extraneous load
only reduces perception of a sensory cue when cognitive control functions are not
available to maintain the active goal. More generally, work on human error has
shown that the provision of visual cues can strengthen procedural cueing providing
they manage to capture attention [8].

Duke et al [10], and Bowman and Faconti [4] use Interactive Cognitive Subsys-
tems (ICS) [3] as the underlying model of human information processing. Their
models deal with information flow between the different cognitive subsystems and
constraints on the associated transformation processes. As a result, the above work
focusses on reasoning about multi-modal interfaces and analyses whether interfaces
based on several simultaneous modes of interaction are compatible with the capa-
bilities of human cognition.

In the related area of safety-critical systems, Rushby et al [17] focus on mode
errors and the ability of pilots to track mode changes. They formalise plausible
mental models of systems and analyse them using the Murφ verification tool. The
mental models though are essentially abstracted system models; they do not rely
upon structure provided by cognitive principles.

2 Cognitive Architecture

Our cognitive architecture is a higher-order logic formalisation of abstract principles
of cognition and specifies a form of cognitively plausible behaviour [5]. The archi-
tecture specifies possible user behaviour (traces of actions) that can be justified
in terms of specific results from the cognitive sciences. Real users can act outside
this behaviour of course, about which the architecture says nothing. However, be-
haviour defined by the architecture can be regarded as potentially systematic, and
so erroneous behaviour is similarly systematic in the design. The predictive power
of the architecture is bounded by the situations where people act according to the
principles specified. The architecture allows one to investigate what happens if a
person acts in such plausible ways. The behaviour defined is neither “correct” nor
“incorrect”. It could be either depending on the environment and task in question.
We do not attempt to model the underlying neural architecture nor the higher-
level cognitive architecture such as information processing. Instead our model is an
abstract specification, intended for ease of reasoning.

Cognitive principles
In the formal user model, we rely upon abstract cognitive principles that give a

knowledge level description in the terms of Newell [13]. Their focus is on the internal

3



Rukšėnas, Curzon, Back and Blandford

goals and knowledge of a user. These principles are briefly discussed below.
Non-determinism. In any situation, any one of several cognitively plausible be-

haviours might be taken. It cannot be assumed that any specific plausible behaviour
will be the one that a person will follow where there are alternatives.

Relevance. Presented with several options, a person chooses one that seems
relevant to the task goals. For example, if the user goal is to get cash from an ATM,
it would be cognitively implausible to choose the option allowing one to change a
PIN. A person could of course press the wrong button by accident. Such classes of
error are beyond the scope of our approach, focussing as it does on systematic slips.

Salience. Even though user choices are non-deterministic, they are affected by
the salience of possible actions. For example, taking money released by a cash-point
is a more salient, and thus much more likely, action to take than to terminate the
interaction by walking away from the machine without cash. In general, salience
could be affected by several factors such as the sensory (visual) salience of an action,
its procedural cueing as a part of a learned task, and the cognitive load imposed by
the complexity of the task performed.

Mental versus physical actions. There is a delay between the moment a person
mentally commits to taking an action (either due to the internal goals or as a
response to the interface prompts) and the moment when the corresponding physical
action is taken. To capture the consequences of this delay, each physical action
modelled is associated with an internal mental action that commits to taking it.
Once a signal has been sent from the brain to the motor system to take an action,
it cannot be revoked after a certain point even if the person becomes aware that
it is wrong before the action is taken. To reflect this, we assume that a physical
action immediately follows the committing action.

Pre-determined goals. A user enters an interaction with knowledge of the task
and, in particular, task dependent sub-goals that must be discharged. These sub-
goals might concern information that must be communicated to the device or items
(such as bank cards) that must be inserted into the device. Given the opportunity,
people may attempt to discharge such goals, even when the device is prompting for
a different action. Such pre-determined goals represent a partial plan that has arisen
from knowledge of the task in hand, independent of the environment in which that
task is performed. No fixed order other than a goal hierarchy is assumed over how
pre-determined goals will be discharged.

Reactive behaviour. Users may react to an external stimulus, doing the action
suggested by the stimulus. For example, if a flashing light comes on a user might,
if the light is noticed, react by inserting coins in an adjacent slot.

Voluntary task completion. A person may decide to terminate the interaction. As
soon as the main task goal has been achieved, users intermittently, but persistently,
terminate interactions [6], even if subsidiary tasks generated in achieving the main
goal have not been completed. A cash-point example is a person walking away
with the cash but leaving the card. Users also may terminate interactions when the
signals from the device or environment suggest that task continuation is impossible
due to some fault. For example, if the cash-point signals that the inserted card is
invalid (and therefore retained), a person is likely to walk away and try to contact
their bank.

4



Rukšėnas, Curzon, Back and Blandford

Table 1
A fragment of the SAL language

Notation Meaning

x:T x has type T

λ(x:T):e a function of x with the value e

x′ = e an update: the new value of x is that of e

{x:T | p(x)} a subset of T such that the predicate p(x) holds

a[i] the i-th element of the array a

r.x the field x of the record r

r WITH .x := e the record r with its field x updated by e

g → upd if g is true then update according to upd

c [] d non-deterministic choice between c and d

[](i:T): ci non-deterministic choice between ci with i in range T

Forced task termination. If there is no apparent action that a person can take
that will help to complete the task then the person is forced to terminate the
interaction. For example, if, on a ticket machine, the user wishes to buy a weekly
season ticket, but the options presented include nothing about season tickets, then
the person will give up, assuming the goal is not achievable.

Cognitive Architecture in SAL
We have formalised the cognitive principles within the SAL environment [12].

It provides a higher-order specification language and tools for analysing state ma-
chines specified as parametrised modules and composed either synchronously or
asynchronously. The SAL notation we use here is given in Table 1. We also use the
usual notation for the conjunction, disjunction and set membership operators. A
simplified version of the SAL specification of a transition relation that defines our
user model is given in Fig. 1, where predicates in italic are shorthands explained
later on. Below, whilst explaining this specification (SAL module User), we also
discuss how it reflects our cognitive principles.

Guarded commands. SAL specifications are transition systems. Non-determinism
is represented by the non-deterministic choice, [], between the named guarded
commands (i.e. transitions). For example, CommitAction in Fig. 1 is the name of
a family of transitions indexed by g. Each guarded command in the specification
describes an action that a user could plausibly take. The pairs CommitAction –
PerformAction of the corresponding transitions reflect the connection between the
physical and mental actions. The first of the pair models committing to a goal, the
second actually taking the corresponding action (see below).

Goals structure. The main concept in our cognitive architecture is that of user
goals. 5 User goals are organised as a hierarchical (tree like) goal–subgoals structure.
The nodes of this tree are either compound or atomic:

atomic Goals at the bottom of the structure (tree leaves) are atomic: they consist
of (map to) an action, for example, a device action.

compound All other goals are compound: they are modelled as a set of task
subgoals.

5 Note that we are omitting from the description of the goal structure its aspects related to the relevance
of goals. They are not used in the work described here, for the omitted detail see [16].

5



Rukšėnas, Curzon, Back and Blandford

TRANSITION
[](g:GoalRange,slc:Salience): CommitAction:

NOT(comm) ∧
finished = notf ∧
(HighestSalience(slc, g, status, goals, ...)
∨
HighSalience(slc, g, status, goals, ...) ∧
NOT(∃h : HighestSalience(LowSLC, h, status, goals, ...)
∨
LowSalience(slc, g, status, goals, ...) ∧
NOT(∃h : (HighSalience(LowSLC, h, status, goals, ...) ∨

HighestSalience(LowSLC, h, status, goals, ...))) ∧
(g 6= ExitGoal ∨ MayExit)

→

commit′[act(Goals[g].subgoals)] = committed;
status′ = status

WITH .trace[g] := TRUE
WITH .last := g
WITH .length := status.length + 1

[]
[](a:ActionRange): PerformAction:

commit[a] = committed → commit′[a] = ready;
Transition(a)

[]
ExitTask:

goals[TopGoal].achieved(in, mem) ∧
BrokenState(in, mem, env) ∧
NOT(comm) ∧
finished = notf

→ finished′ = ok

[]
Abort:

NOT(ExistsSalient(...)) ∧
NOT(goals[TopGoal].achieved(in, mem)) ∧
NOT(comm) ∧
finished = notf

→
finished′ = IF Wait(in, mem)

THEN notf
ELSE abort ENDIF

[]
Idle:

finished = notf →

Fig. 1. Cognitive architecture in SAL (simplified)

In this paper, we consider an essentially flat goal structure with the top goal con-
sisting of atomic subgoals only. We will explore the potential for using hierarchical
goal structures in subsequent work.

In SAL, user goals and aims are modelled as an array, Goals, which is a param-
eter of the User module. Each element g in Goals is a record with the following
fields:

guard A predicate, denoted grd, that specifies when the goal g is enabled, for
example, due to the relevant device prompts.

choice A predicate (choice strategy), denoted choice, that models a high-level
ordering of goals by specifying when the goal g can be chosen. An example of the
choice strategy is: “choose only if g has not been chosen before.”

achieved A predicate, denoted achieved, that specifies the main task goal when
g is the top goal, not used for atomic goals.

salience A value, denoted slc, that specifies the sensory salience of g.

cue A function, denoted cue, that for each goal h returns the strength of g as a
procedural cue for h.

subgoals A data structure, denoted subgoals, that specifies the subgoals of the
goal. It takes the form comp(gls) when the goal consists of a set of subgoals
gls. If the goal is atomic, its subgoals are represented by a reference, denoted
atom(act) to an action in the array Actions (see below).

Goal execution. To see how the execution of an atomic goal is modelled in SAL
consider the guarded command PerformAction for doing a user action that has been
previously committed to:

6



Rukšėnas, Curzon, Back and Blandford

commit[a] = committed → commit′[a] = ready;
Transition(a)

The left-hand side of → is the guard of this command. It says that the rule will
only activate if the associated action has already been committed to, as indicated
by the element a of the local variable array commit holding value committed. If the
rule is then non-deterministically chosen to fire, this value is changed to ready to
indicate there are now no commitments to physical actions outstanding and the user
model can select another goal. Finally, Transition(a) represents the state updates
associated with this particular action a.

The state space of the user model consists of three parts: input variable in,
output variable out, and global variable (memory) mem; the environment is modelled
by a global variable, env. All of these are specified using type variables and are
instantiated for each concrete interactive system. The state updates associated with
an atomic goal are specified as an action. The latter is modelled as a record with the
fields tout, tmem and tenv; the array Actions is a collection of all user actions. The
three fields are relations from old to new states that describe how two components
of the user model state (outputs out and memory mem) and environment env are
updated by executing this action. These relations, provided when the generic user
model is instantiated, are used to specify Transition(a) as follows:

out′ ∈ {x:Out | Actions[a].tout(in,out,mem)(x)};
mem′ ∈ {x:Memory | Actions[a].tmem(in,mem,out′)(x)};
env′ ∈ {x:Env | Actions[a].tenv(in,mem,env)(x) ∧ possessions}

Since we are modelling the cognitive aspects of user actions, all three state up-
dates depend on the initial values of inputs (perceptions) and memory. In addition,
each update depends on the old value of the component updated. The memory
update also depends on the new value (out′) of the outputs, since we usually as-
sume the user remembers the actions just taken. The update of env must also
satisfy a generic relation, possessions. It specifies universal physical constraints on
possessions and their value, linking the events of taking and giving up a possession
item with the corresponding increase or decrease in the number (counter) of items
possessed. For example, it specifies that if an item is not given up then the user still
has it. The counters of possession items are modelled as environment components.

PerformAction is enabled by executing the guarded command for selecting an
atomic goal, CommitAction, which switches the commit flag for some action a to
committed thus committing to this action (enabling PerformAction). A goal g may
be selected only when one of the disjuncts specifying its salience level (see Sect. 3)
is true. The last conjunct in the guard of CommitAction distinguishes the cases
when the selected goal is ExitGoal or not. ExitGoal (given as a parameter of
the User module) represents such options as “cancel” or “exit”, available in some
form in most of interactive systems. We omit the definition of MayExit, since it is
irrelevant for this paper.

When an atomic goal g is selected, the user model commits to the corresponding
action act(Goals[g].subgoals). The record status keeps track of a history of
selected goals. Thus, the element g of the array status.trace is set to true to
indicate that the goal g has been selected, status.last records g as the last goal

7



Rukšėnas, Curzon, Back and Blandford

selected, and the counter of selected goals, status.length, is increased.
Task completion. In the user model, we consider two ways of terminating an

interaction. Voluntary completion (finished is set to ok) can occur when the main
task goal, as the user perceives it, has been achieved (see the ExitTask command).
Forced termination (finished is set to abort) models random user behaviour (see
the Abort command). Since the choice between enabled guarded commands is non-
deterministic, the ExitTask action may still not be taken. Also, it is only possible
when there are no earlier commitments to other actions.

In the guarded command Abort, the condition of forced termination (no enabled
salient actions) is expressed as the negation of the predicate ExistsSalient (the lat-
ter states that there exists a goal for which one of the predicates HighestSalience,
HighSalience or LowSalience is true). Note that, in such a case, a possible action
that a person could take is to wait. However, the user model will only do so given
some cognitively plausible reason such as a displayed “please wait” message. The
waiting conditions are represented in the specification by predicate parameter Wait.
If Wait is false, finished is set to abort to model a user giving up and terminating
the task.

3 Salience and Load Rules

In this section, we discuss the connection between the salience of cues and cognitive
load observed in empirical studies and expressed as salience and load rules. We
then formalise these rules within our verification framework and incorporate them
into our cognitive architecture.

Cognitive load. Slip errors are made frequently, but they are not made every
time. The frequency of these errors is determined by causal factors internal (goals)
and external to the cognitive system. After formulating goals, new information
may interfere with the ability to retain previous formulations. We designed an ex-
perimental paradigm [2] that manipulated the availability (and awareness) of both
procedural and sensory cues that were needed to overcome performing erroneous
“springs to mind” actions. Our hypothesis was that slip errors were more likely
when the salience of cues was not sufficient to actively influence attentional control.
If processes are directed by a passive (off-line) attentional control system then errors
associated with performing “springs to mind” actions are more likely. A simulation
of a ‘Fire Engine Despatch Centre’ was developed. The overall objective was to
send navigational information to fire engines enabling the fastest possible incident
response times. Training trials were used to ensure that participants became fa-
miliar with the sequence of actions required. Cognitive load was manipulated by
the complexity of routes imposed and the quantity of task irrelevant information
displayed.

We found that the difficulty associated with performing a proceduralized task
significantly influences the likelihood of making a slip error. The inherent difficulty
of the task at hand can be referred to as intrinsic cognitive load. Our experiments
have shown that this load can influence the strength of procedural cues used to
perform future task critical actions (background intrinsic cognitive load). Another
load type, known as extraneous load, has been shown to influence the awareness

8



Rukšėnas, Curzon, Back and Blandford

individuals have of sensory cues when intrinsic load is high. Extraneous load is
imposed by information that does not contribute directly to the performance of
a specific goal. Activities such as attempting to find relevant information on the
device display (visual search) or manipulating the user interface in an attempt
to find relevant information (interactive search), that do not foster the process of
performing a goal can be classified as extraneous. Our findings suggest that sensory
cues will only be low in overall salience when both the intrinsic and extraneous load
imposed on the individual is high. These findings are compatible with Cartwright-
Finch and Lavies [7] theory that a high extraneous load only reduces perception of
a sensory cue (or distractor) when cognitive control functions are not available to
maintain the active goal.

The informal analysis of our empirical data suggested the following connections
between salience and cognitive load [2]:

sensory When both the intrinsic and extraneous load is high, the salience of sen-
sory cues may be reduced.

procedural High intrinsic load reduces the salience of procedural cues.

Next we formalise these connections within our verification framework.
Formalisation. In our formalisation, salience can take one of the following three

values: HighSLC, LowSLC and NoSLC, whereas both the intrinsic and extraneous load
can be either HighLD or LowLD. First, we had to capture the meaning of “reduced
salience” in the above rules. We decided to interpret this as salience going from
high to low. Then the sensory salience rule is expressed as follows:

if default = HighSLC ∧ intr = HighLD ∧ extr = HighLD
then sensory = HighSLC ∨ sensory = LowSLC
else sensory = default

(1)

Here, intr and extr represent the intrinsic and extraneous load, respectively. The
variable default denotes the salience of a sensory cue without taking into account
the cognitive load experiencied, whereas sensory denotes the actual sensory salience
of that cue. Note that our formalisation is non-deterministic, i.e., we assume that a
sensory cue can be salient (and thus be noticed by people) even under the high cog-
nitive load condition. This reflects the modality may in the corresponding informal
rule.

In the cognitive architecture, we need a predicate that specifies when the sensory
salience of a goal is high. Thus, rule (1) is translated into the following definition
of SensSalient:

SensSalient(arb,g,status,goals)(inp,mem,env) =
IF goals[g].slc(inp,mem,env) = HighSLC ∧

status.intrinsic = HighLD ∧ extraneous = HighLD
THEN arb = HighSLC
ELSE goals[g].slc(inp,mem,env) = HighSLC ENDIF

Here, goals[g].slc(inp,mem,env) is the default salience (as determined by HCI
experts) of the goal g. The parameter arb represents a possible value of the actual
sensory salience. This value is chosen non-deterministically as an index of the
guarded command CommitAction (see Fig. 1).

9



Rukšėnas, Curzon, Back and Blandford

HighestSalience(arb,g,status,goals)(inp,mem,env) =
atom?(goals[g].subgoals) ∧ goals[g].grd(inp,mem,env) ∧ goals[g].choice(g,s) ∧
(ProcHigh(g,status,goals)(inp,mem,env) ∨
ProcLow(g,status,goals)(inp,mem,env) ∧ SensSalient(arb,g,status,goals)(inp,mem,env))

HighSalience(arb,g,status,goals)(inp,mem,env) =
atom?(goals[g].subgoals) ∧ goals[g].grd(inp,mem,env) ∧ goals[g].choice(g,s) ∧
goals[last].cue(g)(inp,mem,env) = NoSLC ∧ SensSalient(arb,g,status,goals)(inp,mem,env)

LowSalience(arb,g,status,goals)(inp,mem,env) =
atom?(goals[g].subgoals) ∧ goals[g].grd(inp,mem,env) ∧ goals[g].choice(g,s)

Fig. 2. Levels of salience

The procedural salience rule is formally expressed as follows:
if default = HighSLC ∧ intr = HighLD then procedural = HighSLC
else procedural = default

(2)

In the cognitive architecture, this is translated into two predicates, ProcHigh and
ProcLow, that specify when the procedural salience is high and low, respectively:

ProcHigh(g,status,goals)(inp,mem,env) =
goals[status.last].cue(g)(inp,mem,env) = HighSLC ∧ status.intrinsic = LowLD

ProcLow(g,status,goals)(inp,mem,env) =
goals[status.last].cue(g)(inp,mem,env) = LowSLC ∨
goals[status.last].cue(g)(inp,mem,env) = HighSLC ∧ status.intrinsic = HighLD

Hierarchy of choices. Next we discuss how the sensory and procedural salience
influence the choice of goals in our cognitive architecture. Recall that the under-
lying choice principle is non-determinism – any “enabled” goal can be chosen for
execution. The addition of salience refines the notion of enabledness by introducing
a hierarchy of choices into our cognitive architecture. We started with a version
that included a two-level hierarchy, high salience and low salience. A goal was de-
fined to have the high salience, if either of the predicates SensSalient or ProcHigh
was true, otherwise its salience was defined as low. We also assumed that high
salience goals have priority over low salience ones. However, with this version of
the architecture, our verification efforts described in Sect. 5 produced errors (and
the corresponding behaviours of the model) not observed during our empirical stud-
ies. The analysis of the counter examples suggested a refinement of the two-level
hierarchy which yielded a new version specified in Fig. 1.

The new version consists of three levels of salience. Assuming the choice strategy
and the guard for an atomic goal is true, its salience belongs to the highest level, if
(i) its procedural salience is high, or (ii) its procedural salience is low, and sensory
salience is high (see Fig. 2). It belongs to the middle level (high salience), if it is
procedurally cued, but its sensory salience is high. Such a goal is only chosen, if
there are no goals in the highest level. Finally, the lowest level includes all the
remaining atomic goals whose choice strategy and guard are true.

4 Fire Engine Despatch Task

In this section, we describe the task we chosen to model for the validation of our
development of the cognitive architecture.

The overall objective of the task was to send navigational information to fire
engines enabling the fastest possible incident response times using the interface

10



Rukšėnas, Curzon, Back and Blandford

Fig. 3. ‘Fire Engine Despatch’ interface

shown in Fig. 3. When commencing the task an individual has to decide which call
to prioritize before clicking on the ‘Start next call’ button. Choosing call priority
involves clicking on the radio button that is located alongside the required call ID
(see the bottom right part of Fig. 3). However, call priority is actually set only when
the ‘Confirm priority change’ button is clicked. Clicking on this button updates the
visual confirmation of the selected call, located at the top of the priority selection
window (ID 4 in Fig. 3). The selected call is then processed by clicking on the ‘Start
next call’ button.

The second part of this task is to construct the optimal route and send the
necessary information to fire engines. This is done using the bottom left part of the
interface from Fig. 3 which is displayed only when a call has been processed. At this
point, the location of the nearest fire engine and the location of the incident are
displayed as waypoints on the map in the upper part of the interface. Depending
on the availability of GPS signals, there are two options for constructing route
information: automatic and manual. The most appropriate automatically generated
route could only be used when GPS signals are being received by the fire engine
attending the incident. When GPS signals cannot be relied upon, a route must be
constructed based on waypoint information in the local area. The indicator located
above the telephone image informs which option must be used. The leftmost drop-
down menu supports manual route construction by allowing to select waypoints
and add them by clicking on the ‘Add’ button. The selected waypoints are then
displayed in the text box below. One of the automatically generated routes can be
selected by clicking on the menu just above the ‘Add’ button. Selecting the wrong
route construction method is regarded as a mode error.

11



Rukšėnas, Curzon, Back and Blandford

The constructed route is sent by clicking the ‘Get/Send route information but-
ton, thus finishing the task. However, before this step is taken, a fire engine des-
ignated as the backup unit must be selected. This selection involves clicking the
radio button alongside one of the units in the centrally located menu. Again the
backup unit is only set once the ‘Route complete button has been clicked.

5 Task Verification

In this section, we instantiate our generic architecture, thus deriving a user model
for the ‘Fire Engine Despatch Task’. This model is then used for the verification of
correctness properties for the interface described in the previous section. 6

In this paper, we consider one usability property. It aims to ensure that, in any
possible system behaviour, the user’s main goal of interaction (as they perceive it)
is eventually achieved. This is written in SAL as the following LTL assertion (here
F means “eventually”):

F(Perceived(inp, mem, env))(3)

The main purpose of our verification is to find out how close, with respect to the
errors detected, its results are to the data of our empirical studies. Since the actual
experiments essentially consisted of two subtasks, we split the task (and its user
model) into two parts: setting call priority and sending route information. Next we
consider the first subtask.

Call priority
We assume that the user model for this (sub)task includes three goals: SelectPriorityGoal,

ConfirmPriorityGoal and StartCallGoal. As an example, SelectPriorityGoal
is the following record:

choice := NotYetDischarged
grd := λ(inp,mem,env): inp.PrioritySelection
slc := λ(inp,mem,env): HighSLC
cues := λ(g):λ(inp,mem,env):

IF g = ConfirmPriorityGoal THEN HighSLC ELSE NoSLC ENDIF
subgoals := atom(SelectPriority)

Thus, this goal may be selected only if the priority selection menu is displayed.
The choice strategy NotYetDischarged is a pre-defined predicate that allows one
to choose a goal only when it has not been chosen before. We assume that the
sensory salience of this goal is high, since the visual attention, at this point in task
execution should be in correct area. The salience of this goal as a procedural cue
for the call confirmation action is high, but it should not cue other actions. The
corresponding action SelectPriority is defined as follows:

tout := λ(inp,out0,mem):λ(out): out = Default WITH .PrioritySelected := TRUE
tmem := λ(inp,mem0,out):λ(mem): mem = mem0 WITH .PrioritySelected := TRUE

6 Due to the shortage of space, we omit here the formal specification of the interface. The SAL sources for
this example are available at http://www.dcs.qmul.ac.uk/∼rimvydas/usermodel/fmis07.zip .

12

http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/fmis07.zip


Rukšėnas, Curzon, Back and Blandford

Here Default is a record with all its fields set to false thus asserting that nothing
else is done.

The definitions for the other two goals are similar. Their sensory salience is as-
sumed to be high. ConfirmPriorityGoal is high procedural cue for StartCallGoal,
whereas the latter being the last step in the procedure does not cue other actions.
Finally, the top goal CallPriorityGoal is defined as follows:

load := λ(inp,mem,env): LowLD
achieved := λ(inp,mem,env): inp.WaitMsg
subgoals := comp({SelectPriorityGoal, ConfirmPriorityGoal, StartCallGoal})

It includes all three atomic goals as its subgoals. Since setting call priority is a
cognitively simple procedure, we assume that the intrinsic load for this task is low.
Finally, the component achieved defines the perceived goal of the task. The latter
is regarded as achieved when a wait message is displayed by the interface. The
latter happens only once the processing of the selected call has been started. Note
that the interface specification ensures that this state can never be reached, if the
priority setting procedure was not properly (as described in Sect. 4) executed.

The user model derived by the above instantiation of the generic architecture is
parametric with respect to the extraneous load. This parameter can be manipulated
in different verification runs, similarly as has been done in the empirical studies.

Verification. For both extraneous load conditions, verification of property (3)
fails. The counter examples indicate that the user model starts by immediately exe-
cuting StartCallGoal. This corresponds to the empirical studies which found this
initialisation error to be systematic. Its main cognitive cause is that the required
action of choosing priority is the first one in the procedure, and thus is not proce-
durally cued. This suggests that the initialisation error is unlikely to be eliminated
by increasing the sensory salience of the relevant menu options. On the other hand,
“sequencing” the interface so that the ‘Start next call’ button becomes available
only when call priority has been set should eliminate this error. Verification of the
task with a modified interface confirms this.

Next we check whether the task goal is achieved assuming the first step was
taken correctly. This is expressed as a slightly modified property (3):

X(commit[SelectPriorityAction]=committed) ⇒ F(Perceived(inp,mem,env))

Here X is the LTL operator “next”. The property states that the task goal is
eventually achieved, if the first thing that the user model does is committing to
SelectPriorityAction. Verification of the modified usability property is successful
for both extraneous load conditions. Again, this corresponds to the results of our
empirical studies which found that the action of confirming priority is almost never
omitted presumably due to its high procedural cueing by the previous action of
selecting priority. Next we consider the second subtask.

Sending route information
We assume that the user model for this (sub)task includes the following atomic

goals: DecideModeGoal, GPSGoal, ManualGoal, ClickAddGoal, SelectBackupGoal,
ConfirmRouteGoal and SendRouteGoal. For DecideModeGoal, the essential com-

13



Rukšėnas, Curzon, Back and Blandford

ponents are specified as follows:

grd := λ(inp,mem,env): inp.ModeDisplayed 6= NoMode
slc := λ(inp,mem,env): LowSLC
cue := λ(g):λ(inp,mem,env):

IF g = GPSGoal ∨ g = ManualGoal THEN HighSLC ELSE NoSLC ENDIF

Here ModeDisplayed denotes the required mode for route construction. It can take
one of the following three values: ModeGPS, ModeManual and NoMode. This goal
can only be selected when the mode indicator is displayed and shows the required
mode. It is procedurally cued by the action of starting new call which ends the first
subtask. We assume that this cueing is low, since the mode indicator is displayed
after some delay during which a person is likely to be engaged in a complex process
relevant to the route identification and construction. Because we split the whole
despatch task into two subtasks, the procedural cue for DecideModeGoal is speci-
fied to be the top goal SendRouteGoal. The sensory salience of DecideModeGoal is
low, since the mode indicator is displayed in different area than the route construc-
tion menus. Finally, the memory update for DecideModeAction specifies that the
indicated mode of route construction is stored in memory:

tmem := λ(inp,mem0,out):λ(mem): mem = mem0 WITH .mode := inp.ModeDisplayed

The essential components for SelectBackupGoal are defined as follows:

grd := λ(inp,mem,env): inp.BackupSelection
slc := λ(inp,mem,env): HighSLC
cue := λ(g):λ(inp,mem,env):

IF g = ConfirmRouteGoal THEN HighSLC ELSE NoSLC ENDIF

The salience of the procedural cues, GPSGoal and ManualGoal, for this goal is high.
Finally, for the top goal SendRouteGoal we have the following definitions:

load := intrinsic
achieved := λ(inp,mem,env): inp.SuccessMsg

The variable intrinsic is a parameter of our user model. It denotes the intrinsic
load associated with the route construction procedure and depends on the con-
struction method. As previously, the model is also parametric with respect to the
extraneous load. The perceived task goal is to send route information. Achieving
this goal is indicated by a success message displayed by the interface.

Verification. As mentioned in Sect. 3, initially we used a hierarchy with two
salience levels. For this version of the cognitive architecture, verification of prop-
erty (3) produced erroneous behaviours that were not observed in the empirical
studies. Namely, after selecting the backup unit, the user model was execut-
ing SendRouteAction instead of ConfirmRouteAction which is procedurally cued
with high salience by SelectBackupAction. This lead to the introduction of ad-
ditional salience level, prioritising the goals with high procedural salience (e.g.
ConfirmRouteAction) over those whose sensory salience is high (e.g. SendRouteAction).
The modified version of the cognitive architecture was used for further verification.

To simplify the analysis of the counter examples produced, we introduced two
additional correctness properties:

14



Rukšėnas, Curzon, Back and Blandford

G(mem.RouteConstructed⇒ (mem.mode 6= NoMode))(4)
G((out.ConfirmRoute ∨ out.SendRoute) ⇒ mem.BackupSelected)(5)

The first one is relevant to the mode error and states that the memory component
RouteConstructed (updated by GPSAction and ClickAddAction) can only be true,
if the user model attended to the mode indicator and stored its value in mem.mode.
The second property states that the buttons ‘Confirm Route’ and ‘Get/Send Route’
can only be clicked, if a backup unit has been selected (indicated by the memory
component BackupSelected which is updated by SelectBackupGoal. It is relevant
in the situations when the action of selecting backup is omitted (termination error).

We start with property (4). Its verification fails for all load conditions: the
user model omits the action of attending to the mode indicator. These results
are inconsistent with respect to the empirical studies which found that only both
the intrinsic and extraneous load being high leads to the systematic mode error.
However, these inconsistencies are false positives. Our verification did not miss
erroneous behaviours. Rather, it indicated problems that did not occur when this
task was performed by humans. This suggests that our salience and load rules
and/or the hierarchy of salience levels need further refinements. We intend to
explore this in future work.

Next we verify property (5) relevant to the termination error. In this case, the
correlation with the empirical data is closer. For all load conditions but intrinsic
being high and extraneous being low, verification of (5) yields the same results as
the empirical studies. In the case when both the intrinsic and the extraneous load
is high the omission of selecting backup is observed. When the intrinsic load is
low verification of (5) is successful. This corresponds to low rates for these load
conditions in our empirical studies (non-systematic error). On the other hand, the
single mismatch occurring when the intrinsic load is high and the extraneous load
is low is potentially more serious than previous false positives. In this case, our
verification is successful, even though our empirical data indicates a systematic
error.

One possible explanation for this mismatch is that our judgement about salience
values for some goals was inappropriate. In fact, verification yields the termination
error when, for SelectBackupGoal, the salience of procedural cueing is set to high
and the sensory salience is set to low (in the original specification, these values
were low and high, respectively). Furthermore, the new value for procedural cueing
could be reasonably argued for, though admittedly the new value for the sensory
salience is probably more difficult to defend. Another possible explanation is that
our rules are simply too coarse. Whichever the case may be further investigations
are necessary.

6 Conclusion

In this paper, we added to our cognitive architecture the concepts of procedural
and sensory salience. We formalised the connection between both salience types
and cognitive load imposed by the complexity of the task performed. We then
refined the underlying principle of non-deterministic choice of goals by introducing
a hierarchy of choices governed by the salience of goals. Verification attempts using

15



Rukšėnas, Curzon, Back and Blandford

the new version of the cognitive architecture suggested further refinements to the
hierarchy of salience levels.

As a validation step for these developments, we undertook the formal modelling
of the fire engine despatch task used in our empirical studies. Our goal was to check
the consistency between the behaviours generated by our cognitive architecture
and those exhibited by human participants of our experiments. The validation
was partially successful. We found that, with respect to the initialisation error,
verification yielded results that are consistent with the human behaviour observed
during the experimental studies. For the mode error, our verification produced false
positives in some cases. On the other hand, in the single case when the intrinsic
load is high and the extraneous load is low, verification missed the termination error
found to be systematic in the experiments. These inconsistencies raised questions
to be answered by further refinements of our formal rules and new empirical studies.

References

[1] Back, J., A. Blandford, and P. Curzon, Slip errors and cue salience, To appear: Proc. ECCE 2007.

[2] Back, J., A. Blandford, P. Curzon, and R. Rukšėnas, Explaining mode and omission errors: a load
model, Submitted for publication.

[3] Barnard, P.J., and J. May, Interactions with advanced graphical interfaces and the deployment of
latent human knowledge, In: Design, Specification and Verification of Interactive Systems: DSV-IS’95,
Springer-Verlag, 1995, 15–49.

[4] Bowman, H., G. Faconti, Analysing cognitive behaviour using LOTOS and Mexitl, Formal Aspects of
Computing 11 1999, 132–159.

[5] Butterworth, R., A. Blandford, and D. Duke, Demonstrating the cognitive plausibility of interactive
systems, Form. Asp. Computing 12 2000, 237–259.

[6] Byrne, M. D., and S. Bovair, A working memory model of a common procedural error, Cognitive
Science 21(1) 1997, 31–61.

[7] Cartwright-Finch, U., and N. Lavie, The role of perceptual load in inattentional blindness, Cognition
102(3) 2007, 321–340.

[8] Chung, P., and M.D. Byrne, Visual cues to reduce errors in a routine procedural task, In: Proc. 26th
Ann. Conf. of the Cognitive Science Society, Hillsdale, NJ: Lawrence Erlbaum Associates, 2004.

[9] Curzon, P., and A. E. Blandford, Detecting multiple classes of user errors, in: R. Little, and L. Nigay,
eds., Proc. EHCI 2001, vol. 2254 of LNCS, Springer-Verlag, 2001, 57–71.

[10] Duke, D.J., P.J. Barnard, D.A. Duce, and J. May, Syndetic modelling, Human-Computer Interaction
13(4) 1998, 337–394.

[11] Gray, W., The nature and processing of errors in interactive behavior, Cognitive Science 24(2) 2000,
205–248.

[12] de Moura, L., S. Owre, H. Ruess, J. Rushby, N. Shankar, M. Sorea, and A. Tiwari, SAL 2, in: R. Alur,
and D.A. Peled, eds., Computer Aided Verification: CAV 2004, vol. 3114 of LNCS, Springer-Verlag,
2004, 496–500.

[13] Newell, A., “Unified Theories of Cognition,” Harvard University Press, 1990.

[14] Reason, J.: “Human Error,” Cambridge University Press, 1990.

[15] Rukšėnas, R., P. Curzon, J. Back, and A. Blandford, Formal modelling of cognitive interpretation, in:
Proc. DSVIS 2006, vol. 4323 of LNCS, Springer-Verlag, 2007, 123–136.

[16] Rukšėnas, R., P. Curzon, A. Blandford, and J. Back, Combining human error verification and timing
analysis, To appear: Proc. EIS 2007, LNCS, Springer-Verlag.

[17] Rushby, J., Analyzing cockpit interfaces using formal methods, Electronic Notes in Theoretical
Computer Science 43 (2001).

16


	Introduction
	Cognitive Architecture
	Salience and Load Rules
	Fire Engine Despatch Task
	Task Verification
	Conclusion
	References

