
Combining Human Error Verification
and Timing Analysis

Rimvydas Rukšėnas,1 Paul Curzon,1 Ann Blandford2 and Jonathan Back2

1 Department of Computer Science, Queen Mary, University of London
{rimvydas,pc}@dcs.qmul.ac.uk

2 University College London Interaction Centre
{a.blandford,j.back}@ucl.ac.uk

Abstract. Designs can often be unacceptable on performance grounds.
In this work, we integrate a GOMS-like ability to predict execution times
into the generic cognitive architecture developed for the formal verifica-
tion of human error related correctness properties. As a result, formal
verification and GOMS-like timing analysis are combined within a unified
framework. This allows one to judge whether a formally correct design
is also acceptable on performance grounds, and vice versa. We illustrate
our approach with an example based on a KLM style timing analysis.

Key words: human error, formal verification, execution time, GOMS,
cognitive architecture, model checking, SAL.

1 Introduction

The correctness of interactive systems depends on the behaviour of both human
and computer actors. Human behaviour cannot be fully captured by a formal
model. However, it is a reasonable, and useful, approximation to assume that
humans behave “rationally”: entering interactions with goals and domain knowl-
edge likely to help them achieve their goals. If problems are discovered resulting
from rational behaviour then such problems are liable to be systematic and de-
serve attention in the design. Whole classes of persistent, systematic user errors
may occur due to modelable cognitive causes [1, 2]. Often opportunities for mak-
ing such errors can be reduced with good design [3]. A methodology for detecting
designs that allow users, when behaving in a rational way, to make systematic
errors will improve such systems. In the case of safety-critical interactive sys-
tems, it is crucial that some tasks are performed within the limits of specified
time intervals. A design can be judged as incorrect, if it does not satisfy such
requirements. Even for everyday systems and devices, the time and/or the num-
ber of steps taken to achieve a task goal can be an indication of the usability or
otherwise of a particular design.

¶ Preprint to appear in: Engineering Interactive Systems (EIS 2007), Lecture Notes
in Computer Science.



We previously [4, 5] developed a generic formal user model from abstract cog-
nitive principles, such as entering an interaction with knowledge of the task and
its subsidiary goals, showing its utility for detecting some systematic user error.
So far we have concentrated on the verification of functional correctness (user
achieving a task goal) and usability properties (the absence of post-completion
errors). Also, the cognitive architecture was recently used to verify some security
properties – detecting confidentiality leaks due to cognitive causes [6]. However,
none of this work addressed the timing aspects of user interaction. For exam-
ple, a successful verification that a task goal is achieved only meant that it is
eventually achieved at some unspecified point in the future. This is obviously
insufficient, if the goal of verification is to give evidence that a system satisfies
specific timing requirements.

Timing analysis is one of the core concerns in the well-established GOMS
methodology [7]. A GOMS model predicts the trace of operators and task com-
pletion time. However, since GOMS models are deterministic, this prediction
assumes and applies to a single, usually considered as expert or optimal, se-
quence of operators. Such assumptions may be invalid for everyday interactive
systems whose average users do not necessarily know or are trained to follow
optimal procedures, or they simply might choose a less cognitively demanding
method. Moreover, under pressure, even the operators (expert users) of safety-
critical systems may choose sub-optimal and less likely plans of action. This
suggests that a timing analysis of interactive systems should include a broader
set of cognitively plausible behaviours.

The main goal of this paper is to add into our verification methodology,
based on a generic cognitive architecture, a GOMS-like ability to predict exe-
cution times. For this, we intend to use timing data provided by HCI models
such GOMS. It should be noted of course that such timings are only estimates
so “proofs” based on such timings are not formal guarantees of a particular per-
formance level. They are not proofs of any real use, just proofs that the GOMS
execution times are values within a particular range. Provided that distinction
is remembered they can still be of use.

Using the SAL verification tools [8], we combine this ability to prove prop-
erties of GOMS timings with the verification of human error related correctness
properties based on the traversal of all cognitively plausible behaviours as de-
fined by our user model. This way, rather than considering a single GOMS “run”,
a whole series of runs are analyzed together, automatically generating a range
of timings depending on the path taken. Such a setting allows one to do error
(correctness) analysis first and then, once an error free design is created, do a
broad timing analysis within a single integrated system. An advantage of doing
so is that the GOMS timings can be used to argue that a systematically possi-
ble choice is “erroneous” on course performance grounds: the user model does
achieve the goal but very inefficiently. If one potential method for achieving a
goal was significantly slower, whilst the task completion would be proved, this
might suggest design changes to either disable the possibility of choosing that
method or change the design so that if it was taken then it would be easier



to accomplish the goal. Similarly, a design chosen on performance grounds to
eliminate a poor path might be rejected by our GOMS-like analysis due to its
potential for systematic error discovered by the integrated human error analysis.

Many GOMS models support an explicit hierarchy of goals and subgoals. Our
previous cognitive architecture was “flat” allowing only atomic user goals and
actions. This meant that any hierarchy in user behaviour (task or goal structures)
could be specified only implicitly. In this work, we take a step towards supporting
hierarchical specifications of user goals. When needed (e.g., to capture an expert
behaviour within a complex interactive system), these can be structured in an
appropriate way. Note however that this extension to our cognitive architecture
does not necessarily impose hierarchical goal structures on specific user models.
To represent unstructured goals, one can simply choose a “flat” hierarchy, as is
done in this paper.

One indication of cognitively plausible behaviour is choosing options that are
relevant to the task goals when there are several alternatives available. Currently
our cognitive architecture is fully non-deterministic in the sense that any user
goal or action that is possible according to the principles of cognition, and/or
prompted by the interface might be selected for execution. Here we introduce
a facility for correlating, in such situations, user choices and task goals, thus
ensuring that the user model ignores available but irrelevant alternatives.

Summarising, the main goal and contribution of the work presented in this
paper is the integration of user-centred timing analysis with formal verification
approach originally developed for reasoning about human error. Our aim here is
to demonstrate how this can be done and to indicate the potential of combin-
ing the approaches in this complementary way to analyse the behaviour of the
interactive system in terms of timing and timing-related errors. More specifically:

– It provides a way of creating GOMS-like cognitively plausible variations of
methods of performing a task that emerge from a formal model of behaviour.

– It provides a way of detecting methods that have potential for systematic
human error occurring using the same initial GOMS-like specification.

– The GOMS-like predictions of timings open the possibility of detecting some
(though not all) classes of specific errors that could occur due to those tim-
ings, whilst still doing in parallel time-free error analysis based on the veri-
fication of various correctness properties.

– It allows our concept of systematic error to be extended in an analysis to in-
clude “erroneous” choices in the sense of choosing an alternative that, whilst
eventually achieving the result, is predicted to be slower than acceptable.

– It introduces into our cognitive architecture a correlation between task goals
and user choices thus refining the notion of cognitive plausibility captured
by the formal user model.

1.1 Related work

There is a large body of work on the formal verification of interactive systems.
Specific aims and focus vary. Here we concentrate on the work most directly
linked to our work in this paper.



Whilst GOMS assume error-free performance, this does not preclude them
from being used in a limited way to analyse erroneous performance. As noted
by John and Kieras [9], GOMS can be used for example to give performance
predictions for error recovery times. To do this one simply specifies GOMS mod-
els for the task of recovering from error rather than the original task, perhaps
comparing predictions for different recovery mechanisms or determining whether
recovery can be achieved with minimal effort. With these approaches the analy-
sis does not identify the potential for human error: the specific errors considered
must be decided in advance by the analyst.

Beckert and Beuster [10] present a verification environment with a similar
architecture to our user model – connecting a device specification, a user as-
sumption module and a user action module. They use CMN-GOMS as the user
action module. The selection rules of the GOMS model are driven by the as-
sumption model and the actions drive the device model. This gives a way of
exploring the effect of errors made by the user (incorrect selection decisions as
specified in the user assumption module). However, the assumption module has
no specific structure, so the decision of what kind of errors could be made is not
systematic or formalised but left to the designers of the system. This differs from
our approach where we use a cognitive model combined with aspects of a GOMS
model. This allows us to reason about systematic error in a way that is based
on formalised principles of cognition. They also have not specifically focused on
predicting performance times using GOMS, but rather are using it as a formal
hierarchical task model.

Bowman and Faconti [11] formally specify a cognitive architecture using the
process calculus LOTOS, and then apply a temporal interval logic to analyse
constraints, including timing ones, on the information flow and transformation
between the different cognitive subsystems. Their approach is more detailed than
ours, which abstracts from those cognitive processes.

In the area of safety-critical systems, Rushby et al [12] focus on mode er-
rors and the ability of pilots to track mode changes. They formalise plausible
mental models of systems and analyse them using the Murφ verification tool.
The mental models though are essentially abstracted system models; they do not
rely upon structure provided by cognitive principles. Neither do they attempt
timing analysis. Also using Murφ, Fields [13] explicitly models observable man-
ifestations of erroneous behaviour, analysing error patterns. A problem of this
approach is the lack of discrimination between random and systematic errors. It
also implicitly assumes there is a correct plan, from which deviations are errors.

Temporal aspects of usability have also been investigated in work based on
the task models of user behaviour [14, 15]. Fields et al [14] focus on the analysis of
situations where there are deadlines for completing some actions and where the
user may have to perform several simultaneous actions. Their approach is based
on Hierarchical Task Analysis and uses the CSP formalism to specify both tasks
and system constraints. Lazace et al [15] add quantitative temporal elements to
the ICO formalism and use this extension for performance analysis. Both these
approaches consider specific interaction scenarios which contrasts to our verifi-



cation technique supporting the analysis of all cognitively plausible behaviours.
The efficiency of interaction, albeit not in terms of timing, is also explored by
Thimbleby [16]. Using Mathematica and probabilistic distributions of usage of
menu functions, he analyses interface complexity. The latter is measured as the
number of actions needed to reach desired menu options.

2 HUM-GOMS architecture

Our cognitive architecture is a higher-order logic formalisation of abstract prin-
ciples of cognition and specifies a form of cognitively plausible behaviour [17].
The architecture specifies possible user behaviour (traces of actions) that can be
justified in terms of specific results from the cognitive sciences. Real users can
act outside this behaviour of course, about which the architecture says nothing.
However, behaviour defined by the architecture can be regarded as potentially
systematic, and so erroneous behaviour is similarly systematic in the design.
The predictive power of the architecture is bounded by the situations where
people act according to the principles specified. The architecture allows one to
investigate what happens if a person acts in such plausible ways. The behaviour
defined is neither “correct” nor “incorrect”. It could be either depending on the
environment and task in question. We do not attempt to model the underlying
neural architecture nor the higher-level cognitive architecture such as informa-
tion processing. Instead our model is an abstract specification, intended for ease
of reasoning.

2.1 Cognitive principles

In the formal user model, we rely upon abstract cognitive principles that give
a knowledge level description in the terms of Newell [18]. Their focus is on the
internal goals and knowledge of a user. These principles are briefly discussed
below.

Non-determinism. In any situation, any one of several cognitively plausible be-
haviours might be taken. It cannot be assumed that any specific plausible be-
haviour will be the one that a person will follow where there are alternatives.

Relevance. Presented with several options, a person chooses one that seems
relevant to the task goals. For example, if the user goal is to get cash from an
ATM, it would be cognitively implausible to choose the option allowing one to
change a PIN. A person could of course press the wrong button by accident.
Such classes of error are beyond the scope of our approach, focussing as it does
on systematic slips.

Mental versus physical actions. There is a delay between the moment a person
mentally commits to taking an action (either due to the internal goals or as
a response to the interface prompts) and the moment when the corresponding



Table 1. A fragment of the SAL language

x:T x has type T

λ(x:T):e a function of x with the value e

x′ = e an update: the new value of x is that of the expression e

{x:T | p(x)} a subset of T such that the predicate p(x) holds
a[i] the i-th element of the array a

r.x the field x of the record r

r WITH .x := e the record r with the field x replaced by the value of e
g → upd if g is true then update according to upd

c [] d non-deterministic choice between c and d

[](i:T): ci non-deterministic choice between the ci with i in range T

physical action is taken. To capture the consequences of this delay, each physical
action modelled is associated with an internal mental action that commits to
taking it. Once a signal has been sent from the brain to the motor system to
take an action, it cannot be revoked after a certain point even if the person
becomes aware that it is wrong before the action is taken. To reflect this, we
assume that a physical action immediately follows the committing action.

Pre-determined goals. A user enters an interaction with knowledge of the task
and, in particular, task dependent sub-goals that must be discharged. These
sub-goals might concern information that must be communicated to the device
or items (such as bank cards) that must be inserted into the device. Given the
opportunity, people may attempt to discharge such goals, even when the device
is prompting for a different action. Such pre-determined goals represent a partial
plan that has arisen from knowledge of the task in hand, independent of the
environment in which that task is performed. No fixed order other than a goal
hierarchy is assumed over how pre-determined goals will be discharged.

Reactive behaviour. Users may react to an external stimulus, doing the action
suggested by the stimulus. For example, if a flashing light comes on a user might,
if the light is noticed, react by inserting coins in an adjacent slot.

Goal based task completion. Users intermittently, but persistently, terminate
interactions as soon as their main goal has been achieved [3], even if subsidiary
tasks generated in achieving the main goal have not been completed. A cash-
point example is a person walking away with the cash but leaving the card.

No-option based task termination. If there is no apparent action that a person
can take that will help to complete the task then the person may terminate
the interaction. For example, if, on a ticket machine, the user wishes to buy a
weekly season ticket, but the options presented include nothing about season
tickets, then the person might give up, assuming the goal is not achievable.



TRANSITION

[](g:GoalRange,p:AimRange): CommitAction:
NOT(comm) ∧
finished = notf ∧
atom?(Goals[g].subgoals) ∧
Goals[g].grd(in, mem, env) ∧
Goals[g].choice(status, g) ∧
(g 6= ExitGoal ∧Relevant(g, p)
∨
g = ExitGoal ∧MayExit)

→

commit′[act(Goals[g].subgoals)] = committed;
t′ = t + CogOverhead;
finished′ =

IF g = ExitGoal ∧ Achieved(TopGoal)(in, mem)
THEN ok

ELSE notf ENDIF;
status′ = status WITH .trace[g] := TRUE

WITH .length := status.length + 1

[]

[](a:ActionRange): PerformAction:

commit[a] = committed → commit′[a] = ready;
Transition(a)

[]

ExitTask:
Achieved(TopGoal)(in, mem) ∧
NOT(comm) ∧
finished = notf

→ finished′ = ok

[]

Abort:
NOT(EnabledRelevant(in, mem, env)) ∧
NOT(Achieved(TopGoal)(in, mem)) ∧
NOT(comm) ∧
finished = notf

→
finished′ = IF Wait(in, mem)

THEN notf

ELSE abort ENDIF

[]

Idle:
finished = notf →

Fig. 1. User model in SAL (simplified)

2.2 Cognitive architecture in SAL

We have formalised the cognitive principles within the SAL environment [8].
It provides a higher-order specification language and tools for analysing state
machines specified as parametrised modules and composed either synchronously
or asynchronously. The SAL notation we use here is given in Table 1. We also
use the usual notation for the conjunction, disjunction and set membership op-
erators. A slightly simplified version of the SAL specification of a transition
relation that defines our user model is given in Fig. 1, where predicates in italic
are shorthands explained later on. Below, whilst explaining this specification
(SAL module User), we also discuss how it reflects our cognitive principles.

Guarded commands. SAL specifications are transition systems. Non-determinism
is represented by the non-deterministic choice, [], between the named guarded
commands (i.e. transitions). For example, CommitAction in Fig. 1 is the name of
a family of transitions indexed by g. Each guarded command in the specification



describes an action that a user could plausibly take. The pairs CommitAction –
PerformAction of the corresponding transitions reflect the connection between
the physical and mental actions. The first of the pair models committing to a
goal, the second actually taking the corresponding action (see below).

Goals structure. The main concepts in our cognitive architecture are those of
user goals and aims. A user aim is a predicate that partially specifies model
states that the user intends to achieve by executing some goal. User goals are
organised as a hierarchical (tree like) goal–subgoals structure. The nodes of this
tree are either compound or atomic:

atomic Goals at the bottom of the structure (tree leaves) are atomic: they
consist of (map to) an action, for example, a device action.

compound All other goals are compound: they are modelled as a set of task
subgoals.

In this paper, we consider an essentially flat goal structure with the top goal
consisting of atomic subgoals only. We will explore the potential for using hier-
archical goal structures in subsequent work.

In SAL, user goals and aims are modelled as arrays, respectively, Goals and
Aims, which are parameters of the User module. Each element in Goals is a record
with the following fields:

guard A predicate, denoted grd, that specifies when the goal is enabled, for
example, due to the relevant device prompts.

choice A predicate (choice strategy), denoted choice, that models a high-level
ordering of goals by specifying when a goal can be chosen. An example of
the choice strategy is: “choose only if this goal has not been chosen before.”

aims A set of records consisting of two fields, denoted aims, that essentially
models the principle of relevance. The first one, state, is a reference to
an aim (predicate) in the array Aims. The conjunction of all the predicates
referred to in the set aims, defined by the predicate Achieved(g) for a goal
g, fully specifies the model states the user intends to achieve by executing
this goal. For the top goal, denoted TopGoal, this conjunction coincides with
the main task goal. The second field, ignore, specifies a set of goals that
are irrelevant to the aim specified by the corresponding field state. Note
that the same effect could be achieved by providing a set of “promising”
actions. However, since in our approach the relevance of a goal is generally
interpreted in a very wide sense, we expect that the “ignore” set will be a
more concise way of specifying the same thing.

subgoals A data structure, denoted subgoals, that specifies the subgoals of the
goal. It takes the form comp(gls) when the goal consists of a set of subgoals
gls. If the goal is atomic, its subgoals are represented by a reference, denoted
atom(act) to an action in the array Actions (see below).

Goal execution. To see how the execution of an atomic goal is modelled in SAL
consider the guarded command PerformAction for doing a user action that has
been previously committed to:



commit[a] = committed → commit′[a] = ready;
Transition(a)

The left-hand side of → is the guard of this command. It says that the
rule will only activate if the associated action has already been committed to,
as indicated by the element a of the local variable array commit holding value
committed. If the rule is then non-deterministically chosen to fire, this value is
changed to ready to indicate there are now no commitments to physical actions
outstanding and the user model can select another goal. Finally, Transition(a)
represents the state updates associated with this particular action a.

The state space of the user model consists of three parts: input variable
in, output variable out, and global variable (memory) mem; the environment is
modelled by a global variable, env. All of these are specified using type variables
and are instantiated for each concrete interactive system. The state updates
associated with an atomic goal are specified as an action. The latter is modelled
as a record with the fields tout, tmem, tenv and time; the array Actions is a
collection of all user actions. The time field gives the time value associated with
this action (see Section 2.3). The remaining fields are relations from old to new
states that describe how two components of the user model state (outputs out

and memory mem) and environment env are updated by executing this action.
These relations, provided when the generic user model is instantiated, are used
to specify Transition(a) as follows:

t′= t + Actions[a].time;

out′ ∈ {x:Out | Actions[a].tout(in,out,mem)(x)};
mem′ ∈ {x:Memory | Actions[a].tmem(in,mem,out′)(x)};
env′ ∈ {x:Env | Actions[a].tenv(in,mem,env)(x) ∧ possessions}

Since we are modelling the cognitive aspects of user actions, all three state
updates depend on the initial values of inputs (perceptions) and memory. In
addition, each update depends on the old value of the component updated. The
memory update also depends on the new value (out′) of the outputs, since we
usually assume the user remembers the actions just taken. The update of env

must also satisfy a generic relation, possessions. It specifies universal physical
constraints on possessions and their value, linking the events of taking and giving
up a possession item with the corresponding increase or decrease in the number
(counter) of items possessed. For example, it specifies that if an item is not given
up then the user still has it. The counters of possession items are modelled as
environment components.

PerformAction is enabled by executing the guarded command for selecting
an atomic goal, CommitAction, which switches the commit flag for some action a

to committed thus committing to this action (enabling PerformAction). The fact
that a goal g is atomic is denoted atom?(Goals[g].subgoals). An atomic goal g
may be selected only when its guard is enabled and the choice strategy for g is
true. For the reactive actions (goals), their choice strategy is a predicate that
is always true. In the case of pre-determined goals, we will frequently use the
strategy “choose only if this goal has not been chosen before”. When the user



model discharges such a goal, it will not do the related action again without an
additional reason such as a device prompt.

The last conjunct in the guard of CommitAction distinguishes the cases when
the selected goal is ExitGoal or not. ExitGoal (given as a parameter of the User

module) represents such options as “cancel” or “exit”, available in some form
in most of interactive systems. Thus, a goal g that is not ExitGoal may be
selected only if there exists a relevant aim p in the set Goals[g].aims, denoted
Relevant(g, p). We omit here the formal definition of the relevance condition.
On the other hand, if g is ExitGoal then it can be selected only when either the
task goal has been achieved (user does not intend to finish interaction before
achieving main goal), or there are no enabled relevant goals (the user will try
relevant options if such are available). Again, we omit the formal definition of
these conditions here just denoting them MayExit.

When an atomic goal g is selected, the user model commits to the correspond-
ing action act(Goals[g].subgoals). The time variable t is increased by the value
associated with “cognitive overhead” (see Section 2.3). The record status keeps
track of a history of selected goals. Thus, the element g of the array status.trace

is set to true to indicate that the goal g has been selected, and the counter of
selected goals, status.length, is increased. In addition to time-based analysis,
this counter provides another way of analysing the behaviour of the user model.

Task completion. There are essentially two cases when the user model terminates
an interaction: (i) goal based completion when the user terminates upon achiev-
ing the task goal, and (ii) no-option based termination when the user terminates
since there are no enabled relevant goals to continue. Goal based completion
(finished is set to ok) is achieved by simply “going away” from the interactive
device (see the ExitTask command). No-option based termination (finished is
set to abort) models random user behaviour (see the Abort command).

The guarded command ExitTask states that the user may complete the
interaction once the predicate Achieved(TopGoal) becomes true and there are no
commitments to actions. This action may still not be taken because the choice
between enabled guarded commands is non-deterministic. The value of finished
being notf means that the execution of the task continues.

In the guarded command Abort, the no-option condition is expressed as the
negation of the predicate EnabledRelevant. Note that, in such a case, a possible
action that a person could take is to wait. However, they will only do so given
some cognitively plausible reason such as a displayed “please wait” message. The
waiting conditions are represented in the specification by predicate parameter
Wait. If Wait is false, finished is set to abort to model a user giving up and
terminating the task.

2.3 Timing aspects

Following GOMS models, we extend our cognitive architecture with timing in-
formation concerning user actions. On an abstract level, three GOMS models,
KLM, CMN-GOMS and NGOMSL, are similar in their treatment of execution



CashTaken

RESET

WITHDRAW

BALANCE

WAIT

RECEIPT

RELEASE CASHEXIT

PINCARD

Selected
Exit

Exit
Selected

ExitSelectedRemoved
Card

ReceiptTaken

Amount
Selected

Withdraw
Selected

Balance
Selected

CardCard

CardLight WithdrawOption

ExitOption BalanceOption

ReleaseCard

PleaseWait

GiveReceipt

PinMessage

AmountMessage

Removed
Card

ExitOption

ExitOption

ReleaseCard

CardLight

CashLight

TimeTick

ReleaseCard

CardRemoved

PinEntered
Inserted
Card

Fig. 2. A specification of the cash machine

time [7]. The main difference is that NGOMSL adds, for each user action, a fixed
“cognitive overhead” associated with the production-rule cycling. In our model,
this corresponds to the goal selection commands (CommitAction). Hence, the
time variable is increased by the value CogOverhead which is a parameter of our
user model. For KLM or CMN-GOMS-like analysis, this parameter can be set
to 0. In this case, the time variable is increased (PerformAction command)
only by the value associated with the actual execution of action and specified
as Actions[a].time. All three GOMS models differ in the way they distribute
“mental time” among user actions, but this need only be considered when our
cognitive architecture is instantiated to concrete user models. In general, any of
the three approaches (or even their combination) can be chosen at this point. In
this paper, we will give an example of KLM like timing analysis.

3 An example

To illustrate how the extended cognitive architecture could be used for the anal-
ysis of execution time, we consider interaction with a cash machine.

3.1 Cash machine

For simplicity of presentation, we assume a simple design of cash machine. After
inserting a bank card, its user can select one of the two options: withdraw cash or
check balance (see Fig. 2). If the balance option is selected, the machine releases
the card and, once the card has been removed and after some delay, prints a
receipt with the balance information. If the withdraw option is selected, the user
can select the desired amount. Again, after some delay, the machine releases the



card and, once it has been removed, provides cash. Note that users are allowed
to cancel an interaction with our machine before entering the PIN, and selecting
the withdraw option, balance option, or amount, i.e., while the machine is in the
CARD, PIN, or WITHDRAW state. If they choose to do so, their card is released.

3.2 User model

Next, we instantiate our cognitive architecture to model cash machine users.

User aims. We assume there are two aims, denoted CashAim and BalanceAim,
which might compel a person to use this cash machine. These predicates provide
values for the array Aims. As an example, the predicate BalanceAim is as follows:

λ(in,mem,env): env.Receipts ≥ 1 ∨ mem.BalanceRead

It states that the balance is checked when either the user has at least one receipt
(these are modelled as possession items), or they read the balance on the display
and have recorded this fact in their memory.

User goals. Taking account of the aims specified, we assume that the machine
users, based on the previous experience, have the following pre-determined goals:
InsertCardGoal, SelectBalanceGoal, SelectWithdrawGoal, and SelectAmountGoal.
As an example, SelectBalanceGoal is the following record (the others are similar):

grd := λ(in,mem,env): in.OptionBalance

choice := NotYetDischarged

aims := {}
subgoals := atom(SelectBalance)

Thus, this goal may be selected only when a balance option is provided by
the interface. The choice strategy NotYetDischarged is a pre-defined predicate
that allows one to choose a goal only when it has not been chosen before. Since
this is an atomic goal, the set aims is empty, whereas its subgoal is the actual
action (an operator in GOMS terms) of selecting the balance option (see below).

In response to machine signals, the user may form the following reactive goals:
EnterPinGoal, TakeReceiptGoal, ReadBalanceGoal, RemoveCardGoal, TakeCashGoal,
and SelectExitGoal. Their definitions are similar to those of the pre-determined
goals, except that, in this case, the choice strategy always permits their selection.

User actions. To fulfil these goals, users will perform an action referred to in the
corresponding goal definition. Thus, we have to specify an action for each of the
above user goals. As an example, the output update tout of the SelectBalance

action is the following relation:

λ(in,out0,mem):λ(out): out = Default WITH .BalanceSelected := TRUE

where Default is a record with all its fields set to false thus asserting that nothing
else is done. The memory and environment updates are simply default relations.
Finally, the timing of this action (field time) is discussed below.



Task goals So far we have introduced all the basic goals and actions of a cash
machine user. Now we explain how tasks that can be performed with this cash
machine are specified as a suitable TopGoal. Here we consider essentially flat goal
structures, thus a top goal directly includes all the atomic goals as its subgoals.
For the task “check balance and withdraw cash,” TopGoal is specified as the
following record:

grd := True

choice := NotYetDischarged

aims := { (# state := CashAim, ignore := {SelectBalanceGoal, ReadBalanceGoal} #),
(# state := BalanceAim, ignore := {SelectAmountGoal} #) }

subgoals := comp({ InsertCardGoal, EnterPinGoal, SelectBalanceGoal,...})

The interesting part of this definition is the attribute aims. It specifies that,
while performing this task, the user model will have two aims (partial goals)
defined by the predicates CashAim and BalanceAim. Furthermore, when the aim
is to check the balance, the user model will ignore the options for selecting
the amount as irrelevant to this aim (similarly the balance option and reading
balance will be ignored when the aim is to withdraw cash). Of course, this is
not the only task that can be performed with this machine. A simpler task,
“check balance” (or “withdraw cash”) alone, is also possible. For such a task,
the specification of TopGoal is the same as above, except that the set aims now
only includes the first (or second) record.

Note that in this way we have developed an essentially generic user model
for our cash machine. Three (or more) different tasks can be specified just by
providing appropriate attributes (parameters) aims.

3.3 KLM timing

In this paper, we use KLM timings to illustrate our approach. For the cash
machine example, we consider three types of the original KLM operators: K to
press a key or button, H to home hands on the keyboard, and M to mentally
prepare for an action or a series of closely related primitive actions. The duration
associated with these types of operators is denoted, respectively, by the constants
K, H and M. The duration values we use are taken from Hudson et al [19]. These
can be easily altered, if research suggests more accurate times as they are just
constants defined in the model.

Since our user model is more abstract, the user actions are actually sequences
of the K and H operators, preceded by the M operator. As a consequence,
the timing of actions is an appropriate accumulation of K, H and M operators.
For example, InsertCard involves moving a hand (H operator) and inserting a
card (we consider this as a K operator), preceded by mental preparation (M
operator). The time attribute for this action is thus specified as M+H+K. We also
use the same timing for the actions RemoveCard, TakeReceipt and TakeCash. On
the other hand, SelectBalance involves only pressing a button, since the hand
is already on the keyboard. Thus its timing is M+K (similarly for SelectWithdraw,



SelectAmount and SelectExit). EnterPin involves pressing a key four times (four
digits of PIN), thus its timing is M+H+4*K. Finally, ReadBalance is a purely mental
action, giving the timing M.

In addition to the operators discussed, original KLM also includes an opera-
tor, R, to represent the system response time during which the user has to wait.
Since an explicit device specification is included into our verification approach,
there is no need to introduce into the user model time values corresponding to
the duration of R. System delays are explicitly specified as a part of a device
model. For example, in our ATM specification, we assumed that system delays
occur after a user selects the desired amount of cash and before the device prints
a receipt (the WAIT state in Fig. 2).

4 Verification and timing analysis

So far we have formally developed both a machine specification and a (paramet-
ric) model of its user. Our approach also requires two additional models: those
of user interpretation of interface signals and effect of user actions on the ma-
chine (see [5]), connecting the state spaces of the user model and the machine
specification. In this example, these connectors are trivial – they simply rename
appropriate variables. Finally, the environment specification simply initialises
variables that define user possessions as well as the time variable. Thus, the
whole system to analyse is the parallel composition of these five SAL modules.
Next we discuss what properties of this system can be verified and analysed, and
show how this is done. First we consider the verification of correctness properties.

4.1 Error analysis

In our previous work [4, 5], we mainly dealt with two kinds of correctness proper-
ties. The first one (functional correctness) aimed to ensure that, in any possible
system behaviour, the user’s main goal of interaction (as they perceive it) is
eventually achieved. Given our model’s state space, this is written in SAL as the
following LTL assertion:

F(Perceived(in, mem)) (1)

Here F means “eventually,” and Perceived is the conjunction of all the predicates
from the set Goals[TopGoal].aims as explained earlier.

The second property aimed to catch post-completion errors – a situation
when subsidiary tasks are left unfinished once the main task goal has been
achieved. In SAL, this condition is written as follows:

G(Perceived(in, mem)⇒ F(Secondary(in, mem, env))) (2)

Here G means “always,” and Secondary represents the subsidiary tasks. In our
example, Secondary is a predicate stating that the total value of user possessions



(account balance plus withdrawn cash) in a state is no less than that in the
initial state.

Both these properties can be verified by SAL model checkers. With the cash
machine design from Fig. 2, the verification of both succeeds for each of the three
tasks we specified. Note, however, that both properties only guarantee that the
main and subsidiary tasks are eventually finished at some unspecified point in
the future. In many situations, especially in the case of various critical systems,
designs can be judged as “incorrect” on the grounds of poor performance. Next
we show how efficiency analysis is supported by our approach by considering
execution times.

4.2 Timing analysis

Model checkers give binary results – a property is either true or false. Because of
this, they are not naturally suited for a detailed GOMS-like analysis of execution
times. Still, if one is content with analysis that produces an upper (or lower)
limit, model checking is a good option. For example, if it suffices to know that
both the main and the subsidiary tasks are finished in time less than T, one can
verify the condition

G(Perceived(in, mem)⇒ F(Secondary(in, mem, env) ∧ time < T)) (3)

The validity of both (1) and (3) predicts that T is an upper limit for the user
model, and thus for any person behaving according to the cognitive principles
specified, to properly finish a task. If expert knowledge is needed for such per-
formance, SAL would produce a counter-example (a specific sequence of actions
and intermediate states) for property (3). This can be used to determine design
features requiring expert knowledge.

As an example, consider the task “check balance and withdraw cash”. Let
the threshold for slow execution times be 17 seconds (i.e. 17 000 milliseconds).
The verification of property (3) with T equal to 17000 fails. The counter-example
shows that the execution time is slow since the user model goes through the
whole interaction cycle (inserting a card, entering a PIN, etc.) twice. A design
allowing the task to be performed in a single cycle would improve the execution
times. In the next section, we consider such a design.

By verifying property (3) for different T values, the estimates of the upper
and lower time limits for a task execution can be determined. However, execu-
tion times given by counter-examples provide no clue as to how likely they are,
in other words, whether there are many methods of task execution yielding these
particular times. Neither do they give the duration of other execution methods.
To gather precise timing information for possible execution methods, we use an
interactive tool provided by the SAL environment, a simulator. It is possible to
instruct the latter to run an interactive system so that the system states defined
by some predicate (for example, Perceived) are reached. In general, different
system states are reached by different execution methods. Thus, one can deter-
mine the precise timing of a particular method simply by checking the variable



ExitOption

RESET

WITHDRAW

WAIT

RELEASE CASHEXIT

CARD

Exit
Selected

ExitSelectedRemoved
Card

Amount
Selected

CardCard

CardLight

ExitOption
PleaseWaitPinMessage

ReleaseCard

CardLight

CashLight

TimeTick

ReleaseCard

CardRemoved

Inserted
Card

CashTaken

PinEntered

DisplayBalance

AmountMessage

Fig. 3. A specification of the modified design

time in the corresponding state. A more sophisticated analysis and comparison
of timing information can be automated, since the SAL simulator is a Lisp-like
environment that allows programming functions for suitable filtering of required
information. We will explore this in future work.

5 Modified design

An obvious “improvement” on the design is to free users from an early selection
of a task. Instead, while in the WITHDRAW state, the machine displays the balance in
addition to the amount choices (see Fig. 3). The user can read it and then choose
an amount option as needed, thus achieving both task goals in one run. To check
whether our expectations are valid, we run the simulator to reach system states
where both predicates Perceived and Secondary are true. Checking execution
time in these states indicates an improvement. To find out whether execution
times improved for all possible paths reaching the above goal states, we model
check property (3). However, this verification fails again. SAL produces a counter
example where the user model chooses an amount option without first reading
the displayed balance and, to achieve both aims, is forced to restart interaction.
Furthermore, for the “improved” design, even property (2) is invalid. The SAL
counter example shows that the user model, after reading the displayed balance,
chooses the exit option, thus forgetting the card.

In a traditional GOMS analysis this new design is apparently fine as ex-
pert non-erroneous behaviour is assumed. However the HUM-GOMS analysis
highlights two potentially systematic problems: an attention error and a post-
completion error. The expert assumption is thus in a sense required here. Whilst
it might be argued that an expert who has chosen that method for obtaining
balance and cash would not make the mistake of failing to notice the balance
when it was displayed, experimental data suggests that even experts find it hard
to eliminate post-completion error in similar situations. Amongst non-expert
users both errors are liable to be systematic. The HUM-GOMS analysis has



thus identified two design flaws that if fixed would be significant improvements
on the design.

A simple fix for both detected flaws is a cash machine similar to our second
design, but which, instead of displaying the balance, prints this information and
releases the receipt in the same slot and at the same time as the banknotes.

6 Conclusion

We have added support for timing analysis into our usability verification ap-
proach based on the analysis of correctness properties. This allows both timing
analysis and human error analysis to be performed in a single verification envi-
ronment from a single set of specifications. For this, our cognitive architecture
was extended with timing information, as in GOMS models. Our approach uses
the existing SAL tools, both the automatic model checkers and the interactive
simulator environment, to explore the efficiency of an interactive system based on
the models provided. As in our earlier work the cognitive architecture is generic:
principles of cognition are specified once and instantiated for a particular de-
sign under consideration. This differs from other approaches where a tailored
user model has to be created from scratch for each device to be analysed. The
generic nature of our architecture is naturally represented using higher-order for-
malisms. This and SAL’s support for higher-order specifications are the primary
reasons for developing our verification approach within the SAL environment.

The example we presented aimed to illustrate how our approach can be used
for a KLM style prediction of execution times (our SAL specifications are avail-
able at http://www.dcs.qmul.ac.uk/∼rimvydas/usermodel/dsvis07.zip). A
difference in our approach is that, if the goal is achieved, the user model may
terminate early. Also, if several rules are enabled, the choice between them is
non-deterministic. The actual execution time is then potentially a range, de-
pending on the order – there is a maximum and a minimum prediction. These
are not real max/min in the sense of saying this is the longest or shortest time
it will take, however, just a range of GOMS-like predictions for the different
possible paths. In effect, it corresponds to a series of KLM analyses using differ-
ent procedural rules, but incorporated in HUM-GOMS into a single automated
analysis.

Similarly as CCT models [20] and unlike pure GOMS, we have an explicit
device specification that has its own timings for each machine response. It is likely
that most are essentially instantaneous (below the millisecond timing level) and
so approximated to zero time. However, where there are explicit R operators in
KLM, the corresponding times can be assigned to the device specification.

Even though we illustrated our approach by doing a KLM style analysis, our
extension of the cognitive architecture is also capable of supporting CMN-GOMS
and NGOMSL approaches to timing predictions. We intend to explore this topic
in future work, developing at the same time a hierarchical goal structure.

Another topic of further investigation is timing-related usability errors. We
have already demonstrated the capability of our approach to detect potential



user errors resulting from the device delays or indirect interface changes without
any sort of feedback [4]. The presented extension opens a way to deal with real-
time issues (e.g., when system time-outs are too short, or system delays are too
long). We also intend to investigate “race condition” errors when two closely
fired intentions to action come out in the wrong order [21]. We expect that
the inherent non-determinism of our cognitive architecture can generate such
erroneous behaviour in appropriate circumstances. Finally, since tool support
allows experimentation be done more easily, we believe that our approach can
address the scale-up issue and facilitate the analysis of trade-offs between the
efficiency of multiple tasks.

This research is funded by EPSRC grants GR/S67494/01 and GR/S67500/01.

References

1. Reason, J.: Human Error. Cambridge University Press (1990)
2. Gray, W.: The nature and processing of errors in interactive behavior. Cognitive

Science 24(2) (2000) 205–248
3. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error.

Cognitive Science 21(1) (1997) 31–61
4. Curzon, P., Blandford, A.E.: Detecting multiple classes of user errors. In: Little,

R., Nigay, L. (eds.): Proc. 8th IFIP Working Conf. on Engineering for Human-
Computer Interaction (EHCI’01). Vol. 2254 of LNCS, Springer-Verlag (2001) 57–
71

5. Rukšėnas, R., Curzon, P., Back, J., Blandford, A.: Formal modelling of cognitive
interpretation. In: Doherty, G., Blandford, A. (eds.) Proc. DSV-IS 2006. Vol. 4323
of LNCS, Springer-Verlag (2007) 123–136

6. Rukšėnas, R., Curzon, P., Blandford, A.: Detecting cognitive causes of confidential-
ity leaks. In: Proc. 1st Int. Workshop on Formal Methods for Interactive Systems
(FMIS 2006). UNU-IIST Report No. 347 (2006) 19–37

7. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Trans. CHI 3(4) (1996) 320–351

8. de Moura, L., Owre, S., Ruess, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.): Computer Aided Verification: CAV 2004.
Vol. 3114 of LNCS, Springer-Verlag (2004) 496–500

9. John, B.E., Kieras, D.E.: Using GOMS for user interface design and evaluation:
which technique? ACM Trans. CHI 3(4) (1996) 287–319

10. Beckert, B., Beuster, G.: A method for formalizing, analyzing, and verifying secure
user interfaces. In: Proc. ICFEM 2006, Vol. 4260 of LNCS, Springer-Verlag (2006)
55–73

11. Bowman, H., Faconti, G.: Analysing cognitive behaviour using LOTOS and Mexitl.
Formal Aspects of Computing 11 (1999) 132–159

12. Rushby, J.: Analyzing cockpit interfaces using formal methods. Electronic Notes
in Theoretical Computer Science 43 (2001)

13. Fields, R.E.: Analysis of erroneous actions in the design of critical systems. Tech.
Rep. YCST 20001/09, Univ. of York, Dept. of Comp. Science, D.Phil Thesis (2001)

14. Fields, B., Wright, P., Harrison, M.: Time, tasks and errors. ACM SIGCHI Bull.
28(2) (1996) 53–56



15. Lacaze, X., Palanque, P., Navarre, D., Bastide, R.: Performance evaluation as a
tool for quantitative assessment of complexity of interactive systems. In: Proc.
DSV-IS 2002. Vol. 2545 of LNCS, Springer-Verlag (2002) 208–222

16. Thimbleby, H.: Analysis and simulation of user interfaces. In: Proc. BCS HCI, vol.
XIV (2000) 221–237

17. Butterworth, R.J., Blandford, A.E., Duke, D.J.: Demonstrating the cognitive plau-
sibility of interactive systems. Formal Aspects of Computing 12 (2000) 237–259

18. Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)
19. Hudson, S.E., John, B.E., Knudsen, K., Byrne, M.D.: A tool for creating predictive

performance models from user interface demonstrations. In: Proc. 12th Ann. ACM
Symp. on User Interface Software and Technology, ACM Press (1999) 93–102

20. Kieras, D.E., Polson, P.G.: An approach to the formal analysis of user complexity.
Int. J. Man-Mach. Stud. 22 (1985) 365–394

21. Dix, A., Brewster, S.: Causing trouble with buttons. In: Auxiliary Proc. HCI’94
(1994)


