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The phase diagram in temperature and magnetic field of the metal-organic, two-leg, spin-ladder

compound ðC5H12NÞ2CuBr4 is studied by measurements of the specific heat and the magnetocaloric

effect. We demonstrate the presence of an extended spin Luttinger-liquid phase between two field-induced

quantum critical points and over a broad range of temperature. Based on an ideal spin-ladder Hamiltonian,

comprehensive numerical modeling of the ladder specific heat yields excellent quantitative agreement

with the experimental data across the entire phase diagram.
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Quantum spin systems display a remarkable diversity of
fascinating physical behavior. This is especially true for
systems such as spin ladders, which have a gapped or a
gapless ground state, respectively, for an even or an odd
number of ladder legs [1]. For two-leg ladders, and in
general for any even leg number, quantum phase transi-
tions (QPTs) between gapped and gapless phases can be
driven by an external magnetic field. While these QPTs are
generic in quantum magnets [2], the nature of the gapless
phase depends crucially on the dimensionality of the spin
system. In two and higher dimensions, a quantum critical
point (QCP) separates the low-field, quantum disordered
(QD) phase, with gapped triplet excitations, from a gapless
phase with long-range antiferromagnetic (AF) order, which
can bewell described as a Bose-Einstein condensate (BEC)
of magnons [2–4].

By contrast, for one-dimensional (1D) systems such as
ladders, both long-ranged magnetic order and BEC are
precluded due to phase fluctuations. In addition, spin ex-
citations are best viewed as interacting fermions, whereas a
bosonic representation pertains in higher dimensions. The
physics of the gapless phase in 1D is thus fundamentally
different. It is a (spin) Luttinger liquid (LL) [5], and is a
key component of the rich phase diagram presented in
Fig. 1 [3,6–9]. In the LL, the spectrum is gapless with
algebraically decaying spin correlations. Because there is
no finite order parameter, the LL regime is reached from
the high-temperature, classical regime through a crossover
rather than a phase transition. Nevertheless, clear manifes-
tations of LL behavior are expected not only in the corre-

lation functions but also in thermodynamic quantities such
as the magnetization and specific heat.
However, materials in which to explore such effects are

rather rare. Investigations of the spin excitations and ther-
modynamic properties of ladder compounds have to date
been performed primarily on copper oxides. In these ma-
terials, the exchange interactions are typically some hun-
dreds of meV, and thus the phases are not easily controlled
by a magnetic field. Candidate 1D materials in which
thermodynamic properties have been studied around the
QPT include the bond-alternating S ¼ 1=2 and S ¼ 1
chains F5PNN [10] and NTEMP [11], the S ¼ 1 Haldane
system NDMAP [12,13], and the S ¼ 1=2 system CuHpCl
[14], which was for some time considered to be a spin
ladder [15]. While measurements in these materials show
indications of LL behavior in parts of the field-temperature
phase diagram, their magnetic properties are influenced in
large part by the presence of significant single-ion anisot-
ropy and/or three-dimensional (3D) interactions between
the chains, which tend to dominate the low-temperature
specific heat at all fields [16]. Hence we have pursued the
search for materials suitable to study the intrinsic spin LL
physics by seeking those showing, at minimum, a clear
separation of energy (temperature) scales between 1D and
3D interactions.
Here we present the results of thermodynamic measure-

ments on a prototypical two-leg ladder material, the metal-
organic compound piperidinium copper bromide
ðC5H12NÞ2CuBr4 [17–22], where all of the phases of inter-
est can be accessed, as summarized in Fig. 1. In particular,
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we find an extended region in the phase diagram, between
0.1 K and 1.5 K, where a spin LL is observed. We demon-
strate that the crossover into the LL is signaled by clear
features in both the specific heat and the magnetization. In
the gapless spin LL, the magnetic specific heat is linear at
low temperatures. Its field- and temperature-dependence
are in excellent agreement with numerical calculations
involving no free parameters. This demonstrates that the
material is very accurately described by a minimal spin-
ladder Hamiltonian.

High-quality single crystals of ðC5H12NÞ2CuBr4, abbre-
viated ðHpipÞ2CuBr4 in the following, were grown from
solution. In this material, the S ¼ 1=2 magnetic moments
of the Cu2þ ions are arranged in a ladderlike structure
along the a axis [Fig. 1, inset]. The rungs (Jr) of this ladder
are formed by two equivalent Cu-Br-Br-Cu superexchange
paths with a center of inversion symmetry [16], while the
legs (Jl) involve one similar but longer interaction path.
The ladder units ðCu2Br8Þ4� are well separated by the
organic ðC5H12NÞþ cations, which contribute only very
little to the electronic properties of the host structure, and
hence any magnetic exchange between ladders (J0) is ex-
pected to be small. Direct measurements of these interac-
tions, Jr ¼ 12:9ð2Þ K, Jl ¼ 3:3ð3Þ K, and J0 < 100 mK,
based on inelastic neutron scattering experiments [23],

are in very close agreement with the values extracted
from magnetostriction [20] and nuclear magnetic reso-
nance (NMR) [21] measurements.
The specific heat and magnetocaloric effect (MCE) were

measured on a purpose-built calorimeter at the Helmholtz
Centre Berlin (Laboratory for Magnetic Measurements at
BENSC), using single crystals of masses 4.78 mg and
9.69 mg in the respective temperature and field ranges
0.3 K to 15 K and 0 T to 14.5 T. The field was applied
parallel to the crystallographic a-axis, a geometry in which
we obtained the values Bc ¼ 6:99ð5Þ T and Bs ¼
14:4ð1Þ T for the two QCPs [Fig. 1]. The specific heat
was extracted from a quasiadiabatic relaxation technique
and, using the same setup, the MCE was recorded with a
sweep rate of 0.05 T per minute.
In Fig. 1 the magnetic component of the specific heat

Cm=T of ðHpipÞ2CuBr4 is presented across the entire phase
diagram. It shows clearly three distinct regimes: QD,
quantum critical (QC), and spin LL. The contour plot
was obtained from 27 scans in field and temperature, after
subtraction of a field-independent lattice contribution
ClðTÞ and of a small nuclear term, which both are deter-
mined from a simultaneous fit to all available data.
In Fig. 2(a)–2(d) we show individual measurements of

the total and the magnetic specific heat, respectively
CtotðTÞ and CmðT; BÞ. In the QD regime, B � Bc, Cm

shows a single peak at approximately 5 K [Fig. 2(b)].
This peak is attributable to the triplet excitations of the
ladder, and is exponentially activated at lower temperatures
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FIG. 2 (color online). (a) Measured total specific heat CtotðTÞ
at fixed magnetic field. Solid (dashed) lines are based on fits to
the data before (after) background subtraction. The blue line
indicates the uniform, nonmagnetic background. (b) Magnetic
specific heat CmðT; BÞ for B � Bc, and (c) Bc � B � Bs. Lines
in (a)–(c) show CED

m , and are based on ED and DMRG calcu-
lations, as explained in the text. (d) CmðT; BÞ=T measured at
fixed temperature. The region with linear temperature depen-
dence of the specific heat is indicated by LL, while T marks the
peak due to the softening triplet.

FIG. 1 (color online). Field-temperature phase diagram of the
spin–ladder compound ðHpipÞ2CuBr4, showing quantum disor-
dered (QD), quantum critical (QC), and spin Luttinger-liquid
(LL) phases. QCPs occur at Bc (closing of spin triplet gap �) and
Bs (spin system fully polarized). The contour plot shows the
magnetic specific heat as CmðT; BÞ=T. Local maxima from the
reduction of the triplet gap by the Zeeman effect are indicated by
crosses. Circles denote the LL crossover based on measurements
of the magnetocaloric effect [Fig. 4], black lines are fits to
extract the critical fields, and the dashed blue line indicates the
onset of long-ranged order below 100 mK [21,22]. Inset: lattice
structure of ðHpipÞ2CuBr4 in projection along the b axis, with Cu
atoms blue and Br white.
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due to the presence of the spin gap � [24]. With increasing
field, the gap is reduced by the Zeeman effect (� ! ��
g�BB). Field scans such as those in Fig. 2(d) show most
clearly the reduction of the gap and are used to extract the
critical field Bc in Fig. 1, yielding very good agreement
with determinations by complementary experimental tech-
niques [18–22].

The specific heat changes dramatically for fields B>
Bc, which we explain by the formation of the LL phase
[Fig. 2(c)]. While at high temperature Cm is dominated by
the (gapped) Sz ¼ 0 triplet states, at low temperature an
additional peak develops. Below this peak, the temperature
dependence remains linear up to B ¼ Bs � 14:5 T, with a
field-dependent slope. The linearity of Cm is demonstrated
in Fig. 2(d). For fields near the maximum of the LL dome,
the ratio Cm=T measured at different temperatures collap-
ses onto the same curve. This temperature dependence is
consistent with the presence of gapless spinon excitations
with a finite velocity u, its slope being inversely propor-
tional to u [5]. The first peak thus occurs when the tem-
perature is large enough to probe deviations from this
linear regime. It can be taken as an estimate of the cross-
over to enter the LL, and is visible in Fig. 1 for Bc < B<
Bs. The field dependence of Cm is almost symmetric about
ðBc þ BsÞ=2 � 10:7 T. In the strong-coupling limit,
Jr=Jl � 1, perfect symmetry would be expected due to
the exact particle-hole symmetry of the XXZ chain in a
field [14,25]. Here we observe clear deviations character-
istic of the underlying ladder structure. Similar effects are
also visible in spin correlation functions and in the low-
temperature phase diagram, which can be measured by
NMR [21] and neutron scattering [22].

At B> Bs, the specific heat becomes exponentially
activated again due to the opening of a field-dependent
spin gap in the fully saturated phase. However, this regime
is close to the limit of our experimental window, and so the
high-field phase is not investigated further here.

The experimental data have been compared with several
theoretical calculations, and the agreement is remarkable
(Fig. 2). Numerical results were obtained by exact diago-
nalization (ED) and by adaptive, time-dependent density-
matrix renormalization-group (DMRG) calculations [26],
both performed for a single ladder with Jr ¼ 13 K,
Jr=Jl ¼ 4, and g ¼ 2:06 (i.e., no free parameters). We
stress that in both techniques it is important to retain a
sufficient number of ladder states for a quantitative de-
scription of thermodynamic data. The DMRG calculations
(2� 40 spins) may be regarded as the definitive behavior
of this model. In the ED calculations, the specific heat of
even- (odd-)length ladders converges rapidly from above
(below) to the infinite-size limit; thus finite-size effects are
essentially removed here by taking an average between
systems of 2� 10 and 2� 11 spins. The ED and DMRG
results are indistinguishable both in the QD phase [Fig. 2
(b)] and in the LL regime [Fig. 2(c)]. Slight deviations
from the experimental data are found only close to the
upper critical field Bs and at 11 T.

Some physical insight into the numerical results is af-
forded by two approximate treatments. A statistical ansatz
(TTW) [24] developed for spin ladders, and shown previ-
ously to describe very accurately the thermal renormaliza-
tion of triplet excitations in the 3D dimer system TlCuCl3
[27], uses the correct number of states but applies their
hard-core constraint only globally. In the spin ladder, this
approximation underestimates the local energy of the ex-
cited states, leading to a systematic shift of weight to lower
energies as B ! Bc [Fig. 3(a)]. A mapping of the lowest
two modes of the ladder Hamiltonian onto an effective S ¼
1=2 XXZ chain [14,25], whence thermodynamic quantities
are computed exactly from the Bethe ansatz (BA), is very
accurate for the low-energy physics at B> Bc, but cannot
reproduce the heat capacity at higher temperatures be-
cause of the missing triplet states (Sz ¼ 0,�1) [Fig. 3(b)].
We conclude that the thermodynamic properties of
ðHpipÞ2CuBr4 are described very accurately by a model
of a single two-leg ladder, and that comprehensive
measurements of the specific heat identify an extended
LL regime.
We turn now to a different observable, the uniform

magnetization (M), which is notoriously difficult to mea-
sure at temperatures below 1.5 K. Very precise mea-
surements can be obtained by NMR [21], but here
we use an alternative method to probe the crossover to
the LL. We determine the derivative of the magnetiza-
tion with respect to temperature using the relation
ð�Q=�BÞ=T ¼ �ð@M=@TÞjB, where �Q is the amount of
heat generated or absorbed by the sample for a field change
�B due to the MCE. Figure 4 shows both representative
ð�Q=�BÞ=T-traces (corrected for a small base-line drift at
higher temperatures) and a contour plot of all available
data, presenting directly @M=@T. In the free-fermion
model, which is an excellent qualitative description of
spins near the QCP in 1D [5], and in more refined ap-
proaches [8,9,28], the magnetization has a minimum or
maximum as a function of temperature (@M=@T ¼ 0).
These extrema occur when the temperature matches the
chemical potential, and thus provide another determination
of the crossover temperature for the LL phase. The ex-
tracted phase boundary and the positions of the peaks in the
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FIG. 3 (color online). Comparison of calculated ladder spe-
cific heat. (a) ED vs TTW for magnetic-field values B � Bc [as
in Fig. 2(b)]. (b) ED vs BA for some magnetic-field values B >
Bc [cf. Fig. 2(c)].
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specific heat agree well within expectations, as demon-
strated by the solid symbols in Fig. 4(b).

The structures present here in the magnetization and
specific heat differ markedly from those occurring when
there is a BEC. In that case, because a real phase transition
occurs, the specific heat diverges with a �-type anomaly.
Such a shape has been observed at BEC transitions in
higher-dimensional materials such as BaCuSi2O6 [29]. At
the same temperature the magnetization develops a mini-
mum, but with a cusplike structure [3], which has been
observed in TlCuCl3 [4]. For 1D spin ladders, the magne-
tization minimum and the specific-heat peak have a differ-
ent origin: they correspond to the crossover to the LL
regime. Thus there is no divergence in the specific heat
and the magnetization minimum is analytic, reflecting
the absence of a phase transition; the temperatures of
the two features, although similar, are not identical. For
ðHpipÞ2CuBr4, a real phase transition of BEC type does
occur at a much lower temperature, TN � 100 mK
(Fig. 1, [21,22]), due to a 3D coupling of the ladders.

In summary, we have measured the specific heat and
magnetocaloric effect in the metal-organic, two-leg spin
ladder ðC5H12NÞ2CuBr4. The excellent low-dimensionality
and optimal energy scale of the exchange interactions
make this material unique, and allow a detailed investiga-
tion of the phase diagram in temperature and in fields up to
magnetic saturation for the quantum spin ladder. We find
an extended region of spin Luttinger-liquid behavior over
at least 1 order of magnitude in temperature, lying clearly
above any three-dimensional physics triggered by residual
interladder interactions. The high-precision experimental
data have been analyzed using the most advanced exact
diagonalization and density-matrix renormalization-group
techniques to calculate thermodynamic quantities for all of
the phases (i.e., across two quantum critical points). From
the direct and parameter-free fit of the experimental and
numerical results, we conclude that ðC5H12NÞ2CuBr4 is
remarkably well described by a minimal spin-ladder

Hamiltonian, with other possible effects (frustrated inter-
actions, Dzyaloshinskii-Moriya terms, lattice coupling)
being very small. Hence the material offers unprecedented
opportunities to investigate the intrinsic physics of low-
dimensional quantum systems.
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FIG. 4 (color online). Magnetocaloric effect in ðHpipÞ2CuBr4.
(a) Heat-flow �Q to and from the sample as a function of
magnetic field divided by temperature, ð�Q=�BÞ=T.
(b) Contour plot of @M=@T as a function of field and tempera-
ture. White circles denote the phase boundary derived from
@M=@T ¼ 0 (see also Fig. 1), while black circles are maxima
in the specific heat, @Cm=@T ¼ 0, obtained at fixed field.
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