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We develop an empirical search-matching model which is suitable for analyzing the wage, 
employment and welfare impact of regulation in a labor market with heterogeneous 
workers and jobs. To achieve this we develop an equilibrium model of wage determination 
and employment which extends the current literature on equilibrium wage determination 
with matching and provides a bridge between some of the most prominent macro models 
and microeconometric research. The model incorporates productivity shocks, long-term 
contracts, on-the-job search and counter-offers. Importantly, the model allows for the 
possibility of assortative matching between workers and jobs due to complementarities 
between worker and job characteristics. We use the model to estimate the potential gain 
from optimal regulation and we consider the potential gains and redistributive impacts 
from optimal unemployment benefit policy. Here optimal policy is defined as that which 
maximizes total output and home production, accounting for the various constraints that 
arise from search frictions. The model is estimated on the NLSY using the method of 
moments.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Labor market imperfections may justify labor market interventions. Within a competitive framework regulation would be 
welfare reducing, as it would typically reduce employment and increase insiders’ wages. By contrast, any friction constrain-
ing the allocation of workers to jobs inevitably allows some agents to appropriate a greater share of the rent than a central 
planner would deem fit. Indeed, if there are important complementarities in production, mismatch may produce substantial 
welfare losses relative to the first best or a constrained planner.
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We develop a search-matching model in which workers with different abilities are assigned to different tasks. Our model 
combines elements from key papers in the equilibrium search literature. Thus we allow for endogenous job destruction 
because of productivity shocks, drawing from the seminal paper of Mortensen and Pissarides (1994). To this framework we 
introduce two sided heterogeneity with potential complementarities between job and worker productivity following Shimer 
and Smith (2000). In this way we can investigate sorting in the labor market, one of our motivating interests. To account 
for job-to-job transitions and to better explain wage growth we allow for on-the-job search, which is not present in Shimer 
and Smith (2000). Wage determination is drawn from Postel-Vinay and Robin (2002), Dey and Flinn (2005) and Cahuc et al.
(2006). In other words we combine bargaining over the surplus (for workers out of unemployment or moving to a new job) 
with Bertrand competition when a poaching firm is involved.

In this way, our model provides a bridge between an essentially theoretical literature on allocation of heterogeneous 
workers to jobs,1 and the large microeconometric literature on job mobility and wage dynamics.2 The framework that we 
develop allows for frictions and inefficiencies in the labor market. The frictions are due to the time it takes to locate jobs, 
which means that individuals will spend time searching for a job while unemployed and if working they are likely to be 
mismatched (if there are complementarities in production). One may argue that such frictions are inevitable; nevertheless 
it is important to understand the welfare loss that they cause relative to the benchmark of a frictionless economy, because 
this provides a measure of how dominant search frictions are in determining economic outcomes.3 More importantly, our 
model can quantify the welfare loss from inefficiencies that can potentially be addressed by labor market regulation: first, 
the number of job seekers cause congestion making it harder for others to find jobs – this is a standard externality in 
models with endogenous arrival rates. Beyond that the potential complementarities between worker and firm productivities, 
the possibility of on-the-job search and the lack of commitment on the worker side allows for the possibility of another 
inefficiency: workers and jobs are sometimes willing to form matches whose flow output is lower than the combined cost 
of a vacancy and the lost out-of-work benefit. On the one hand the job, with its local monopsony power manages to extract 
sufficient surplus to make it worth hiring the worker; on the other hand the worker prefers the resulting current loss to 
the increased flow of income when out of work because being in a job provides a better outside offer to negotiate a wage 
once an alternative offer arrives. These features may be important in the labor market and our model can quantify their 
importance for welfare.

We estimate our model using panel data on workers and use the estimates to quantify how much sorting there is with 
respect to unobserved characteristics. A first set of studies interested in this question follow Abowd et al. (1999, AKM)
and assess the degree of assortative matching in the labor market by calculating the correlation between worker and firm 
fixed effects estimated by a panel-data regression of individual wages on workers’ and employers’ indexes.4 They typically 
find non-significant or negative correlations. Andrews et al. (2008) show that this estimated correlation is contaminated 
by a spurious statistical bias and propose a bias-corrected estimator. Using German IAB data, they find that the negative 
OLS estimate is turned into a positive number after applying the bias correction (0.23 instead of somewhere in the range 
[−0.19, −0.15]).

However, Eeckhout and Kircher (2011) strongly argue against the possibility of identifying assortative matching in labor 
markets by this approach, bias-corrected or not. This is because the surplus of a match is not a monotonic function of worker 
and firm characteristics in general. Depending on the distribution of matches around the optimal, Beckerian allocation, a 
positive or a negative AKM correlation can be estimated irrespective of the sign of the correlation between workers’ and 
firms’ true unobserved characteristics in the population of active matches. In the previous working paper we also find 
that the AKM correlation is misleading and demonstrate that positive sorting with respect to unobserved characteristics 
may induce a negative correlation in the worker and firm effects estimated on a panel of wages. Lopes de Melo (2009), 
Hagedorn et al. (2012), Bagger and Lentz (2014) reach similar conclusions with different models.

Note that this argument invalidating a structural interpretation of AKM is implicit in Gautier and Teulings (2006), who 
estimate a regression model of log wages on a quadratic function of worker and employer types. These types are calculated 
by projecting log wages separately on workers’ and employers’ observed characteristics. Gautier and Teulings’s estimation 
rests on various parametric restrictions, but nevertheless convincingly claims 1) that the wage equation is nonlinear in 
workers’ and employers’ types, and 2) that they are positively correlated.

1 See also Shi (2001), Teulings and Gautier (2004), Moscarini (2005) and Gautier et al. (2010) for alternative approaches to two-sided matching models 
without and with on-the-job search.

2 See amongst others MaCurdy (1982), Altonji and Shakotko (1987), Abowd and Card (1989), Topel (1991), Topel and Ward (1992), Meghir and Pistaferri
(2004), Altonji and Williams (2005), Guvenen (2007), Bonhomme and Robin (2009), Guvenen (2009), Low et al. (2010), Lise (2013), Altonji et al. (2013).

3 See also Teulings and Gautier (2004), Gautier and Teulings (2015) for an approach to measuring the welfare cost of search frictions. Their approach 
differs both theoretically and empirically from ours: Their production function is a quadratic in the distance of the worker and job characteristics – it is not 
estimated. There are no shocks to firm productivity. The relative efficiency of on-the-job search is set at different values but not estimated from the data. 
Finally, wages are approximated with observed and unobserved determinants assumed to be orthogonal.

4 See Goux and Maurin (1999) and Abowd et al. (2009) who present results for French and U.S. matched employer–employee data, and Gruetter and 
Lalive (2009) for Austrian data.
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Identification of complementarity and sorting, given that we use a panel of workers’ wages and labor market transitions 
extracted from the NLSY,5 is also hard to prove or disprove theoretically. However, we argue that sorting can be seen in the 
way wage and employment mobility vary as a function of the length of time spent working following an unemployment 
spell. Due to search frictions, the cohort of workers entering the labor market following a spell out of work will start 
off mismatched, but through on-the-job search they will become better and better matched with time spent in the labor 
market. If the tendency to sort in equilibrium is strong this will result in wages spreading out as workers sort themselves. 
Monte Carlo simulations for the Simulated Method of Moment estimator that we have implemented here seem to suggest 
that the set of moments we match do identify the degree of sorting. We find that the NLSY data are best fitted by our model 
assuming no complementarity and zero sorting for workers with high-school education or less and positive complementarity 
and sorting for college-graduates.6

Finally, our model offers an empirical framework for understanding employment and wage determination in the presence 
of firm–worker complementarities, search frictions and productivity shocks. As a result it offers a way for evaluating the ex-
tent to which regulation may be welfare improving and can evaluate the impact of specific policies such as unemployment 
benefit. In a search framework with match complementarities unemployment benefit can have ambiguous effects on em-
ployment and total output. On the one hand, it allows workers to be more picky and form better matches, which comes at 
the cost of longer unemployment spells and higher unemployment. On the other hand, the fact that higher quality matches 
will be formed may induce firms to create more jobs, increasing the contact rate and potentially reducing unemployment 
duration. Our framework allows this effect to be quantified (see also Acemoglu and Shimer, 2000). And, in addition, it allows 
us to analyze the effect of such policies on the distribution of welfare thus showing who pays and who benefits from such 
a policy in this non-competitive environment.

We find that the degree to which labor market interventions are justified depends on whether we are looking at the low 
or high skilled markets. Our finding that the market for unskilled labor (high school graduates or less) is characterized by an 
extremely low degree of complementarity implies that mismatch is not very costly. If we reallocated the employed workers 
in this group optimally the difference in (steady state) welfare would be 1.1 percent. On the other hand, among the college 
graduates, optimally reallocating the employed workers produces a difference in (steady state) welfare of 6.8 percent. We 
also find that search frictions are significant. If we do the same experiment with full employment the welfare changes are 
7.8 and 19.6 for the high school and college groups respectively. The interaction of search frictions and the cost of mismatch 
(the degree of complementarity) differ between the two labor markets, implying that a social planner who is constrained 
by these friction could attain a welfare increase of 2 percent for the high school group but only 0.7 percent for the college 
group, largely by trading off the level of employment against the cost of creating vacancies. Finally, we find that if we limit 
the planner to an optimal unemployment benefit program, this can go a long way to realizing the potential welfare gains 
for the high school group. However, it is ineffectual for the college educated group as the resulting employment distortions 
outweigh the gains from improved match quality.

The paper proceeds as follows. Section 2 describes the model, Section 3 and Section 4 present the estimation procedure. 
Sections 5 and 6 describe the data and the choice of moments. Section 7 presents the results of estimation, analyses the fit 
and discusses estimation of the degree of sorting. Section 8 presents the welfare analysis, the cost of search frictions, and 
analyses in detail the optimal unemployment benefit policy. Section 9 concludes.

2. The model

We build a model of individual employment and wage dynamics, with heterogeneous workers and jobs and with produc-
tive complementarities at the match level. This model draws from Mortensen and Pissarides (1994), as far as the process of 
match creation and destruction is concerned, and from Postel-Vinay and Robin (2002), Dey and Flinn (2005) and Cahuc et al.
(2006) in order to incorporate on-the-job search in the Mortensen–Pissarides model. In addition, we draw from Postel-Vinay 
and Turon (2010) the renegotiation mechanism for wages following firm-level productivity shocks. The wage dynamics fol-
low from the process of search and matching and from firm-level productivity shocks, but entirely abstract from human 
capital accumulation and idiosyncratic ability shocks. While important, incorporating human capital accumulation would 
complicate matters beyond the scope of this paper.7

2.1. Workers, jobs and matches

In this economy, there is a fixed measure of infinitely lived individuals that is normalized to one. They differ from each 
other according to ability, and ability differences are permanent, continuously distributed across workers, and observable by 

5 We preferred to stick to standard worker panel data for two reasons. First, matched employer–employee data are less universal and not always easily 
accessible to researchers. Second, value-added per worker (used by Cahuc et al., 2006; Bagger et al., 2014; Bagger and Lentz, 2014) does not measure well 
the labor productivity of a single job isolated from the other jobs in a firm.

6 There may be other reasons for increasing inequality over time for a cohort, including permanent shocks to productivity as in Meghir and Pistaferri
(2004) and even heterogeneous accumulation of human capital as in Guvenen (2007). These alternative explanations have not been explored here and we 
believe that Identification may require richer information, such as matched employer–employee data.

7 See Bagger et al. (2014) for a recent estimation of a search model with human capital and shocks to worker ability rendered tractable by assuming 
piece-rate contracts as in Barlevy (2008). Yet Bagger et al. assume away any possibility of sorting between workers and jobs.
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all agents, but not by the researcher. Let x ∈ [x, x] denote worker ability and let �(x) be its PDF. We also denote by u(x) the 
(endogenous) number of x among the unemployed, with U = ∫ x

x u(x) dx.
Workers are matched pairwise to jobs or tasks. Jobs are characterized by a technological factor, say labor productivity, 

denoted y, which is also continuous and observable by all agents, but not the researcher. There is no match-specific type; 
match specificity results from the combination of a worker type x with a job type y; these together with the current wage 
paid to the worker will form the relevant state space for the worker and the firm value. Jobs are subject to persistent 
idiosyncratic productivity shocks, which can trigger separations and wage renegotiations. So, if an employee quits, the job 
continues to exist and is available for another match. These idiosyncratic productivity shocks may reflect changes in the 
product market (shifts in demand) or events such as changes in work practices or investments (which are not modeled 
here). Specifically, we assume that y fluctuates according to a jump process: shocks arrive at a rate δ, and a new productivity 
level y′ is drawn from a distribution with PDF γ (y′) on [y, y]. Thus the size of δ determines the persistence of the shocks.

The number of available type-y jobs in the economy is n(y), and the total number of jobs is N = ∫ y
y n(y) dy. Jobs are 

either vacant or matched. The number of vacant type-y posts is v(y) and the resulting total number of vacancies is denoted 
by V = ∫

v(y) dy. Both distributions are endogenous due to a free entry mechanism that will be described later.
A match between a worker of type x and a job of productivity y produces a flow of output f (x, y). We will specify 

this function to allow for the possibility that x and y are complementary in production, implying that sorting will increase 
total output. However, we wish to determine this empirically, as it is important both for understanding the labor market 
and for evaluating the potential effects of regulation. Matches can end both endogenously, as we characterize later, and 
exogenously. We denote by ξ the rate of exogenous job destructions, defined as an event that is unrelated to either worker 
or job characteristics.

Equilibrium will result in a joint distribution of x and y, the distribution of matches. We denote this by h(x, y), which 
satisfies the balance equations:∫

h(x, y)dy + u(x) = �(x), (1)

and ∫
h(x, y)dx + v(y) = n(y). (2)

2.2. Meetings and match formation

We relate the aggregate number of meetings between vacancies and searching workers through a standard aggregate 
matching function M(·,·). This takes as inputs the total number of vacancies V and the total amount of effective job seekers 
U + s (1 − U ), where s is the relative search intensity of employed workers vis-a-vis unemployed. The matching function is 
assumed to be increasing in both arguments and exhibit constant returns to scale.

For the purpose of exposition it is useful to define

κ = M(U + s(1 − U ), V )

[U + s(1 − U )] V
,

which summarizes the effect of market tightness in a single variable. In a stationary equilibrium κ is constant, but it is not 
invariant to policy, and it is important to allow it to change when evaluating interventions or counterfactual regulations. 
Note that while M(·,·) governs the aggregate number of meetings, whether or not a meeting translates into a match will be 
determined by the decisions of individual workers and firms.

The matching parameter κ allows us to calculate all relevant meeting rates. The instantaneous rate at which an unem-
ployed worker meets a vacancy of type y is κV · v(y)

V = κv(y). The instantaneous probability for any vacancy to make a 
contact with an unemployed worker of type x is κu(x). Employed workers are contacted by jobs of type y with instanta-
neous probability sκv(y). Finally, the rate at which vacancies are contacted by a worker x employed at a job y is sκh(x, y).

Individuals and jobs are risk neutral and we assume efficiency, in the sense that any match where the surplus is positive 
will be formed when the worker and the job meet. Under these conditions we can characterize the set of equilibrium 
matches and their surplus separately from the sharing of the surplus between workers and jobs.

Let W0(x) denote the present value of unemployment for a worker with characteristic x. This will reflect the flow of 
income when out of work (or home production) and the expected present value of income that will arise following a 
successful job match. Similarly �0(y) denotes the present value to a job of posting a vacancy arising from the expected 
revenues of employing a suitable worker net of expected posting costs. Let also W1(w, x, y) (respectively �1(w, x, y)) 
denote the present value of a wage contract w for a worker x employed at a job y (respectively the firm’s discounted 
profit).

The surplus of an (x, y) match is defined by

S(x, y) = �1(w, x, y) − �0(y) + W1(w, x, y) − W0(x). (3)
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For a pair (x, y) a match is feasible and sustainable if the surplus is nonnegative, S(x, y) ≥ 0. We focus on equilibria such 
that for all x there is at least one y such that S(x, y) ≥ 0.

2.3. Wages

Different wages are negotiated when leaving unemployment, upon poaching, or after a shock to the job productivity.

2.3.1. Wage negotiation with unemployed workers
The wage for a worker transiting from unemployment is w = φ0(x, y) and we assume that it is set to split the surplus 

according to Nash bargaining with worker’s bargaining parameter β8:

W1 (φ0, x, y) − W0(x) = β S(x, y). (4)

A simple assumption would be to set β to zero. However this may lead to the counterfactual implication that for some 
matches initial wages are negative implying workers pay to obtain a high value job with the potential of future wage 
increases. Although this is not implausible (unpaid internships) this is never observed in our survey data. By allowing β to 
be determined by the data we avoid this problem and allow greater flexibility in fitting the facts.

2.3.2. Poaching
Wages can only be renegotiated when either side has an interest to separate if they do not obtain an improved offer, 

assuming that the match remains viable for both parties. The events that can trigger renegotiation occur when a suitable 
outside offer is made, or when a productivity shock changes the value of the surplus sufficiently. We consider first the 
impact of an outside offer.

We assume that incumbent employers respond to outside offers: a negotiation game is then played between the worker 
and both jobs as in Dey and Flinn (2005) and Cahuc et al. (2006). If a worker x, currently paired to a job y such that 
S(x, y) ≥ 0, finds an alternative job y′ such that S(x, y′) ≥ S(x, y), the worker moves to the alternative job. This is because 
the poaching firm can always pay more than the current one can match. Alternatively, if the alternative job y′ produces 
less surplus than the current job, but more than the worker’s share of the surplus at the current job, i.e. W1 − W0(x) <
S(x, y′) < S(x, y) (where W1 denotes the present value of the current contract), then the worker uses the outside offer to 
negotiate up her wage. Lastly, if S(x, y′) ≤ W1 − W0(x), the worker has nothing to gain from the competition between y
and y′ because she cannot make a credible threat to leave, and the wage does not change.

In either one of the first two cases, the worker ends up in the higher surplus match. If the worker changes firms, she 
uses the surplus at the previous match as the outside option when bargaining. If the surplus at the current match exceeds 
the surplus at the poaching firm we assume the incumbent firm makes a take it or leave it offer and there is no bargaining. 
Assume S(x, y) ≥ S(x, y′). The bargained wage when switching firms (from y′ to y) in this case is w = φ1(x, y, y′) such 
that the worker obtains the entire surplus of the incumbent job plus a share of the incremental surplus between the two 
jobs, i.e.

W1(φ1, x, y) − W0(x) = S(x, y′) + β
[

S(x, y) − S(x, y′)
]

= β S(x, y) + (1 − β)S(x, y′). (5)

The share of the increased surplus β accruing to the worker will be determined empirically. If the surplus in the current 
match is greater than with the poaching firm, the incumbent firm retains the worker by offering a wage w = φ2(x, y, y′)
that delivers to the worker the total surplus at the poaching firm, precluding barraging, i.e.,

W1(φ2, x, y) − W0(x) = S(x, y′). (6)

In our approach there is an asymmetry between workers and firms because the latter do not search when the job is 
filled. As a result they do not fire workers when they find an alternative worker who would lead to a larger total surplus, 
nor do they force wages down when an alternative worker is found whose pay would imply an increased share for the firm. 
We decided to impose this asymmetry because in many institutional contexts it is hard for the firm to replace workers in 
this way. Moreover, we suspect that even when allowed firms would be reluctant to do so in practice. We do, however, 
allow firms to fire a worker when the current surplus becomes negative and then immediately search for a replacement.

2.3.3. Productivity shocks
Another potential source of renegotiation is when a productivity shock changes y to y′ thus altering the value of the 

surplus. If y′ is such that S(x, y′) < 0, the match is endogenously destroyed: the worker becomes unemployed and the job 
will post a vacancy.

8 In what follows we will distinguish between wages obtained when moving from unemployment φ0, when switching jobs φ1 and when the firms retains 
the worker by responding to an outside offer φ2.
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Suppose now that S(x, y′) ≥ 0. The value of the current wage contract w becomes W1(w, x, y′). Future pay negotiations 
whether due to productivity shocks or competition with outside offers will be affected by the new value of the match. 
However, the current wage may or may not change. If the wage w is such that the worker is still obtaining at least as 
much as her outside option, without taking more than the new surplus, 0 ≤ W1(w, x, y′) − W0(x) ≤ S(x, y′), neither the 
worker nor the job has a credible threat to force renegotiation: both are better off with the current wage w being paid 
to the worker than walking away from the match to unemployment and to a vacancy respectively. In this case there will 
be no renegotiation. If, however, W1(w, x, y′) − W0(x) < 0 or W1(w, x, y′) − W0(x) > S(x, y′) (with S(x, y′) ≥ 0) then 
renegotiation will take place because a wage can be found that keeps the match viable and each partner better off within 
the match relative to unemployment for the worker and a vacancy for the job.

To define how the renegotiation takes place and what is the possible outcome we use a setup similar to that considered 
by MacLeod and Malcomson (1993) and Postel-Vinay and Turon (2010). The new wage contract is such that it moves the 
current wage the smallest amount necessary to put it back in the bargaining set. Thus, if at the old contract W1(w, x, y′) −
W0(x) < 0, a new wage w ′ = ψ0(x, y′) is negotiated such that

W1(ψ0, x, y′) − W0(x) = 0, (7)

which just satisfies the worker’s participation constraint. If at the new y′ , W1(w, x, y′) − W0(x) > S(x, y′), a new wage 
w ′ = ψ1(x, y′) is negotiated such that the firm’s participation constraint is just binding:

W1(ψ1, x, y′) − W0(x) = S(x, y′). (8)

Note that a firm hiring an unemployed worker offers the value of unemployment plus a share of the surplus, whereas 
after a positive shock to the surplus value there is no Nash bargaining. This may seem both ad hoc and inelegant. However, 
consider the other situation when the match surplus falls below the worker surplus at current wage. Under Nash bargaining 
the worker would get the same share of the new surplus as in the other triggering situation, wiping out any wage gains 
due to outside offers. That does not sound right. Intuitively, the worker should have more bargaining power in one case 
than in the other. Our assumption (zero bargaining power when the worker values falls below the value of unemployment; 
full bargaining power when the firm profit falls below the value of a vacancy) may seem a bit extreme, but it is motivated 
by the idea that the worker’s bargaining power should depend on whether renegotiation is wanted by the worker or the 
employer, and it ensures that the value function of the worker is monotonically increasing in the wage.

Furthermore, wages respond to job specific productivity shocks, but not always in an obvious direction. Separations and 
pay changes may happen following both good shocks that increase the value of productivity y and bad shocks that decrease 
it. It is all about mismatch: what matters is what happens to the overall surplus. A positive productivity shock, for example, 
can imply that the quality of the match becomes worse and the surplus declines, since the outside option of the firm 
has changed and it may be worthwhile to separate from the current worker and post a vacancy to find a better worker. 
Conversely a negative productivity shock can improve the surplus if this means the job type is now closer to the optimal 
one sought by the worker. A shock that reduces the surplus can still lead to a wage increase to compensate the worker who 
is now matched with a job with fewer future prospects of wage increases. Thus what really matters as far as the viability of 
the match and the possible options for renegotiation is whether a shock improves or worsens a particular match, measured 
by whether it leads to an increase or a decrease, respectively, of the surplus.

2.4. Value functions

The next step in solving the model is to characterize the value functions of workers and jobs, which have been kept 
implicit up to now. These define the decision rules for each agent. We proceed by assuming that time is continuous.

2.4.1. Unemployed workers
Unemployed workers are always assumed to be available for work at a suitable wage rate. While unemployed they 

receive income or money-metric utility (home production) depending on their ability x and denoted by b(x). Thus the 
present value of unemployment to a worker of type x is W0(x), which satisfies the option value equation

rW0(x) = b(x) + κβ

∫
S(x, y)+v(y)dy, (9)

where the subjective discount rate is denoted by r and we define in general a+ = max(a, 0). Thus the integral represents 
the expected value of the surplus of feasible matches given the worker draws from the distribution of vacant jobs v(y). She 
contacts a job of type y at a rate κv(y) and the match is consummated if the surplus S(x, y) is non-negative, in which case 
she gets a share β of the surplus.

2.4.2. Vacant jobs
Using (3), (4), and (5), the present value of profits for an unmatched job meeting a worker with human capital x from 

unemployment is

�1(φ0(x, y), x, y) − �0(y) = (1 − β) S(x, y),
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where 1 − β represents the proportion of the surplus retained by the firm and �0(y) is the value of a vacancy. A job 
meeting a worker who is already employed will have to pay more to attract her. The value of a job with productivity y, 
meeting an employed worker in a lower surplus match with productivity y′ is

�1(φ1(x, y, y′), x, y) − �0(y) = (1 − β)
[

S(x, y) − S(x, y′)
]
.

Based on these considerations, the present value of a vacancy for a job with productivity y is

r�0(y) = −c + δ

∫ [
�0(y′) − �0(y)

]
γ (y′)dy′ + κ (1 − β)

∫
S(x, y)+u(x)dx

+ sκ (1 − β)

∫∫ [
S(x, y) − S(x, y′)

]+
h(x, y′)dx dy′. (10)

The c is a per-period cost of keeping a vacancy open. The second term reflects the impact of a change in productivity 
from y to y′ , assuming that productivity shocks continue to accrue at rate δ when the job is vacant and assuming that 
the distribution of productivity shocks is γ (y′). The third term is the expected gain from matching with a previously 
unemployed worker. The fourth term is the expected gain from poaching a worker who is already matched with another 
job. The notation [·]+ ensures that integration is over all possible x and y′ that increase the current surplus.

As for matches, a post is destroyed if �0(y) < 0. However, we only consider stationary equilibria such that posts exist 
for ever, ruling out job creation and destruction as we have ruled out the birth and death of workers. As we discuss below 
our free entry condition is that the lowest productivity job in the support makes zero profits. Assuming that the production 
function increases in y, in Appendix A we show that �′

0(y) > 0. So �0(y) > 0 for all y ∈ [y, y] if �0(y) > 0. The resulting 
equilibrium distribution of jobs is

n(y) = Nγ (y), (11)

and is thus exogenous up to the number of jobs N . We do this for simplicity so that we do not have to endogenize both 
the number of jobs and the profitability threshold at the equilibrium.

2.4.3. Employed workers
In order to derive the wage rates we need to define the value of a job to a worker W1(w, x, y). This is the present 

value to the worker of a wage contract w for a feasible match (x, y) (if S(x, y) < 0 there is no match and no wage). Any 
wage contract w delivers w in the first unit of time. The continuation value depends on competing events: the job may be 
terminated with probability ξ ; the job may be hit by a productivity shock with probability δ; the worker may be poached 
with probability sκV .

Given the above discussion, the flow value of working at wage rate w in a feasible match (x, y) is determined by the 
following Bellman equation,

[r + δ + ξ + sκv (A(w, x, y))] [W1(w, x, y) − W0(x)]

=
(

w − b(x) − κβ

∫
[S(x, y′)]+v(y′)dy′

)
+ δ

∫ [
min

{
S(x, y′), W1(w, x, y′) − W0(x)

}]+
γ (y′)dy′

+ sκ

∫
A(w,x,y)

[
min

{
S(x, y), S(x, y′)

} + β
[

S(x, y′) − S(x, y)
]+]

v(y′)dy′, (12)

where

A(w, x, y) = {
y′ : W1(w, x, y) − W0(x) < S(x, y′)

}
is the set of jobs that can lead to a wage change (either by moving or renegotiation) and v(A) = ∫

A v(y) dy, for any set A.
On the right hand side the first term is the wage net of the flow value of unemployment (all in parentheses). The second 

term is the expected excess value to the worker of a productivity shock (times the probability that it occurs): in this case 
the worker either ends up with the entire new surplus or the new value or indeed nothing if the match is no longer feasible 
(see equations (7) and (8)). The third line is the expected excess value following an outside offer as in equation (5). The 
integral is over all offers that can improve the value (whether the worker moves or not).

2.4.4. The match output and joint surplus
Having defined the non-employment value for the worker, the vacancy value for the firm, the value of a contract w to 

the worker (with a similar expression for the value to the firm), we can now calculate the surplus value S(x, y) defined by 
equation (3). We show in Appendix A that the match surplus S(x, y) is independent of the current wage contract and is 
defined by the fixed point in the following equation,
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(r + ξ + δ) S(x, y) = f (x, y) − b(x) + c − κβ

∫
S(x, y′)+v(y′)dy′

− κ (1 − β)

∫
S(x′, y)+u(x′)dx′ − sκ (1 − β)

∫∫ [
S(x′, y) − S(x′, y′)

]+
h(x′, y′)dx′ dy′

+ sκβ

∫ [
S(x, y′) − S(x, y)

]+
v(y′)dy′ + δ

∫
S(x, y′)+γ (y′)dy′. (13)

Note that the surplus of an (x, y) match never depends on the wage. This follows from the Bertrand competition between 
the incumbent and the poaching firm that is induced by on-the-job search and disconnects the poached employee’s outside 
option from both the value of unemployment and her current wage contract. Thus the Pareto possibility set for the value of 
the worker and the job is convex in all cases, implying that the conditions for a Nash bargain are satisfied. This contrasts 
with Shimer (2006) where jobs do not respond to outside offers and where the actual value of the wage determines 
employment duration in a particular job. This feature also has a computational advantage since the equilibrium distribution 
of matches can be determined without simultaneously computing the wage rates for workers.

2.5. Steady-state equilibrium

The exogenous components of the model are the distribution of ability �(x), the form of the matching function M(·, ·) as 
well as the arrival rate of shocks δ, the transition probability γ (y), the job destruction rate ξ , the relative search intensity 
of employed workers s, the discount rate r, the value of home production (or leisure) b(x), the cost of posting a vacancy c, 
bargaining power β , and the production function f (x, y).

In equilibrium all agents follow their optimal strategy. The distribution of matches h(x, y), is determined by the steady 
state flow equation, and the number of jobs is determined by a free-entry mechanism that we make explicit below. The 
unemployment distribution u(x) and the distribution of vacancies v(y) follow from the balance equations (1) and (2).

2.5.1. Steady-state flow equation
In a stationary equilibrium flows in and out of any worker stock must balance each other out. Let us consider the 

stocks of existing matches of type (x, y). They can be destroyed for a number of reasons. First, there is exogenous match 
destruction at a rate ξ ; second, with probability δ, the job component of match productivity changes to some value y′
different from y, and the worker may move to unemployment or may keep the job forming a new match (x, y′); third, the 
worker may receive an offer and quit to a higher surplus (x, y′) match. On the inflow side, new (x, y) matches are formed 
when some unemployed or employed workers of type x match with vacant jobs y, or when (x, y′) matches are hit with a 
productivity shock and exogenously change from (x, y′) to (x, y).

Equating inflows to outflows, we have for all (x, y) such that the match is feasible (i.e. S(x, y) ≥ 0),[
ξ + δ + sκv

(
B(x, y)

)]
h(x, y) = [u(x) + sh(x,B(x, y))]κv(y) + δγ (y)

∫
h(x, y′)dy′, (14)

where

B(x, y) = {y′ : 0 ≤ S(x, y′) < S(x, y)},
B(x, y) = {y′ : S(x, y′) ≥ S(x, y)},

are the sets of jobs that would imply (B) or not imply (B) an improvement of the match surplus for x. Thus, sκv 
(
B(x, y)

)
is the probability of receiving an alternative offer, when employed, from a job that beats the current one.

This equation defines the steady-state equilibrium, together with the accounting equations (1) and (2).

2.5.2. Free entry
At this stage the only parameter that is not yet determined is the number of jobs N , as we only consider equilibria 

with infinitely lived jobs. Hence, n(y) = Nγ (y). Job creation is one-shot event and a number N of jobs is created as long as 
�0(y) remains positive.9

At the equilibrium, �0(y) = 0. Hence,

c = δ

∫
�0(y′)γ (y′)dy′ + κ (1 − β)

∫
S(x, y)+u(x)dx

+ sκ (1 − β)

∫ [
S(x, y) − S(x, y′)

]+
h(x, y′)dx dy′. (15)

9 We implicitly assume that �0(y) is decreasing in the number of jobs N . However, this is not at all obvious as �0 depends on N in a complicated way.
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This condition will determine the number of potential jobs N in the economy. This is a complicated equation as N enters κ
via V = N − L − U and U , and κ conditions all other equilibrium variables.

Appendix B provides a simple iterative algorithm that uses these equations and that of the surplus to compute the 
equilibrium objects.

3. Model specification

We complete the presentation of the model with its parametric specification. The central element of the model is the 
production function, which drives the potential gains from sorting. Here we specify this to be a CES in the individual and 
firm characteristic.

f (x, y) = A
[
αxρ + (1 − α)yρ

] 1
ρ .

This allows for various degrees of complementarity depending on the estimated value of ρ , including the extreme case of 
linearity, in which case there are no productivity gains from sorting. The question of nonparametric identification of the 
degree of complementarity is addressed in another paper (Lamadon et al., 2014). Following the data description we offer a 
heuristic argument on the how the parameters are identified here.

A key element of the model is the distribution of worker and firm types. We choose the flexible, yet parsimonious Beta 
distribution, each with support x = y = 0 and x = y = 1. The parameters of the distribution of x (ax , bx) and those of the 
distribution of y (ay , by ) are estimated together with the remaining parameters of the model. When x and y are unobserv-
able, it is not possible to separate the production function from the distributions. In other words we can reparameterize 
the model for x and y to have uniform distributions and change the way these two characteristics enter the production 
function. Nevertheless, the complementarity parameter is identified in any case.

The final component of the model is the matching function. This regulates the number of matches depending on the 
number of vacancies and the number of unemployed and is important for evaluating counterfactual policies. However, with-
out fluctuations in U and V it is a constant. Indeed the matching function can only be identified as a result of fluctuations 
in the aggregate vacancies and unemployment and consequently cannot be estimated within our environment, where no 
aggregate quantity is allowed to change. We thus take the matching function from the literature, for the purposes of simu-
lating counterfactuals. We use an elasticity of 0.5 and the functional form

M(U + s (1 − U ) , V ) = η
√

[U + s (1 − U )] V ,

where the search intensity for the unemployed has been normalized to one (see, Blanchard and Diamond, 1991 and 
Petrongolo and Pissarides, 2001); the search intensity of the employed s as well as the overall level of matches η are 
estimated from the data together with the remaining parameters of the model.

3.1. Measurement error

In our model wages are stochastic because of the type of firm that an individual may encounter, the outside offers or 
the layoffs that may occur and the productivity shocks. There will also be unexplained variation due to her productivity 
characteristic x. In the data an additional source of variation is measurement error that we need to account for, so as not to 
bias the other sources of variation.

We use the monthly records of wages in the NLSY. Thus, while it may be reasonable to assume that measurement 
error is independent from one year to the next it may not be so within the year, as all records are reported at the same 
interview with recall. Having experimented with a number of alternatives, including a common equi-correlated component 
across all months, we settled on a measurement error structure that is common within year and independent across years. 
The variance of measurement error, which is assumed to be lognormal, is estimated alongside the other parameters of the 
model.

4. Estimation method

To estimate the model we use the Simulated Method of Moments (SMM).10 To implement the approach we calculate 
a vector of moments from the data m̂N = 1

N

∑N
i=1 mi , where for example, m̂N may be the mean wage for those one year 

out of unemployment or wage growth t periods following a job move, etc. Counterparts to these moments, defined as 
m̂M

S (θ) = 1
S

∑S
s=1 mM

s (θ), are then constructed based on S simulated careers from the model, given a parameter vector θ . 
The procedure then is to iterate on the parameters so as to bring the moments constructed from the simulated data as close 
as possible to the ones estimated from the data. Specifically we find a value for θ to maximize

LN(θ) = −1

2

(
m̂N − m̂M

S (θ)
)T

Ŵ −1
N

(
m̂N − m̂M

S (θ)
)

,

10 See for example McFadden (1989) and Pakes and Pollard (1989). Constructing the likelihood function for this model is intractable.
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where Ŵ N is taken to be the diagonal of the estimated covariance matrix of m̂N . To compute the variance of mi in the 
actual sample we use the bootstrap.

The simulated moments are not necessarily a smooth function of the parameters, although they would become so as the 
number of simulations increased to infinity. However, with any finite and relatively small number of simulations derivative 
based methods are not appropriate for finding the minimum. We thus use a method developed by Chernozhukov and Hong
(2003), which does not require derivatives of the criterion function. They construct a Markov chain that converges to a 
stationary process of which the ergodic distribution has a mode that is asymptotically equivalent to the SMM estimator. 
Appendix C describes this procedure in detail.

5. The data

We use the 1979 to 2002 waves of the National Longitudinal Survey of Youth 1979 (NLSY). The NLSY consists of 12,686 
individuals who were 14 to 21 years of age as of January, 1979. It contains a nationally representative core random sample, 
as well as an over-sample of black, Hispanic, the military, and poor white individuals. For our analysis, we keep only white 
males from the core sample.

We only include data for individuals once they have completed their education. We also drop individuals who have 
served in the military, and follow workers up to the point of a non-employment spell of 36 months or longer. We consider 
these workers to have left the labor force. We subdivide the data into two education groups: high school degree or less, 
and college graduate. The model is estimated separately on these subgroups.

Individuals are interviewed once a year and provide retrospective information on their labor market transitions and their 
earnings. From this we construct histories at a monthly frequency aggregating the data as follows: we define a worker as 
employed in a given week if he worked more than 35 hours in the week. We define a worker’s employment status in a 
month as the activity he was engaged in for the majority of the month, treating unemployment spells of two weeks or less 
as job-to-job transitions. After sample selection, we are left with an unbalanced panel of 2125 individuals (446,747 person 
months).

We remove aggregate growth from wages based on average wage growth in years 10 to 20 from completion of education. 
At this point the main source of wage growth is due to aggregate productivity. Having removed this constant growth rate 
from wages we assume that the remaining growth is attributable to gains from job search.11

Finally, we trim the data to remove a very small number of outliers when calculating wage changes. When calculating 
month to month wage changes, we exclude observations where the wage falls by more than half or increases by more than 
a factor of five.

6. Choice of moments and identification

The model will be estimated based on worker level data recording transitions between jobs and between work and 
unemployment as well wages over time. We have no information on the firm side itself (such as for example productivity). 
As such identification is challenging. Lamadon et al. (2014) discuss the formal non-parametric identification of a model 
similar to this, albeit without productivity shocks and using matched employer employee data. Other insightful work with 
more formal discussion of identification is Hagedorn et al. (2012), who analyze a version of the model without on-the-job 
search, and Bagger and Lentz (2014), where sorting results from heterogeneous search strategies. The key result is that the 
complementarities in the worker–job match can be identified nonparametrically in their context, using job-side information 
on productivity and job duration. Here we present a heuristic description of the identification argument based on the 
simpler data at our disposal and using a specific parametric form for the match production function.

Transitions in and out of work and between jobs play a key role in parameters controlling labor market mobility. In 
particular η (matching efficiency) and s (relative search intensity) that help determine the arrival rate of offers are identified 
by exit from unemployment and by mobility between jobs. Exit from employment is governed by two components of the 
model: productivity shocks to the job and the exogenous destruction rate. However, productivity shocks are also related to 
job-to-job transitions and wage growth and cannot be set to fit perfectly the exit rate from employment. The remainder is 
captured by the exogenous match destruction rate ξ .

As noted earlier, the support of the distribution of unobserved productivity x and y have both been normalized to (0, 1) 
and each have been assumed to follow a beta distribution with parameters (ax , bx) and (ay , by) respectively; these are 
directly linked to the cross sectional distribution of wages. Through its effect on productivity shocks and job mobility, y is 
also linked to the variability of wage growth within and between jobs. Hence the identification of the weight of y in the 
match production function, α, is driven by the variances of wage growth, conditional on the various types of transition. 
Similarly the within and between-job variance of wage growth is informative about the rate of arrival of productivity shocks 
δ because (together with arrival of job offers) such shocks can lead to renegotiation of wages.

Central to the model is the complementarity parameter, which determines the amount of sorting. Key to identification 
with the type of data we have at our disposal is the fact that sorting, together with search frictions – identified using 

11 Our model does not allow for human capital accumulation. Any such growth in the data is accounted for by improved job matches through job search. 
Developing a model that allows for human capital accumulation is beyond the scope of this paper.
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the information on transitions, control the way cross-sectional wage inequality increases for a particular cohort of workers 
as they sort into more suitable jobs following entry into the labor market. To capture this we simulate the evolution of 
wages and employment of an entry cohort – a group of individuals drawn from �(x) and all starting out unemployed. Under 
the assumptions of our model these are comparable to an NLSY entry cohort starting its labor market career following 
completion of education. Because of search frictions, this cohort of workers will start off mismatched, but if there are 
production complementarities the process of on-the-job search will result in job reallocation improving sorting; this in turn 
will lead to an increase in wage inequality. In addition, if sorting is an important feature of the labor market, the average 
wage gains to changing jobs will decline with time in the labor market, as the cohort of workers move toward their ideal 
matches. Similarly, the variance of wage changes should decline as there are fewer offers that improve matches substantially 
and workers make fewer transitions. Alternatively, if there are no production complementarities (or these are very weak) 
then sorting will not be a feature of the equilibrium, and wage inequality will not increase with time for our cohort as there 
is no tendency for the economy to reallocate them across jobs. The degree of complementarity will affect the variance of 
wages within jobs (as well as between) because it affects the degree to which a firm can and wishes to respond to outside 
offers. For the same reasons as those described above the offers that will be capable of inducing wage growth will decline 
in frequency with time in the labor market. Thus the degree of complementarity in production can be identified using the 
profile of wage growth and its variance between jobs as well as within jobs.12

Changing the distribution of y and its shocks affects transitions both between jobs and in and out of unemployment. 
In addition, changing the distribution of x will affect the variance of wage growth in a very specific way, governed by 
the structure of pay setting and will also affect transitions in and out of work. Thus the distribution of these objects is 
intimately linked to observed transitions, which will limit the extent to which we can explain the variance of wages and 
their growth. We thus identify the variance of measurement error in wages from the variance of wages that the economic 
model is unable to reproduce.

The remainder of the parameters are identified as follows. The bargaining parameter β is primarily identified by wages 
following a job change, because it regulates the extent of a job-to-job wage increase. However, as we show below many 
model generated moments depend on this parameter. The parameter b in b(x) = f (x, b), which reflects the income flow 
while out of work, is identified by the starting wage in new jobs following unemployment, because (for example) a very 
high value will not be consistent with low initial pay. The flow cost of vacancy posting c governs the profitability of posting 
vacancies, and is identified by matching the vacancy to unemployment ratio, which is observed from macroeconomic data.

Identification of the model in practice requires a careful choice of moments that will be sensitive to the parameters we 
need to estimate. In particular, to summarize the employment dynamics, we use the long-run employment rate and the 
transitions between employment states and between jobs, calculated on years 16–20. To summarize wage dynamics, we 
include the level of (log)wages and their cross sectional variance as well as wage growth and its variance both within and 
between jobs. Each of these moments is calculated separately by year in the labor force (year since leaving school for the 
cohort). All the moments we use, their values in intervals of five years and the value produced by the model are shown in 
Table 4. In addition, we target the mean vacancy to unemployment rate (based on the mean and standard deviation from 
Hagedorn and Manovskii, 2008).

Estimation and practical identification relies on the moments predicted by the model being sensitive to changes in the 
parameters: a model-predicted moment which is sensitive to a particular parameter is helpful in identifying it. In Tables 6
and 7 we show the elasticity of each of the moments we use with respect to each of the parameters (separately for each 
education group). Thus for example the complementarity parameter ρ has an important effect on moments to do with the 
distribution of wages and wage growth. The same is true for the parameters related to the distribution of x and y (ax , bx , 
ay , by). However these parameters also change job finding and job switching rates. By contrast the variance of measurement 
error leaves transition rates completely unaffected. Examination of this table also indicates the our choice of moments is 
sufficient for identifying all parameters. An important lesson to be drawn from this table is that, with some exceptions, it is 
difficult to associate the identification of any one parameter with a single feature of the data. However, a complete analysis 
of identification would require an analysis of the rank of this matrix of derivatives, which is beyond the scope of this paper.

7. Estimation results

7.1. The fit of the moments

Summaries of the fit of the targeted moments by the model are presented in Table 4. As seen from the table the 
transitions rates are fitted remarkably well.

In Figs. 1 and 2 we summarize the fit of the model for wages, wage growth and the corresponding variances, both 
overall and by type of transition for the lower and higher education individuals respectively. The model generally fits these 

12 Our model can explain the increase in the cross sectional variance within a cohort by sorting. However, in principle other modeling choices, not explored 
here, could also explain the rise, such as permanent shocks to individual productivity or heterogeneous accumulation of human capital. Nevertheless, as 
we point out sorting has implications not only for the growth in the cross sectional variance of the wages of a cohort but also for the way the variance of 
wage growth evolves. Identification in such a richer model from worker level data is an open question.
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Notes: w is the log wage, �wt is overall log wage growth, �w E Et is within job log wage growth, �w� J t is between job log wage growth; var 
denotes variance. The solid line denotes the moments as predicted by the model, the dashed line is the equivalent data moment and the shaded area 
corresponds to a point-wise 95% confidence interval.

Fig. 1. Fit to wage moments: High school or less.

Notes: w is the log wage, �wt is overall log wage growth, �w E Et is within job log wage growth, �w� J t is between job log wage growth; var denotes 
variance. The solid line denotes the moments as predicted by the model, the dashed line is the equivalent data moment and the shaded area cor-
responds to a point-wise 95% confidence interval.

Fig. 2. Fit to wage moments: College graduate.

patterns very well and certainly captures the qualitative features of the data.13 Any wage growth generated by the model is 
due to the job search process and reflects mobility towards better jobs and (for the higher educated people) improvements 
in sorting. For the lower educated people as we shall see there are very few complementarities; however as the workers 
move to higher surplus jobs (because of improved firm productivity) and by receiving outside offers they can improve their 
wage. This process of outside offers is responsible for the observed wage growth for the low skilled.

13 This comparison does not reflect estimation error and hence provides a narrower confidence interval for evaluating the difference between the model 
and the data moment.
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Table 1
Parameters.

High school or less College graduate

Complementarity parameter ρ 0.938 −0.895
(0.088) (0.274)

Worker bargaining power β 0.188 0.272
(0.027) (0.020)

Probability of exogenous match destruction ξ 0.011 0.004
(0.004) (0.0001)

Probability of a shock to y δ 0.017 0.008
(0.020) (0.001)

Home production parameter b(x) = f (x,b) b 0.122 0.000
(0.033) (0.032)

Vacancy cost (months of average output) c 2.344 1.575
(0.118) (0.213)

Matching efficiency η 0.650 0.425
(0.031) (0.032)

Relative search intensity (employed) s 0.332 0.157
(0.058) (0.012)

Discount rate (annual) r 0.05

Notes: Monthly frequency. Standard deviation of MCMC chain in parentheses.

Table 2
Implications for wage growth and job mobility.

High school or less College graduate

Probability of shock to job productivity y 0.017 0.008
Probability of endogenous job destruction 0.000 0.002

Mean separation rate conditional on shock to y 0.000 0.307
Probability of job contact when unemployed 0.171 0.231

Mean matching rate given a contact 1.000 0.603
Probability of job contact when employed 0.057 0.036

Mean matching rate given a contact 0.249 0.207

Note: Monthly frequency.

7.2. Parameter estimates

The complete set of parameter estimates is presented in Table 5. Here we focus on a subset that have a direct economic 
interpretation; these are presented in Table 1.

The key parameter of interest is the complementarity parameter (ρ). For lower skill worker this is close to and indeed 
not significantly different from one. This implies that there are practically no complementarities between worker and job 
characteristics, which appear to be perfect substitutes. However, for college graduates the elasticity of substitution is about 
0.53 implying a high degree of complementarity and hence large gains from sorting. The gains from moving up the job 
ladder are thus much more important for college graduates than for those with lower levels of education. However, as 
mentioned above, the unskilled can still gain from outside offers: first, search frictions will imply a surplus, since the 
departure of the worker will mean the job will remain idle for some time and hence the firm will have an incentive to 
match outside offers from jobs with lower surplus. Second, the surplus is increasing in job productivity y but (almost) not 
in worker productivity x. This is because the cost of a vacancy is constant but the flow of out-of-work income is increasing 
in x (see equation (13)). Hence higher productivity firms can afford higher wages. The way the surplus is split is driven by 
the Nash bargaining parameter β . This is slightly higher for college graduates than for unskilled workers. The former obtain 
27% of the surplus while the unskilled about 18%.

Exogenous layoffs occur about once every 7.5 years for the unskilled and effectively never for college graduates.14 How-
ever the endogenous layoffs are more important for the latter. Endogenous productivity shocks occur every five years for 
the low educated and every 10 for the college graduates.15 But conditional on occurring the separation rate is much higher 
for the latter. This is because an endogenous separation will occur either because the match became totally unviable (i.e.
the job cannot produce enough to pay both outside options) or because of resulting mismatch, making it better for the job 
to remain vacant and the worker unemployed while they each wait for a better match; however, the latter is not an issue 
for the unskilled since there are no complementarities in production. The probability of endogenous job destruction overall 
and conditional on receiving a shock is given in Table 2. This is very low (surprisingly so), with the model implying that 
almost all separations are either due to exogenous layoffs or due to moving to better matched jobs following an outside 
offer.

Turning now to the parameters governing search, the search intensity (s) for the employed workers is a third of that for 
those out of work among the low education group and half that among the college graduates. Effectively this means that the 
rate of arrival of job offers is much higher for those out of work and this has an implication on what jobs the unemployed 

14 This is calculated as 1
12ξ

.
15 Calculated as 1

12δ
.



76 J. Lise et al. / Review of Economic Dynamics 19 (2016) 63–87
Note: We plot the contours of the Surplus function S(x, y). No matches occur in the NW and SE part of the graph for College Graduates, where no 
contours are shown.

Fig. 3. Contours of the Surplus function over the Equilibrium matching sets.

are willing to take. The implications of the parameter estimates of the search technology (η and s) are better understood by 
calculating the probabilities of a job contact when employed and unemployed, which are displayed in Table 2. The contact 
rates for the unskilled when unemployed are lower than for the higher skilled (17.1% compared to 23.1%). However the 
unskilled accept all offers when unemployed. Both the contact rate when working and the rate at which alternative offers 
are accepted declines with skill.

7.3. Sorting in the labor market

The complementarities between worker and job characteristics for the higher education group imply perfect assortative 
matching in a first best world. However, the extent of sorting that occurs in practice depends on the importance of frictions.

In Fig. 3 we summarize the sorting patterns in the decentralized equilibrium, as implied by our point estimates of 
the parameters. The lines in the figure are contours of the surplus function. On each contour the surplus is constant and 
non-negative, for various combinations of worker and job productivities. In the left hand panel, corresponding to the low 
education workers, such lines cover the entire support of the distribution of worker and firm characteristics. This reflects the 
fact that all matches are viable, leading to a non-negative surplus, because of the almost complete absence of complemen-
tarities.16 In the right hand panel, relating to college graduates, the upper-left and lower-right sections have no contours: 
these areas represent combinations of worker and job types where the surplus is negative and no matches ever occur.17

Waiting for a better match has higher value than starting to produce.
For low skill workers over most of the space the contours are downward sloping. This points to a trade off between firm 

and job characteristics at a fixed match surplus. However, for college graduates the contours are mostly upward sloping 
(except at the highest levels of skills and job characteristics). This is because, when complementarities are very important 
an increase in the job productivity requires an increase in the human capital of the worker if the surplus is to remain 
constant, rather than decline.

As an example of the matching process consider a college educated worker at the 50th percentile of the x distribution. 
The surplus initially increases in the type of the job, is maximized when matched to a job at the 50th percentile, and then 
declines again. This worker will initially match with any job above the 15th percentile, but will always move to a job that 
is closer to the 50th percentile, which may involve moving up or down the quantiles of y.

Fig. 4 illustrates sorting within the College educated group by plotting the distribution of worker (job) characteristics 
conditional on various percentiles of the job (worker) productivity they are matched with. Distributions conditional on 
higher values of productivity of the counterpart to the match stochastically dominate those that are conditional on lower 
values. Moreover, the support of these distributions is limited to a strict subset of the entire support, reflecting the fact that 
some matches never occur.

Finally, matches are not uniformly distributed over this support, even for the low educated. We illustrate the density of 
matches over the matching set in Fig. 5. For the college group, as we approach the main diagonal, of perfect sorting the 

16 Although our estimate of ρ is not statistically significantly different than one for the high school or less group, all descriptions made here use the point 
estimate presented in the table above.
17 The asymmetry of the matching set is due to the fact that only workers can search for alternative matches when employed, as well at to the asymmetry 

in the estimated type distributions.
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Note: We plot the CDF of worker (firm) type conditional on the quantile of the firm (worker) type. The lines moving from left to right are the lowest, 
20, 40, 60, 80 and highest quantiles.

Fig. 4. Stochastic dominance and sorting of workers to firms – College Graduates.

Note: The Graph illustrates the density of matches over the matching set. The blue colors denote low density. Colors in the red part of the spectrum 
imply higher density. There is a clear indication of positive sorting among college graduates with orange colors along the main diagonal.

Fig. 5. Density of Matches over the Equilibrium matching sets. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

density of matches increases. For the high school group, all workers above the 20th percentile move up toward the highest 
firm type at the same rate. Below the 20th percentile there is some sorting induced by the mild complementarity (for low 
x-types the surplus decreases when moving to higher y-type firms, although it is still positive. A caveat here is that our 
estimate is not distinguishable from linearity, in which case there would be no sorting at all for this group.

8. Welfare analysis

To provide a sense of the potential gains from policy, we consider three thought experiments. First we take the estimated 
search frictions as given and look at the Planner’s constrained efficient solution. This experiment provides an upper bound 
on what can be achieved by policies that work to eliminate congestion externalities, taking the frictions as given. Second, 
we consider the thought experiment of ignoring the search frictions and solving the frictionless assignment problem. We 
do this both keeping the number of employed worker fixed to the estimated level, as well as for the full employment case, 
allowing us to separate the employment from the mismatch effects of frictions. This experiment provides an estimate of the 
upper bound to the benefits of finding technological solutions around the frictions (such as improved centralized matching) 
but has nothing to say about either the feasibility or costs of such a program. Finally, we consider an optimal Unemployment 
benefit program. This experiment provides an estimate of the potential gain from a feasible policy.
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8.1. The planner’s constrained efficient solution

The potential for welfare-enhancing labor market regulation arises from the job search frictions and the externalities they 
cause during the job allocation process. The externalities arise from the classic issue of “overcrowding” among job seekers, 
i.e. when an extra person or vacancy seeks a match it reduces the arrival rate for others as implied by the matching function. 
An extra dimension arises in our model because of heterogeneity and sorting: by having low quality jobs compete for 
workers they lengthen the time it takes to fill higher productivity ones, without adding much when they are filled (because 
they have zero or near zero surplus).18 This implies that because of complementarity, cutting some low productivity jobs 
may increase welfare, even if this means that some very low productivity workers never work.

An additional inefficiency comes from the fact that workers can seek outside offers to increase their share of the match 
surplus. As a result, they are willing to form matches even when the current output of the match is below what they 
could produce at home, allowing also for the cost of the vacancy: f (x, y) < b(x) − c. Even though the worker and firm are 
producing less together than they would separately, the fact that the firm has monopsony power up front means it is willing 
to hire the worker and extract most of the match surplus during the early periods of the match. The worker is willing to be 
in the match as it provides a better outside option so as to extract surplus via poaching firms.

Any regulatory intervention in the labor market will improve welfare only to the extent that it can address the external-
ities discussed above, and to the extent to which they are significant. Thus, to provide a measure of the potential welfare 
gains from labor market regulation (such as in-work benefits, unemployment benefit, minimum wages, severance pay etc.) 
we solve the planners problem respecting the constraints arising from search frictions.

Specifically the planner chooses total vacancies, the distribution of matches and the distribution of unemployed workers 
to maximize total output and home production subject to the flow constraints implied by the frictions and the costs of 
vacancies (both of which we view as a fixed element of the environment), i.e.

max
hSP,uSP,V SP

∫
f (x, y)hSP(x, y)dx dy +

∫
b(x)uSP(x)dx − cV SP (16)

subject to the estimated matching and production technologies and the stationary transition equations (14), the accounting 
identities (1) and (2), and V = ∫

v(y)dy. In the above the superscript SP is used to distinguish the endogenous objects 
chosen by the planner as opposed to those arising in a decentralized economy.

A mathematically equivalent formulation to directly choosing the distribution of matches is to have the planner choose 
the set of admissible matches MSP(x, y) and the measure of jobs NSP . We approximate the solution to the planner’s problem 
by specifying the boundaries of the matching set as polynomials: MSP(x, y) =

{
x, y|x >

∑I
i=1 τi yi−1, y >

∑ J
j=1 τ j x j−1

}
. We 

find that polynomials of order I, J = 4 provide a good approximation as no increase in steady state output is found by 
further increasing the degree of polynomial.

Table 3 shows the breakdown of contributions to total welfare under different scenarios. The first column relates to the 
fully decentralized economy we observe from the data. The second column shows the results of the planner maximizing 
welfare as in (16). For the lowest education group the constrained planner is able to improve on the decentralized outcome 
by two percent. For the higher education group the planner can attain an increase in welfare of only 0.71 percent. The 
planner increases unemployment and reduces the number of jobs. To understand what is going on, note that increased 
match quality contributes nothing to the welfare increase. Output per match does not change. The planner increases welfare 
by reducing vacancies (which are very costly) and allowing more workers to engage in home production. For the high school 
or less group, where there are no complementarities in production, this reallocation achieves a relatively large increase in 
welfare. For college graduates, the welfare gains are much more modest because by reducing the number of vacancies some 
high surplus jobs are also eliminated and home production is less effective for this group. Nevertheless, the reduction of 
jobs for them is much lower.

8.2. The costs of search frictions

Search frictions prevent positive assortative matching and cause unemployment. Indeed there are varying degrees of 
complementarity in production for both education groups and the extent to which mismatch causes welfare losses will 
vary. One way of gauging this is to ignore search frictions and sort workers and jobs optimally, imposing perfect assortative 
matching as in Becker (1973).19 Column (3) runs the counterfactual experiment where u(x) and v(y) are kept the same 
as estimated but h(x, y) is changed such that workers and jobs are perfectly positively sorted. Match quality (output per 
employee) increases by 1.0 percentage point for unskilled workers and by 6.0 percentage points for the college graduates 
groups. The increases in steady state welfare (output plus home production less vacancy costs) are quite similar at 1.09 and 
6.84, percentage points respectively.

18 See also Sattinger (1995).
19 Note that these frictions are taken as technological constraints when estimating the decentralized economy and when solving the Planner’s constrained 

efficient problem. Eliminating these frictions should be viewed as a thought experiment to gauge the extent of their effect on output. We have no means of 
assessing the feasibility or costs of their removal. See also Gautier and Teulings (2015) for an interesting approach to measuring the cost of search frictions 
in the presence of sorting, albeit in the context of a simpler model.
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Table 3
Output and employment.

Decentralized 
frictional
(1)

Constrained 
planner
(2)

Frictionless with 
actual employment 
(3)

Frictionless with 
full employment 
(4)

Optimal 
unemployment benefit 
(5)

High school or less
Welfare 100.00 102.02 101.09 107.78 101.39
Match Output 102.70 97.95 103.79 107.29 100.89
Home Production 3.87 6.41 3.87 0.49 4.78
Recruiting Costs −6.56 −2.34 −6.56 0.00 −4.28

E/L 94.01 90.06 94.01 96.59 92.60
N/L 96.59 90.98 96.59 100.00 94.29
V /U 43.12 9.27 43.12 – 22.75

Match quality 1.00 1.00 1.01 1.02 1.00
Corr(x, y) 0.14 0.29 1.00 1.00 0.24

College graduate
Welfare 100.00 100.71 106.84 119.57 100.00
Match Output 108.02 106.56 114.87 119.57 108.01
Home Production 0.00 0.00 0.00 0.00 0.00
Recruiting Costs −8.02 −5.85 −8.02 0.00 −8.00

E/L 95.73 94.37 95.73 100.00 95.80
N/L 101.46 98.54 101.46 100.00 101.51
V /U 134.19 74.10 134.19 – 136.06

Match quality 1.00 1.00 1.06 1.06 1.00
Corr(x, y) 0.81 0.82 1.00 1.00 0.81

Notes: Column (1) is the estimated economy. In column (2) the constrained planner chooses admissible matches to maximize steady state 
output. Here we restrict the planner to choosing a reservation type for x and y, approximated by a fourth order polynomial: MSP(x, y) ={

x, y|x >
∑4

i=1 τi yi−1, y >
∑4

j=1 τ j x j−1
}

, and the measure of firms active in the market N . The frictionless benchmarks of columns (3) and (4) hold N/L

at the estimated decentralized level and force the positive assortative allocation {x, y(x)}. Column (3) keeps the same unemployment and vacancy distribu-
tions u(x) and v(y) as in the benchmark. In column (4) we optimally reallocate workers across firms and employment states, filling all possible jobs with 
a worker. In column (5), optimal unemployment benefit policy is modeled as proportional to expected output: b0(x) = b0

∫
f (x, y)h(y|x) dy and we impose 

the balanced budget ∫ b0(x)u(x) dx = τ
∫

f (x, y)h(x, y) dx dy. The implied policy parameters for the group with high school or less are a replacement rate 
of 11.09 percent funded by a tax on output of 0.95 percent. For college graduates, the replacement rate is 0.56 percent funded by a tax on output of 0.02 
percent. Match quality is defined as output per match, relative to the decentralized equilibrium.

In column (4), we run a similar counterfactual in which we assign all jobs to workers. Unemployment is drastically re-
duced and welfare increases a lot, largely because there are no recruiting costs, but also because of reduced unemployment, 
and a slightly higher match quality for the lowest education groups (see also the discussion in Subsection 8.3.2).

This experiment indicates that there may be substantial gains from reducing search frictions: for the lowest skill group 
policies that improve search technology could improve welfare by up to 7.8% (19.6% for the college educated group). Part of 
this increase comes from reducing unemployment. But part also comes from improving sorting if we take the point estimate 
of the elasticity of substitution, which is 16.2. This can be seen from the third column of Table 3 where unemployment is 
kept equal to the level in the benchmark economy and we observe a rise in match quality.

8.3. Optimal unemployment benefit

The final column of Table 3 presents the welfare (output) gains from an optimal unemployment benefit policy: here 
optimal refers to the policy that maximizes total output and home production, subject to the constraints that arise from 
the existence of search frictions.20 We approximate the unemployment benefit as a payment proportional to a worker’s 
type specific expected market production: bUI(x) = b0

∫
f (x, y)h(y|x) dy. Benefits are funded by a proportional tax on match 

output: 
∫

bUI(x)u(x) dx = τ
∫

f (x, y)h(x, y) dx dy.

8.3.1. Overall efficiency gains
For the low education group, optimal unemployment benefit can deliver 1.4% of improved welfare, corresponding to 68.8 

percent of the potential gains attainable by the planner working under the same constraints. This involves increasing the 
baseline flow utility of being out of work (home production) for each individual by 11.09 percent of their expected output 
if employed, and financing this by a tax on output of 0.95 percent. The gain is effectively zero for the high education group.

It is worth noting again that the improvement in steady state output comes from very different sources when comparing 
the elimination of frictions to the constrained planner or optimal unemployment benefit scheme. With the removal of 

20 In a model with risk aversion unemployment benefit would also mitigate the effects of risk. Here agents are risk neutral and the insurance role of 
unemployment benefit is not accounted for – hence the use of the word benefit, instead of insurance.
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Table 4
Model fit.

High school or less College graduate

Years Model Data S.D. Model Data S.D.

Employment rate 16–20 0.941 0.934 0.004 0.958 0.959 0.005
Job finding rate (UE) 16–20 0.171 0.157 0.017 0.141 0.134 0.033
Job losing rate (EU) 16–20 0.011 0.011 0.001 0.006 0.006 0.001
Job changing rate (� J ) 16–20 0.014 0.014 0.001 0.008 0.007 0.001
log wage 1–5 5.426 5.429 0.013 5.813 5.790 0.019

6–10 5.609 5.584 0.013 5.974 5.973 0.018
11–15 5.614 5.599 0.013 6.024 6.021 0.021
16–20 5.613 5.637 0.013 6.037 6.004 0.024

wage growth 1–5 0.098 0.085 0.007 0.055 0.088 0.010
6–10 0.006 0.044 0.007 0.018 0.041 0.008
11–15 0.004 0.027 0.006 0.007 0.025 0.008
16–20 0.004 0.020 0.006 0.005 0.003 0.009

wage growth on the job 1–5 0.128 0.048 0.017 0.068 0.039 0.015
6–10 0.043 0.018 0.011 0.036 0.022 0.014
11–15 0.042 0.020 0.011 0.028 0.013 0.014
16–20 0.042 0.005 0.009 0.026 −0.007 0.014

wage growth at job change 1–5 0.197 0.124 0.029 0.181 0.142 0.042
6–10 0.089 0.073 0.027 0.116 0.079 0.035
11–15 0.083 0.042 0.031 0.098 0.066 0.042
16–20 0.083 0.075 0.031 0.098 0.020 0.054

variance log wage 1–5 0.343 0.317 0.019 0.304 0.321 0.025
6–10 0.326 0.293 0.017 0.301 0.287 0.022
11–15 0.316 0.295 0.015 0.296 0.328 0.025
16–20 0.318 0.308 0.015 0.289 0.368 0.031

variance wage growth 1–5 0.104 0.110 0.005 0.057 0.092 0.008
6–10 0.082 0.080 0.005 0.056 0.064 0.007
11–15 0.080 0.069 0.005 0.055 0.055 0.007
16–20 0.081 0.055 0.004 0.055 0.052 0.007

variance wage growth on the job 1–5 0.074 0.053 0.012 0.054 0.033 0.010
6–10 0.038 0.045 0.009 0.047 0.037 0.011
11–15 0.037 0.048 0.009 0.045 0.038 0.011
16–20 0.037 0.037 0.007 0.045 0.038 0.010

variance wage growth at job change 1–5 0.094 0.105 0.019 0.061 0.124 0.035
6–10 0.064 0.093 0.017 0.057 0.077 0.022
11–15 0.058 0.088 0.021 0.059 0.082 0.029
16–20 0.056 0.091 0.023 0.055 0.078 0.039

vacancy to unemployment ratio 0.431 0.540 0.054 1.342 0.540 0.054

Note: We target the long run employment and transition rates and the entire profile of the wage moments, with the exception of the variance of log wage 
where we exclude the first 5 years.

frictions there is a direct increase in market production and a gain when netting out the costs of vacancy creation from 
home production. For the low education group, where the constrained planner can improve steady state output, this is 
implemented largely by raising unemployment and reducing the number of vacancies, resulting in lower vacancy creation 
costs and higher levels of home production, but without improving the average quality of productive matches.

8.3.2. The redistributive effects of the policy
As discussed above, we find that there is a potential aggregate gain from an optimal unemployment benefit scheme 

(although negligible for college graduates). In addition to overall efficiency gains, we are also interested in the redistributive 
effects of policy. In an environment with heterogeneous workers it is not necessarily the case that an increase in steady 
state output will benefit all workers the same, indeed it may harm some. In Fig. 6 we plot the difference in value, by worker 
type x, between being unemployed in an economy with and without the optimal unemployment benefit scheme. While the 
value of unemployment is higher for all worker types in the low education group, it is effectively zero for college educated 
workers above the second quintile. Thus, there are no losers from this optimal UI policy, but the gains are concentrated 
among the low educated as well as the lower productivity individuals among the college graduates.

9. Concluding remarks

We develop an equilibrium model of employment and wage determination, which builds on the work of Mortensen and 
Pissarides (1994), Shimer and Smith (2000) and Postel-Vinay and Robin (2002). In our model both workers and firms are 
heterogeneous and their productivity characteristics are potentially complementary in production creating the possibility 
of sorting. However, firms are subject to productivity shocks. Workers can search both on and off the job. This creates an 
environment where there may be potential for welfare improving labor market regulation. Moreover our framework is well 
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Table 5
Parameters.

High school or less College graduate

Matching efficiency η 0.650 [0.031] 0.425 [0.032]
Relative search intensity s 0.332 [0.058] 0.157 [0.012]
Probability of exogenous job destruction ξ 0.011 [0.004] 0.004 [0.000]
Probability of a shock to y δ 0.017 [0.020] 0.008 [0.001]
Home production parameter b(x) = f (x,b) b 0.122 [0.033] 0.000 [0.032]
Vacancy cost (months of average output) c 2.344 [0.118] 1.575 [0.213]
Production function A 6.964 – 7.541 –

f (x, y) = A
(
αxρ + (1 − α)yρ

) 1
ρ α 0.607 [0.010] 0.606 [0.053]

ρ 0.938 [0.088] −0.895 [0.274]
Worker type distribution ax 0.797 [0.021] 0.891 [0.085]

x = Beta−1(U ,ax,bx) bx 0.987 [0.089] 0.616 [0.167]
Firm type distribution ay 1.988 [0.007] 1.034 [0.063]

y = Beta−1(U ,ay ,by) by 0.967 [0.012] 1.147 [0.286]
Worker bargaining power β 0.188 [0.027] 0.272 [0.020]
Variance of measurement error σ 2 0.006 [0.087] 0.019 [0.006]

Elasticity of substitution (1 − ρ)−1 16.158 0.528
Mean x 0.447 0.591
Variance x 0.089 0.096
Skewness x 0.258 −0.469
Kurtosis x −1.211 −1.200
Mean y 0.673 0.474
Variance y 0.056 0.078
Skewness y −0.740 0.116
Kurtosis y −0.572 −1.149

Note: monthly frequency. Standard deviation of MCMC chain in square brackets.

Note: We calculate the distributional impact as
W U I

0 (x)−W0(x)
W0(x) .

Fig. 6. Welfare difference in value of unemployment by worker type.

suited to consider the redistributive (as well as efficiency) implications of policy. The scope for and impact of policy is thus 
an empirical issue in our model.

We estimate the model based on NLSY data and find strong evidence of complementarities between worker and firm 
characteristics, leading to sorting for the college educated workers. For this education group these complementarities imply 
large efficiency losses due to mismatch between job and worker productivities caused by search frictions. The complemen-
tarities are much weaker for the low education workers, where the production function is effectively linear in individual an 
job productivities.

Mismatch is a source of inefficiency that labor market regulation cannot correct; this would require changing the job 
search technology, improving job finding rates and enabling more mobility following shocks. However, we show that the 
potential welfare gains from eliminating mismatch and frictions can be as high as 20% for college graduates and 8% for the 
lower educated.

Policies such as unemployment benefit can improve efficiency to the extent that they address the externalities induced 
by search frictions. We establish that optimal labor market regulation can improve welfare by up to 2% for low skill workers 
and 0.71% for college graduates. Some 70% of the improvement can be achieved with optimal unemployment benefit alone 
for the lower educated individuals, but such a policy can achieve nothing for the college graduate group.



82
J.Lise

et
al./Review

ofEconom
ic

D
ynam

ics
19

(2016)
63–87

σ ax bx ay by

0.00 −0.01 −0.02 0.01 0.00
0.00 −0.17 −0.25 0.17 0.01
0.00 0.00 0.00 0.00 0.00
0.00 0.01 −0.25 −0.07 0.16
0.00 0.12 0.11 −0.09 −0.07
0.00 0.09 0.07 −0.08 −0.06
0.00 0.09 0.07 −0.08 −0.06
0.00 0.09 0.07 −0.08 −0.06

−0.04 −0.53 −0.99 0.32 0.20
0.14 −0.08 −0.29 −0.07 0.15

−0.78 −0.16 −0.31 −0.02 0.09
1.56 −2.91 0.22 −5.53 0.09

−0.02 −0.63 −1.06 0.40 0.20
0.01 −0.59 −0.96 0.36 0.18
0.00 −0.63 −1.03 0.41 0.18
0.01 −0.63 −1.06 0.42 0.19

−0.01 −0.55 −0.95 0.31 0.20
−0.02 −0.57 −0.95 0.35 0.17
−0.02 −0.65 −0.96 0.44 0.13

0.02 −0.65 −0.93 0.44 0.13
0.06 −0.57 −1.69 −0.05 0.63
0.08 −0.47 −1.33 −0.11 0.57
0.09 −0.47 −1.27 −0.12 0.56
0.08 −0.46 −1.26 −0.13 0.56
0.46 −1.21 −2.59 0.63 0.51
0.55 −1.12 −2.37 0.59 0.47
0.56 −1.15 −2.35 0.62 0.45
0.55 −1.13 −2.30 0.60 0.46
0.63 −1.04 −2.30 0.51 0.49
0.93 −0.89 −1.75 0.43 0.37
0.94 −0.89 −1.80 0.45 0.37
0.93 −0.92 −1.79 0.47 0.37
0.51 −1.03 −2.60 0.44 0.59
0.66 −0.94 −2.27 0.43 0.48
0.70 −1.03 −2.29 0.54 0.45
0.71 −1.01 −2.14 0.53 0.44
0.00 −0.49 −0.69 0.47 0.02
Table 6
Elasticity of moments with respect to parameters: High school or less.

Year η s ξ A α ρ δ β b c

Employment 16–20 0.08 −0.01 −0.06 0.00 −0.01 0.01 0.03 −0.03 −0.01 −0.03
Job finding 16–20 0.86 −0.13 0.30 0.00 −0.24 0.23 0.27 −0.47 −0.23 −0.60
Job losing 16–20 0.00 0.00 0.99 0.00 0.00 0.00 −0.02 0.00 0.00 0.00
Job changing 16–20 0.71 0.16 0.38 0.00 −0.02 −2.14 0.08 −0.18 −0.02 −0.14
log wage 1–5 0.02 −0.05 0.02 1.07 −0.01 0.05 0.02 0.13 0.05 −0.02

6–10 0.02 −0.01 −0.01 1.06 −0.03 0.05 0.03 0.04 0.02 −0.01
11–15 0.01 −0.01 −0.02 1.06 −0.03 0.05 0.03 0.04 0.02 −0.01
16–20 0.01 −0.01 −0.02 1.06 −0.03 0.05 0.03 0.04 0.02 −0.01

wage growth 1–5 −0.34 0.72 −0.94 0.00 −0.38 0.12 0.41 −1.46 −0.86 0.41
6–10 −1.83 0.85 −2.32 0.00 2.07 0.27 −0.13 5.04 −0.26 1.28
11–15 −1.95 1.13 −1.16 0.00 0.72 −3.08 −0.18 −0.32 −0.27 1.58
16–20 −1.70 1.46 −0.87 0.00 −0.17 7.89 −0.46 −1.97 0.96 1.64

wage growth 1–5 0.01 0.64 −0.15 0.00 −0.52 0.29 0.48 −1.70 −0.93 0.18
on the job 6–10 −0.26 0.54 0.31 0.00 −0.50 0.32 0.42 −1.62 −0.86 0.24

11–15 −0.14 0.55 0.64 0.00 −0.54 0.38 0.45 −1.66 −0.91 0.18
16–20 −0.09 0.55 0.69 0.00 −0.54 0.27 0.46 −1.69 −0.93 0.14

wage growth 1–5 −0.42 0.54 −0.42 0.00 −0.44 −0.09 0.35 −1.50 −0.84 0.37
at job change 6–10 −0.66 0.46 −0.08 0.00 −0.46 0.40 0.28 −1.48 −0.83 0.33

11–15 −0.54 0.46 0.38 0.00 −0.51 1.34 0.35 −1.55 −0.91 0.23
16–20 −0.55 0.45 0.48 0.00 −0.52 1.05 0.37 −1.58 −0.89 0.22

var log wage 1–5 −0.12 1.19 −0.44 0.00 0.28 −0.44 0.08 −2.12 −1.26 0.17
6–10 −0.23 0.91 −0.11 0.00 0.35 −0.60 −0.05 −1.85 −0.94 0.17
11–15 −0.21 0.88 0.11 0.00 0.33 −0.66 −0.07 −1.84 −0.90 0.16
16–20 −0.21 0.89 0.19 0.00 0.35 −0.65 −0.07 −1.83 −0.88 0.17

var wage growth 1–5 0.39 1.91 −0.23 0.00 −0.87 0.46 0.71 −2.85 −2.09 −0.04
6–10 0.24 1.74 0.17 0.00 −0.85 0.47 0.66 −2.80 −1.94 0.03
11–15 0.25 1.74 0.39 0.00 −0.88 0.49 0.67 −2.80 −1.95 0.01
16–20 0.23 1.75 0.41 0.00 −0.86 0.47 0.65 −2.80 −1.91 0.04

var wage growth 1–5 0.15 1.75 −0.60 0.00 −0.73 0.32 0.61 −2.73 −1.95 0.11
on the job 6–10 −0.02 1.47 −0.19 0.00 −0.67 0.30 0.49 −2.62 −1.63 0.14

11–15 0.03 1.44 0.21 0.00 −0.69 0.34 0.50 −2.61 −1.65 0.10
16–20 0.09 1.49 0.31 0.00 −0.71 0.27 0.50 −2.63 −1.67 0.06

var wage growth 1–5 0.05 1.79 −0.99 0.00 −0.67 −0.40 0.58 −2.72 −2.09 0.22
at job change 6–10 −0.14 1.52 −0.87 0.00 −0.67 −0.62 0.48 −2.63 −1.80 0.27

11–15 −0.14 1.46 −0.12 0.00 −0.72 0.82 0.55 −2.67 −1.90 0.17
16–20 −0.10 1.50 0.09 0.00 −0.74 0.32 0.55 −2.68 −1.86 0.14

V /U 0.35 −0.03 −0.41 0.00 −0.63 0.59 0.60 −1.33 −0.63 −1.73
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σ ax bx ay by

0.00 −0.05 0.24 0.05 −0.08
0.00 −0.02 0.32 0.03 −0.24
0.00 0.05 −0.09 −0.05 −0.08
0.00 −0.05 −0.42 −0.09 0.50
0.00 0.20 0.02 −0.13 0.02
0.00 0.18 0.02 −0.13 0.01
0.00 0.18 0.02 −0.13 0.01
0.00 0.18 0.02 −0.12 0.01

−0.49 −0.82 −0.41 0.00 0.49
0.08 −0.82 0.11 0.21 0.15
0.45 −0.76 0.42 0.29 −0.33
2.71 49.28 1.34 −1.79 0.30

−0.54 −0.67 −0.79 −0.08 0.81
0.07 −0.65 −0.20 0.01 0.39
0.67 −4.01 −1.23 0.22 2.16

16.89 −1.74 −0.65 0.25 0.86
0.15 −0.74 0.26 0.25 −0.11
0.05 −0.69 0.20 0.12 −0.12

−0.01 −0.83 0.32 0.18 −0.23
−0.33 −0.84 0.18 0.18 −0.18

0.42 −1.75 0.68 0.57 −0.91
0.42 −1.85 0.64 0.64 −1.00
0.43 −1.86 0.61 0.65 −1.02
0.44 −1.85 0.60 0.66 −1.04
1.50 −0.09 −0.02 0.00 0.03
1.50 −0.09 −0.01 0.01 0.02
1.51 −0.09 −0.01 0.01 0.01
1.50 −0.07 −0.01 0.00 0.02
1.49 −0.11 −0.01 0.01 0.03
1.51 −0.07 0.01 0.01 0.01
1.52 −0.07 0.00 0.02 −0.01
1.52 −0.04 0.00 0.00 0.01
1.40 −0.35 0.12 0.08 −0.04
1.41 −0.30 0.12 0.08 −0.08
1.43 −0.26 0.05 0.04 −0.05
1.43 −0.15 0.05 0.00 −0.05
0.00 0.72 −1.74 −0.71 1.09
Table 7
Elasticity of moments with respect to parameters: College graduate.

Year η s ξ A α ρ δ β b c

Employment 16–20 0.03 0.00 −0.01 0.00 0.27 0.00 0.00 0.03 −0.52 0.12
Job finding 16–20 0.21 −0.02 0.56 0.00 0.34 0.03 0.29 0.17 −2.44 0.11
Job losing 16–20 0.18 −0.01 0.57 0.00 −0.11 0.04 0.30 0.11 0.10 −0.11
Job changing 16–20 0.50 0.76 0.16 0.00 −0.03 0.02 0.33 −0.29 −0.86 −0.21
log wage 1–5 0.00 −0.01 0.01 1.05 −0.09 −0.03 0.01 0.06 0.04 0.03

6–10 0.01 0.00 0.01 1.05 −0.08 −0.02 0.01 0.04 0.04 0.02
11–15 0.00 0.00 0.01 1.05 −0.08 −0.02 0.01 0.03 0.04 0.02
16–20 0.00 0.00 0.00 1.04 −0.08 −0.02 0.01 0.03 0.04 0.03

wage growth 1–5 0.07 1.32 −0.08 0.00 0.20 0.20 0.14 −1.96 −1.29 0.03
6–10 −0.32 0.79 −0.05 0.00 0.35 0.13 −0.01 −1.34 −0.66 0.32
11–15 −0.47 0.32 −0.09 0.00 0.40 0.03 −0.24 0.06 1.73 0.40
16–20 −1.25 1.44 −0.68 0.00 0.36 4.25 0.27 −1.80 −0.79 4.77

wage growth 1–5 0.24 1.50 0.31 0.00 −0.11 0.30 0.36 −2.31 −1.62 −0.25
on the job 6–10 0.14 0.86 0.14 0.00 0.21 0.19 0.09 −1.61 −1.02 0.05

11–15 0.08 −3.34 1.09 0.00 −0.08 −0.75 0.53 −2.37 −1.57 0.71
16–20 0.23 1.28 0.22 0.00 0.28 0.71 0.29 −2.60 −1.57 0.09

wage growth 1–5 −0.41 0.16 0.01 0.00 0.42 0.15 0.07 −1.20 −0.20 0.32
at job change 6–10 −0.49 0.09 0.00 0.00 0.44 0.21 0.00 −1.07 −0.13 0.24

11–15 −0.70 −0.10 0.12 0.00 0.52 0.18 0.06 −0.94 −0.15 0.36
16–20 −0.75 0.01 0.37 0.00 0.26 0.27 0.07 −1.03 −0.44 0.31

var log wage 1–5 −0.26 0.34 0.13 0.00 0.87 0.25 0.11 −2.10 −0.01 −0.16
6–10 −0.31 0.13 0.12 0.00 0.96 0.25 0.06 −1.49 −0.06 −0.13
11–15 −0.29 0.08 0.12 0.00 0.97 0.25 0.04 −1.25 −0.06 −0.15
16–20 −0.29 0.05 0.14 0.00 0.97 0.25 0.04 −1.09 −0.06 −0.16

var wage growth 1–5 −0.01 0.16 0.02 0.00 0.02 0.02 0.05 −1.59 −0.17 0.02
6–10 0.00 0.11 0.03 0.00 0.02 0.02 0.05 −1.19 −0.18 0.01
11–15 −0.02 0.09 0.02 0.00 0.02 0.02 0.04 −0.97 −0.17 0.02
16–20 −0.01 0.09 0.04 0.00 0.03 0.02 0.04 −0.89 −0.17 0.01

var wage growth 1–5 −0.01 0.15 0.03 0.00 0.03 0.03 0.05 −1.50 −0.13 0.02
on the job 6–10 −0.02 0.07 0.01 0.00 0.03 0.01 0.05 −0.88 −0.09 0.02

11–15 −0.03 0.05 0.01 0.00 0.01 0.01 0.04 −0.61 −0.08 0.02
16–20 −0.03 0.04 0.01 0.00 0.02 0.01 0.03 −0.47 −0.08 0.01

var wage growth 1–5 0.05 0.36 0.08 0.00 0.16 0.11 0.09 −2.27 −0.09 0.15
at job change 6–10 −0.23 0.18 −0.01 0.00 0.16 0.05 0.11 −1.87 −0.04 0.15

11–15 −0.25 0.19 −0.06 0.00 0.07 0.02 0.07 −1.61 −0.10 0.07
16–20 −0.17 0.08 0.03 0.00 0.04 0.08 0.05 −1.12 −0.10 0.07

V /U −0.42 0.04 0.31 0.00 −1.24 0.10 0.18 −0.52 −2.68 −1.33
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Our model opens up an empirical research agenda on which to build and address important issues. We demonstrate 
the importance of heterogeneity, sorting and search frictions. Among these are the welfare and labor market effects of risk 
and the role of assets in determining the wage offer distribution and the role of investment in human capital. Similarly, 
an important extension of such a model is considering investment decisions by firms and how this can affect productivity 
y which we took as given. Finally, this kind of model is well suited to interpreting matched employer employee data. 
Indeed such data could aid identification by providing direct information on firm level productivity, and on the distribution 
of worker types employed at the same firm type (see Lamadon et al., 2014). However, when we move to such data new, 
important and difficult questions arise when defining wage setting in an environment with sorting and multiple workers 
per firm. This is of course an important future area of research.

Appendix A. Mathematical

A.1. The continuation value and the equation for the surplus

Let P (x, y) be the value of joint production of an (x, y) match. Then the surplus is defined by P (x, y) − W0(x) −�0(y) =
S(x, y). Then we have that

r P (x, y) = f (x, y) + ξ [W0(x) + �0(y) − P (x, y)]

+ sκ

∫ [
max

{
P (x, y),�0(y) + W0(x) + S(x, y) + β

[
S(x, y′) − S(x, y)

]} − P (x, y)
]

v(y′)dy′

+ δ

∫ [
max

{
P (x, y′), W0(x) + �0(y′)

} − P (x, y)
]
γ (y′)dy′

= f (x, y) − ξ S(x, y)

+ sκ

∫ [
max

{
0, β

[
S(x, y′) − S(x, y)

]}]
v(y′)dy′

+ δ

∫ [
max

{
P (x, y′) − W0(x) − �0(y′),0

} − P (x, y) + W0(x) + �0(y′)
]
γ (y′)dy′

= f (x, y) − ξ S(x, y)

+ sκβ

∫ [
S(x, y′) − S(x, y)

]+
v(y′)dy′

+ δ

∫
S(x, y′)+γ (y′)dy′ − δS(x, y) + δ

∫ [
�0(y′) − �0(y)

]
γ (y′)dy′.

Substituting out rW0(x) and r�0(y) from r S(x, y) = r P (x, y) − rW0(x) − r�0(y), we have S(x, y) defined by the fixed point

(r + ξ + δ) S(x, y) = f (x, y) − b(x) + c − κβ

∫
S(x, y′)+v(y′)dy′

− κ (1 − β)

∫
S(x′, y)+u(x′)dx′ − sκ (1 − β)

∫∫ [
S(x′, y) − S(x′, y′)

]+
h(x′, y′)dx′ dy′

+ sκβ

∫ [
S(x, y′) − S(x, y)

]+
v(y′)dy′ + δ

∫
S(x, y′)+γ (y′)dy′. (17)

Note that[
r + ξ + δ + sκv(B(x, y))

] ∂ S(x, y)

∂ y
= ∂ f (x, y)

∂ y
− (r + δ)�′

0(y), (18)

with

B(x, y) = {y′ : S(x, y′) ≥ S(x, y)},
and v (A) = ∫

A v(y) dy, for any set A. Therefore, for any x, the set of y’s maximizing the surplus S(x, y) is the set of y’s 
maximizing f (x, y) − (r + δ)�0(y).

A.2. The expected profits of a vacant job increase with productivity

From the previous expression note also that

(r + δ)�′
0(y) = κ (1 − β)

∫
∂ S(x, y)

∂ y
u(x)dx + sκ (1 − β)

∫
h(x,B(x, y))

∂ S(x, y)

∂ y
dx, (19)
S(x,y)≥0
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where B(x, y) is the set of jobs with a productivity y′ leading to a lower surplus than the pair (x, y),

B(x, y) = {y′ : 0 ≤ S(x, y′) < S(x, y)}.
Hence, plugging the above expression for ∂ S(x, y)/∂ y in equation (19) shows that �′

0(y) is positive if ∂ f (x, y)/∂ y is 
positive.

Appendix B. Computing the equilibrium

The equilibrium is characterized by knowledge of the number of jobs N , the labor market tightness κ(U , V ), the joint dis-
tribution of active matches h(x, y), and the surplus function S(x, y). A fixed point iterative algorithm operating on (κ, h, S)

can be constructed as follows.
First, with inputs κ , h(x, y) and S(x, y),

1. Calculate u(x) using (1) and calculate U = ∫
u(x) dx.

2. Solve for V in equation

κ = M (U + s(1 − U ), V )

[U + s(1 − U )] V
.

3. Calculate N = V + 1 − U and calculate v(y) with equation (2).

Second,

1. Update h using equation (14) as

h(x, y) ← δ
∫

h(x, y′)dy′ + [u(x) + sh (x,B(x, y))]κv(y)

δ + ξ + sκv
(
B(x, y)

) 1{S(x, y) ≥ 0}. (20)

2. Update S using equation (13).
3. Update κ using the free entry equation (15)

κ ← 1

1 − β

c − δ
∫

�0(y′)γ (y′)dy′∫
S (x,0)+ u(x)dx + s

∫
[S (x,0) − S(x, y′)]+ h(x, y′)dx dy′ . (21)

Alternatively, one can solve for (h, S) for a given κ and search for the κ that satisfies the free entry condition. The full 
iterative fixed point algorithm does not indeed guaranty positive updates for κ .

Appendix C. Chernozhukov and Hong’s algorithm for SMM

The estimation procedure of Chernozhukov and Hong (2003) consists of simulating a chain of parameters that (once 
converged) has the quasi-posterior density

p (θ) = eLN (θ)π (θ)∫
eLN (θ)π (θ)dθ

.

A point estimate for the parameters is obtained as the average of the N S elements of the converged MCMC chain:

θ̂MCMC = 1

N S

N S∑
j=1

θ j,

and standard errors are computed as the standard deviation of the sequence of θ j . To simulate a chain that converges to 
the quasi posterior, we use the Metropolis–Hastings algorithm. The algorithm generates a chain 

(
θ0, θ1, . . . , θ N S

)
as follows. 

First, choose a starting value θ0. Next, generate ψ from a proposal density q(ψ |θ j) and update θ j+1 from θ j for j = 1, 2, . . .
using

θ j+1 =
{

ψ with probability d(θ j,ψ)

θ j with probability 1 − d(θ j,ψ),

where

d (θ,ψ) = min

(
eLN (ψ)π(ψ)q(θ |ψ)

eLN (θ)π(θ)q(ψ |θ)
,1

)
.
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This procedure is repeated many times to obtain a chain of length N S that represents the ergodic distribution of θ . Choosing 
the prior π(θ) to be uniform and the proposal density to be a random walk (q(θ |ψ) = q(ψ |θ)), results in the simple rule

d(θ,ψ) = min
(

eLN (ψ)−LN (θ),1
)

.

The main advantage of this estimation strategy is that it only requires function evaluations, and thus discontinuous jumps 
do not cause the same problems that would occur with a gradient based extremum estimator. Additionally, the converged 
chain provides a direct way to construct valid confidence intervals or standard errors for the parameter estimates if the 
optimal weighting matrix is used.21 The drawback of the procedure is that it requires a very long chain, and consequently a 
very large number of function evaluations, each requiring the model to be solved and simulated. In practice, we simulate 100 
chains in parallel, each of length 10,000, and use the last 1000 elements (pooled over the 100 chains) to obtain parameter 
estimates and the standard errors.22
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