
1

The Problem of Induction and Artificial Intelligence

by Donald Gillies

(This is a paper which was given at a conference in La Coruña, Spain in
2003 on ‘Karl R. Popper: Revision of his Legacy’. A Spanish version of it
has appeared in the conference proceedings.)

1. Introduction
2. The Problem of Induction
3. Popper’s Proposed Solution to the Problem of Induction
4. Philosophical Criticisms of Popper’s Proposed Solution
5. Justification by Induction versus Discovery by Induction
6. Successes of Machine Learning: the Example of GOLEM
7. How GOLEM works, and implications for Popper’s Philosophy

1. Introduction

Although Popper tackled many philosophical problems, the one which
perhaps engaged him most was the problem of induction. Chapter 1 of his
1972 book Objective Knowledge is devoted to issues about induction, and
here on the very first page of the chapter and of the book, he actually claims
to have solved the problem of induction. This is what he says (1972, p.1):

“I think that I have solved a major philosophical problem: the problem of
induction. … This solution has been extremely fruitful, and it has enabled
me to solve a good number of other philosophical problems.”

Unfortunately hardly any other philosophers have accepted this claim of
Popper’s, as Popper himself admits for he goes on to say (1972, p. 1):
“However, few philosophers would support the thesis that I have solved the
problem of induction.” Over thirty years have passed since the publication
of this book of Popper’s, but it still remains the case that very few
philosophers indeed think that Popper solved the problem of induction.
Indeed many regard Popper’s claim to have done so as quite outrageous.
Thus we have a striking assertion by an individual met with scepticism by
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the majority. Let us now look into the matter more closely. To do so it will
be useful to consider first what exactly is the problem of induction, and this I
will do in the next section.

2. The Problem of Induction

The phrase: ‘the problem of induction’ is perhaps somewhat
misleading, since there are several interconnected philosophical problems
concerned with induction. Later, in section 5 of this lecture, I will
distinguish two types of problem concerned with induction – one type is to
do with justification by induction, while the other is to do with discovery by
induction. Popper implicitly accepts the plurality of problems of induction
because in chapter 1 of his 1972 book, he formulates no less than fourteen
different problems of induction. Despite this plurality, there is perhaps one
specific problem concerned with induction which many philosophers would
indeed regard as the problem of induction. I will now try to formulate this
problem using the standard example of black ravens. Suppose we observe
several thousand black ravens. Let us call this observational evidence e.
Then from e we could, quite reasonably, infer the prediction (d say) that the
next raven we observe will be black, or the generalisation (h say) that all
ravens are black. Although these seem to be reasonable inferences, it was
Hume who showed that inference in this sense cannot be the say as logical
deduction. If from premise A conclusion B follows by logical deduction,
then if A is true, B must be true. However in the above example of ravens, e
could be true, but d and hence h might still be false. It is quite possible that
after observing thousands of black ravens, the next raven we observe turns
out to be white. After all, thousands of white swans were observed in
Europe, but when European explorers went to Australia they observed black
swans for the first time. So the inference from e to d, or from e to h, though
reasonable, could not be the same as logical deduction. It needed to be given
some new name, and so was dubbed an inductive inference. In both
everyday life and science, we are constantly inferring predictions and
generalisations from past observations. It would thus seem that inductive
inference plays a central role in both everyday life and science. However
such inference appears somewhat problematic since there are many
examples of inductive inferences leading to false conclusions. Thus, for
example, the inductive inference based on numerous observations of
European swans that all swans are white proved to be false. Granted then
that inductive inference is rather questionable, the question arises of how we
can justify our use of it. This is the problem of induction, which can
therefore be formulated as the problem of justifying inductive inferences.
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This formulation of the problem of induction is quite similar to what Popper
calls (1972, p. 2): “the traditional philosophical problem of induction”.
Popper’s second formulation of this is (1972, p. 2): “What is the
justification for inductive inferences?”

3. Popper’s Proposed Solution to the Problem of Induction

Having formulated the problem of induction, let us now examine
Popper’s proposed solution. Popper’s basic strategy is to deny the existence
of inductive inferences. Proponents of the concept of inductive inference
claim that such inferences are essential both to everyday life and to science,
but Popper, on the contrary, holds that such inferences are not necessary and
are never made. According to Popper, the traditional problem of induction
(1972, p. 2): “assumes that there are inductive inferences, and rules for
drawing inductive inferences, and this … is an assumption which should not
be made uncritically, and one which I … regard as mistaken.” He puts the
point in an even more striking fashion in an earlier work (1963, p. 53):

“Induction, i.e. inference based on many observations, is a myth. It is
neither a psychological fact, nor a fact of ordinary life, nor one of scientific
procedure.”

Now if induction and inductive inferences do not exist, then there is clearly
no need to try to justify them. So the problem of induction, that is to say the
problem of justifying inductive inferences, disappears. This, in my opinion,
is Popper’s proposed solution to the problem of induction.

But why does Popper think that induction is a myth? He has a number
of arguments for this conclusion, and I will here consider two. First of all
Popper holds that we cannot start with observations and infer theories,
because observations themselves require a theoretical framework. This is
how he puts the argument (1963, pp. 46-7):

“… the belief that we can start with pure observations alone, without
anything in the nature of a theory, is absurd; as may be illustrated by the
story of the man who dedicated his life to natural science, wrote down
everything he could observe, and bequeathed his priceless collection of
observations to the Royal Society to be used as inductive evidence. This
story should show us that though beetles may profitably be collected,
observations may not.

Twenty-five years ago I tried to bring home the same point to a group
of physics students in Vienna by beginning a lecture with the following
instructions: ‘Take pencil and paper; carefully observe, and write down
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what you have observed! They asked, of course, what I wanted them to
observe. Clearly the instruction, ‘Observe!’ is absurd. … Observation is
always selective. It needs a chosen object, a definite task, an interest, a point
of view, a problem. And its description presupposes a descriptive language,
with property words; it presupposes similarity and classification, which in
its turn presupposes interests, points of view, and problems. … objects can
be classified, and can become similar or dissimilar, only in this way – by
being related to needs and interests. … a point of view is provided … for
the scientist by his theoretical interests, the special problem under
investigation, his conjectures and anticipations, and the theories which he
accepts as a kind of background: his frame of reference, his ‘horizon of
expectations’.”

There is a great deal of truth in this passage from Popper, but it shows the
need for an important reformulation of the character of inductive inferences
rather than, as Popper hoped, the need for dispensing altogether with
inductive inferences. Let e be a set of observation statements, and h a
generalisation. Then we might initially take an inductive inference to be an
inference from e to h. However Popper’s argument shows that this is not
correct, and that inductive inferences have to have the form: ‘from K&e
infer h’ where K stands for ‘background knowledge’, ‘frame of reference’,
etc. In particular K must contain a set of concepts to be used for the
classification of objects. I will return to this ‘need for K’ later on.

Popper’s second, and principal, argument against induction is that we
can give an account of scientific and indeed common-sense reasoning which
does not involve any of the supposed inductive inferences. This is Popper’s
famous model of conjectures and refutations. According to this model,
science starts not with observations but with conjectures. These conjectures
are then tested out against observation. If a conjecture is refuted, it has to be
replaced by some new conjecture. If a conjecture has been confirmed by the
tests so far, it may be tentatively accepted, but testing continues and no
conjecture is ever regarded as definitely established. Now the process of
testing and refutation does not require any inductive inferences but only the
use of deductive logic. From our conjecture H we deduce logically that
some observation statement O must hold. We then check empirically
whether O is true or not. If observation shows that O is false, then our
conjecture is refuted. This procedure requires inferring O from H which we
do by deductive logic. It also requires inferring from H r O and not-O, that
not-H. However this inference is again a law of deductive logic, known as
modus tollens. Popper concludes therefore that only deductive logic is
needed, or indeed used, so that inductive inferences are a myth and the
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problem of justifying such inferences, i.e. the problem of induction
disappears.

4. Philosophical Criticisms of Popper’s Proposed Solution

Popper’s arguments concerning induction seem quite plausible. So
why have they not been generally accepted by the philosophy community?
In this section I will give some philosophical arguments against Popper’s
position. To begin with it might be argued that Popper’s model of
conjectures and refutations, and his falsifiability principle do not give an
adequate account of science because of the Duhem-Quine problem. We
considered this difficulty in Popper’s position in the last lecture, and I do not
want to pursue it further here. Let us assume then for the rest of this lecture
that all the generalisations we are considering are what we called ‘level 1
hypotheses’, i.e. that they are falsifiable so that the method of conjectures
and refutations applies. Many scientific laws are in fact of this character so
that we are in effect confining our study of induction to an important but
limited class of laws. If we can give a satisfactory account in this area, it
could later be investigated whether it extends to the more abstract laws of
level 2.

The question then becomes, whether, assuming we can apply the
method of conjectures and refutations, this dispenses altogether with the
need for inductive inferences. Let us suppose then that we conjecture a
hypothesis (h say). h explains many existing observations and it passes a
good number of severe tests which are designed and carried out. So h
becomes well corroborated by the evidence. In these circumstances, it
would seem sensible to accept h as a basis for practical action. Popper
largely agrees with this for he writes (1972, pp. 21-2):

“Which theory should we prefer for practical action, from a rational point of
view? … My answer … is … we should prefer as basis for action the best-
tested theory.”

But now if we adopt h as a basis for practical action, this can only be
because we think that the guidance which h affords us as to the future is
superior to the guidance offered by other theories. In other words we think
that a well corroborated theory, i.e. one which has agreed very well with past
evidence, will continue to give good results in the future. But this is surely
an inductive assumption. We could call it the inductive interpretation of the
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corroboration function. Curiously enough there is one passage in which
Popper comes close to accepting this approach to corroboration. It occurs in
the new appendix *ix Corroboration, the Weight of evidence, and Statistical
tests, where Popper is discussing his function C(h, e) which stands for the
degree of corroboration of h given e. He writes (1959, p. 418):

“It might well be asked at the end of all this whether I have not
inadvertently, changed my creed. For it may seem that there is nothing to
prevent us from calling C(h, e) ‘the inductive probability of h, given e’ or –
if this is felt to be misleading, in view of the fact that C does not obey the
laws of the probability calculus – ‘the degree of the rationality of our belief
in h, given e’. A benevolent inductivist critic might even congratulate me on
having solved, with my C function, the age-old problem of induction in a
positive sense – on having finally established, with my C function, the
validity of inductive reasoning.”

However this passage is no doubt partly meant ironically, and, in any case,
does not represent Popper’s final opinion on the question since in chapter 1
of Objective Knowledge, he states very clearly that he favours a non-
inductivist interpretation of corroboration (1972, p. 18):

“By the degree of corroboration of a theory I mean a concise report
evaluating the state (at a certain time t) of the critical discussion of a theory,
with respect to the way it solves its problems; its degree of testability; the
severity of tests it has undergone; and the way it has stood up to these tests.
Corroboration (or degree of corroboration) is thus an evaluating report of
past performance. … Being a report of past performance only … it says
nothing whatever about future performance, or about the ‘reliability’ of a
theory.”

It is nonetheless the case that we do rely on well corroborated theories as the
basis of our practical actions. Thus we do assume that a high degree of
corroboration is an indication that a theory will perform well in the future as
a reliable guide to what will happen. For this reason, I do not regard
Popper’s 1972 account as a viable interpretation of corroboration, and I
think that we have to adopt the inductivist interpretation of corroboration.
This means, however, that Popper has not succeeded in eliminating
inductive inference altogether and therefore that his solution of the problem
of induction is not successful. As a ‘benevolent inductivist critic’, however,
even though I cannot agree that Popper has ‘solved … the age-old problem
of induction in a positive sense’, I think we should credit him with achieving
an important and progressive problem-shift.
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The traditional problem of induction was concerned with justifying
inductive inferences similar to inferences about the colour of some or all
ravens to be observed in future on the basis of the colour of those observed
in the past. As a result of Popper’s theorising, a rather different problem of
induction has emerged. It is concerned with the inductive inference that an
hypothesis h which has been well corroborated by the evidence so far will be
a good guide to what will happen in the future and so constitute a reliable
basis for practical action. This new problem of induction differs
significantly from the old in a a number of respects. Among other things, it
involves the concept of corroboration and raises the question of how we
should measure degree of corroboration. If a particular measure of
corroboration is chosen, the question arises of how, if at all, we can justify
inductive inferences based on this measure. These are interesting and
relatively novel problems. They are certainly very different from the
problems discussed by Hume. However in the second part of this lecture, I
do not want to pursue these questions further, but rather to consider how
problems about induction are connected with new developments in artificial
intelligence (AI). To provide a link with AI, we must make a distinction
between two different, though connected, types of problem about induction.
This will be done in the next section.

5. Justification by Induction versus Discovery by Induction

In this section I want to explain the distinction between justification by
induction and discovery by induction. Let us start by considering
justification by induction. Here we assume that we have already formulated
and have in front of us an hypothesis h and a set of relevant evidence e. Our
problem is whether this evidence e justifies us in accepting h as a reliable
guide to the future and as the basis for some practical actions. If we can
achieve such a justification, it would be a justification by induction. Now,
however, suppose that we have a body of evidence e, but, as yet, no
hypothesis h to explain e. Suppose we have some method by which we
could obtain a suitable h from e. This would constitute discovery by
induction. When Bacon advocated induction, he meant induction in the
sense of discovery by induction. Indeed he hoped to formulate a quasi-
mechanical procedure by which scientific hypotheses could be obtained
from data. Those who like Bacon believe in discovery by induction will in
general also believe in justification by induction. In fact suppose there is
some method of discovering an hypothesis to explain e by inferring h
inductively form e, then advocates of this method are likely to hold that h is
justified by the evidence e from which it was obtained. It is, however,
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perfectly possible to believe in justification by induction without believing
in discovery by induction. This was indeed Carnap’s position, which he
formulated explicitly as follows (1950, pp. 192-3):

“ … in one point the present opinions of most philosophers and scientists
seem to agree, namely, that the inductive procedure is not, so to speak, a
mechanical procedure prescribed by fixed rules. If, for instance, a report of
observational results is given, and we want to find a hypothesis which is
well confirmed and furnishes a good explanation for the events observed,
then there is no set of fixed rules which would lead us automatically to the
best hypothesis or even a good one. It is a matter of ingenuity and luck for
the scientist to hit upon a suitable hypothesis; … . This point, the
impossibility of an automatic inductive procedure, has been especially
emphasized, among others, by Karl Popper … who also quotes a statement
by Einstein … . The same point has sometimes been formulated by saying
that it is not possible to construct an inductive machine. The latter is
presumably meant as a mechanical contrivance which, when fed an
observational report, would furnish a suitable hypothesis, just as a
computing machine when supplied with two factors furnishes their product.
I am completely in agreement that an inductive machine of this kind is not
possible.”

Carnap and Popper were noted opponents on questions concerned with
induction. Yet the above quotation shows that they agreed on at least one
point, namely that the discovery of hypotheses by a mechanical process of
induction was not possible. Advances in artificial intelligence have,
however, shown that they were both wrong on this point. In fact programs
have been written which enable computers, when fed with data, to generate
suitable hypotheses for explaining that data. Moreover this new kind of
computer induction has resulted in the discovery of important and previously
unknown scientific laws. In the next two sections I will give a brief
description of some of these remarkable successes of artificial intelligence,
and will also examine the implications of these new results for Popper’s
philosophical ideas about induction.

6. Successes of Machine Learning: the Example of GOLEM

Since the late 1970s a new branch of AI, known as machine learning, has
come into existence and has been developed with considerable success. The
aim of machine learning is to do precisely what both Carnap and Popper
believed in the 1950s to be impossible – namely to induce hypotheses
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automatically from data. In my 1996 (particularly chapters 2 and 3) I trace
the history of machine learning, giving a variety of examples of successful
machine learning programs, and examining their implications for the views
of Bacon and other philosophers. In the present lecture I will limit the task
by describing only one successful machine learning system, and examining
its implications for the views of just one philosopher: Popper.

The machine learning system, known as GOLEM, was developed by
Stephen Muggleton and his colleagues in the early 1990s. The key paper
describing it is Muggleton and Feng 1992. Subsequently Muggleton has
developed an improved machine learning system known as PROGOL, but
his earlier one suffices for the philosophical points I want to make.

GOLEM was set to work on an investigation of protein structure. A
good introduction to this field is Branden and Tooze, 1991, while GOLEM’s
contribution is described in Muggleton, King, and Sternberg, 1992. 20
different amino acids constitute the building blocks of all proteins. These
are joined end to end, so that a protein consists of a sequence of amino acid
residues. Now it is relatively easy to discover the sequence of residues in a
protein. This is known as the protein’s primary structure. Unfortunately
knowledge of the primary structure of a protein is not sufficient to
understand the biological properties of the protein, for these depend crucially
on the 3-dimensional shape of the protein. Now proteins as they form fold
up into complicated 3-dimensional structures, which are known as the
protein’s secondary structure. The secondary structure of a protein can be
determined by X-ray crystallography or NMR techniques; but it is a long
and costly business. So far the secondary structures of about 500 proteins
have been determined. Progress in biochemistry would become much easier
and quicker if it were possible to predict the secondary structure of a protein
(which is difficult to determine but biologically crucial), from the primary
structure which is easy to determine, but not so significant biologically. As
Branden and Tooze put it (1991, p. 3):

“To understand the biological function of proteins we should therefore
like to be able to deduce or predict the three-dimensional structure from the
amino acid sequence. This we cannot do. In spite of considerable efforts
over the last 25 years, this folding problem is still unsolved and remains one
of the most basic intellectual challenges in molecular biology.”

Machine learning techniques have advanced to the point at which they can
make a contribution to one of leading problems of modern natural science.

Sub-structures of a protein structure are usually of one of two basic
types: -helixes and strands. helixes were first described in 1951 by
Linus Pauling, who predicted that such a structure would be stable and
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favourable in proteins. This remarkable prediction almost immediately
received strong experimental support from diffraction patterns obtained by
Max Perrutz in Cambridge. Proteins can accordingly be classified into three
domains according to their secondary structure. These are (i) alpha type
domains, in which the proteins have only -helixes (or at least have very
few -strands), (ii) beta type domains, and (iii) alpha/beta type domains,
where -helixes alternate with -strands. The simplest prediction problem is
obtained by restricting the proteins considered to those of alpha type
domain, and then attempting to predict from the primary structure whether a
particular residue belongs to an -helix or not.

GOLEM was applied to this problem in the following fashion. 12 non-
homologous proteins of known structure and alpha type domain, involving
1612 residues were selected as the training set. From this training set and
background knowledge, GOLEM learned a small set of rules for predicting
which residues are part of -helices. The rules were then tested on 4
independent non-homologous proteins of known structure and alpha type
domain, involving 416 residues. The accuracy of the rules was 81% (+ 2%).
These then were the overall procedure and results.

Let us now look at one of the rules produced by GOLEM. I have
selected Rule 12 which is stated in PROLOG format by Muggleton, King,
and Sternberg (1992, p. 655). If translated into something closer to normal
English, it runs as follows:

GOLEM’S Rule 12 regarding Protein Secondary Structure

There is an -helix residue in protein A at position B if
(i) the residue at B-2 is not proline,
(ii) the residue at B-1 is neither aromatic nor proline,
(iii) the residue at B is large, not aromatic, and not lysine,
(iv) the residue at B+1 is hydrophobic and not lysine,
(v) the residue at B+2 is neither aromatic nor proline,
(vi) the residue at B+3 is neither aromatic nor proline, and either small or

polar, and
(vii) the residue at B+4 is hydrophobic and not lysine.

Some readers may feel rather disappointed with this rule, which is rather
long, cumbersome, and specific. It was, however, 95% accurate on the
training set, and 81% accurate on the test set. It was not known before being
produced by GOLEM, and it makes a contribution to an important current
problem in the natural sciences. It seems to me fair, therefore, to credit
GOLEM with the discovery of a law of nature.
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In the next (and final) section of the lecture I will describe in outline
how GOLEM works and this will enable us to assess its implications for
Popper’s philosophy. Here, however, I would like to make a preliminary
point. In order to get GOLEM to work, a good deal of background
knowledge concerning proteins and their structure had to be coded into it. In
this respect GOLEM was no different from a human research scientist.
Research scientists have to learn the existing knowledge in a field before
they can advance to the discovery of new results. In particular, as we can
see from Rule 12, GOLEM had to be provided with the standard
classificatory predicates of the subject such as aromatic, hydrophobic,
proline, etc. In addition GOLEM had to be provided with the generally
accepted principle that the character of a particular residue (whether it
belonged to an -helix or not) was likely to be determined by the basic
properties of the residue itself, and of the four residues on each side of it.
Technically this was done by providing GOLEM with a predicate octf
describing 9 sequential positions, so that e.g. octf(19, 20, 21, 22, 23, 24, 25,
26, 27). The existence of this predicate enabled GOLEM to search for laws
having the general form of Rule 12. It was from background knowledge of
this kind together with data about the training set that GOLEM automatically
induced results like Rule 12. I will now describe in more detail how this
was done.

7. How GOLEM works, and implications for Popper’s Philosophy

To give a general idea of how GOLEM works, let us consider how a
particular human (Ms A say) might infer inductively that generalisation
beloved of philosophers, viz. all European swans are white, and all
Australian swans are black. Ms A obtains this result by making cautious
inductive inferences from her observations. Thus, on observing one white
swan on the river Thames near London, she infers that all swans on the
Thames near London are white. On examining swans on other parts of the
Thames she infers that all swans on the Thames are white. After looking at
swans on other rivers and lakes in England, she infers that all English swans
are white. Investigations of swans in France, Italy, Germany, etc. yields the
conclusion that all European swans are white. Then she sails to Australia,
and ends up with the generalisation that all European swans are white, and
all Australian swans are black.

Let us now see how something like this procedure might be carried out
by a computer. Alan Robinson in his 1965 introduced a form of logic
suitable for theorem proving on the computer. This is known as the clausal
form of logic. Plotkin at Edinburgh (see his 1970, and 1971a & b) applied
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this form of logic to machine learning. He made use of the concept of
subsumption, which had also been introduced by Robinson (1965, 7.2, pp.
38-9), to obtain a partial ordering of the clauses in terms of generality. This
ordering enabled Plotkin to define what he called the relative least general
generalisation (r.l.g.g.) of a set of data points.

More precisely, clause C is said to be the least general generalisation of
e1 and e2 relative to K whenever C is the least general clause in the partial

ordering of the clauses for which K&C entails e1&e2, where C is used only

once in the derivation of both e1 and e2. This corresponds to the idea of our

human (Ms A) making a cautious generalisation from two pieces of data.
Note however that the r.l.g.g. is relative to background knowledge K.
GOLEM, and indeed all other existing machine learning programs, do not
make their inductive inferences just from data, but from a combination of
data and background knowledge.

Having introduced the notion of relative least general generalisation
(r.l.g.g.), Plotkin encountered a problem. His r.l.g.g.’s could in the worst
case become infinitely long, and, in general tended to grow exponentially
with the number of examples involved. For these reasons the approach was
abandoned until it was taken up again by Muggleton and Feng. They
managed to introduce restrictions which caused the resulting r.l.g.g.’s to be
not just finite, but of reasonable length. Using such r.l.g.g.’s it was possible
to construct a machine learning program (GOLEM) operating according to
the following iterative procedure.

GOLEM is provided with a set of positive examples, and a set of
negative examples. It begins by taking a random sample of pairs of positive
examples. It constructs the r.l.g.g. of each such pair. GOLEM takes each
such r.l.g.g. and computes the number of examples which it could be used to
predict. Clearly a given r.l.g.g. might predict some examples which are
false. GOLEM therefore chooses the r.l.g.g. which predicts the most true
examples while predicting less than a predefined threshold of false
examples. Having found the pair with the best r.l.g.g. (S say), GOLEM then
takes a further random sample of the as yet unpredicted positive examples,
and forms the r.l.g.g of S and each of the members of this new random
sample. These new r.l.g.g’s are evaluated as before, and the process
continues until no improvement in prediction is produced.

There is no doubt that the successes of GOLEM and other machine
learning programs undermine Popper’s project for eliminating induction
from science. I have already quoted Popper’s emphatic statement (1963, p.
53):
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“Induction, i.e. inference based on many observations, is a myth. It is
neither a psychological fact, nor a fact of ordinary life, nor one of scientific
procedure.”

This view can no longer be maintained in the light of programs such as
GOLEM which do make inductive inferences based on many observations
and have become a part of scientific procedure.

Despite this blow to some of Popper’s more extreme claims, it by no
means follows that the new results of AI are all and unequivocally against
Popper. On the contrary some of Popper’s ideas do find support from the
advances in machine learning. More specifically there seem to me to be
three points which can be made in favour of Popper, and I will conclude this
section and the lecture by considering these three points in turn.

The first point concerns Popper’s emphasis on the need for
background knowledge, and here GOLEM and other machine learning
programs, far from contradicting Popper, bear him out completely. Popper
argues that all observation presupposes a theoretical background, and says,
more specifically, that (1963, p. 46): “Observation … presupposes a
descriptive language, with property words; it presupposes … classification
…” As we have seen, in order for GOLEM to operate in the domain of
protein folding, it was necessary to code in the standard predicates of the
field such as -helix, aromatic, lysine, proline, etc. It was moreover a
standard piece of background knowledge in the field that the character of a
particular residue (whether it belonged to an -helix or not) would generally
be determined by the basic properties of the residue itself, and of the four
residues on each side of it. This item of background knowledge was also, as
we saw, coded into GOLEM. Not just GOLEM, but all the successful
machine learning programs make use of background knowledge K, which is
coded into the program and plays an essential role in guiding the computer’s
search for hypotheses. Indeed computer inductive inferences really take the
form: from K&e infer h, rather than the form : from e infer h.

A second point in favour of Popper is that GOLEM and many other
machine learning programs make use of Popper’s model of conjectures and
refutations. As we saw, GOLEM forms an hypothesis from part of the data,
and this hypothesis is then tested out against the remainder of the data. Any
hypothesis which predicts more than a predefined threshold of false
examples is rejected, so that, in effect, a principle of falsifiability is applied.
This procedure for eliminating hypotheses which have been falsified by the
data agrees very well with Popper’s philosophy. There is however the
difference that, in Popper’s original model, the conjectures or hypotheses
were invented using human ingenuity and imagination. In the machine
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learning case, however, the hypotheses are obtained mechanically from data
and background knowledge using an inductive rule of inference. In
GOLEM this inductive rule of inference was that of generating the relative
least general generalisation of two pieces of evidence.

My third and final point in favour of Popper is an historical one. I
have not been able to find a convincing example of mechanical induction in
science prior to the appearance of the first successful machine learning
programs in the late 1970s and early 1980s. I do not want to maintain this
position dogmatically since it is difficult to survey the whole history of
science over many hundreds of years, and some convincing example of
mechanical induction may come to light. However, even if one or two such
examples do exist, they are undoubtedly rare and exceptional. So Popper,
when he wrote in 1963 that induction was a myth, was largely correct in
maintaining that mechanical induction had not been used as a method of
discovery in science up to that time. It would in principle have been
possible at an earlier date to have devised methods for generating hypotheses
mechanically and for systematically testing out these hypotheses against
data. But before the development of the electronic computer such
procedures would hardly have been practical, and would certainly have been
less effective than the more intuitive ways of thinking which are
undoubtedly more natural to human beings. So the practical realisation of
mechanical induction is an innovation of the computer era.

Now that computers and artificial intelligence are beginning to play a
part in scientific procedure, however, it is predictable that they will
transform the way in which science is done, and lead to a whole host of
remarkable and surprising discoveries. An analogy will help to illustrate
what may lie in store. Before the year 1609 observations in science had
been made exclusively with unaided human sense organs. In that year,
Galileo for the first time used an instrument to make scientific observations,
namely the telescope to survey the heavens. His discoveries were truly
remarkable. He was able to observe mountains on the moon, and could see
at least ten times as many stars as had previously been known. He found
that the Milky Way consisted of innumerable stars, and discovered that the
planet Jupiter had moons circling round it.

All this showed the enormous advantage of improving naked-eye
observation by the use of an instrument. Soon other instruments, such as the
microscope were devised, and nowadays hardly any science is carried out
which does not use instruments. The development of instruments to assist
the human sense organs has changed the way in which science is done, and
brought about a vast extension of human knowledge. Is it not reasonable to
suppose, therefore, that the development of instruments to help the human
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mind – i.e. computers furnished with AI programs – will have a similar
effect on science?

It is important to realise that scientific method is not something fixed
and ahistorical. Rather as Bacon says (1620, Book I, CXXX, p. 301): “ ...
the art of discovery may advance as discoveries advance.” Popper was not
wrong, when, writing before the late 1970’s, he denied that mechanical
induction formed part of scientific procedure. What he said was true of
science as it had been practised up to that time. However, just as earlier the
use of instruments to assist observation altered the way in which science was
done, so the current development of computers and AI is also destined to
change science, and in such a way that mechanical induction becomes a
standard part of scientific procedure.
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