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Abstract

We propose a tractable recursive framework to study the optimal allocation of consumption

and e¤ort in a dynamic setting with moral hazard where agents have secret access to the credit

market or to storage. The recursive structure is based on a generalized �rst order approach,

whose validity must be veri�ed ex-post. Thanks to the recursive formulation of the optimal con-

tract, the veri�cation procedure turns out to be numerically parsimonious as it can be performed

using standard dynamic programming techniques with only one endogenous state variable: The

agent�s level of assets. We study the performance of our ex-post veri�cation test in practice by

solving numerically three representative in�nite horizon examples.
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1 Introduction

In this paper, we consider an environment where risk averse individuals have random income and

can borrow and lend at a given risk-free interest rate. Their asset and consumption decisions are

private information. Moreover, each individual can a¤ect future income realizations through his

e¤ort decision, which is also non-monitorable. The e¢ cient allocation in such setting is derived by

solving the problem of a risk-neutral planner who provides incentive compatible insurance contracts

based only upon income histories.

A large literature studied optimal long-term insurance contracts under moral hazard assuming

that agents cannot borrow or save.1 Rogerson (1985a) shows that preventing the agent from

entering the asset market is critical - even in the presence of liquidity constraints - since in the

optimal contract, the agent is actually willing to save. It can easily be shown that when the planner

can perfectly control the agents�asset holdings, and can contractually restrict their acquisition of

additional assets and liabilities, the e¢ cient allocation is the same as the one where the agents

have no access to the credit market. In many situations, however, the planner cannot have perfect

control over the agents�wealth and consumption. This is true for instance when there are hidden

storage or investment opportunities. In transitional and developing countries, agents often use

foreign currency, gold or some other forms of storage of value for self insurance. These forms of

asset accumulation are typically not observable by the government. There are also cases where

agents can have secret access to domestic or foreign accounts and credit lines. Therefore, relaxing

the assumption of perfect observability and contractability on agents�asset holdings and analyzing

the resulting optimal allocation is a potentially very valuable exercise from both the theoretical

and applied point of view.

Introducing hidden/anonymous asset accumulation (or hidden storage) into the dynamic moral

hazard model raises important methodological complications as the problem fails to have a recursive

structure, at least in the usual sense. Fudenberg et al. (1990) provide characterizations of e¢ cient

allocations in a wide class of dynamic environments where agents�preferences over continuation

contracts are common knowledge after any history. Since the level of wealth typically a¤ects the

agents� attitude toward risk, hidden borrowing and lending leads to a violation of the common

1This literature includes, among many others, Townsend (1982), Rogerson (1985a), Spear and Srivastava (1987),
Green (1987), Phelan and Townsend (1991). Atkeson (1991) analyses a moral hazard model with borrowing and
lending and default. His model di¤ers crucially from ours since he assumes that asset holdings are observable.
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knowledge of preferences assumption.2 In spite of that, by using a generalized �rst order conditions

approach, we are able to formulate the problem within the dynamic programming framework. In

order to keep track of the marginal value of wealth, together with the agent�s expected discounted

lifetime utility, we introduce the agent�s marginal utility of consumption as an additional endoge-

nous state variable. Intuitively, the recursive formulation can be obtained because the �rst order

approach allows us to write the problem in terms of equilibrium values alone. Then, incentive com-

patibility guarantees that common knowledge of preferences is maintained along the equilibrium

path.

Virtually all existing literature justi�es the use of the �rst order approach by showing analyti-

cally that - given the optimal contract - the agent�s problem is globally concave. For static moral

hazard models or for dynamic models with linear taxation without moral hazard this is a perfectly

viable procedure.3 In Ábrahám and Pavoni (2007a) (AP) we also follow this route, in a two period

moral hazard framework with hidden savings, and provide su¢ cient conditions for concavity of the

agent�s problem. Unfortunately, the derivation of (not too restrictive) analytical su¢ cient condi-

tions for global concavity becomes di¢ cult (perhaps impossible) in a general multi-period setting

such as that analyzed here.4 In this paper, we propose to use a numerical approach, which can be

easily extended to a richer class of models with incentive constraints. First, using the �rst order

conditions approach, we solve the (relaxed) problem recursively. Then we take advantage of the

dynamic programming formulation and develop a numerical procedure to verify ex post whether the

obtained allocation is in fact incentive compatible. We allow the agent to re-maximize his lifetime

utility taking the optimal (relaxed) transfer scheme as given. We then check whether the optimal

value of the re-maximization problem coincides with that implied by the optimal contract.

Notice that the equality between the value of the re-maximization problem and that delivered to

2Fernandes and Phelan (2000) and Doepke and Townsend (2006) propose a way to solve recursively an even wider
class of problems than that analyzed by Fudenberg et al. (1990). Unfortunately, their methods are not viable when
hidden actions belong to a continuum as it is the case for saving decisions in our model. Cole and Kocherlakota
(2001b) extend the Abreu et al. (1990) framework to a wide class of dynamic games. None of their extensions,
however, is of any use for us, since our law of motion for bond holdings does not satisfy the �full support�assumption
required there. Finally, Hagedorn et al. (2007) provide a recursive formulation for a repeated moral hazard model
with adverse selection problem in the �rst period. They only consider observable asset accumulation.

3See, e.g., Rogerson (1985b) and Jewitt (1988) for the analytic �rst-order approach in the static moral hazard
model; and Chang (1998) and Phelan and Stacchetti (2001) for a similar analytic approach in optimal linear taxation
models without moral hazard.

4According to our knowledge, there have been no previous attempts in deriving analytical conditions for the �rst
order approach in discrete time dynamic moral hazard models with hidden savings. Williams (2003) proposes an
interesting and tractable model in continuous time. However, the conditions for concavity based on the Hamiltonian
obtained there are not satis�ed in a context where there is a linear intertemporal transfer technology such as that
assumed here for savings.
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the agent by the optimal contract is both necessary and su¢ cient for the validity of the �rst order

approach.5 Thanks to the fact that the optimal contract takes a recursive from, the veri�cation

procedure turns out to be numerically parsimonious, since the agent�s re-maximization exercise

requires the solution of a simple dynamic programming problem with only one endogenous state:

The agent�s level of assets. The latter is an attractive property of this procedure in terms of

applicability.

In order to study the e¤ectiveness of the ex post veri�cation procedure in the presence of

approximation errors, we study three in�nite horizon examples. For our �rst example, Kocherlakota

(2004) shows analytically that the �rst-order approach is not applicable. In this case, our numerical

procedure �nds sizeable discrepancies between the optimal value of the re-maximization problem

and that implied by the optimal contract. In particular, these deviations are on average two to

three magnitudes higher than the numerical precision of the procedure. In other terms, the agent

�nds it pro�table to deviate from the �relaxed�optimal policy for every initial state, implying that

the relaxed policies are not incentive compatible and hence the �rst-order approach is not valid.

In the second example, we rely on the closed form solution for the CARA utility case to show,

analytically, that the agent�s problem is concave in the constrained e¢ cient allocation. In this

case, the ex post veri�cation procedure always �nds deviations well bellow numerical precision,

con�rming the validity of the �rst-order approach.

The third example considers a case where from AP we know that the agent�s problem is concave

in the two period model, but we are unable to show it analytically for the general multiperiod case.

This example turns out to be an intermediate case. Our numerical procedure detects pro�table

deviations of the agent from the relaxed optimal policy for some initial life-time utilities and �nd no

such deviations for others. We found this property of the numerical approach appealing compared

to the analytical approach, because in applications, we typically use particular parametrizations

(usually obtained by calibration) and we restrict the initial state using some economic argument

(e.g., the value of the outside option). The standard analytical approach in contrast, implicitly

checks whether the agent�s problem is concave for all parametrizations and for all initial states.

Our results show that the analytical approach can sometimes be more restrictive than necessary

from the point of view of the considered application.

Our results also indicate that the crucial step in the numerical procedure is the approximation

5Clearly, the �rst-order condition approach can be valid in many cases where the analytical approach would not
allow for it.
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of the optimal policies, because for any given level of approximation, the ex post veri�cation

procedure can determine whether the approximated policy is incentive compatible or not with high

con�dence. However, it can happen that rough approximations of the relaxed optimal problem

deliver approximated solutions which are incentive compatible, while more accurate approximations

(and presumably the true solution) of the problem are not incentive compatible. Since, an accurate

approximation of the optimal allocation is the main objective of any numerical procedure anyway,

in this sense, the ex post veri�cation stage does not seem to pose any additional challenge in terms

of numerical accuracy.

The way we use the �rst order approach together with the marginal utility of consumption as

state variable resembles that adopted in the Ramsey taxation literature by Kydland and Prescott

(1980), Chang (1998), and Phelan and Stacchetti (2001). For those models with linear taxation

and no moral hazard however the �rst order approach can easily be justi�ed analytically. One

key methodological contribution of this paper is to show an important complementarity between

the recursive formulation and the �rst order approach which allows the formal study of dynamic

incentive models where the global concavity of the agent�s problem cannot be guaranteed or veri�ed

analytically. In an independent work, Werning (2001-2002) develops a similar recursive formulation

for the dynamic moral hazard model with hidden savings. This work is simultaneous to ours, but

Werning does not formally address the issue of the validity of the �rst order approach.

Because of the methodological problems we mentioned above, the remaining few papers that

analyze dynamic moral hazard with non-monitorable asset holdings use particular models and

study speci�c issues. Allen (1985) and Cole and Kocherlakota (2001a) (ACK) study the e¤ect of

secret asset accumulation in a hidden information moral hazard model. In Allen�s framework, the

agent is allowed to both borrow and lend and the set of incentive compatible contracts turns out

to be a singleton: The zero-transfers contract. Cole and Kocherlakota consider an economy with

hidden storage (agents can only save). They show that although the set of incentive compatible

contracts is very large, whenever the return to storage is not too low the e¢ cient allocation is

equivalent to a self-insurance equilibrium. In our model with action moral hazard, the constrained

e¢ cient allocation does di¤er from (i.e., it is welfare improving with respect to) self insurance.

In a two period principal agent relationship, Bizer and DeMarzo (1999) show that hidden access

to the credit market reduces total welfare with respect to the no asset market case. They focus

on the possibility of increasing welfare by allowing the entrepreneur to default on the debt. We

study the general model where default is not allowed. Bisin and Rampini (2006) study the e¤ect
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of bankruptcy provision, in a two period model similar to that of Bizer and DeMarzo, where

agents have hidden access to insurance contracts and can default on the principal insurer as well.

In addition to no-default, we do not allow agents to secretly trade assets other than a risk free

bond. Chiappori et al. (1994) and more recently Park (2004) analyze the optimal contract with

discrete e¤ort. They �nd that - under some conditions - a renegotiation-proof contract always

implements the minimum level of e¤ort. We consider a continuous-e¤ort model, where the planner

can commit not to renegotiate the contract ex post. In our framework the optimal allocation of

e¤ort is non-degenerate. Kocherlakota (2004) characterizes the optimal UI transfer scheme in a

two-output moral hazard model with hidden savings, where agents�preferences are linear in e¤ort,

and e¤ort a¤ects linearly job-�nding probabilities. We provide a framework to characterize the

optimal contract in a general speci�cation of the model, whenever the incentive constraint can

safely replaced by the �rst order conditions of the agent. Finally, Golosov and Tsyvinski (2007)

study competitive equilibria with hidden information moral hazard and hidden asset accumulation

with endogenous interest rate. They show that if only a risk-free bond is traded then the competitive

allocation is generally ine¢ cient. This paper studies the constrained e¢ cient allocation (in a small

open economy), where the return on assets/storage is exogenously given. Our ex post veri�cation

approach can be easily extended to endogenous interest rates as far the agent takes the return on

savings as given.

The paper is organized as follows. In the next section, we present our environment and de-

�ne constrained e¢ ciency. The recursive formulation and the ex-post veri�cation procedure are

presented in Section 3. In Section 4, we study the numerical implementation of the recursive

formulation and the veri�cation procedure. Section 5 concludes.

2 Environment and Constrained E¢ ciency

Environment Consider a small open economy consisting of a large number of agents that are ex-

ante identical, and who each live T � 1 periods. Each agent is endowed with a private stochastic

production technology which takes the following form. There is a �nite set Y =
�
y1; :::; yN

�
of

possible output levels, with yi < yi+1: At each period t, the realization yt 2 Y is publicly observable;

however, the probability distribution over Y is a¤ected by the agent�s unobservable e¤ort level e,

which we assume to belong to a bounded interval E = [0; emax] : The conditional probabilities
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over Y are de�ned by the publicly known continuous functions6 pi(e) = Pr
�
y = yi j e

	
: Hence,

agents are subject to idiosyncratic risk, and we assume time independent conditional distribution

of income.7 ;8 Similarly to most of the dynamic moral hazard literature, we assume full support, i.e.

pi(e) > 0 for all i = 1; 2; :::N and e 2 E: The history of public outcomes up to period t will be

denoted by ht = (y1; :::; yt):9

Agents are allowed to buy and sell a risk-free bond which pays a constant interest rate r � 0:

Their asset holdings are private information, and we assume that each agent is born with no wealth

(b0 = 0):10 Note that, since agents can trade only risk free bonds, asset markets are incomplete.

Therefore, we can expect that a social planner could increase overall welfare by providing additional

insurance. In this setting, a constrained e¢ cient allocation can be computed by solving the problem

of a benevolent planner whose aim is to reallocate resources optimally in order to insure agents,

subject to the feasibility and incentive constraints which will be speci�ed below.

An allocation (or social contract) in this economy is a contingent plan

W := (� ;�) ; with � : =
�
� t(h

t)
	T
t=1
; and � : =

�
et(h

t);bt(h
t); ct(h

t)
	T
t=1
;

where � t(ht) represents the transfer the individual receives in period t; et(ht) the implemented

e¤ort, bt(ht) the bond holdings and ct(ht) the agent�s consumption level as a function of the

realized history ht. Note that we assume that agents can only be distinguished through their

output histories. In this sense, since all individuals are ex ante identical, we restrict ourselves to

symmetric allocations.

To simplify the analysis, we separate the planner�s transfer plan, � ; from �; the components of

the allocation under the agent�s control. The metaphor used in contract theory is that the planner

proposes �, and the plan will be implemented by appropriately designing the transfer scheme � .

6We assume continuity of the vector function p : E ! �N ; where �N=
�
x 2 <N j x � 0;

P
i xi = 1

	
:

7For the variable y we will use, interchangeably, the terms output and income. In the �rst interpretation, we stress
the fact that agents have access to a stochastic production technology. Viewing y as income, emphasizes more that
agents are facing idiosyncratic risk (with an endogenous distribution).

8Notice, that this model can be naturally extended to allow for persistence in idiosyncratic shocks by de�ning
pij(e) = Pr

�
yt+1 = y

i j e; yt = yj
	
:

9Since the only other publicly observable variable is the planner�s transfer, and the planner has full commitment,
without loss of generality we can restrict public histories to be histories of income realizations alone (see Pavoni,
1999, for details).
10Note that if the initial distribution of assets were not degenerate we would also face an adverse selection problem

and, in period zero, the planner would propose a menu of long term contracts in order to screen agents with di¤erent
b0�s. We do not consider this here, however, since both agents�saving decisions and the interest rate are deterministic,
there will be no role for revelation games about wealth after the �rst period.
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At period t; each agent receives a transfer payment � t = � t(h
t) from the planner, contingent

on the realized history ht. Given today�s income level yt; transfer � t; asset level bt�1 and the

continuation plan � n ht; the agent chooses consumption ct � 0 and bond holdings bt subject to

the following budget constraint:

ct
�
ht
�
+ bt

�
ht
�
= yt + � t

�
ht
�
+ (1 + r)bt�1

�
ht�1

�
: (1)

We impose the general condition bt
�
ht
�
� �Bt

�
ht
�
for all ht on asset holdings, where B : =�

Bt
�
ht
�	T
t=1

is an exogenously given plan of borrowing constraints such that Bt
�
ht
�
� 0 for all

ht, and BT
�
hT
�
= 0:11 ;12 At the beginning of each period, the agent also decides the e¤ort level

et 2 E; which a¤ects the stochastic output realization yt+1 2 Y , leading to next period output

history ht+1 =
�
ht; yt+1

�
. This sequence of events continues until period T is reached.

Agents have intertemporally additive separable von Neumann-Morgenstern utility function.

The continuation plan W n ht =
�
� � (h

� ); e� (h
� );b� (h

� ); c� (h
� )nht

	T
�=t

from node ht generates

the following expected discounted utility at time t � 1 :

UT
t

�
W;ht

�
= UT

t

�
� ;�;ht

�
= E

"
TX
�=t

���t u (c� (h
� ); e� (h

� )) j � n ht
#
;

where � n ht =
�
e� (h

� )nht
	T
�=t

denotes the implemented e¤ort plan from history ht onward, E is

the usual expectation operator, and � 2 (0; 1) is the discount factor. We assume that the choice

of W is implicitly restricted in such a way that both the expectation and the (possibly in�nite)

summation are well de�ned. We also assume u to be real valued and continuous; strictly increasing,

strictly concave in c and decreasing in e.

To be feasible, an allocation W must be deviation-proof in all components of �, that is, in

e¤ort e; bond holdings b; and consumption c. Hence, we say that the allocation W is sequentially

incentive compatible if, for any history ht; we have

UT
t

�
� ;�;ht

�
� UT

t

�
� ; e�;ht� ; for all e� 2 � (� ;B) ; (2)

11The latter requirement is the usual condition to exclude Ponzi Games in �nite time horizon models. In
the in�nite horizon version of the model (T = 1), we require B to satisfy the (equivalent) minimal condition

that limT!1

�
1

1+r

�T
BT (h

T ) � 0 almost surely for all histories.
12The enforceability of the repayment of debt obtained through anonymous credit lines is an important and delicate

issue, which is common to many environments and that we do not address here. The most skeptical approach would
require Bt

�
ht
�
� 0; which corresponds to a situation of pure storage.
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where � (� ;B) contains all feasible continuation plans of actions given � and B. In particular,

if e� 2 � (� ;B) then e� n ht = nee� (h� ); eb� (h� );ec� (h� ) n htoT
�=t

represents a contingent plan such

that for all histories h� following node ht we have: ec� (h� ) � 0; ee� (h� ) 2 E; eb� (h� ) � �B� (h� ) ;
and - given the transfer plan � n ht - the budget constraint (1) is satis�ed at h� . We denote the

set of incentive feasible allocations as


 =
�
W : for all ht satis�es ct(ht) � 0; et(ht) 2 E; (1), (2), and bt

�
ht
�
� �Bt

�
ht
� 	
:

Constrained E¢ ciency For technical tractability, we de�ne the optimal contract as the one

that maximizes the planner�s net returns (or minimizes costs), subject to incentive feasibility and

to the social restriction that each individual must receive at least an expected discounted utility

level U0:We will then choose U0 so that the planner�s expected discounted returns equal zero. The

planner is represented by a risk neutral principal who faces the same interest rate as the agents,

and whose net return at node ht induced by the continuation plan W n ht is

�T
t (W;ht) = E

"
TX
�=t

(1 + r)t

(1 + r)�
(�� � (h� )) j � n ht

#
:

Given the social restriction U0; the T�horizon planner�s problem can then be formulated as follows:

sup
W2


�T
0 (W); s.t. UT

0 (W) � U0; (3)

where

�T
0 (W) =

NX
i=1

p0i�
T
1 (W; yi); and UT

0 (W) =
NX
i=1

p0iU
T
1 (W; yi)

for some initial distribution p0: We postpone the issue of existence until Section 3.

3 Recursive Formulation and Ex-post Veri�cation

It should not be di¢ cult to see that condition (2) de�nes a complicated set of constraints: already

in the two period version of the model, the number of constraints is a bidimensional continuum.

Perhaps more importantly, there is no tractable way of writing this problem recursively in its original

form. Along the lines of Spear and Srivastava (1987) and Green (1987), Abreu et al. (1990) show

that when agents�preferences over continuation contracts are common knowledge after any history,
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the e¢ cient allocation can be characterized by using a one dimensional state variable: the agent�s

continuation utility. Notice that the assumption of common knowledge of preferences is not satis�ed

in our framework. Essentially, the possibility of hidden asset accumulation introduces an adverse

selection problem in each period since agents with di¤erent asset levels respond di¤erently to the

contract. Fernandes and Phelan (2000) and Doepke and Townsend (2006) show that this adverse

selection problem can be resolved by using one state variable for each agent type. According to this

approach, in our framework with a continuum of possible asset levels, the number of types explodes

and the relevant state becomes a function, i.e. an in�nite dimensional object. These in�nities pose

obvious computational di¢ culties that make this approach infeasible in practice within our model

(for a similar discussion see Phelan and Stacchetti, 2001; and Kocherlakota, 2004).

In this section, we adopt a generalized �rst order approach which solves both aforementioned

problems (the numerosity of the incentive constraints and the tractability of the recursive formu-

lation). First we assume the validity of the �rst order approach, and present a tractable recursive

formulation. Second, we take advantage of the dynamic programming framework and develop

a numerical procedure to verify ex-post whether our assumption on the su¢ ciency of �rst order

conditions is valid.

3.1 The First Order Conditions Approach

>From now onward, we assume that both u and p are di¤erentiable. The adoption of the �rst

order approach means that the set of constraints described in (2) are replaced by the agent�s

corresponding �rst order conditions along the optimal path. Using the budget constraint (1) to

eliminate the planner transfers � t; and assuming interiority with respect to e,13 for any ht 6= hT the

agent�s �rst order conditions become

e : �u0e(ct(ht); et(ht)) = �
X
i

p0i
�
et(h

t)
�
UT
t+1(W; (ht; yi)); (4)

13We will never consider the possibility that the upper bound on E is binding. However, we might easily allow for
a more general formulation of the following form:

u0e(ct(h
t); et(h

t)) + �
X
i

p0i
�
et(h

t)
�
UT
t+1(W; (ht; yi)) � 0

with equality if et(ht) > 0: Moreover, notice that when T <1 we must impose the obvious corner solution eT (hT ) =
0.
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and

b : u0c(ct(h
t); et(h

t)) � �(1 + r)
X
i

pi(et(h
t))u0c

�
ct+1(h

t; yi); et+1(h
t; yi)

�
: (5)

Notice, that the asset level bt does not enter any of these constraints. This is essentially due to

fact that the agent faces the same interest rate as the planner does.14 Now, de�ne the set of social

contracts satisfying these �rst order conditions as


FOC =
�
W : for all ht satis�es ct(ht) � 0; et(ht) 2 E; (1), (4) and (5)

	
:

With some abuse of notation, we will also consider contract continuations W n hs belonging to

the set 
FOC . In these cases, the restrictions are obviously only related to histories after node hs.

3.2 The Recursive Problem

In this section, we focus on the in�nite horizon case, and in order to simplify notation, we do not

report the superindex T = 1. The �true�value function of the relaxed problem is thus de�ned as

follows:

V �foc(U0) = sup
W2
FOC

�0(W) (6)

s.t. U0(W) � U0:

We argued above that when consumers can secretly accumulate assets, the state variable used by

the standard recursive contracting literature - the agent�s lifetime utility U - is no longer su¢ cient

to describe the constrained e¢ cient allocation. We will see that recursivity can be recovered

by complementing lifetime utility with an additional endogenous state: the marginal utility of

consumption u0c(c; e) = x. From the Euler equation, it is clear that by a¤ecting the marginal value

of wealth �E [(1 + r)u0c (ct+1; et+1)] the planner can fully control agents� asset decisions at the

margin. The adoption of u0c(c; e) as a state variable becomes now natural since in our framework

both r and � are exogenously �xed at a constant level.

Our relevant state space is hence bidimensional.15 However, before applying the recursive

14Notice that condition (5) itself is a relaxed version of the true �rst order condition of the agent, since it does not
state that for bt

�
ht
�
> �Bt

�
ht
�
the Euler equation must be satis�ed with equality. This - and the absence of the

transversality condition for T =1 - are further dimensions along which we relax the incentive constraint.
15Notice, that in our repeated framework, the exogenous state y does not a¤ect the space of endogenous states U

and x:
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techniques of Stokey et al. (1989) (SLP) to our problem, we have to consider the possibility that

the feasibility correspondence can be empty for some combinations of the states. To overcome

this complication, we could basically follow two alternative procedures. The �rst possibility is

the use of in�nite penalizations. This option basically sets the value of the planner to minus

in�nity for each combination of states (U; x) which cannot be implemented by any incentive feasible

contract.16 We choose to follow a second approach, which typically delivers a continuous value

function. This second procedure is divided into two main steps. It �rst derives the state space (or

domain restriction) M� : the set of combinations (U; x) for which a relaxed incentive compatible

contract delivering lifetime utility U , and a marginal utility x to the agent in period zero does exist.

In the second step of the procedure, the problem is solved using usual recursive techniques.

At each node ht, the (time invariant) set of relaxed incentive feasible endogenous states is

formally de�ned as follows:

M� =
�
(U; x) 2 <2; 9 W n ht 2 
FOC ; u0c

�
ct(h

t); et(h
t)
�
� x; and Ut(W;ht) = U

	
:

It is easy to see that M� is non empty.17 Given M� we have the following:

Proposition 1 Given an initial distribution p0, and an ex-ante expect discounted utility level U0

guaranteed to the agent, the value function V �foc solves

V �foc(U0) = sup
(xi;U i)2M�

i = 1;:::;N

X
i

p0iV
�
yi; U i; xi

�
(7)

s.t. :
X
i

p0iU
i � U0;

where V : Y �M� ! < is a solution to the following functional equation

V (y; U; x) = sup
(xi;U i)2M�

e2E;c�0

y � c+ 1

1 + r

X
pi(e)V

�
yi; U i; xi

�
(8)

s:t:

16See Rockafellar (1975), and Rustichini (1998).
17For example, the full insurance contract with et(ht) � 0 is always feasible. In this case, for any given x 2 <++

the corresponding utility level is obtained by U = u(g(x);0)
1�� ; where g is the consumption component of the inverse of

the marginal utility when e = 0.
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U = u(c; e) + �
X
i

pi(e)U
i (9)

�u0e(c; e) = �
X
i

p0i(e)U
i (10)

u0c(c; e) � �(1 + r)
X
i

pi(e)x
i (11)

x � u0c(c; e): (12)

Conversely, if a bounded function V de�ned on Y �M� satis�es the functional equation (8)-(12)

and M� is compact then a solution to (6) exists and

V �foc(U0) = max
(xi;U i)2M�

X
i

p0iV (y
i; U i; xi); s.t.

X
i

p0iU
i � U0: (13)

The result in the second part of the proposition implies existence of a solution to the original

problem any time the �rst order approach is valid. We are able to show existence of a solution to

the relaxed problem (6) as long as u is bounded with bounded derivatives (so thatM� is a compact

set). This is so since the continuity of u and p imply that V is a continuous function. Moreover,

V is weakly increasing in x and constant for all values for which constraint (12) does not bind.

Finally, from (11), the choice of low values for xi is always feasible. Hence xi can without loss of

generality be chosen so that to satisfy (12) with equality.

Let us now brie�y turn to the domain restriction M�: An argument similar to that of Abreu et

al. (1990) implies that the set M� can be derived by starting from a su¢ ciently large set M �M�;

and computing the largest �xed point of the following operator:

F(M) =
�
(U; x) 2 <2; 9

�
U i; xi

�
2M; e 2 E and c � 0 ; (9)-(12) are satis�ed

	
: (14)

It turns out that F is monotone18 and maps closed sets into closed sets.19 Moreover, since

the sequence Mn = Fn
�
M
�
is monotone, it must converge to the set M1 = limn!1FnM =

\1n=1Mn; which is closed as an intersection of closed sets. It can be shown that if M is chosen

su¢ ciently large, we haveM1 =M� since the sequence converges to the largest �xed point of the

operator F. It can be easily shown that when u is bounded with bounded �rst derivatives, M� is

compact. In the �nite horizon version of our model, the domain restriction sets can be similarly

18That is, for any two sets M;M 0 � <2 if M �M 0
; then F (M) � F(M 0

).
19Notice that the constraint set is formed by either equalities or weak inequalities.
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computed following a backward procedure.20

3.3 Ex-post Veri�cation Procedure of the First Order Approach

Obviously, any interior contract W that is incentive feasible according to (2) - i.e. W 2 
 - is

such that W 2 
FOC : For the purposes of this paper, we should look at conditions under which an

optimal solution W� to the relaxed planner�s problem (6) is such that W� 2 
: In that case, the

solution to problem (6) satis�es incentive compatibility, hence we have actually derived the e¢ cient

contract. In more detail, since 
 � 
FOC implies that the value V �foc is (weakly) larger than the

value of problem in (3) and since the value associated to any feasible contract is obviously lower

than the optimal value of the problem (among all feasible contracts), W� 2 
 implies the claim.

A direct application of this argument is the basis of our veri�cation of the �rst order ap-

proach. After computing the optimal contract according to (6), the procedure allows the agent

to re-maximize his lifetime utility by choosing e¤ort, consumption, and bond holdings taking the

optimal (relaxed) transfer scheme as given. Then we check whether the optimal decisions of this

re-maximization problem coincide with those implied by the relaxed optimal contract; i.e. whether

W� is actually an incentive compatible allocation.

Notice that for any given transfer scheme � =
�
� t(h

t)
	
, and the sequence of borrowing con-

straints B the agents�incentive constraint (2) is described by the following (re)maximization prob-

lem

UR0 (� ;y) = sup
�
E0

" 1X
t=1

�t�1u(ct; et) j �
#

(15)

s.t. ct
�
ht
�
+ bt

�
ht
�
= yt + � t(h

t) + (1 + r)bt�1; ct
�
ht
�
� 0; et

�
ht
�
2 E;

bt
�
ht
�
� �Bt(ht) for all ht; with y1 = y and b0 = 0;

where each consumer chooses contingent plans � of e¤ort, consumption and bond holdings, and � is

the e¤ort plan implied by �. The basic idea of the veri�cation procedure is to allow the agent to solve

the above remaximization problem, assuming that the transfer scheme is that implicitly de�ned in

20The set MT for the T�horizon problem can be computed by applying the same map F we de�ned above as
follows MT = F(MT�1) = F

T�1(M1); where M1 represents the set of states attainable in a one-period problem:

M1 =
�
(x;U) : u0c(c; 0) � x; U = u(c; 0); c � 0

	
:
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Proposition 1. The �rst order approach is valid if the agent chooses the same consumption, e¤ort

and bond holdings as the one implied by the initial solution.

Proposition 2 Assume M� is compact and V is bounded. Let U� (U0) be the expected discounted

lifetime utility level obtained by the agent according to (7) with p0 degenerate at y, and � be the

associated transfer scheme. The �rst order condition approach is justi�ed if and only if UR0 (� ;y) =

U� (U0).

The proof of Proposition 2 uses the fact that the relevant deviations will always increase the

agent�s lifetime utility. Since it is always true that UR0 (� ; y) � U� (U0) ; the task of comparing two

allocations is in fact greatly simpli�ed as one only need to compare two real numbers: UR0 (� ; y) and

U� (U0).21 However, since � is a history dependent stochastic process (i.e. an in�nite dimensional

object), the veri�cation procedure seems to still require a formidable task. The key advantage of our

procedure comes from the observation that the recursive formulation implies that past history can

be summarized by the states Ut; xt.22 In particular, by using the budget constraint and normalizing

bond holdings to zero in each period, the disposable income coincides with the policy function for

consumption:

yt + � t = c(Ut; xt):

In turn, because of the dynamic programming framework, the states evolve according to the fol-

lowing time invariant policy rules:

U it+1 = f(Ut; xt; y
i
t+1) (16)

xit+1 = h(Ut; xt; y
i
t+1); i = 1; 2; :::; N: (17)

As a consequence, the re-maximization problem (15) can be written in recursive form as follows:

J(U; x; b) = max
cR�0;bR��B(U;x);eR2E

u(cR; eR) + �
X
i

pi(e
R)J(U i; xi; bR) (18)

21Consistently with our recursive approach based on continuation utilities, we disregard payo¤-equivalent
deviations.
22Since the problem is a repeated one, the relevant policies do not depend on yt either.
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s.t. cR + bR � c(U; x) + (1 + r)b

U i = f(U; x; yi)

xi = h(U; x; yi);

where �B(U; x) is an appropriately de�ned lower bound for assets that replicates B. Therefore,

given that the policies c; f; and h (i.e. the transfer scheme �) are exogenous rules for the agent at

this stage, the problem to be solved is very similar to that of self insurance, where the only endoge-

nous state variable is the level of bonds b. According to Proposition 2, the �rst order approach is

veri�ed if we have J(U� (U0) ; x� (U0) ; 0) = U� (U0) ; where (U� (U0) ; x� (U0)) are the initial values

for the states derived in the period zero maximization problem (7), with p0 degenerate at the initial

level of income y.

In the next section, we explain in detail the numerical implementation of the veri�cation pro-

cedure using three in�nite horizon examples.

4 Numerical Implementation

In this section, we show how to implement the procedure described above, numerically. First,

we explain the three main steps (�nding the domain restriction, solving for the relaxed optimal

contract and ex post veri�cation) of the procedure and then we provide some carefully chosen

in�nite horizon examples. In all of the three examples, we can use previous literature to obtain

conjectures about the validity of the �rst-order condition:

For expositional convenience, we describe the numerical procedure for the case where N = 2,

hence Y = fyl; yhg with yh > yl. This implies that we can de�ne the probability shifting functions

as p(e) = Pr(y = yh j e) (implying that 1 � p(e) = Pr(y = yl j e)). We will also assume that

�(1 + r) = 1. Finally, we will restrict ourselves to cases where the Euler equation (11) and the

promise keeping constraint with respect to x (12) are satis�ed with equality.

4.1 Domain Restriction

The �rst step of our numerical procedure is to compute the domain restriction M�: In order to

construct M�, we used a modi�cation of the algorithm proposed by Chang (1998).23 In the N = 2

23We should mention that Judd et al. (2003), and Cronshaw (1997) provide di¤erent numerical techniques to
compute sets analogous to M�. Note, however, that as opposed to our procedure, their methodology works only if
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case, the domain restriction set M� is the set of (U; x) couples such that there exists (U l; xl) 2M�,

(Uh; xh) 2M�, e 2 E and c � 0 such that (19)-(22) are all satis�ed:

U = u(c; e) + �
�
U l + p(e)(Uh � U l)

�
(19)

�u0e(c; e) = �p0(e)(Uh � U l) (20)

x = xl + p(e)(xh � xl) (21)

x = u0c(c; e) (22)

where equations (19)-(22) are the N = 2 counterparts of equations (9)-(12). First, note that in our

environment with a �xed interest rate, consumption is not bounded above. This implies that the

setM� may be unbounded as well. Therefore, in order to develop a numerically feasible procedure,

we restrict consumption such that c 2 C := [c; c] with 0 < c < c. Then we de�ne the initial state

space M0 compatible with this choice, as M0 = [x; x]� [U;U ], where x := minc2C;e2E u0c(c; e), x :=

maxc2C;e2E u
0
c(c; e); U := (u(c)� v(e)) =(1��) and U := (u(c)� v(0)) =(1��); where e := max(E).

By construction, M0 turns out to be a compact set. In order to �nd the domain restriction we

need to apply the set valued operator F de�ned by (23) on M0 iteratively until we obtain a �xed

point:24

Mt = F(Mt�1) =
n
(U; x) 2Mt�1; 9

�
U l; xl

�
2Mt�1;

�
Uh; xh

�
2Mt�1; e 2 E; c 2 C; (19)-(22) hold

o
:

(23)

A natural way to implement the above operator would be to replaceM0 with a two dimensional

rectangular grid and iterate on (23) until convergence on this discrete set. We denote this two-

dimensional grid as fM0 = fUkgnk=1 � fxjg
m
j=1, where xj ranges between x and x and Uk ranges

between U and U: Note that conditions (19)-(22) impose 4 constraints on our 6 endogenous variables�
U l; xl; Uh; xh; c; e

�
. Since fMt�1 is a discrete set, for a given (U; x), it is not always possible to �nd

any e 2 E, c 2 C; (U l; xl) 2 fMt�1 and (Uh; xh) 2 fMt�1 satisfying (19)-(22) exactly.25 This

property is solely due to the discrete nature of the set and not due to the actual feasibility of

these allocations. For this reason, we had to modify the algorithm de�ned by (23). First, we

M� is convex. Following Abreu et al. (1990) one can easily show that M� is convex whenever income shocks are
extracted from an atomless distribution. In our model, shocks belong to a �nite support so M� is in general, if not
typically non-convex.
24Since we generate a decreasing sequence of (nested) sets, we are allowed to search (U; x) bundles only within the

set Mt�1. This speeds up the algorithm.
25This is typically the case when u(c; e) is additively separable because (22) uniquely de�nes c:
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construct K(fM) as a set containing fM de�ned as follows. For a given fM and Uk, we can de�ne

xmax

�
Uk;fM� = max

n
xj : (Uk; xj) 2 fMo and xmin

�
Uk;fM� = min

n
xj : (Uk; xj) 2 fMo as the

maximal and minimal marginal utility in fM for a given Uk. Then we can de�ne ~xmax and ~xmin as

continuous functions mapping [U;U ] into [x; x] for a given fM , where the values between grid points
are determined by linear interpolation. Then, K(fM) is given by

K(fM) = n(U; x) 2M0 : ~xmin(U ;fM) � x � ~xmax(U ;fM)o :
and we use the following operator instead of (23)

fMt = eF(fMt�1) =

8>>><>>>:
(U; x) 2 fMt�1; 9

�
U i; xi

�
2 K

�fMt�1
�
i = l; h and e 2 E ; c 2 C

such that (19)-(22) are satis�ed and

8i 9
�
U ik; x

i
j

�
2 fMt�1 s.t.



U i � U ik

 � "Uk and 


xi � xij


 � "xj

9>>>=>>>; :

The modi�ed operator selects (U; x) tuples only if there exist continuation values
�
U i; xi

�
satisfying

constraints (19)-(22) and they are contained in the union of closed rectangles centered on the grid

points of fMt�1 with height and width given by "U and "x. The set eF(fMt�1) excludes (U; x) bundles

for which there is no such solution of (19)-(22) that has a close enough point in the discrete set fMt�1.

In the implementation of the procedure, we set "Uk and "
x
j as one half of the distance between grid

points implying that the �interior�of the set is covered completely. The advantage of this approach

is that no feasible point will be excluded from the interior of the set fMt due to the discrete nature

of fMt�1. However, letting (U i; xi) take all possible values in the rectangle around points on the

frontier of fMt can lead to the inclusion of tuples which are clearly not feasible.26 The restriction

on the frontier of K(fMt�1) given by ~xmin and ~xmax, however, provides a solution for this problem.

Further, as the grid size (m and n) goes to in�nity this procedure will approximate the domain

restriction arbitrarily well. Given the monotonicity properties of eF; our approximation of the
domain restriction is the largest �xed point of this modi�ed operator, and it can be obtained by

applying the operator until convergence starting from a su¢ ciently large grid fM0:

26Take for example U = U , in this case, it is easy to see that the only feasible allocation is given by Uh = U l = U ,
xh = xl = x, c = c, and e = 0.
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4.2 Solving the Relaxed Problem by Value Function Iterations

Now we will turn to the solution of the relaxed problem described by equations (8) to (12). We solve

this problem by value function iterations, where we approximate the value function V (y; U; x) with a

continuous function on the two-dimensional grid fM�. Continuity is achieved by linear interpolation

between grid points. More precisely, consistently with the derivation of the domain restriction,

the endogenous states can take values from K(fM�). Here a few observations are worth noting.

First, this approach is compatible with the computation of the domain restriction because, there

we also had to allow
�
U l; xl

�
and

�
Uh; xh

�
take values from the set K(fM�). Recall, that that

whenever preferences are additively separable in c and e, conditions (19)-(21) impose 3 constraints

on 5 endogenous variables
�
U l; xl; Uh; xh; e

�
, hence (U l; xl) 2 fMt�1 and (Uh; xh) 2 fMt�1 cannot

typically hold together and hence interpolation is necessary. Second, the domain restriction sets

turned out to be without �holes�,27 therefore interpolation within the borders is a well-de�ned

procedure. Third, note that linear interpolation using the closest four neighbor in the grid fM� is

only straightforward in the interior of the set. Around the frontier, however, we cannot guarantee

that all these neighbors are included in fM�. In these cases, we use the closest three neighbors and

interpolate using the perpendicular distance from these points. Finally also notice, that the value

function is linear in y therefore we can recover V (yh; U; x) = V (yl; U; x) +
�
yh � yl

�
.

Therefore for the practical implementation we need to solve the following dynamic programming

problem

V �+1 (y; U; x) = sup
(xi;U i)2K(fM�)

e2E;c2C

y � c+ �
�
(1� p(e))V �

�
yl; U l; xl

�
+ p(e)V �

�
yh; Uh; xh

��
(24)

s:t: (19)� (22);

where superindex � refers to the � -th iteration.

Also notice that if uc(c; e) is invertible in c for a given e then by �xing a particular couple
�
e; xl

�
we can solve analytically for the remaining 4 endogenous variables using the constraints (19)-(22)

for any (U; x) 2M . Therefore, we solve (24) by maximizing with respect to couples
�
e; xl

�
.

27Clearly, a discrete set contains several holes. What we mean here is the discrete analogous of connecteness for
set of real numbers. Formally, if a point in the original grid is not in fM� it cannot be that moving far enough in all
four (horizontal and vertical) directions one is able to �nd at least one point in fM� in all such directions.
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4.3 Implementing the Ex-post Veri�cation Procedure

We can now use the numerical solution of the value function and optimal policies to implement

the veri�cation procedure of the �rst order condition approach described in Section 3.3. Recall,

that the validity of this approach is a prerequisite of our recursive reformulation of the constrained

e¢ cient problem.

We �rst obtain the optimal continuos policy rules for next period promised utility and promised

marginal utility of consumption ((16) and (17)) together with c(U; x) over the grid fM� (here we

again use linear interpolation in order to �nd the policy rules between grid points): Then we de�ne

an interval of admissible asset levels G = [0;�b] and solve (18) with value function iterations, where

we use linear interpolations over fM� � eG, where eG is a discrete grid of q points de�ned on G.

Linear interpolations are particularly useful at this stage because polynomial interpolations are not

very reliable around the borrowing limit, because polynomials do not approximate well the steep

initial segment of the re-maximization value function J: Notice that by �xing the grid eG for b to

the singleton f0g we could test whether the agent has incentives to deviate when he can choose

only his e¤ort level, as consumption is determined by the budget constraint.28

Speci�cally, according to (18), we need to iterate on the following functional equation until we

�nd a �xed point (superindex � refers to the �th iteration) :

J�+1(U; x; b) = max
bR2G;eR2E

u
�
c(U; x) + (1 + r)b� bR; eR

�
+�

2X
i=1

pi(e
R)J�

�
f(U; x; yi); h(U; x; yi); bR

�
;

(25)

with (U; x; b) 2 fM� � eG; and the �rst guess of the value function is given by
J0(U; x; b) = max

bR2G; eR2E
u
�
c(U; x) + (1 + r)b� bR; eR

�
+ �

X
i

pi(e
R)f(U; c; yi):

Note that the domain restriction, the solution of the relaxed problem and the solution of re-

maximization problem are all approximated using a similar methodology. Since, there are approxi-

mation errors, it seems that we cannot expect UR0 (� ; y) = U
� (U0) to hold exactly. However, assume

that the �rst-order approach is actually valid in our problem. In this case, the �rst-order conditions

given by (19)-(22) also characterize the solution to the ex post veri�cation problem for b = 0: Note

that the allocation derived in Step 2 satis�es these conditions as well. Then, if the computation

28This test, however, could never yield a violation of the �rst-order condition approach, because one can show that
the agent�s problem is concave in e¤ort alone under all of our parametrizations.
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of the optimal contract and the re-maximization problem has the same precision then, in the case

where the �rst-order approach is valid, we should observe a discrepancy between UR0 (� ; y) and

U� (U0) which is smaller the convergence criterion for the �xed point of (25). Hence, in this case,

the approximation errors will in�uence only how well the value function and the optimal policies

are approximated and not the ex post veri�cation procedure. Of course, when searching for the

solution of (25) we need to make sure that we �nd a global optimum. This is particularly impor-

tant because we know that the agent�s problem may not be concave. For this reason, we use a two

dimensional grid search method which guarantees that we �nd a global optimum.

In order to assess the performance of our veri�cation procedure in practice (e.g., in presence

of approximation error), let�s assume for simplicity29 that n = m = q = N; that is, all grids have

the same number of points. Also let�s de�ne DN (U0) :=
J(U�(U0);x�(U0);0)N�U�(U0)N

jU�(U0)N j
; where the N

subscripts re�ect that these �gures were calculated using a grid size of N and (U� (U0) ; x� (U0))

is the solution of (13): We divided the absolute deviation �N (U0) := J(U� (U0) ; x� (U0) ; 0)N �

U� (U0)N by jU� (U0)N j in order to get a discrepancy measure which is independent of the par-

ticular model speci�cations. For a given convergence tolerance level � > 0 in (25), we expect

that limN!1�N (U0) 2 [�� �;�+ �] ; where � � 0 is the �true�discrepancy. Intuitively, if the

�rst-order approach is justi�ed (� = 0) we should get that �N (U0) � �. On the other hand, we

reject the validity of the �rst-order approach if �N (U0) > �. First of all, if �N (U0) > 0 only

because of approximation errors along the procedure, we might reject models falsely where the

�rst-order approach is actually veri�ed. We argued above that given our approximation procedure,

this is not a likely outcome. Another potential problem arises when 0 < � � 2�; that is when

the �rst-order approach is not valid, but the �true�discrepancy is very small. In this case, our

approach may falsely accept the validity of the �rst-order approach. There are two main ways to

face this problem. First of all, by choosing � to be a small number the probability of this event

can be minimized. Further, whenever �N (U0) � �, one can check whether the agent�s optimal

choices in the remaximization problem are di¤erent from those prescribed by the relaxed optimal

problem (i.e. whether ~b(U; x; 0) � 0 and ~e(U; x; 0) � e�(U; x) where ~b and ~e are the optimal asset

and e¤ort choices of problem (25); and e� is the optimal e¤ort choice of the relaxed problem). In

our examples, in all the cases where we had �N (U0) � �, we �nd that the agent�s optimal decisions

were practically identical of the optimal allocation of the relaxed problem.

29More generally, we can assume that n = �nN , m = �mN and q = �qN , that is all the grids as scaled by N , with
�xed proportions.
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4.4 Examples

In this section we implement the three steps of the veri�cation procedure we described above for

three di¤erent examples with varying grid sizes. Essentially, these examples are only di¤erent in the

particular functional forms u(c; e) and p(e) take. Also, examples 1 and 2 are such that the validity

of the �rst-order approach can be conjectured with high con�dence from previous literature or

from our own derivation, respectively. Therefore they provide a nice �testing�environment for our

recursive approach with ex post veri�cation.

4.4.1 Example 1: The Linear-Linear Case

This example was studied by Kocherlakota (2004) who shows that the �rst-order approach is not

valid in this environment. The utility function is additively separable in c and e; and both the cost

function of e¤ort and the probability shifting functions are linear:30

u(c; e) =
c1��

1� � � �e; p(e) = e.

For this speci�cation, we will follow the general procedure explained above, the only di¤erence is

that because of the additive separability of the utility function, condition (22) fully determines c.

This implies that, in this case (and in Example 3 below), we can use c as a state variable instead of

x without a loss of generality. Moreover, it is easy to derive that, due to linearity, conditions (19)

and (20) imply that whenever e¤ort is positive we have that

U l =

�
U � c1��

1� �

�
=� and Uh =

�
U � c1��

1� �

�
=� +

�

�
,

that is continuation life-time utilities are solely determined by the state (U; c) and independent

of e¤ort. When the agent is required to exert zero e¤ort then U l takes the same form and any

Uh �
�
U � c1��

1��

�
=� + �

� is incentive compatible. This result makes the calculation of the domain

restriction and the optimal (relaxed) optimal policies signi�cantly easier.

30See Mitchell and Zhang (2007) for a similar linear-linear formulation where the utility of consumption takes a
CARA form.
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4.4.2 Example 2: Exponential Utility

In this case, the utility function and the probability shifting functions are taking the following

functional forms:

u(c; e) = � exp f�(c� e)g and p(e) = 1� exp f��eg .

In Appendix B, we argue that, for any level of life-time utility there is only one compatible value

of marginal utility of consumption. Therefore, we do not have to calculate numerically the set fM�

for this speci�cation. One can show that for this example, we have: u(c; e) = (1� �)U; hence

c = � log(�U(1 � �)) + e; u0c (c; e) = �u; hence x = (1� �)U ; and u0e (c; e) = u (c; e) ; hence

u0e (c; e) = U(1� �):

The above results allow us to collapse several constraints, making the problem much simpler.

Let V̂ (U; y) � V (U;� (1� �)U; y) ; then we have:

V̂ (U; y) = sup
fU ig

i=l;h
2[U;U ]2

e2E

y + log(�U(1� �))� e+ �
h
p (e) V̂

�
Uh; yh

�
+ (1� p (e))V̂

�
U l; yl

�i
U = p (e)Uh + (1� p (e))U l;

�(1� �)U = p0 (e)�
�
Uh � U l

�
:

The above constraints imply two simple expressions for continuation utilities:

U l = U

�
1 +

p(e)(1� �)
�p0(e)

�
and Uh = U

�
1� (1� p(e))(1� �)

�p0(e)

�
:

We can hence solve the above problem by maximizing the objective function only with respect to

e using the above values of Uh and U l.

For this speci�cation, we show analytically in Appendix B, that the �rst-order approach is valid

when c and consequently U is unbounded. Obviously, because of computational feasibility we need

to assume that life time utilities and consequently consumption are contained in a compact set.

Our proof cannot be directly extend to this case lacking a closed form solution, but as we will see

below, our numerical procedure veri�es the �rst-order approach in this case as well.

4.4.3 Example 3: The �Concave�Case

In this example, the utility function is additive separable again but the cost function of e¤ort is

strictly convex and the probability shifting function is strictly concave. In Ábrahám and Pavoni
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(2007a), we provide analytical conditions under which the agents problem is concave in the optimal

contract when T = 2: It is shown there that the �rst-order approach is valid if the utility from

consumption has the non-increasing absolute risk aversion property, v(e) is convex and p(e) satis�es

some strong concavity condition. Unfortunately, the proof there does not generalize easily for T > 2.

In this example, we check the validity of this case for T =1 using the ex post veri�cation procedure.

In this example, we use a probability shifting function which satisfy the strong concavity conditions

on p(e) and a quadratic cost function for e¤ort:

u(c; e) =
c1��

1� � � �e
2; p(e) = 1� exp f��eg .

Further, since v0(0) = 0 while p0(0) = � > 0; we can expect interior solutions for e¤ort.

5 Numerical Results

Parametrization We used parameters for all three examples such that in the full information

case, where both e¤ort and asset accumulation are observable, the probability of low and high

outcome is equal to 1=2. This implies that, in the absence of information problems, the three

examples are observationally equivalent. This choice makes the parametrizations of the three

examples comparable. Table 1 provides the parameter values we use for the simulations (recall

that �(1 + r) = 1).

Table 1: Parameter Values

� � � yl yh �

Example 1 0.99 2 - 0.1 100 0.0399

Example 2 0.99 - 0.02 0.1 100 -

Example 3 0.99 2 1.0 0.1 100 0.0144

We also set the lower an upper bounds on consumptions as c = yl = 0:1 and c = yh = 100.

5.1 Ex Post Veri�cation Results

In this section, we evaluate the ex post veri�cation procedure for all the three examples for di¤erent

grid sizes. For all cases, we have used the same grid for asset levels eG with q = 20 unequally spaced
grid points and with upper bound on asset holdings given by �b = yh. Recall, that we interpolated

the ex post veri�cation value function between grid points also for asset levels.
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Table 2 below summarizes our results. Note that �, the convergence criterion for the ex post

veri�cation procedure was 0:001 in all the calculations. Given that in the (relaxed) optimum the

agent is supposed to receive life-time utility U0; recall that we have de�ned �(U0) as her absolute

ex post deviations. Hence, whenever in the �rst two columns we �nd deviations below 0:001, we

should be able to claim that the �rst-order approach is veri�ed.

Table 2: Ex Post deviations in the di¤erent examples

maxU (�(U)) E [(�(U)] maxU (D(U)) E [(D(U)]

Example 1, N=50 2.5236407 0.2254422 28.20688% 2.613894%

Example 1, N=100 2.1105425 0.5456722 53.45429% 21.38107%

Example 2, N=50 0.0000762 0.0000099 0.00008% 0.00001%

Example 2, N=100 0.0001068 0.0000114 0.00011% 0.00001%

Example 3, N=50 0.0025912 0.0002271 0.10592% 0.00900%

Example 3, N=100 0.1210131 0.0224213 4.28606% 0.72686%

Let�s consider �rst Example 1. For this example, the deviations are always above the tolerance

level, and typically they are sizeable. In the case of our �ner grid, this is true for all initial life-time

utilities. Therefore, in this case, we con�rm the analytical results and reject the validity of the

�rst-order approach with high con�dence.

As expected, the results are dramatically di¤erent for Example 2. Note that both the average

and maximum ex post deviations in this case are always well below �. Therefore, in this case, we

can be completely con�dent about the validity of the �rst-order approach. There is no particular

pattern how the magnitude of the deviations varies with grid size but it should not be surprising,

since all these values are at least a magnitude below the convergence criterion and hence we cannot

di¤erentiate any of them from zero. Finally, recall that in Appendix B, we show the validity of the

�rst-order approach analytically for the case when consumption and life-time utility is unbounded.

The results in this table indicate that the fact that we made life-time utility and consumption

bounded for computational reasons, does not in�uence the validity of the �rst-order approach in

this case.

We believe that the above results have a general message: when the �rst-order approach is

valid approximation errors play smaller role at the ex post veri�cation stage. As we explained in

Section 4.3, if a given approximate solution to the relaxed problem (24) is incentive compatible, then
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conditions (20)-(21) provide su¢ cient characterization of the ex post veri�cation problem. Since,

these conditions are satis�ed exactly (subject to rounding errors) when we calculate the optimal

policies and we use the same degree of approximation in both procedures, we should not expect to

see any signi�cant deviations. The approximation of the ex post veri�cation value function J over

asset levels plays only a small role here, because if the allocation is actually incentive compatible

(due to our normalization) the agent will uniformly choose zero assets along the whole equilibrium

path.

Figure 1 Here

If we consider Example 3, we obtain a more complex picture. First of all, Figure 1 shows for

N = 100 that for certain initial life-time utilities the ex post veri�cation procedure detects small

deviations (below the tolerance level) while for some other initial utilities it detects deviations which

are above the tolerance (from Table 2, we know that the maximum is 0:12 which is about 4:3%

in relative terms).31 This result is in contrast with Example 1, where we �nd sizeable deviations

everywhere over the whole state space (even the minimum deviation is a magnitude above the

tolerance level). This result implies that we cannot justify the �rst-order approach globally for

Example 3.32

>From a practical point of view, these results have the following interesting implication. In

applications, we typically interested in some particular parametrization (usually obtained by cali-

bration) and we can pin down initial life-time utilities by using some economic considerations (e.g.

the outside option of the agent or by a zero surplus condition on the planner/principal). In this

sense, analytical (global) su¢ cient conditions can be unnecessarily restrictive for any particular

application. For example, in our example, if we take the value of autarky (self-insurance) as the

initial utility (U0 = �12:3), then we �nd deviations below the tolerance level, while if we take the

initial life-time utility which makes the planner�s surplus equal to zero (U0 = �3:05) the discrepan-

cies are quite large (see, Figure 1). Therefore whether we have found the true constrained e¢ cient

allocation seems to depend on which initialization makes sense in the particular application.

However, one has to be cautious with this case, because some extra checks might be necessary.

First, the agent may not �nd it pro�table to deviate in an initial state U0, but there might be future

31We have only plotted the value of the ex post discrepancy �(U0) for Examples 1 and 3 because, for both grid
sizes, the deviations for Example 2 were always well below the tolerance level.
32Notice however, that the dynamic programming formulation of the ex post veri�cation problem guarantees that

there are no pro�table deviations along the whole equilibrium path starting from those U0�s where we have not found
sizeable ex post deviations.
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contingencies ((U; x) tuples) with positive probability originating from this node where she would

deviate from the relaxed optimal contract. If these probabilities are relatively small compared to

the gains in those contingencies, we might have that �N (U0) � �:

This does not contradict the fact that the requirement for the validity of the �rst order approach

is only the (period zero) condition UR (� ; y) = U� (U0).33 When we �nd that �N (U0) � � is only

valid for a subset of the domain, one might however say that the �rst-order approach is justi�ed

only in a weak sense. In order to verify the �rst order approach in a stronger sense, one needs to

show that there is no future node which can be reached with positive probability, such that the

agent has positive utility gains for deviating. When we checked this for Example 3 (N = 100)34,

we found that when �N (U0) � �; for some U0; the agent indeed �nds it pro�table to deviate in

some future contingencies which occur with low probability, while for other initial states it was not

the case. Note that this latter result does not mean that there are some levels of life-time utility

which cannot be reached from some initial U0. It rather implies that the combinations of life time

utility and marginal utility of consumption such that the agent has positive gains from deviating

from the relaxed optimal plan are not reached by the agent with positive probability starting from

this initial life-time utility level. Controlling for the absence of pro�table deviations for all possible

continuation histories is a procedure computationally very demanding, implying the possibility of

further numerical errors. In contrast, when �N (U; x) := J(U; x; 0)N � U � � holds for the whole

domain (U; x) 2 fM� as in Example 2, we can always verify the validity of the �rst-order approach

in a stronger sense.

Figure 2 Here

A second property of the ex post veri�cation approach seems to be less attractive. In the case

of Example 3, whenever we use rougher grid size we always �nd smaller deviations for a given U0.

This is apparent when we compare Figure 1 to Figure 2 where we plot absolute ex post deviations

for Examples 1 and 3 for N = 50. Moreover, for the rougher grid, the magnitude of these deviations

can be actually below the tolerance level. This is particularly important for Example 3, where, for

most utility levels, the deviations are below the tolerance level and for the points between �3 and

33As it is shown in Proposition 2, theoretically, sequential incentive compatibility and period zero incentive com-
patibility coincide. However, in the presence of numerical errors, this is not necessarily the case. We can have that
UR (� ; y) � U� (U0) � " and, at the same time at future nodes with small probability, the discrepancy between
URt (� ; y)� U�t

�
U0;h

t
�
is large, and, in particular, it is well above ".

34For computational tractability, we checked this at all the nodes only up to 10 periods into the future.
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�2, where the deviations are signi�cant, they are hardly visible (see in Table 2 that the maximum

is 0:0026). In the case of Example 1, this happens only for high lifetime utilities.35 This implies

that for the rougher grid size, we can �nd an approximation of the relaxed optimal allocation

which is actually incentive feasible for a given U0. However, when we increase the precision of

the approximation of the relaxed problem, we detect some positive deviations for the same U0. In

other words, rougher grids may deliver solutions of the relaxed problem which allow for smaller

or no deviations of the agent. It hence seems to be key to �nd as good approximation of the

relaxed problem as possible. Then, the design of the ex post veri�cation procedure is going to tell

us whether the given approximate solution of the relaxed problem is incentive compatible or not

with high con�dence. However, the best possible approximation of the optimal allocation is always

desirable, because typically the optimal policies are the main object of investigation. In this sense,

the ex post veri�cation procedure does not impose any additional requirement on the precision of

the approximation. Importantly, when we can be reasonably certain that we found a precise enough

approximation of the (relaxed) optimal policies, our results suggest that we can be also reasonably

certain that the ex post veri�cation will give us the right answer about the incentive compatibility

of this allocation.

Finally, this example highlights the fact that the time horizon of a problem can be also important

for the applicability of the �rst-order approach. AP show analytically that for T = 2 the agent�s

problem is concave in the optimal allocation with the speci�cation of Example 3. Here we have

learnt that this result does not generally extend to the in�nite horizon case.

6 Conclusions

Relaxing the assumption of perfect observability and contractability on agents�asset holdings in the

dynamic moral hazard model is a potentially very valuable exercise from both the theoretical and

applied point of view. However, the introduction of hidden assets introduces serious methodological

complications. In this paper we propose a way of solving the methodological problems.

We show that, by using a generalized �rst order condition approach, the model can be solved

within the recursive contracts framework where, together with the promised lifetime utility, we

used the agent�s marginal utility of consumption as an additional endogenous state variable. The

35For low life-time utilities, the ex post deviations tend to be higher with the rougher grid. However, in these cases,
the size of these deviations is several magnitudes above the tolerance level for both grid sizes.
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recursive formulation also permits a parsimonious numerical ex-post veri�cation procedure of the

�rst order approach. We study the performance of our veri�cation procedure in practice by solving

three in�nite horizon examples numerically. We �nd that the procedure never rejects models that

should be trusted while for too coarse grids it might fail to detect the lack of incentive compatibility

of the �true�relaxed optimal contract.

The general model and methodology studied in this paper can be applied to study the qualitative

and quantitative characteristics of optimal policies such as unemployment insurance and welfare

programs. For example, in Ábrahám and Pavoni. (2007b), we study the optimal unemployment

insurance schemes in the presence of hidden asset holdings and displacement risk. We compare

our results with those previously obtained in the literature, where the complication of the model

forced the authors to consider suboptimal transfer schemes (e.g. Hansen and ·Imrohoroglu, 1992;

and Abdulkadiro¼glu et al. 2002).

In an extended version of this paper (Ábrahám and Pavoni, 2006), we study some of the main

qualitative properties of the e¢ cient allocation. We �nd that hidden asset accumulation changes

dramatically the intertemporal properties of the key variables. We focus on the case with additive

separable preferences in c and e. The optimal allocation under hidden savings displays (on average)

increasing consumption and lifetime utility, key properties of the self insurance allocation. This

leads to an intertemporal path of e¤ort (production) and asset holdings that are also strikingly

di¤erent from standard moral hazard models (with observable assets). The intertemporal discrep-

ancies with respect to self insurance are also important but essentially of quantitative nature. The

source of the main discrepancy is consumption smoothing. By decreasing the level of idiosyncratic

uncertainty the agent faces, the planner reduces the precautionary motive for savings, and makes

the intertemporal path of consumption �atter than that in self insurance. This implies a relatively

�at intertemporal path of e¤ort and asset holdings as well. In this sense, the forces operating in

the hidden asset moral hazard economy place the optimal intertemporal allocation of consumption

and e¤ort in-between self insurance and pure moral hazard.

The framework we develop in this paper can be fruitfully used to study the optimal (private)

contract in several other moral hazard problems where hidden savings may be relevant (e.g., long-

term employment and compensation contracts, corporate loans and managerial contracts), in a

systematic way. More generally, the ex post veri�cation procedure we propose in this paper could

be easily applied to a richer set of models. For example, in the recursive formulation of Fernandes

and Phelan (2000) and Doepke and Townsend (2006), the set of incentive compatibility constraints
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easily becomes very large. The computational burden could be reduced signi�cantly by imposing

only a carefully chosen (and economically guided) subset of the constraints, and verify ex post

whether the obtained e¢ cient allocation is in fact incentive compatible. Another application could

be to Ramsey optimal taxation models, when it is di¢ cult to guarantee global concavity of the

household�s program.36 In this case, our ex post veri�cation procedure would be equivalent to

solving the relevant competitive equilibrium taking the tax rate processes as given.

36We have situations in mind where there is a discrete labor market participation decision, or where the planner
imposes income tax schemes with some degree of regressivity.
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Appendix A: Proofs

Proof of Proposition 1 In what follows, without loss of generality we will consider contracts where

bt (h
t) � 0: Notice that to each contract W; we can associate the states as follows:

u0c
�
ct
�
ht
�
; et(h

t)
�
= xt(h

t) (26)

Ut

�
W;ht

�
= Ut(h

t): (27)

>From the de�nition of lifetime utility Ut (W;ht) ; (27) satisfy the following version of (9)

Ut(h
t) = u

�
ct
�
ht
�
; et(h

t)
�
+ �

X
i

pi
�
et
�
ht
��
Ut+1

�
ht; yi

�
; (28)

and - by construction - (26) guarantees the sequential version of (12)

u0c
�
ct
�
ht
�
; et(h

t)
�
� xt(ht): (29)

Moreover, if the resulting plan of states is generated by an incentive feasible contract W 2 
FOC then by
de�nition ct (ht) � 0 and et (ht) 2 E and it must satisfy the following sequential version of (10), (11) and

the domain restriction

�u0e
�
ct
�
ht
�
; et(h

t)
�
= �

X
i

p0i
�
et
�
ht
��
Ut+1

�
ht; yi

�
(30)

u0c
�
ct
�
ht
�
; et(h

t)
�
� �(1 + r)

X
i

pi(et(h
t))u0c

�
ct+1(h

t; yi); et+1(h
t; yi)

�
(31)�

xt(h
t);Ut(h

t)
�

2 M� (32)

The domain restriction is satis�ed since wheneverW 2 
FOC ; the contract in period zero generates incentive

compatible continuations W n yi:
Denote by S = fxt(ht); Ut(h

t)g1t=1 the contingent plan of states and byM� the set of contingent plan

of states and contracts that satisfy all such constraints, i.e.

M� =
�
(S;W) : for all ht ct

�
ht
�
� 0; et

�
ht
�
2 E; (28)-(29)-(30)-(31)-(32)

	
:

We have just shown that for eachW 2 
FOC we can �nd a pair (S;W)2M�:We now want to show the

converse. Notice �rst that from the de�nition of M�; for each continuation Ut(h
t) utility in (S;W)2M�

there is an incentive contract W such that Ut (W;ht) = Ut(h
t): As a consequence, (28) together with the

domain restriction guarantee that we generate well de�ned values for the agent. Moreover, (30) together
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with the domain restriction implies that e¤ort incentive compatibility (4) is satis�ed at each node. In order

to show that (11) implies that the saving incentive compatibility is satis�ed we need to show that (29) and

(31) together guarantee (5). This is the case, because for any two consecutive periods at node ht we have

u0c
�
ct
�
ht
�
; et
�
ht
��

� � (1 + r)
X
i

pi
�
et
�
ht
��
xt+1

�
ht; yi

�
� � (1 + r)

X
i

pi
�
et
�
ht
��
u0c
�
ct+1

�
ht; yi

�
; et+1

�
ht; yi

��
which is just (5). By the above argument, problem (6) can be equivalently written as

V �foc(U0) = sup
(W;S)2M�

X
i

p0i�1(W; yi)

s.t.
X
i

p0iU1(W; yi) � U0:

It is now a straightforward application of the Bellman principle to show that the true value of the problem

V �foc can be decomposed as follows:

V �foc(U0) = sup
(xi;Ui)2M�

X
i

p0iW
�
foc(y

i; xi; U i) (33)

s.t. :
X
i

p0iU
i � U0;

where, for
�
xi; U i

�
2M� and yi 2 Y; we have

W �
foc(y

i; xi; U i) = sup
(W;S) n yi 2M�

�1(W; yi)

s.t. U1(y
i) = U i; x1(y

i) = xi:

The proof of this last statement requires to verify for the last problem the properties for the sup oper-

ator which de�nes the original function V �foc(U0): To show that it is an upper bound notice that since

any pair
�
�W; �S

�
2 M� such that

P
i p
0
iU1( �W; yi) � U0 induces continuations

�
�xi; �U i

�
2 M�; it

follows that �U1(y
i) = �U i; �x1(y

i) = �xi and that W �
foc(y

i; �xi; �U i) � �1( �W; yi): We must hence

have that sup(xi;U i)2M�
P
i p
0
iW

�
foc(y

i; xi; U i) �
P
i p
0
iW

�
foc(y

i; �xi; �U i) �
P
i p
0
i�1( �W; yi) for all such

pairs. We now want to show that it is the least upper bound. Take any "=2 > 0: By the de�ni-

tion of sup in (33) there exists a set of pairs
�
�xi; �U i

�
2 M� i = 1; 2; :::N such that

P
i p
0
i
�U i �

U0 and sup(xi;U i)2M�
P
i p
0
iW

�
foc(y

i; xi; U i) <
P
i p
0
iW

�
foc(y

i; �xi; �U i) + "=2. Moreover, for any i and�
�xi; �U i

�
2 M� there exists a pair

�
�W; �S

�
n yi 2 M� such that �U1(y

i) = �U i; �x1(y
i) = �xi and
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W �
foc(y

i; �xi; �U i) < �1( �W; yi) + "=2. All this implies that for any " > 0 there exists
�
�W; �S

�
2 M� such

that
P
i p
0
iU1( �W; yi) � U0 and sup(xi;U i)2M�

P
i p
0
iW

�
foc(y

i; xi; U i) <
P
i p
0
i�1( �W; yi) + ":

Following a line of proof similar to that we used above and using again standard arguments (e.g., using

a direct application of Theorem 4.2 of SLP) it is easy to show that the �interim�value function W �
foc solves

the functional equation (8)-(12). The key is to realize that the restrictionM� can be equivalently written

recursively by using the following state dependent correspondence

� (x;U) =
n�
c; e;

�
U i; xi

	N
i=1

�
: c � 0; e 2 E;

�
U i; xi

�
2M� for all i (9)-(10)-(11)-(12)

o
which is straightforward to verify directly from the de�nition ofM�.

The converse is standard. When V is bounded we can use Theorem 4.3 of SLP to show that V =W �
foc.

In this case, since M� is compact, we can apply Theorem 4.6 of SLP and prove that V is continuous. Notice

that we can use the theorem of the maximum (e.g. see Theorem 3.6 in SLP) despite that the restriction

on c � 0 is unbounded above. This is so since the objective function is coercive in c and this allow us to

restrict the choice of c to compact sets only.37 The maximum theorem hence guarantees that the policy

correspondence is non empty for any (y; x; U) 2 Y �M�, and existence of an optimal plan can be shown by

repeatedly applying (any selection of) the policy. Q.E.D.

Proof of Proposition 2 Consider the case where p0 is degenerate at y; and let U0 the utility to be

delivered to the agent in period zero. We denote by W�
foc (U0) the relaxed optimal contract (which exists

by Proposition 1), and by V � (U0; y) the value of the true optimal (fully incentive compatible) contract

associated to problem (3). In terms of the proposition, U� (U0) = UT
1

�
W�
foc (U0) ; y

�
� U0: Clearly if

UR0 (� ;y) > U� (U0) there exists a feasible deviation hence W�
foc (U0) cannot be optimal since it is not

incentive feasible, i.e. W�
foc (U0) =2 
.

To show the converse, notice �rst that - since 
 � 
FOC - �T
1

�
W�
foc (U0) ; y

�
� V � (U0; y) : Hence,

whenever W�
foc (U0) 2 
 then W�

foc (U0) is optimal. Moreover, since obeying to the proposed contract is

feasible for the agent we always have UR0 (� ;y) � U� (U0) : We hence have to show that UR0 (� ;y) = U� (U0)

implies that W�
foc (U0) 2 
; i.e. it is sequentially incentive compatible.

37Since V is bounded we have coercivity: limc!1 f (c) = y � c+ 1
1+r

P
pi(e)V

�
yi; U i; xi

�
= �1:

Coercivity and continuity guarantee that the objective function f has compact upper sections:

U (�) = fc � 0 : f (c) � �g ;

and we can without loss of generality focus on the compact sets U (�) for c:
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If at node ht; W �
foc (U0) is not incentive compatible, there must be a feasible deviation strategy �� such

that UTt

�
� �foc; ��;h

t
�
> UTt

�
� �foc;�

�
foc;h

t
�
: Suppose that we construct a new plan ���foc for the agent as

follows. Assume the agent behaves as suggested by the contract both before period t and after period t in all

nodes but ht; while at node ht he follows plan ��. This plan is clearly available to him in the remaximization

problem. It must hence be that UR0 (� ; y) � UT1

�
� �foc; ��

�
foc;y

�
> U� (U0) where the last inequality is

due to the assumption that � > 0 and the full support assumption, which implies that ht is reached with

positive probability. Q.E.D.

Appendix B: The Exponential Utility Example

Closed form for the planner�s problem Consider problem (8)-(12), with N = 2 and T = 1;

where the utility function and the probability of the high state are as follows:

u(c; e) = � exp f�(c� e)g and ph (e) = p(e) = 1� exp f��eg ; � > 0: (34)

We will furthermore assume that the discount factor is not too low, that is � > 1
1+� : Note that in our

simulations we set � = :99 > 1
1+� =

1
1:02

�= :98: In what follows we will show that: When facing the

optimal contract in the re-maximization stage, the agent optimally decides to follow the planner

original recommendations. In other terms, for this speci�cation of the model we are entitled to use

the �rst order approach when solving for the optimal contract.

The proof of the claim will be done in several steps. First, we will be able to derive a recursive closed

form for the planner�s problem. This will provide us with an analytical expression for the optimal policy,

which will in turn allow us to obtain a closed form for the agent�s re-maximization problem as well. The

analytical expression for the agent�s re-maximization problem will take a recursive form along the lines of

our J function in Section 4.3.

Several things are peculiar of this parametric formulation of the problem. First, we can allow c to

become negative.38 Second, u0c(c; e) = �u0e(c; e) = �u(c; e) = exp f�(c� e)g : The Euler equation (for

�(1 + r) = 1) together with the law of iterated expectations imply xt = u0c(ct; et) = Et [u
0
c(ct+k; et+k)]

8k � 1. The life-time utility of the agent is then given by

Ut = Et

" 1X
k=0

�tu(ct+k; et+k)

#
=

1X
k=0

�tEtu
0
c(ct+k; et+k) = �

u0c(ct; et)

(1� �) = �
xt

(1� �) :

38Notice however that in order for pi (e) i = h; l to be probabilities we require e � 0.
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That is, we must have u = (1� �)U and x = �u (see also Werning, 2002). This allows us to de�ne a new

function V̂ (U; y) := V (U;� (1� �)U; y) that solves the following Bellman (functional) equation:

V̂ (U; y) = sup
e�0;(u;U i)�0

y � e+ ln (� (1� �)U) + �
X
i

pi(e)V̂
�
U i; yi

�
s:t: u = (1� �)U ;

u =
X
i

pi(e) (1� �)U i; (�)

�u = �
X
i

p0i(e)U
i; (�)

U = u+ �
X
i

pi(e)U
i: (�)

It is easy to see that the �rst and the last constraint impose the same restrictions on the choices.39 We

can hence simplify the expression for the functional equation by eliminating the variable u; its restrictions

and constraint (�), so that to obtain the following formulation of the value function V̂ :

V̂ (U; y) = sup
e2E;U i�0

y � e+ ln (� (1� �)U) + �
X
i

pi(e)V̂
�
U i; yi

�
(35)

s:t:

� (1� �)U = �
X
i

p0i(e)U
i (�)

U =
X
i

pi(e)U
i: (�)

We guess that the value function takes the following form

V̂ (U; y) = A (y) +
1

1� � ln(�U);

where, obviously, A (y) = V̂ (�1; y) : In order to verify that the above expression represents the correct

value function, suppose �rst that we are at U0 = �1: Let
�
�et
�
ht
�
; �ct
�
ht
�	1
t=0

be the optimal plan of e¤ort

and consumption for a contract delivering U0 = �1 to the agent. Now, assume that we increase utility from

�1 to U > �1 by keeping exactly the same e¤ort and increasing the consumption of the agent by � in each

39Given u = (1� �)U; we can rewrite (�) so that it takes exactly the same form as (�):
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history. It is easy to see that such plan is incentive compatible. In order to obtain � note that

�1 = E0

" 1X
t=1

�t�1 � exp f��ct + �etg
#
:

Hence � is de�ned by the following relationship:

U = E0

" 1X
t=1

�t�1 � exp f�(�ct + �) + �etg
#
= exp f��gE0

" 1X
t=1

�t�1 � exp f��ct + �etg
#
:

That is � exp f��g = U and therefore � = � log(�U) > 0. This implies that the cost of this perturbation

for the planner is � log(�U)1�� > 0, which implies

V̂ (U; y) � V̂ (�1; y) + 1

1� � ln (�U) : (36)

Now, if we use the same argument to reach utility level U0 = �1 from an initial U < �1; we have from

(36) that

V̂ (�1; y) � V̂ (U; y) + 1

1� � ln
�
� 1
U

�
= V̂ (U; y)� 1

1� � ln (�U) :

Since U was chosen arbitrarily, both (36) and the above inequalities are true for all U: Combining the two

expressions we have the desired expression

V̂ (U; y) = V̂ (�1; y) + 1

1� � ln (�U) :

Interestingly, the function is very similar to that obtained in the literature for the moral hazard model

with no access to the credit market (e.g., Green, 1987). One can however show that the latter di¤ers from

ours.40 More precisely, note that for a given U;without loss of generality, we can describe the optimal policies

U
�
U; yi

�
as

U
�
U; yi

�
= 
iU;

where 
i � 0 are multiplicative constants.

40Details are available upon request.
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Note now that both constraints of the problem can be written as

X
i

pi (e) 

i = 1 and

�
�0
�

X
i

p0i(e)

i = �1� �

�
;

�
�0
�

that is, they do not depend on U: By combining these two conditions with our speci�cation for p in (34),

one can easily verify41 that since 
h = 1� 1��
�� we need � > 1

1+� in order to guarantee 

h > 0:42

By using the properties of the logarithm it is easy to see that the planner objective function is additive

separable in U on the one hand, and 
i i = 1; :::N and e are independent of U on the other hand. This

implies that the whole constrained maximization, hence its solution, does not depend on U .43 We can �nally

show that the constant A (y) is implicitly de�ned by

A (y) = V̂ (�1; y) = y � e� + ln (1� �) + � �A+ 1

1� �
X
i

pi(e
�) ln

�

i
�
;

where �A =
P
i pi(e

�)A
�
yi
�
; and (with some abuse of notation) we use 
i for their optimal values. For the

optimal value of e¤ort, we use e�, and we assume that the parameters of the model (in particular the levels

of income) are such that e� > 0:

The Agent�s Re-Maximization Problem: A Closed Form Consider now the problem faced by

the agent in the ex-post re-maximization stage. We will show that at this stage the agent�s unique optimal

decision is to follow the planner recommendations on e¤ort and asset holdings. We will use a recursive

approach, which is the analytical analogous to our veri�cation procedure of Section 3.3.

41The incentive compatibility constraint implies

� exp f��e�g
�

h � 
l

�
= �1� �

�

and X
i

pi(e)

i = 
h � exp f��eg

�

h � 
l

�
= 1:

42This is the only purpose for our initial assumption on �: This parametric requirement is due to the
particular timing we use throughout the paper. In particular, such restriction is not required when a timing
à la Werning (2002) is adopted instead.
43The intuition is that the absence of wealth e¤ects implies that the incentive structure is exactly the same

for any level of promised utility, up to a scaling variable given by U .
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The guess for the agent�s value function when facing the optimal contract is (recall that 1
1+r = �) :

J (U; b) = U exp f� (1� �) bg ;

where b is the level of assets and U is the lifetime utility according to the optimal contract. Note that - as

we expect - for b = 0 we have J (U; 0) = U . To verify our guess, notice that plugging in our policies for the

optimal contract we derived above, the value function solves

J (U; b) = max
b0;e

� exp f�c� (U) + eg exp
�
�b+ �b0

	
+ �

X
i

pi(e)

iU exp

�
� (1� �) b0

	
;

were c� (U) is the net transfer the agent receives from the planner when the history of shocks implies state

U . First of all, we need to verify that our guess for J is correct. We will do it by using as candidate policies

the solution to the �rst order conditions with respect to b0 and e of the agent�s problem. We will then show

that the agent�s problem is globally concave so that the choices for e and b0 are the (unique) optimal ones

for the agent. The proof becomes complete by showing that the recommendations of the planner are the

ones that solve the �rst order conditions for the agent.

The �rst order condition with respect to b0 is

�� exp
�
�c� (U) + e� b+ �b0

	
� � (1� �)

X
i

pi(e)

iU exp

�
� (1� �) b0

	
= 0: (37)

The �rst order condition with respect to e is as follows

� exp f�c� (U) + eg exp
�
�b+ �b0

	
+ �

X
i

p0i(e)

iU exp

�
� (1� �) b0

	
= 0: (38)

We now show that the optimal e¤ort recommendation of the planner for e� and b0 = b are solving the above

conditions, when the agent faces the optimal contract.44 Since the planner recommendation in the optimal

contract is et � e� and b�t � 0 we will be done since the agent starts with zero assets in period zero.

If we use (�0) :
P
i pi(e

�)
i = 1 and the � exp f�c� (U) + e�g = (1� �)U condition (37) evaluated

44The intuition for this result is as follows. The absence of wealth e¤ects implies that for any level of
assets b; the agent will supply exactly the same level of e¤ort and will consume the annuity of her �nancial
wealth (1� �) b; hence keeping b constant. This additional consumption will increase the agent�s utility by
exp f� (1� �) bg every period in addition to the average utility delivered by the contract given by (1� �)U
in each period.
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at e = e� becomes

� (1� �)U exp
�
�b� �b0

	
� � (1� �)U exp

�
� (1� �) b0

	
= 0;

which - for � 2 (0; 1) - can be satis�ed only when b0 = b, since U 6= 0: Similarly, the �rst order condition

for e evaluated at b0 = b and e = e� becomes the identity

(1� �)U exp f� (1� �) bg � (1� �)U exp f� (1� �) bg = 0;

where we used again the fact � exp f�c� (U) + e�g = (1� �)U; and condition (�0):
P
i p
0
i(e

�)
i =

�1��
� : This condition is not surprisingly the same as the �rst order condition for b0: It is now easy to verify,

by plugging our optimal solutions into the Bellman equation which de�nes J; that our guess is correct.

Finally, one can use known veri�cation theorems to show that J is the true value function for the agent

problem.45

Recall that we are entitled to use the �rst order conditions to derive the policy functions only when the

maximization problem de�ning the Bellman functional equation is concave. What is hence left to demonstrate

is the concavity of the agent�s problem for all U and b. Global concavity entitles us to obtain the optimal

policies for the agent�s problem by only looking at �rst order conditions. Since we have shown that the

planner recommendations are solving the agent�s �rst order conditions in the re-maximization problem, global

concavity will imply that the use of the �rst order conditions of the agent in place of the incentive constraint

in the planner�s problem of the previous section was actually justi�ed as the planner�s recommendations

according to the relaxed problem are optimal for the agent when facing the optimal (relaxed) contract.

We now compute the Hessian matrix H (e; b0; b) : From (37), the second derivative with respect to b0 is

Q
�
e; b0; b

�
:= ��2 exp f�c� (U) + eg exp

�
�b� �b0

	
+ � (1� �)2

X
i

pi(e)

iU exp

�
� (1� �) b0

	
:

Notice that we can write

� exp f�c� (U) + eg = (1� �)U exp fe� e�g ; (39)

soQ (e; b0; b) becomes �2 (1� �)U exp fe� e�g exp f�b� �b0g+� (1� �)2 U exp f� (1� �) b0g
P
i pi(e)


i <

0: The last inequality is obtained from the observations that U < 0 and 
i � 0; and the non-negativity of

45Further details can be made available upon request.
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the exponential function.

Now, since the problem is smooth, both cross derivatives can be obtained - for example - by taking the

derivative of (37) with respect to e. We hence have

C
�
e; b0; b

�
: = � exp f�c� (U) + eg exp

�
�b� �b0

	
� � (1� �)

X
i

p0i(e)

iU exp

�
� (1� �) b0

	
= �� (1� �)U exp fe� e�g exp

�
�b� �b0

	
� � (1� �)U exp

�
� (1� �) b0

	X
i

p0i(e)

i;

where we have used (39) to show the equality in the second line.

Finally from (38), the second order condition with respect to e is as follows

L(e; b0; b) : = � exp f�c� (U) + eg exp
�
�b� �b0

	
+ �

X
i

p00i (e)

iU exp

�
� (1� �) b0

	
= (1� �)U exp fe� e�g exp

�
�b� �b0

	
+ �U exp

�
� (1� �) b0

	X
i

p00i (e)

i;

where we have again used (39). Recall that from the incentive compatibility, for our parametrized model

with two income levels we obtain 
l > 
h, we have for all e

X
i

pi(e)

i = 
h � exp f��eg

�

h � 
l

�
> 0; (40)

and X
i

p00i (e)

i = ��2 exp f��eg

�

h � 
l

�
= ��

X
i

p0i(e)

i: (41)

Since U < 0 the last conditions implies
P
i p
00
i (e)


i > 0, hence L(e; b0; b) < 0 for all e; b; and b0.

We have a 2� 2 Hessian matrix. Recall that a su¢ cient condition for a 2� 2 symmetric matrix to be

negative de�nite is that it has positive determinant and a negative trace. Since both elements of the trace

are negative we only need to show that the Hessian has a positive determinant. The determinant for H is:

det
�
H
�
e; b0; b

��
= Q

�
e; b0; b

�
L(e; b0; b)� C

�
e; b0; b

�
C
�
e; b0; b

�
:

Notice �rst that in both Q;L and C we can collect U: Since U2 > 0; This implies that we can compute

det
�
H(e;b0;b)
U2

�
:= det

�
Ĥ
�
instead, where we have omitted the arguments e; b; b0. Moreover, we can
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simplify the analysis further by denoting

� : = (1� �) exp fe� e�g exp
�
�b� �b0

	
> 0

� : = � exp
�
� (1� �) b0

	
> 0;

X : = � exp f��eg
�

h � 
l

�
> 0:

Using these simpli�cations and (41), we have

det
�
Ĥ
�
=

 
�2� + (1� �)2 �

X
i

pi(e)

i

!�
� + �2�X

�
� (��� � (1� �) �X)2 :

Using now (40), we have
P
i pi(e)


i > X; so, since � + �2�X > 0 we have

det
�
Ĥ
�
>
�
�2� + (1� �)2 �X

� �
� + �2�X

�
� (��� � (1� �) �X)2 :

It is now easy to see that since � 2 (0; 1) and �; X > 0, we have

�
�2� + (1� �)2 �X

� �
� + �2�X

�
> �2�2 + �2 (1� �)2 �2X2 > (��� � (1� �) �X)2

hence det
�
Ĥ
�
> 0 as desired. Q.E.D.
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Figure 1: Ex Post Deviations (�(U0)) for Examples 1 and 3

(N=100)
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Figure 2: Ex Post Deviations (�(U0)) for Examples 1 and 3 (N=50)
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