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During self-generated movement it is postulated that an effer-
ence copy of the descending motor command, in conjunction
with an internal model of both the motor system and environ-
ment, enables us to predict the consequences of our own
actions (von Helmholtz, 1867; Sperry, 1950; von Holst, 1954;
Wolpert, 1997). Such a prediction is evident in the precise
anticipatory modulation of grip force seen when one hand
pushes on an object gripped in the other hand (Johansson and
Westling, 1984; Flanagan and Wing, 1993). Here we show that
self-generation is not in itself sufficient for such a prediction. We
used two robots to simulate virtual objects held in one hand and
acted on by the other. Precise predictive grip force modulation

of the restraining hand was highly dependent on the sensory
feedback to the hand producing the load. The results show that
predictive modulation requires not only that the movement is
self-generated, but also that the efference copy and sensory
feedback are consistent with a specific context; in this case, the
manipulation of a single object. We propose a novel computa-
tional mechanism whereby the CNS uses multiple internal mod-
els, each corresponding to a different sensorimotor context, to
estimate the probability that the motor system is acting within
each context.
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The ability to predict the consequences of our own actions using
an internal model of both the motor system and the external
world has emerged as an important theoretical concept in motor
control (Kawato et al., 1987; Jordan and Rumelhart, 1992; Jor-
dan, 1995; Wolpert et al., 1995; Miall and Wolpert, 1996; Wolpert,
1997). Such models are known as forward models because they
capture the forward or causal relationship between actions, as
signaled by efference copy (Sperry, 1950; von Holst, 1954; Jean-
nerod et al., 1979), and outcomes. Such forward models may play
a fundamental role in coordinative behavior. For example, to
prevent an object held in a precision grip from slipping, sufficient
grip force must be generated to counteract the load force exerted
by the object. Despite sensory feedback delays associated with the
detection of load force by the fingertips (Johansson and Westling,
1984), under both discrete (Johansson and Westling, 1984; Flana-
gan and Wing, 1993) and continuous (Flanagan and Wing, 1993,
1995) self-generated movement and when pulling on fixed objects
(Johansson et al., 1992b), grip force is modulated in parallel with
load force. Conversely, when the motion of the object is gener-
ated externally, grip force lags behind load force (Cole and Abbs,
1988; Johansson et al., 1992b). This suggests that for self-
produced movements the CNS may use the motor command, in
conjunction with internal models of both the arm and the object,
to anticipate the resulting load force and thereby adjust grip force
appropriately (Flanagan and Wing, 1997).

To assess the generality of such a predictive mechanism, we
have examined the relationship between grip and load force when

a sinusoidal load is applied to an object held in a fixed location by
the right hand. The first experiment was designed to test the
hypothesis that predictive grip force modulation will be observed
provided the load force is self-generated. We examined condi-
tions in which the load force was generated by motion of either
the right or left hand. When the left hand generated the motion,
it did so either directly on the object or indirectly by causing a
robot, under joystick control, to exert the force on the object. We
also examined a condition in which the sinusoidal load force was
externally generated by a robot. Precise predictive grip force
modulation was seen when either the right or left hand generated
the load force directly. However, when the left hand produced the
load force indirectly, via the joystick, there was no prediction. A
significant lag between grip and load force was seen, similar to
when the load was generated externally.

To examine the reasons for this lack of prediction, a second
experiment was performed in which we examined the conditions
necessary for prediction when the left hand generated the load
force on the right hand by acting through a virtual object. Using
the virtual object, simulated by two robots, we could dissociate
the forces acting on each hand. The force acting on the active left
hand relative to the right hand was parametrically varied. This
allowed us to test the hypothesis that to use the motion of the left
hand to generate precise predictive grip force modulation in the
right hand, the hands must act through a physically realizable
object. At one level of the force feedback parameter, the force
feedback to each hand was equal and opposite, thereby simulating
a normal physical object between the hands. Precise prediction
was seen under this condition but smoothly deteriorated as the
force feedback deviated from that consistent with a real, rigid
object held between the hands.

MATERIALS AND METHODS
A total of 14 right-handed subjects (age range, 21–30 years), who were
naive to the issues involved in the research, gave their informed consent
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and participated in the study. Nine subjects (six male, three female)
participated in the first experiment. Nine subjects (six male, three fe-
male) participated in the second experiment, including four of the
subjects who had participated in the first experiment. The experiments
were performed 1 month apart.

Apparatus. Subjects sat at a table and gripped a cylindrical object
(radius, 1 cm; width, 4 cm) with the tips of their right thumb and index
finger (Fig. 1). The forearm was supported on the table and stabilized
using velcro straps. The hand was further stabilized by requiring subjects
to grasp a vertically oriented aluminum rod (diameter, 2 cm) with their
three ulnar fingers. The mass of the gripped object (50 gm) was centered
midway between the two grip surfaces, which were covered with sand-
paper (No. 240). A six-axis force transducer (Nano ATI) embedded
within the object allowed the translational forces (and torques) to be
recorded with an accuracy of 0.05 N, including cross-talk. The forces and
torques were sampled at 250 Hz by a CED 1401plus data acquisition
system. The data were stored for later analysis and were also used on-line
during the experiments. Grip force was measured perpendicular to the
plane of the grip surface and load force tangential to this plane.

Procedure. In all experiments the target and actual load force acting on
the right hand were displayed to the subject as a continuous scrolling
trace on an oscilloscope. The target load force acted as a guide to the
subjects’ movements; the subject was instructed to produce a load force
that corresponded to the frequency and amplitude of the sinusoidal
target waveform. For clarity, the load force produced by the subject was
displayed on the oscilloscope below the target waveform. Two horizontal
lines indicated the desired load amplitude.

In conditions 1 and 4 of Experiment 1 and in Experiment 2 the object
was attached at its midpoint to the end of a lightweight, robotic manip-
ulator (Phantom Haptic Interface, Sensable Devices, Cambridge, MA).
The robot could generate vertical forces up to 10 N.

Experiment 1. Subjects performed trials of 14 sec in which they were
required to produce a load force that matched the target load force. The
target load force was a sinusoid with offset of 3.5 N and amplitude of 3 N.
The target load force, therefore, varied between 0.5 and 6.5 N, and
always acted in an upward direction on the subjects’ right hand. In all
conditions, subjects were instructed to hold onto the object with their
right hand and maintain it in a constant position. For each trial the target
frequency was fixed. Six different target frequencies equally spaced
between 0.5 and 3.5 Hz were each repeated five times in pseudorandom
order. To prevent the analysis of initial transients, 10 sec of data were
recorded after the first 4 sec of each trial. Subjects practiced each
condition until they could perform the task adequately. This took be-
tween 30 and 60 sec.

In condition 1 (externally produced; robot, Fig. 1), the object was
attached to the robot, which was programmed to produce the target
waveform. Subjects gripped the object with their right hand and were
required to restrain the object, and the target and actual load force were
displayed on the oscilloscope. In this condition the subject did not need
to track the load force because this was generated automatically by the
robot. In condition 2 (self-produced; right hand), subjects gripped the
object, which was fixed in a clamp, with their right hand. They were
required to pull down on the object to track the target load waveform so
that the force acting on their right hand was in an upward direction. In
condition 3 (self-produced; left hand), subjects were required to push the
object upward from underneath with their left index finger to match the
target load waveform. Subjects were specifically instructed to use their
right hand to restrain the object only, and to avoid using it to push down
on the object to match the target waveform. In condition 4 (self-
produced; joystick), the object was attached to the robot, and the forces
produced by the robot were determined by the position of a low-friction
joystick held in the left hand. The force generated by the robot was
linearly related to the angular position of the joystick with a movement of
4° (4 mm) producing 1 N. Subjects were required to move the joystick in
the sagittal plane to match the target waveform and were informed that
movements of the joystick caused the force exerted on their right hand.
The order of the conditions was counterbalanced between subjects.

Experiment 2: virtual objects. The object in the right hand was attached
to the robot, and subjects held a second object in a precision grip with the
thumb and index finger of their left hand. This object was held directly
above the first and was attached to a second robotic device (Fig. 1).
Subjects were required to move the object held in their left hand
vertically to produce the load force on the object held in their right hand.
The load force acting on the right hand was the same for all trials.

Vertical forces at time t into the trial were generated independently on
both the right hand Ft

r and the left hand Ft
l. For all trials the relationship

between movement of the left hand and the force generated on the right
object was simulated, by the robot, as a stiff spring between the objects.
The force was given by Ft

r 5 K (Lt 2 Rt 2 D), where Lt and Rt were the
vertical positions of the left and right object, respectively, at time t, K was
a fixed spring constant of 20 N cm 21, and D was the initial vertical
distance between the objects at the start of the trial. Hence, at the start
of each trial there was no force acting on the right hand (as L0 2 R0 2
D 5 0), and an upward movement of the left hand caused an upward
force on the object in the right hand. The force acting on the left hand
depended on a feedback gain parameter g, which could be varied between
trials such that Ft

l 5 2gK (Lt 2 Rt 2 D). When g 5 0, the left hand
received no force feedback, whereas when g 5 1, the force feedback to

Figure 1. Schematic diagram of the
apparatus used in each condition of Ex-
periment 1 and in Experiment 2.
Experiment 1: In all conditions subjects
held a cylindrical object in their right
hand. In condition 1 (Robot), the object
was attached to the robot, which pro-
duced the load force on the object. In
condition 2 (self-produced; right hand),
subjects were required to pull down on
the object, which was fixed in a clamp, to
track the target load waveform. In con-
dition 3 (self-produced; left hand),
subjects were required to push the ob-
ject upward from underneath with their
left index finger to match the target load
waveform. In condition 4 (self-produced;
joystick), the object was attached to the
robot and the forces produced by the
robot were determined by the position
of a joystick moved by the left hand.
Experiment 2: An object attached to a
second robotic device was held in the
left hand. The motion of the left hand
determined the load force on the object
in the right hand. The relationship be-
tween the force acting on the left and
right objects was parametrically varied
between trials. See text for details.
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the left hand was equal and opposite to that exerted on the right. These
conditions are similar, in terms of haptic feedback to the left hand, to
conditions 4 (self-produced; joystick) and 3 (self-produced; left hand) of
Experiment 1, respectively.

For each block of trials, the value of the feedback gain parameter g was
fixed at one of seven values equally spaced between 0 and 1.5. Within
each block, for gains of 0 and 1, six different target frequencies equally
spaced between 0.5 and 3.5 Hz were used as in Experiment 1. For each
of the other gain values (0.25, 0.5, 0.75, 1.25, and 1.5), three different
target frequencies (1.1, 2.3, and 3.5 Hz) were used. Each frequency was
presented for 10 sec and repeated five times in pseudorandom order; data
were recorded after 2 sec in each trial. Subjects were told that load on the
object held in their right hand was produced by the movements of their
left hand. They were instructed to move the object in their left hand to
match the target waveform whose amplitude was 2 N with offset 2.3 N.
The load force therefore varied between 0.3 and 4.3 N and was always in
an upward direction. Subjects practiced the task until they could perform
it adequately. This took between 1 and 2 min.

Data analysis. Load and grip force were filtered using a Butterworth
5th order, zero phase lag, low-pass filter with a 10 Hz cut-off. To analyze
the relationship between these two time series, cross-spectral analysis
was performed using Welch’s averaged periodogram method (window
width, 512 points with a 50% overlap; Matlab signal analysis toolbox).

Because the time series were predominantly sinusoidal, we calculated
five measures at the dominant load frequency. To quantify amplitude
relationships between the two signals, independent of the phase relation-
ship, two measures were used. The baseline gain was taken as the ratio of
the mean grip and load force (grip/load). The relative degree of modu-
lation was quantified by the amplitude gain taken as the ratio between the
amplitude of the grip and load force modulation. To quantify the relative
temporal relationships between the grip and load force series, three
measures were made. The first two, phase and lag, quantify the temporal
shift required to align the two series. Phase is expressed in degrees and
was taken to lie between 2270 and 190°, with negative values corre-
sponding to grip lagging behind load. This split was chosen at a point
where there were very few data points; based on all the data, only 0.9%
lay within a 45° band of 190°. The lag represents the same shift in
milliseconds (and should not be confused with phase lag that is used to
measure phase delays in degrees), and again a negative value indicates
grip lagging behind load. Finally, the coherence of the two signals was
used as a measure of the variability of the phase relationship between
grip and load force. Coherence values always lie between 0 and 1. If the
phase difference is constant over the entire trial, coherence is 1, whereas
fluctuations in the phase difference results in coherence values lower than 1.

For each condition in Experiment 1 and for the g 5 0 and g 5 1
conditions of Experiment 2, the five measures were averaged across all
trials and subjects, binned by frequency, and plotted with SE bars. Actual
rather than target frequency of tracking was used when calculating
statistics and plotting graphs.

In Experiment 1, average values across frequencies and linear regres-
sion as a function of load force frequency were used to test the influence
of frequency and condition on the five measures. To test the influence of
frequency on a particular measure and condition, separate linear regres-
sions were performed for each of the nine subjects, and paired t tests
were performed across the slope estimates. To compare the parameters
between conditions, paired t tests, by subject, were performed on these
parameters. To test the mean levels across all frequencies, paired t tests
were performed for each subject mean within a condition and between
conditions.

In Experiment 2, a repeated-measures ANOVA was performed on
each measure as a function of the gain g (as categorical variables). A
polynomial contrast was used to determine whether there were significant
linear, quadratic, or higher order trends across the gains g. The highest
order polynomial for which this was true was used to fit the ensemble
data for individual and combined frequencies. For all plots for which a
quadratic regression significantly fitted the data, the g value at which the
quadratic peaked was calculated and t tests were performed to test
whether this point differed significantly from 1 across the subjects. The
value of the peak of the quadratic was also calculated.

RESULTS
After practice each subject was able to track the desired load
waveform with reasonable accuracy and produced load forces
that were predominately sinusoidal with narrow power spectra

around their dominant frequency. The grip forces were also
predominantly sinusoidal. In particular, the modulation was
smooth and showed little evidence of catch-up responses, which
have been reported to occur to unpredictable onsets of load force
(Johansson et al., 1992b).

Experiment 1
Typical raw data for the four conditions are shown in Figure 2.
These traces show that when the load force was generated exter-
nally by the robot, the mean grip force level was high, showed low
modulation, and lagged behind the load force (Fig. 2, Condition
1). In contrast, when the load force was self-generated by the right
hand, the mean grip force level was lower, showed a large degree
of modulation, and appeared in phase with the load force (Fig. 2,
Condition 2). When the left hand was used to generate the load,

Figure 3. Average baseline (a) and amplitude gain (b) of grip force
modulation against frequency for the four conditions of Experiment 1.

Figure 2. Typical example of grip force (dashed line) and load force
(solid line) traces for the four conditions of Experiment 1 taken from a
single subject tracking a frequency of 3.5 Hz. The data are taken from the
same 4 sec time period in each trial and have been low pass-filtered.
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a predictive modulation was seen similar to that in the right hand
condition, but with a smaller amplitude of modulation (Fig. 2,
Condition 3). However, when the left hand generated the load
force indirectly through the joystick, the pattern of grip force
modulation was similar to that of the externally generated condi-
tion (Fig. 2, Condition 4).

Analysis of the group data is shown in Figures 3 and 4. In all
conditions, subjects showed a grip force that modulated, to some
extent, with load force. As expected, when the subjects generated
the load force with their right hand they showed a large degree of
grip force modulation (Fig. 3b), and this modulation showed a
small significant ( p , 0.01) average phase advance of 110.6 msec
across the frequencies tested (Fig. 4b). However, when the same

load force was produced externally by the robot, the modulation
was significantly smaller ( p , 0.01) and showed a significant ( p ,
0.001) average phase lag of 2100.4 msec.

When subjects used their left hand to generate the load force
directly, there was a small average phase lag of 212 msec that was
not significantly different from 0. However, when the left hand
generated the same load force through the joystick-controlled
robot, and subjects were explicitly informed of this relation,
performance was markedly different. In this condition the base-
line gain, amplitude gain, phase, and lag were not significantly
different from these values in the externally generated condition.
In particular, in the joystick condition, the grip force modulation
had a significant phase lag of 2104.2 msec with respect to load
( p , 0.01).

Analysis of coherence (Fig. 4c) showed that it was significantly
higher when the movements were self-generated by the right hand
compared with the other three conditions ( p , 0.01).

Experiment 2
Typical raw data for four of the levels of feedback gains, g to the
left hand, are shown in Figure 5. This shows that modulation of
grip force grip was small for g 5 0 and increased as the feedback
gain to the left hand increased. Analysis of the group data for
feedback parameter g 5 1 (solid lines) and g 5 0 (dashed line) are
shown in Figures 6 and 7. At a value g 5 1, the effect should be
qualitatively similar to the left hand direct condition of Experi-
ment 1 because the robots simulate a single object between the
two hands. Correspondingly, when g 5 0 the effect should be
similar to left hand operating indirectly through the joystick.

Figure 5. Typical example of grip force (thin line) and load force (thick
line) traces for four feedback gains, g, of Experiment 2 taken from a single
subject tracking a frequency of 2.3 Hz. The data are taken from the same
time period in each trial and have been low pass-filtered.

Figure 6. Baseline gain (a) and amplitude gain (b) of grip force modu-
lation against frequency at feedback gains 1 (solid lines) and 0 (dashed
lines).

Figure 4. Average phase (a), lag (b), and coherence (c) between load force and grip force against frequency for the four conditions of Experiment 1.

7514 J. Neurosci., September 15, 1998, 18(18):7511–7518 Blakemore et al. • Prediction in Motor Control



When the feedback gain parameter g was 1, the average phase
advance was significantly higher ( p , 0.01) at 111.4 msec com-
pared with a lag of 257.7 msec when g 5 0. The grip force
modulation amplitude was significantly greater for g 5 1 com-
pared with g 5 0 ( p , 0.05) (Fig. 6b). Modulation of grip
decreased in amplitude with increasing frequencies in both con-
ditions ( p , 0.05). Coherence (Fig. 7c) was significantly higher
when g 5 1 compared with 0 ( p , 0.01). Therefore the differ-
ences between the g 5 0 and g 5 1 conditions are qualitatively
similar to the joystick and left-hand conditions of Experiment 1.

Figures 8 and 9 compare the grip force responses to different
frequency load forces applied to the object by the left hand via a
second robot with different levels of force feedback gain ( g varied
between 0 and 1.5). The ANOVA performed on the measures as
a function of gain showed that a significant difference between
the seven levels of gain for lag ( p , 0.01), phase ( p , 0.05),
coherence ( p , 0.01), and amplitude gain ( p , 0.05). There was
no significant difference between the seven levels of gain for
baseline gain ( p 5 0.67). A polynomial contrast on the gains
showed a significant fit for the quadratic term for lag ( p , 0.01),
phase ( p , 0.01), and coherence ( p , 0.05), and for the linear
term for amplitude gain ( p , 0.05). A comparison of the ex-
tremal values of gain ( g 5 0 and g 5 1.5) with g 5 1 showed a
significant difference for phase ( p , 0.01 for g 5 0; p , 0.05 for
g 5 1.5), lag ( p , 0.01 for g 5 0; p , 0.05 for g 5 1.5), and
coherence ( p , 0.01 for g 5 0; p , 0.05 for g 5 1.5). For the

combined frequencies, therefore, the highest significant term for
the amplitude gain was linear, and for the phase, lag, and coher-
ence it was quadratic. For baseline gain a linear fit was not
significant.

An analysis of the location of the maxima of the quadratic fits
for lag and phase (Fig. 9) showed that they occurred at a feedback
gain value not significantly different from 1 at each frequency. For
lag this value was 1.10 6 0.22 (SE) at 1.1 Hz, 0.92 6 0.07 at 2.3
Hz, 0.87 6 0.11 at 3.5 Hz, and on average (combining all six
frequencies) 1.05 6 0.09. The mean lag value at which the peaks
occurred was 20.3 6 12.0 msec. Therefore with feedback gains of
less or more than one, grip significantly lagged behind load.
Similarly, coherence significantly decreased at feedback gains of
less or more than one. The mean location of the peak (combining
frequencies) in coherence was at a feedback gain of 0.81 6 0.06.
As the feedback gain g increased, the amplitude of modulation
increased significantly for the ensemble data ( p , 0.05).

DISCUSSION
Although previous studies have demonstrated predictive modu-
lation of grip force to self-generated load forces, we have shown
that this self-generation in itself is not sufficient to produce
precise predictive grip force modulation. Precise prediction was
seen only when the left hand experienced force feedback that was
equal and opposite to the force exerted on the right hand, a
situation consistent with the presence of a real, rigid object

Figure 7. Phase, lag, and coherence at different frequencies at feedback gains 1 (solid lines) and 0 (dashed lines). Average phase (a), average lag (b),
average coherence (c) between load force and grip force.

Figure 8. Baseline gain and amplitude gain of
grip force modulation at different frequencies
with different force feedback coupling, g, be-
tween the robots held in each hand. Graphs show
the baseline gain (solid line shows the mean) and
the amplitude of grip force modulation (solid line
shows linear regression fit) at different feedback
gains at three different frequencies and the aver-
age over all six frequencies.
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between the hands. However, when the force feedback to the left
hand was either greater or less than the force experienced by the
right hand, grip lagged behind load force.

To prevent a gripped object from slipping during movement
without maintaining an excess safety margin, grip force must
change with load force. In line with previous findings (Johansson
and Westling, 1984; Johansson et al., 1992b; Flanagan and Wing,
1995, 1997), we have demonstrated that when load force is gen-
erated by the hand holding the object, grip force is modulated in
parallel with load force. Grip force anticipated load force even at
frequencies as high as 3.5 Hz (Fig. 4b), and as demonstrated by
the high coherence (Fig. 4c), the phase relationship showed min-
imal variability within each trial. The large amplitude and parallel
nature of the grip force modulation allows a small safety margin
to be achieved while preventing the object from slipping and may
be important in economizing muscular effort (Johansson and
Westling, 1984). However, when the load force was externally
produced by the robot, the grip force modulation lagged ;100
msec behind load force. This lag is similar to that seen in response
to unpredictable load force perturbations (Cole and Abbs, 1988;
Johansson et al., 1992a,b), showing that even for a repetitive
sinusoid there is no predictive modulation. If in the presence of
such a large delay the amplitude of modulation and the baseline
force were similar to that in the self-produced condition, the
object would slip. Therefore, when little grip force prediction is
seen, there is a concomitant increase in the baseline grip force
(Fig. 3a, Robot) and a reduction in grip force modulation ampli-
tude (Fig. 3b, Robot). In addition, the phase relationship, as
indicated by the low coherence, is more variable in this externally
produced condition compared with the self-generated condition.
When the load force was generated by the left hand pushing
directly on the object, grip force modulation was predictive but of
a smaller amplitude than when the load force was generated by

the right hand. This parallel modulation suggests that the motor
command sent to the left hand can be used to produce precise
predictive modulation by the right hand. The phase relationship
was strikingly similar to the relationship when the right hand
produced the load.

Previous studies have shown anticipatory responses to discrete
events such as loading the limb by dropping a ball (Johansson and
Westling, 1988; Lacquaniti et al., 1992) or unloading the limb
using the opposite hand (Lum et al., 1992). For example, when
subjects are required to remove an object held in one hand with
the other, anticipatory deactivation of the forearm muscles occurs
before the unloading, and therefore the position of the loaded
hand remains unchanged (for review, see Massion, 1992). How-
ever, when the subjects were required to press a button that
caused the load to be removed from their other hand, no antici-
patory behavior was seen (Dufosse et al., 1985). These two
conditions can be thought of as analogous to our self-produced
left hand and joystick conditions. When the load force was indi-
rectly generated by the left hand controlling the robot via a
low-friction joystick, grip force lagged significantly behind load
force by over 100 msec. This is comparable to the externally
produced condition. Therefore, although the load force was self-
generated by the left hand in both the direct and indirect ( joy-
stick) conditions, only the former elicited precise predictive grip
force modulation. The present study extends this work by exam-
ining the reasons behind such a discrepancy in anticipatory
responses.

Two possible reasons were hypothesized to account for the lack
of precise prediction in our indirect ( joystick) condition when
compared with the direct action of the left hand on the object.
The first was that the coordinate transformation between joystick
action, which was both remote to the right hand and in the sagittal
direction, prevented precise prediction. Alternatively, the differ-

Figure 9. Phase, lag, and coherence at
different frequencies with different force
feedback coupling between the robots
held in each hand. Graphs show phase,
lag, and coherence at different feedback
gains at three different frequencies and
the average over all six frequencies. The
solid line shows the quadratic fits to the
data.
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ence in sensory feedback received by the left hand in the two
conditions produced the differential results. In the direct condi-
tion, the left hand received force feedback that was equal and
opposite to that experienced by the right hand, whereas in the
joystick case the left hand received minimal force feedback. To
investigate this issue we examined grip force modulation when
the force feedback to the left hand was parametrically varied.
This was achieved by simulating a virtual object between the two
hands, whose properties did not necessarily conform to normal
physical laws. The first hypothesis was rejected as precise predic-
tion was not observed in the condition g 5 0, although both hands
acted in the same coordinate system. However, we found that the
lag between load and grip force was minimal (0.3 msec) when the
feedback gain to the left hand simulated a normal physical object
( g 5 1), and the lag increased in a systematic way as the virtual
object deviated from normal physical laws, supporting the second
hypothesis.

The present results can be interpreted within a new computa-
tional framework of multiple forward models. One problem the
CNS must face when both hands are in contact with objects is
determining whether the hands are manipulating a single object
or are acting on separate objects and thereby select the appropri-
ate control strategy. Only in the former case should the motor
commands to each limb be used in a predictive manner to mod-
ulate the grip force of the other hand. For example, when holding
a cup in one hand and a saucer in the other, there is no reason
why one hand should take account of what the other is doing in
terms of grip force modulation. However, if the cup and saucer
were rigidly joined, then it would be desirable for each hand to
take account of the other’s actions.

One computational solution to this problem is to use multiple
internal forward models, each predicting the sensory conse-
quences of acting within different sensorimotor contexts (Fig. 10).
For example, one internal model could capture the relation be-
tween the motor commands and subsequent sensory feedback
when the hands manipulate a single object (Fig. 10, lef t) while
another model captures the condition in which the hands act on
separate objects (Fig. 10, right). Each forward model predicts the
sensory consequences, based on its particular model of the con-
text and the motor command, and these predictions are then
compared with the actual sensory feedback. The errors in these
predictions are then used to estimate the probability that each
model captures the current behavior. In the present study, for
example, when the feedback is equal and opposite to both hands
( g 5 1), the internal model of a single object between the hands
would have a small error compared with the separate models.
This would give rise to a high probability that the hands are
manipulating a single object, thereby allowing the efference copy
of the command to the left hand to modulate predictively, as was
observed, the grip force in the right hand. As the sensory feed-
back deviates from the prediction of the model ( g more than 1 or
g less than 1), the probability of this model capturing the behavior
would fall, leading, as observed, to an increase in the lag between
grip and load force. Our results therefore suggest that an internal
model exists that captures the normal physical properties of an
object and is used to determine the extent to which the two hands
are manipulating this object. Although it is probably not possible
to have a model for every context that we are likely to experience,
we propose that by selectively combining the outputs of multiple
simple forward models we could construct predictions suitable for
many different contexts.

The observed relationship between lag and feedback gain, g,
constrains the way in which sensory prediction errors could be
used to select between the internal models (Fig. 10). Our results
rule out a model selector producing a hard classification in which
grip force modulation corresponds to the hands acting on either
a single object or separate objects. Such a relationship would have
led to a binary distribution of the lags consistent either with
predictive modulation (lag of zero) or no prediction (lag ' 100
msec). However, our results show that the lag was minimal when
the feedback gain to the left hand was 1 and increased smoothly
when the feedback gain was either greater or less than 1. Predic-
tion is therefore graded by the similarity between the force
feedback expected for a real, rigid object and the feedback actu-
ally received.

Burstedt et al. (1997) recently demonstrated that grip force is
modulated in parallel with load force when subjects lifted an
object between the index finger of their left and right hands, and
cooperatively with another subject using the right index finger.
Performance was similar in both these conditions and was com-
parable to that when subjects lifted the object between the thumb
and index finger of their right hand. The authors suggest that this
result demonstrates that the forward model can be adjusted to
account for various situations. In our study we have shown that

Figure 10. A model for determining the extent to which two hands are
acting through a single object. For simplicity only two internal models are
shown. On the lef t is an internal forward model that captures the rela-
tionship between the motor commands sent to the left (ML ) and right
(MR ) hands and expected sensory feedback when the two hands act on a
single object. On the right is shown the two internal forward models that
capture the behavior when the hands are manipulating separate objects.
Both models make predictions of the sensory feedback from both the left
(SL ) and right (SR ) hands based on the motor commands. These pre-
dictions are then compared with the actual sensory feedback to produce the
sensory prediction errors (E). The errors from each model, Ê and Ẽ, are
then used to determine the probability P that each model captures the
current behavior. This probability determines the extent to which the
motor command to one hand can be used in predictive grip force modu-
lation of the other hand.
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the context of the movement, as coded by the haptic feedback to
each hand, critically modulates the nature of the grip force
response.

Anticipatory grip force modulation has been shown to depend
on several contextual cues such as object weight (Johansson and
Westling, 1988), experience from previous lifts (Gordon et al.,
1993), type of load (Flanagan and Wing, 1997), and friction of the
object’s surface (Johansson and Westling, 1984). Knowledge of
the mechanical properties of objects is probably also learned by
handling and manipulating objects (Gordon et al., 1993), as is
demonstrated by prediction improving throughout development
(Eliasson et al., 1995), suggesting a continual refinement of the
internal models. Our results support the hypothesis that predic-
tive mechanisms rely on there being sensory feedback to the two
hands that obey the physical laws encountered in normal objects.

In conclusion, the present results suggest that efference copy in
itself is not sufficient to allow generalized prediction. Precise
prediction is seen when the feedback to both hands is consistent
with a single object and declines smoothly as the feedback be-
comes inconsistent with this context. We propose that multiple
internal forward models can be used to estimate the context of the
movement and thereby determine whether it is appropriate to use
such a predictive mechanism.
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