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Abstract. In most cases the hexagonal packing of fibrous structures or rods
extremizes the energy of interaction between strands. If the strands are not
straight, then it is still possible to form a perfect hexatic bundle. Conditions
under which the perfect hexagonal packing of curved tubular structures may exist
are formulated. Particular attention is given to closed or cycled arrangements of
the rods like in the DNA toroids and spools. The closure or return constraints of
the bundle result in an allowable group of automorphisms of the cross-sectional
hexagonal lattice. The structure of this group is explored. Examples of an open
helical-like and closed toroidal-like bundles are presented. An expression for the
elastic energy of a perfectly packed bundle of thin elastic rods is derived. The
energy accounts for both the bending and torsional stiffnesses of the rods. It
is shown that equilibria of the bundle correspond to solutions of a variational
problem formulated for the curve representing the axis of the bundle. The
functional involves a function of the squared curvature under the constraints on
the total torsion and the length. The Euler-Lagrange equations are obtained in
terms of curvature and torsion and due to the existence of the first integrals the
problem is reduced to the quadrature. The 3D shape of the bundle may be readily
reconstructed by integration of the Ilyukhin-type equations in special cylindrical
coordinates. The results are of universal nature and are applicable to various
fibrous structures, in particular, to intramolecular liquid crystals formed by DNA
condensed in toroids or packed inside the viral capsids.
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1. Introduction

It is known that the densest packing of infinite straight cylinders is hexagonal when all
their axes are parallel [4]. It evidently corresponds to hexagonal packing of discs in a
plane. The hexagonal packing of tubular objects (rods) occurs in numerous instances
at scales ranging from nano to macro. Among examples there are nanotubes [47],
high density columnar hexatic liquid crystalline DNA mesophases [33, 10, 32], actin
bundles [48] and others. In most cases, this packing extremizes the interaction energy
between filaments. Geometrically, it means that all pairs of neighbouring axes are
located at constant distance to each other.

In some instances, the filaments are not straight. Then, a natural question arises
of whether it is still possible to reach the same maximal density of packing. If yes,
then the second question can be formulated as: what is the set of configurations of
infinite (or closed) tubes that have the maximal density? By a tube (or a tubular
neighbourhood) here we understand the set of all points in space whose distance from
the smooth axial curve does not exceed the constant thickness radius. We can set the
scale by fixing this radius to 1. Moreover, we will assume that the global curvature of
the axes is less or equal to 1. Thus, the tubes cannot overlap, but they are perfectly
flexible. It will be shown in the following that the densest packing class includes
curvilinear axes, which should be relatively parallel. This implies that an arbitrary
small twist of one axis around another immediately destroys the perfect hexagonal
packing.

In most cases, one is interested in the optimal packing in some particular domain.
In this paper we consider neither the geometrical properties of these boundaries nor
the structural disturbances caused by their presence. The packing will be considered
as optimal if in any section orthogonal to the axis of a tube at some point P , the cross-
sectional discs are hexagonally packed within a connected domain which contains the
point P . In this sense, any single curvilinear perfect tube, which does not contact
itself is optimally packed. This degenerate case just shows that the set of such locally
optimal hexagonal packs is richer then the global packing.

Complicated spatial structures arise when the tubes are in contact with
themselves. Important examples are intramolecular liquid crystals formed as a result
of condensation of DNA in toroids [13, 36, 6, 17, 20] or a DNA arrangement inside
viral capsids [11, 31, 9]. In this paper, particular attention is given to closed or
cycled bundles of hexagonally packed rods. The closedness condition imposes a severe
constraint on the whole structure. Indeed, take an orthogonal cross-section of the
bundle. Then, what plays a role is the mapping of the 2D hexagonal lattice in the
cross-section onto itself. The automorphisms that preserve both the distances and
the connectivity form a discrete infinite group. Its study results in characterization of
all possible closed hexagonally packed bundles: the writhing number [15] of each axis
that realizes the mapping should equal n/6, where n is integer. One consequence of
the automorphism group structure is that it is impossible to form a closed hexagonally
packed bundle with a single filament: frustration is inevitable [38, 6]. Examples of
closed bundles made up with several strands are presented and the inverse spool model
of the DNA packing inside a viral capsid is briefly discussed.

Clarification of the geometrical features is accompanied by consideration of
mechanical properties. Assuming that the strands may be characterized as thin
uniform isotropic elastic rods (a conventional model for DNA at mesoscale [49]),
we compute the elastic energy of the bundle. A continuum limit case of circular
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cross-section of the bundle is studied in more detail. We show that the equilibria
of the bundle may be described as extremal solutions to a variational problem for
the axial curve in space. The functional is represented as a linear combination of
three integrals: the first is a function of the squared curvature, the second is the
total torsion and the last the length. This formulation makes it possible to apply the
procedure for derivation of the Euler-Lagrange equations in terms of curvature and
torsion [8]. The property that the functional involves only integral torsion and torsion
is not coupled with curvature allows one to reduce the problem to the quadrature.
With knowledge of curvature and torsion the spatial shape of the bundle may be
readily computed by integration of the Ilyukhin-type equations in the specially chosen
cylindrical coordinates [29, 21, 22] which are widely used in the statics of rods.

2. Geometry of unconstrained tube packing

We start with consideration of a perfect tube of some length L with axis r(s), s being
the arc length parameter. Let the tube be in a continuous contact with the maximal
allowed number of other tubes of the same thickness. This number equals six [45],
thus it may be said that the tubes are hexagonally packed. Denote the axes of the
neighbouring tubes by rj(s), j = 1, . . . , 6. We can choose the same parametrization
for all the tubes so that, for every s, the points rj(s), j = 1, . . . , 6, are the closest
to the central axis r(s) and they lie in the vertices of a regular triangular lattice.
Note that s is not obliged to be an arc coordinate for rj(s), j = 1, . . . , 6. The vector
field mj(s) ≡ rj(s) − r(s) is relatively parallel [5]. It implies that there is no twist of
vectors mj(s) about the central axis. We can add more layers of the tubes in the same
manner as the first six tubes. Proceeding this way will allow us to build a bundle of
parallel tubes that fill up some domain in space. The hexagonal packing provides the
maximal density in this domain. In particular, if all the tubes are straight, we have
the packing of cylinders [4].

Let us now obtain an equation that governs the position of the neighbouring
tube for a given central axis. We omit the index j for the sake of simplicity. Since
‖m‖ = const(= 2), we can write

dm

ds
= ω ×m, (1)

and the vector ω may be represented as ω = ω1m + ω2T × m [45], where we denote
by T = dr

ds
the tangent to the central axis.

By definition, the vector m connects the closest points on two curves, which
implies m · T = 0. Differentiating this equation and further substitute (1) for dm

ds
,

we come to ω2m
2 = m · dT

ds
, or, with the help of the Serret-Frenet equations,

ω2m
2 = κm · N, where N is the principal normal to r(s) and κ the curvature of

this curve. Finally, the differential equation for the orientation vector m can be given
the form

dm

ds
= −κ(m ·N)T. (2)

This is the main equation that describes the arrangement of tubes in the hexagonally
packed bundle.

The infinite number of infinitely long cylinders can fill in the entire space. This is
not possible for curvilinear tubes. Suppose the axis r(s) has the curvature κ0 > 0 and
the torsion τ0 in some point r(s0). The tangent T(s0), the principal normal N(s0) and
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the binormal B(s0) form the orthonormal Frenet frame in the same point. The Frenet
frames of all the tubes in given orthogonal cross-section are oriented identically. The
normal plane Q spanned by N(s0) and B(s0) is that of the orthogonal cross-section
of the bundle. Now take some vector ρ ∈ Q. Let s1 be the arc coordinate for a tube’s
axis that passes through the point r1 = r(s0)+ρ. Then, ds1 = hds, h = 1−κ0ρ·N(s0)
and the curvature and the torsion of r1 are

κ1 = κ0/h and τ1 = τ0/h, (3)

respectively.
Since κ1 ≤ 1, we come to an inequality ρ · N(s0) ≤ κ

−1
0 − 1. In other words, all

the axes of the tubes in the bundle may only cross the plane Q in the region bounded
by the straight line which is parallel to the binormal B(s0) with the offset distance
κ
−1
0 − 1. Therefore, the thickness radius of the bundle with axis r(s) cannot exceed

κ
−1
0 in the direction of the principal normal. As the coordinate s varies, the boundary

straight line sweeps out a ruled surface which bounds a domain in space where the
bundle can exist. Note that the maximal thickness of the bundle in the principal
normal direction does not depend on the thickness of the individual tubes.

In one limiting case, we can consider a bundle made of a single tube of radius
R1, then the curvature of its axis cannot exceed R−1

1 . In other limit, the strands
may be thought as being infinitesimally thin and an infinite number of them packed
hexagonally inside a tubular domain of the same radius R1. Again, the curvature
of the axis of the tube is not allowed to be greater than R−1

1 . Note that, for this
idealized model, once the bundle is bent at maximal rate (i.e. κ0 = R−1

1 ), the radius
of curvature of a particular strand located at distance R1 in the direction of N(s0)
goes to infinity. Nevertheless, as we will see in section 4, the elastic energy of this
model remains finite.

Consider an integral torsion of two strands in the parallel bundle. Fix two
orthogonal cross-sections at s = sb and s = se, then

se
∫

sb

τ0(s)ds =

s1e
∫

s1b

τ1(s1)ds1, s1b = s1(sb), s1e = s1(se). (4)

In other words, the total torsion is the same for an axis of every tube in the bundle.
For a closed curve C, the writhe (or the writhing number) is the double

Gauß linking integral in the singular case of being taken over all pairs of points on the
single curve [14, 15, 24]

Wr(r) =
1

4π

∫

C

∫

C

(r(s1) − r(s2)) · (T(s1) ×T(s2))

‖r(s1) − r(s2)‖3
ds1ds2.

The writhe depends only on the shape of the curve. The writhe relates to the area
swept out by the tangent indicatrix on the surface of unit sphere [16]. This makes
it possible to define the writhe for non-closed curves [34, 43, 44]. Since the tangent
indicatrix is identical for every strand in the bundle, they all have the same writhe.

By way of example let us take a look at the regular helical curve: r(s) =
(cos as, sinas,

√
1 − a2s), 0 ≤ a ≤ 1. Equation (2) may be transformed to the system

dξ

ds
= aη,

dη

ds
= a(a2 − 1)ξ,

dmz

ds
= a2

√

1 − a2 ξ, (5)
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and the first two components of the vector m = (mx, my, mz) are expressed as
mx = ξ cosas − η sin as, my = ξ sin as + η cosas. The explicit solution of (5) is
easy to find:

ξ = c1 cos τs + c2 sin τs, η =
√

1 − a2(c2 cos τs − c1 sin τs),

mz = a(c1 sin τs − c2 cos τs),

where τ = a
√

1 − a2 is the torsion and c1, c2 are the constants of integration such that
m2 = c2

1 +c2
2. Figure 1 shows a bundle of six tubes arranged at constant distance from

the central tube and from the neighbours. At every section which is orthogonal to
all their axes, the crossing points form the hexagonal lattice. There is no cholesteric
angle. This arrangement differs from the case when the strands are helices on the
concentric cylinders, there are no cylindrical layers.
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Figure 1. The perfectly packed bundle of 1+6 tubes. The centreline of the core
tube (shown in blue) is a regular helix. Each of the other six strands that surround
the core, is a trace of the end of a vector m, which is orthogonal to the core and
parallel transported along the core according to (5). The tubes are shown thinner
to ease representation.

It seems to be instructive to compare this example with the helical spool packing
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which has been long considered as one of the most likely models of arrangement of
a double-stranded DNA inside a viral capsid [11, 12, 40, 18, 51, 9, 39]. Numerical
modelling also seems to suggest that spool-like conformations may represent the stable
states or they can naturally emerge in the packaging process [25, 1, 35]. Here we
would like only to make clear some geometrical features inherent to layered spool-like
structures as considered from the viewpoint of the parallel packing.

Imagine a helical tube in which the successive coils touch each other continuously.
Fix a point on the axis of the tube and take an orthogonal cross-section of the tube
at this point. It is easy to show that the plane of this section crosses all other coils
non-orthogonally. But the hexagonal packing is only possible with parallel tangents to
the axes at the cross-section [45]. Therefore, the packing in a cylindrical spool when
the helical tubes form layers [37] is nowhere hexagonal. In other words, the adjacent
coils cannot be made relatively parallel (cf. figure 1).

Furthermore, the spool formation scenario from outer to inner layers [37] poses
more problems: 1) it is not clear how DNA may switch to a next layer without either
self-intersection or sharp bends, depending on its relative direction in the adjacent
layers; 2) since the radius of the helix decreases with the number of coils being the
same in all the layers, the DNA tube is forced to be compressed in the inner layers,
which should lead to frustration. On pictures of final conformations presented in
Ref. [1] one can see that even the most outer layers are far from parallel packing, even
the handedness of the helices differs. This causes the overhangs which in turn prompt
the complete destruction of the layering in the inner domain. On the other hand,
switching between layers by means of a short connection located in the core domain
may provide better approximation to parallel packing, i.e. more compact structures,
but such an arrangement seems difficult to reconcile with the packaging pathway.

3. Cyclization of bundles

We come to an analysis of the parallel bundles in which the strands touch themselves.
Consider a bundle of tubes that are hexagonally packed. Take a plane Q of an
orthogonal cross-section of some tube with an axis point P . Let Ψ ∈ Q be a connected
domain which contains all the cross-sectional discs of tubes in the bundle touching each
other. Clearly, this plane is orthogonal to all the axes of the tubes that cross Ψ. Thus,
the points of the crossings are the vertices of a triangular lattice ie1 + je2, i, j ∈ Z,
and e2

1 = e2
2 = 2e1 ·e2 = 1. Actually, (2) defines a parallel vector field in the 3D space

and if a 2D lattice is specified in a plane orthogonal to the field, then the structure of
this lattice remains invariant when the plane moves along the field. This observation
opens the way to generalizations for tubes of different thickness as well as for arbitrary
lattices.

Now we are interested in arrangements of tubes in 3D space such that, having
started at some particular vertex, the axis comes back to the same plane either at the
same point or at another vertex. Moreover, we will assume that the tubes originating
from two neighbouring vertices will remain in continuous contact and thus return to
neighbouring vertices. Then, the general question to be asked is: what is a set of
allowable automorphisms of the lattice induced by the three-dimensional shape of the
bundle?

Let us fix the origin of the reference frame in some vertex in the plane Q. Without
loss of generality, we can focus on the tube with axis r(s), s ∈ [0,L] that starts in
the origin, we call it the core. Let it come back next time for s = L at the vertex
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∆r = ke1+le2, for some k, l ∈ Z. Now take a neighbouring starting vertex p1; without
loss of generality we can take p1 = e1. It is enough to consider only one neighbour,
because, if we know the shape of two neighbouring tubes, we can reconstruct the entire
bundle uniquely, including the automorphism of the lattice. Let the neighbouring tube
end up in the vertex p2 = ∆r + Ωnp1, where Ωn is a rotation linear operator with
matrix

Ωn =

(

cos π
3 n − sin π

3 n
sin π

3 n cos π
3 n

)

, n ∈ Z6,

and Ω1e1 = e2, Ω2e1 = Ω1e2 = e2 − e1, Ω3e1 = −e1, Ω4e1 = −e2, Ω5e1 = e1 − e2,
Ω0e1 = e1.

Let us first consider the case when the core comes back to the origin, i.e.,
k = l = 0. Then the mapping of the lattice onto itself is just a rotation through
the angle π

3 n around the origin. If n = 0, then the map is identity, all the tubes come
back to their starting places. Thus the whole bundle contains a set of closed tubes
and every tube crosses the domain Ψ only once. Such a bundle is often used as a
simplified model in studies of DNA condensation into nanostructures, in particular,
toroids [50, 20] or spools [40, 39]. For n = 1, 5, every tube makes closure after 6
intersections with Ψ (figure 2(a)), for n = 2, 4 after three crossings (figure 2(b)) and
for n = 3 after two (figure 2(c)).

(a) (b) (c)

Figure 2. Cross-sectional lattice of the bundle. Each tube is marked with
different colour so that the discs of the same colour represent a sequence of
crossings for a particular tube. (a) Rotation of the lattice around the central
disc through ± 1

3
π mod 2π (n = 1, 5). (b) Rotation of the lattice around the

central disc through ± 2

3
π mod 2π (n = 2, 4). (c) Rotation of the lattice around

the central disc through ±π mod 2π (n = 3).

Take the axes of the core and of a neighbouring tube and consider a closed thin
ribbon which is formed by an arbitrary short vector ε∆r(s), s ∈ [0,L], pointing from
the core axis to the closest point onto the neighbouring axis. The ribbon need not
be closed; only one of its edges (the core axis) is closed. We denote by γ the angle
between the vectors ∆r(0) and ∆r(L) (figure 3). The twisting number of the ribbon
(i.e., of the pair (r, ∆r)) is defined by

Tw(r, ∆r) =
1

2π

L
∫

0

dr

ds
× ∆r · d(∆r).

An equation holds

Tw(r, ∆r) + Wr(r) +
γ

2π
= 0 mod 1

(see Appendix A in Ref. [43]).
The ribbon is untwisted, because of the parallelism of its edges. Then, the

fractional part of the writhe of the closed core axis equals − γ
2π

= − 1
2π

· π
3 n = −n

6
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r(0)

r(L)

∆

∆

γ

Figure 3. A non-closed ribbon based on smooth closed curve r.

and, as already explained in section 2, the writhe of a piece of every axis between two
intersections with Ψ is the same. Note that, for n 6= 0, these pieces are not closed
though they have parallel tangents at their ends.

Now we come to the more general case when |k| + |l| 6= 0. Our aim is to find a
point c = µe1 + νe2 such that the rotation of the plane Q through the angle π

3 n maps
the origin into the point ∆r and p1 into p2. We shall call this point c the centre of
rotation and it should satisfy the equation

Ωnc = c − ∆r, (6)

which transforms into a system of two equations for the coordinates µ, ν. Equation (6)
implies that Ωn(c − p1) = c − p2 which shows that the point p1 goes to p2 after
rotation. This means that the transformation of the plane Q is consistent with an
automorphism of the lattice.

Consider now all the possible cases of various n ∈ Z6 and find the coordinates of
the centre of rotation c explicitly. Note that the point c is not obliged to belong to
the domain Ψ.

n = 0. The centre of rotation does not exist; the transformation is a translation
along ∆r (figure 4(a)).

n = 1. The centre of rotation is located in a vertex of the triangular lattice:
c = −le1 + (k + l)e2. The self-mapping of the lattice is rotation around the point c
through π

3 mod 2π (figure 2(a)).

n = 2. The centre of rotation has the coordinates: µ = k−l
3 , ν = k+2l

3 . It can be
represented as c = σ

3 (e1 + e2) + se1 + te2 with σ = 0,±1 and s, t ∈ Z, from where
we see that the centre of rotation is located in a vertex of a reciprocal lattice. If
l − k = 3h, h ∈ Z (σ = 0), then the centre of rotation coincides with the centre of a
cross-sectional disc of a tube which closes after one cycle (figure 2(b)). Otherwise, the
point c is located in the centre of one of the equilateral triangles of the initial lattice.
There exists no core tube, instead, all the lattice is decomposed into triples of discs
and every triple corresponds to a single tube which closes after three intersections
with Ψ (figure 4(b)).
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(a) (b) (c)

Figure 4. Cross-sectional lattice of the bundle. Each tube is marked with
different colour so that the discs of the same colour represent a sequence of
crossings for a particular tube. (a) Translation of the lattice along e1 (n = 0).
(b) Rotation of the lattice around 1

3
(e1 + e2) through ± 2

3
π mod 2π (n = 2, 4).

(c) Rotation of the lattice around 1

2
e1 through ±π mod 2π (n = 3).

n = 3. The lattice map is a rotation through π mod 2π around c = 1
2 (ke1 + le2).

If k and l are both even, then the map is as in figure 2(c). Otherwise, there is no
self-joining core, all the tubes have two crossings with Ψ (figure 4(c)).

n = 4. This case resembles that for n = 2. The lattice is rotated through 4
3π

mod 2π around c = 1
3 ((2k + l)e1 +(l− k)e2) = σ

3 (e1 +e2)+ se1 + te2 with σ = 0,±1,
s, t ∈ Z. If l − k = 3h, h ∈ Z (σ = 0), then the point c lies in the centre of the disc
of the one-cycle core (figure 2(b)). Otherwise, there exist only cycles of period three
(figure 4(b)).

n = 5. This last case is similar to that for n = 1. The lattice is mapped onto itself
by rotation through 5

3π mod 2π around the centre c = (k + l)e1 − ke2.
Summing up, we can say that the automorphism group of the lattice is finitely

generated by the following set of transformations:

1) an identity map,

2) translations along the lattice vectors e1 and e2,

3) a rotation through 1
3π around the origin,

4) a rotation through 2
3π around 1

3 (e1 + e2),

5) a rotation through π around 1
2e1.

The above group includes all the transformations of the lattice which may be
realized with a bundle of continuously hexagonally packed tubes. We see that the
maximal number of returns of a single closed tube is six. This implies that a thick
(multi-layered) closed bundle may be formed only by a set of separate closed tubes.
Note that in the case of translations, one may speak only about self-touching bundles,
not closed in a strict sense.

The spatial configuration of the bundle determines the continuous mapping of the
domain Ψ of the cross-sectional plane which moves in space as the parameter s varies.
Therefore, the centres of rotation (when exist) form a closed curve c(s), which we call
the axis of the bundle. As in the above-considered particular case, the fractional part
of the writhe of a piece of axis between consecutive crossings equals − n

6 . To prove
this in case n 6= 0, one has to analyze a ribbon formed by a vector ε∆r(s) directed
from the axis c(s) to the closest point onto the neighbouring axis.

If n = 0, then we can consider a ribbon formed by the vector ε∆r(s) moving
along an open or closed axis of some tube on the interval between two consecutive
intersections with Ψ. The ribbon is untwisted and both its edges may not be closed,
but the orientation of its ends is the same. If open, such a ribbon may be made closed
by adding another untwisted ribbon, hence its writhe (i.e., the writhe of the tube’s
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axis) should be integer (details on how to deal with the writhe of open curves can be
found in Refs. [43, 44]).

Figure 5. The perfectly packed bundle made up of two closed tubes. The core
(dark) makes one turn and the second tube winds six times. The colour variation
codes the arc length. The tubes are shown thinner to ease representation.

An example of a perfectly packed closed bundle is shown in figure 5. The axis of
the central tube lies on the surface of a torus. It closes after one turn around the torus
hole. The writhing number of the central axis was made equal to − 1

6 . The second
tube winds six times around the torus hole, forming the hexagonally packed structure.
Another example is presented in figure 6, it corresponds to the lattice transformation
of figure 4(b). The mapping of figure 4(c) takes place in the bundle shown in figure 7.
Three closed tubes are drawn. The axis of each tube may be considered as an edge of
a Möbius strip. The contact line of the central tube lies on the surface of a torus and
its writhing number is − 1

2 .
Consider a closed perfect bundle made with a number of closed components.

All the components of the bundle intersect every orthogonal cross-section the same
number of times; we call this number p the winding number. (The only exception
may be the core component which may coincide with the axis c(s): it always has one
point of intersection by definition.) If {|Wr(c)|} = n/6, n ∈ Z6, then p(n) is defined
as follows: p(0) = 1 and p(n) = 6/ min{n, 6 − n}, n 6= 0.

Let us first examine the case when the mapping of a cross-section is a rotation
and the axis of the bundle c(s) (s is the arc length) is defined. We denote the
intersections points mi(s), i = 1, . . . , p, for a non-core component. The cross-section
of each component is p-fold central symmetric with respect to c(s) for every s. Hence,

mi(s) = Ω
6i
p m1(s) and

p
∑

i=1

mi(s) = 0. (7)
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Figure 6. The perfectly packed bundle made up of four closed tubes. The tubes
are shown thinner to ease representation.

Figure 7. The perfectly packed bundle that corresponds to the case of figure 4(c).
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Let L be the length of the axis c(s), i.e., the length of the core component, if the
latter exists,

L =

∮

ds.

Compute the length of one component between its consecutive crossings of a given
cross-section Q

lmi =

∫

dsmi =

∫

(1 − κ(s)(mi(s) ·N(s))) ds,

where κ(s) is the curvature of the axis c(s) and N(s) its principal normal. Now we
can find the total length of the p-th component

Lp =

p
∑

i=1

lmi =

∮

(

p − κ(s)

((

p
∑

i=1

mi(s)

)

· N(s)

))

ds = p

∮

ds = pL.

Thus, we have shown that the total length of every component is conserved and is a
multiple of the length of the axis of the bundle; the integer coefficient is determined
by the topology of the bundle. This property of the closed parallel bundle makes it
possible to vary the shape of the bundle in space while retaining its hexagonal packing,
though sliding of the neighbouring tubes is allowed.

We may suggest that the perfect bundle can be built from pieces of DNA (or other
polymer) molecules with their lengths quantized which can be done by dimerization,
though it could be difficult to properly link the closed dimers to each other before
condensation. Still, it seems that the necessary technique already exists and may
be used to obtain the curvilinear closed liquid crystalline bundles of geometrically
maximal density of long and stiff polymers, particularly, of DNA [6, 41, 19]. If one
managed to create a set of properly interlinked closed strands, then the geometry of
their most compact state would be the parallel packing in a bundle with predefined
writhe, which results in a constraint on the shape of the bundle in space. In other
words, the topological structure of the bundle manifests itself in the 3D shape.

We have excluded the case of identity map from the above computation of the
length. Now consider this arrangement of closed rods where each rod closes to itself
after single cycle. (Note that this condition does not imply that the rods are not
linked.) Take some tube and define it as the bundle’s axis of length L. Let another
rod have the intersections points mq(s). Note that there is always room for a rod
that has intersections at −mq(s). It is easy to see now that the sum of their lengths
equals 2L. Thus, if the cross-section of the bundle is centrally symmetric, then all
the components except the central one (if it exists) may be arranged in pairs and the
total length of every pair is 2L.

4. Conformational energy

In this section we consider an idealized model of a perfect bundle in the continuum
limit with the director field T. Then we can write out the elastic Frank-Oseen energy
density of liquid crystals for mesomorphic phases which has the form [24, 26]

fFO =
1

2
K1[∇ ·T]2 +

1

2
K2[T · (∇×T)]2 +

1

2
K3[T × (∇×T)]2 +

+K13∇ · [(∇ ·T)T] − K24∇ · [(∇ ·T)T + T × (∇×T)], (8)
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where Ki, i = 1, 2, 3, and K13, K24 are elastic constants.
For perfect hexagonal packing, ∇ · T = 0 and there are neither first splay term

in (8) nor the splay-bend term with coefficient K13. It is easy to see that the second
twist term also vanishes. The last saddle-splay term is proportional to the Gaussian
curvature of the surface to which the director T is normal [26]. In our case, this surface
is a plane of cross-section with no curvature. Therefore, the energy density (8) reduces
to the bending term 1

2bκ2, with b ≡ K3 being the bending rigidity density. (Note that
the above reduction of energy is likely to be considered as a proper approximation for
materials when K3 significantly exceeds the other elastic moduli which is often the
case [26].)

In the further analysis, we assume that the cross-section Ψ of the bundle is a
circle of radius R. Let the axis of the bundle be c(s), s the arc length, s ∈ [0,L].
We also assume that the Frenet frame is well defined with the principal normal N
and the binormal B. The elastic energy of each strand is computed as the bending
and torsion energy of a thin isotropic uniform elastic rod of circular cross-section of
radius R. All the rods in the bundle have identical mechanical properties and the
same thickness. Our model does not account for a specific interaction energy between
rods in the bundle.

4.1. Energy of bending

The bending energy of the bundle is proportional to the integral of the squared
curvature κ̃ of the director field, taken over the volume of the bundle V

Ebend =
b

2

∫∫∫

V

κ̃
2dv =

b

2

∫∫

Ψ

lm
∫

0

κ
2
m(sm)dsm dσ, (9)

where dσ is the area element of the cross-section and sm is the arc coordinate of
the strand specified in the cross-sectional plane by vector ρ = ρ(N cosϕ + B sin ϕ),
‖ρ‖ = ρ ≤ R, ϕ ∈ [0, 2π]. Thus, ρ and ϕ are polar coordinates in the cross-section. If
κ(s) is the curvature of the axis c(s), then by using (3), the bending energy (9) may
be given the form

Ebend =
b

2

∫∫

Ψ

L
∫

0

κ
2(s)

1 − κ(s)ρ · Nds dσ,

or, in polar coordinates,

Ebend =
b

2

L
∫

0

κ
2(s)

2π
∫

0

R
∫

0

ρ

1− κ(s)ρ cosϕ
dρ dϕ ds.

Integration of the last formula leads to

Ebend = πb

L
∫

0

(

1 −
√

1 − R2κ2(s)
)

ds. (10)

In particular, if the bundle is a torus of major radius P (all the strands
that form the bundle simply have circular axes), then κ(s) = 1

P
, L = 2πP and

Ebend = 2π2b(P −
√

P 2 − R2).
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If Rκ(s) � 1, then the bundle may be considered as relatively thin (compared to
the curvature of the centreline). Then (10) clearly allows for an approximation

Ebend ≈ πR2 b

2

L
∫

0

κ
2(s) ds,

which is the bending energy of the thin rod with the bending stiffness B = πR2b.
Thus, the bending stiffness of the bundle is proportional to the number of strands

it consists of, not to the square of this number as it would be if the bundle were a
thick rod made of homogeneous material [29]. The presence of cross-links between
filaments (e.g., in the actin fiber) causes the similar effect [42]. The elastic properties
of some other bundles like neurofilaments do not show the influence of cross-linking
([7], p. 295).

4.2. Energy of torsion

For a thin elastic rod of circular cross-section and which is not under action of a
distributed moment with a non-zero tangential component, there exists an invariant
C(s)(ω1(s) − ω10(s)) = const, where C(s) is the torsional rigidity, ω1(s) is the
tangential component of the Darboux vector and ω10(s) is this component in the
relaxed state. We have already assumed that, for each strand in the bundle,
ω10(s) = const, C(s) = C = const. This implies ω1 = const.

To find the torsional energy of the bundle, we have to integrate over all the rods

Etors =
c

2

∫∫∫

V

(ω̃1 − ω̃10)
2 dv =

c

2

∫∫

Ψ

lm
∫

0

(ω1m − ω10m)2 dsm dσ =

=
c

2

∫∫

Ψ

1

p

Lp
∫

0

(ω1m − ω10m)2 dsm dσ =
c

2
L
∫∫

Ψ

(ω1m − ω10m)2dσ, (11)

where c = C
πR2 is the torsional rigidity density. Note that the twist rates may differ

for different components. For simplicity, we will assume that the rods are not twisted
in their relaxed state (ω10m = 0).

5. Equilibria of closed perfect bundle

Consider a closed bundle made up with symmetric rods, each rod being also closed, for
a given self-mapping of a cross-section. Thus, the topology of the bundle is fixed. We
specify the boundary value problem by imposing the periodical conditions for every
rod in the bundle. These conditions include both the closure of the centrelines of each
component and of their material frames. A stable equilibrium shape of the bundle
corresponds to a minimum of the total elastic energy E = Ebend + Etors among all
parallel bundles with axes of a given length satisfying the boundary conditions at the
ends.

The variations of the shape preserve the total torsion of every rod. If the axis
of a bundle is an extremal for E, then it is an extremal for the Ebend for fixed ω1m.
Furthermore, it is an extremal for a linear combination λ1K + λ2T (cf. [30]), where
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T =
∮

τ ds is the total torsion and K =
∮

f(κ2) ds with f(κ2) defined as the integrand
in Eq. (10).

As shown in Section 3, the shape variation of the perfect bundle with centreline
of fixed length does not affect the lengths of the components (or pairs of them in case
of a non-rotational map). Hence, we can impose the length constraint and take into
consideration the centrelines with arbitrary regular parametrization. Thus, we come
to the generalization of Theorem 1 from Ref. [30] to the parallel bundles:

The centreline of a parallel bundle of circular cross-section made up with isotropic
uniform thin elastic rods in equilibrium is an extremal for a linear combination of three
integrals

F = λ1K + λ2T + λ3L. (12)

Clearly, setting f(κ2) = κ
2 and keeping only one component reduce the above

statement to the mentioned Theorem 1 for a single rod. That theorem allows for the
converse [23]. Now we show that the converse exists for the parallel bundle, too.

Let r(s) be a closed extremal of (12) of length L with writhe Wr = n/6, n ∈ Z.
Thus, the curve r(s) generates a parallel vector field with winding number p. All the
vector lines are closed and, based on any of them, say, on rm(s), we can construct a
closed thin rod with constant twist rate ω1m such that

ω1mLp =

Lp
∮

0

τmdsm + 2πjm, jm ∈ Z. (13)

Consider the elastic energy of the rod

Em =

Lp
∮

0

(

b

2
κ

2
m(sm) +

c

2
ω2

1m

)

dsm

and its variation on the set of closed rods of the same length

δEm =
b

2
δ

Lp
∮

0

κ
2
m(sm)dsm +

c

2
δ

Lp
∮

0

ω2
1mdsm =

b

2
δ

Lp
∮

0

κ
2
m(sm)dsm + cω1mδ

Lp
∮

0

ω1mdsm.

With the help of (13) the last term may be expressed as

δ

Lp
∮

0

ω1mdsm = δ

Lp
∮

0

τmdsm.

Summing up over all the rods, we compute the elastic energy of the bundle

E =
1

p

∫∫

Ψ

Emdσ = Ebend + Etors.

The integral is divided by the winding number p, because, when integrating over the
cross-sectional area, each component is counted p times.
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Since the total torsion is conserved for every component rod, the variation of E
may be expressed as

δE = πbδ

L
∮

0

f(κ2) ds + c

∫∫

Ψ

ω1m dσ δ

L
∮

0

τ ds,

and δE vanishes if there exists q 6= 0 such that λ1 = qbπ and λ2 = qc
∫∫

Ψ ω1mdσ,
because we assume that the centreline is an extremal for (12). Thus, we have proved
the generalization of Theorem 5 from [23] which can be formulated as follows:

For any closed extremal r(s) of the functional (12) with writhe Wr(r) = n/6,
n ∈ Z, and with the curvature κ(s) ≤ R−1 for some positive R, there exists a parallel
bundle in equilibrium with axis r and with circular cross-section of radius R made up
with thin elastic rods. The winding number p is determined by the fractional part of
the writhe. The distribution of twist rates of the rods satisfies the conditions

c
∫∫

Ψ

ω1mdσ

πb
=

λ2

λ1
and pω1mL = p

L
∮

0

τ ds + 2πjm, jm ∈ Z.

The results of this section may be extended to open bundles provided the
boundary conditions are properly specified at the ends. Consider a centreline of a
bundle of some fixed length. We want to study an equilibrium of a part of the bundle
constrained by two planes orthogonal to the centreline at its ends. Clearly, variation
of the shape of the centreline generically implies variation of the lengths of the pieces
of other components constrained between the end planes. Still, the volume of the
constrained part remains constant. This means that the total length of all the strands
in this part does not change. Thus, if we impose the boundary conditions that allow
for some strands to shorten and for others to extend under constraint of the fixed sum
of their total lengths, then all the above reasoning will be valid for such open bundles.

As a mechanical macroscopic model, we may suggest to put pieces of the bundle
at some length near its ends into sleeves of fixed shape that prevent variation of the
centrelines of all the rods, yet allow the relative sliding of the strands except the core
strand. Anchoring end conditions would be specified for the latter. If the core strand
does not exist (like in figures 6 or 7 in contrast to the bundle in figure 5), then the
physical implementation of the total length constraint becomes more complicated.
One way to overcome this difficulty is to close the component that surrounds the axis
of the bundle. Then the strands of this component would have a freedom to slide with
respect to each other but its length would remain fixed.

6. Equilibrium equations

In this section we first examine the equations that describe the extremals of (12) and
then we present the equations for the axis coordinates in space.

6.1. Equations for the curvature and torsion of the axis

The Euler-Lagrange equations for (12) may be obtained by adapting equations (77),
(78) [8], which are valid for more general functional

∫

φ(κ, τ) ds, to our case with
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φ(κ, τ) = λ1f(κ2) + λ2τ + λ3:

λ1{8κ
3
κ

2
sf ′′′ + 4κ(κκss + 3κ

2
s)f ′′ + 2[κss + κ(κ2 − τ2)]f ′ − κf} +

+λ2κτ − λ3κ = 0, (14)

λ1[8κ
2
κsτf ′′ + 2(2κsτ + κτs)f

′] − λ2κs = 0, (15)

where the prime ′ denotes the derivative with respect to the squared curvature u ≡ κ
2:

f ′ = df(u)
du

. We can reduce the order of the above system by using two first integrals
of (14), (15) that correspond to the Casimirs of the Euclidean group.

Let F(υ) and M(υ) be the internal force and the moment with which the part of
the bundle with the axis coordinates s ≤ υ acts on the part s > υ. The internal force
of the bundle is a constant vector

F = [λ1(2κ
2f ′ − f) − λ3]T + 2λ1κs(f

′ + 2κ
2f ′′)N + κ(2λ1τf ′ − λ2)B = const

and its square is the first Casimir

[λ1(2κ
2f ′ − f)− λ3]

2 + 4λ2
1κ

2
s (f ′ + 2κ

2f ′′)2 + κ
2(2λ1τf ′ − λ2)

2 = F 2 = const. (16)

Projection of the moment M = −(λ2T + 2λ1κf ′B) onto the direction of the
internal force provides the second Casimir

M · F
F

= Mz = const,

which may be given the explicit form

4λ1κ
2τ(f ′)2 − λ2f = c = const. (17)

Expressing the torsion from (17), substituting it into (16) and setting u = κ
2 results

in the equation

(2λ1f
′)2(f ′+2uf ′′)2

(

du

ds

)2

= 4u(f ′)2[F 2−(λ1(2uf ′−f)−λ3)
2]− [c−λ2(2uf ′−f)]2,

(18)
which can be integrated by quadrature.

Note that if we set f(u) = u, which corresponds to the thin elastic rod model,
then we come to the equation

4λ2
1

(

du

ds

)2

= 4F 2u − 4(λ1u − λ3)
2u − (c − λ2u)2

(cf. equation (16) in Ref. [30]‡).
It is mentioned in Ref. [8] that, for a general functional

∫

φ(κ, τ) ds, integrability
does not persist. The above consideration shows that if the torsion enters the
functional as a separate linear term, then the equations can still be reduced to a
quadrature. The case of the perfect bundle with circular cross-section delivers a
particular example of such a functional.

‡ The preceding equation (15) in Ref. [30] is written for the curvature itself and it should be the same
as equation (87) in Ref. [8], but the latter is evidently mistyped: the term in the second parentheses
must be 2(αµ − FJ) − ακ2.
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6.2. Equations for the coordinates of the axis

Solution of (18) and then (17) gives us the functions of curvature and torsion but does
not provide the knowledge of the coordinates of the axis r in space. A straightforward
method to find them is to integrate the Serret-Frenet equations together with the
equation

dr

ds
= T.

In case of the thin rod, it is known that there exist special cylindrical coordinates
{ρ, θ, z} in which the centreline is expressed in an especially convenient way [29, 21, 22].
As shown in Ref. [8], this remains valid in the general case.

We direct the z-axis along the force vector F 6= 0 and the polar angle θ is measured
from the axis M× F. The radial distance is given by

ρ2 =
4λ2

1κ
2(f ′)2 + λ2

2 − M2
z

F 2
, (19)

where Mz is the constant z-component of the moment M. To find the other
coordinates one needs to integrate

dz

ds
=

1

F
[λ1(2κ

2f ′ − f) − λ3] (20)

and
dθ

ds
= − 1

Fρ2

(

Mz

dz

ds
+ λ2

)

. (21)

The equations (19), (20), (21) generalize Ilyukhin’s equations for the thin elastic rod
to the parallel bundles [21, 22].

7. Concluding remarks

As shown in this work, features of universal geometric nature play essential part
in formation of the architecture of densely packed filaments, influencing their
conformational energy. The following several comments emphasize the interrelations
between the parallel bundles and other models and observations.

Under certain conditions, the DNA toroids may deform taking on a warped
shape [12]. Generally, this deformation affects the interstrand distances and the
interaction energy between strands. This effect may influence the twist-bend
instability of the DNA condensates [28]. However, figure 6 shows a perfectly packed
structure with an overall shape that closely resembles the warped toroids in [12].
Thus, keeping interstrand distances constant is compatible with the deformation of
the toroid as a whole. Moreover, exluding trivial cases, a parallel bundle should writhe
to close to itself.

It is well established that DNA inside a viral capsid is packed at liquid crystal
density [9]. We have seen that two requirements: of the continuous hexagonal
packing of tubes and of the closedness of the bundle (or its self-touching) lead to
three-dimensional structures which are highly interlinked in most cases. Analysis of
entanglement is beyond the scope of the present article. It can be only mentioned here
that the DNA densely packed in phage capsids appears to be highly knotted [3, 2], as
its can be predicted for its near-optimal packing geometry.
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To describe the elastic energy of packed DNA, the thin elastic rod model is applied
in Ref. [27] where this energy was represented as a linear combination of two terms:
first containing the squared curvature and second the squared (geometrical) torsion.
However, it is well known that the thin rod theory (which has become conventional
for free DNA) does not include the squared torsion term; instead, there is the squared
tangential projection of the Darboux vector, and the equilibria of the rod correspond
to extremals of a functional that involves not squared but just linear torsion [30, 23].

On the other hand, the Frank-Oseen energy contains the twist term which
generally involves the integral of the squared torsion and, if the cholesteric interaction
is taken into account, the total torsion, as well. Note that the perfect hexagonal
packing is twistless and implies absence of any twist term in the Frank-Oseen energy
caused by interactions of neighbouring polymers, though the individual molecules may
still be twisted and their torsional elastic energy may be well caught by the thin rod
model. This remark is not limited to perfect hexagonal packing. The case of high
density condensates of semiflexible polymers (e.g. DNA) which are long and stiff, is a
meeting point of two different descriptions and one always should clearly distinguish
which term comes from which model.

DNA is a chiral molecule, therefore one expects that it forms liquid crystals in
which the neighbouring polymers are arranged at a cholesteric angle of particular
sign. Clearly, no perfect hexagonal packing is possible in this case. It was however
found that DNA could form achiral line hexatic phases [46]. This observation is in
accordance with the above analysis of the perfect hexagonal order of the twistless
bundles. It should be stressed here that these bundles (and hence, the rods in them)
may have handedness defined by the sign of its writhe. In other words, chirality may
be present in the structures where all the molecules are arranged parallelly to their
neighbours.

A macroscopic model of a perfectly packed bundle may be implemented as a
set of elastic rods put into a sleeve tight enough to prevent possible cross-overs.
Another possibility is to replace the sleeve with a number of discs equally distributed
along the bundle and having hexagonally arranged holes for the rods to keep them at
equal distances with respect to each other. The discs would then serve as a material
realization of the orthogonal cross-sections.
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