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1 Introduction

Archaeological field surveys grapple with a palimpsested, partial, and heav-
ily transformed record. Our efforts to explain and give meaning to this record
are hampered by complex sequences of deposition, preservation and recovery,
culminating in a particularly acute struggle against information degradation.
Extensive (unsystematic) survey practices have their roots in the earliest stages
of archaeology as a discipline, but it was really the development of more in-
tensive and systematic techniques from the 1970s onwards—initially in several
semi-arid and temperate parts of the world with frequent and highly visible sur-
face artifacts—that illustrated survey’s potential to sample whole landscapes of
human activity in ways that are amenable to statistical analysis (e.g., Flannery
1976; McDonald and Rapp 1972; Shennan 1985, to cite just three early impor-
tant examples). However, despite three decades of important advances in data
gathering and management techniques (e.g., Conolly and Lake 2006; Wheatley
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remains less well-developed are the quantitative methods for examining large
multivariate, multi-scalar spatial datasets. Indeed, while there have been many
recent advances in quantitative methods in geography, ecology and epidemiol-
ogy (for a useful ecological review, see Miller et al. 2007), archaeology has been
relatively slow to adopt and develop such approaches. It is telling that the last
book-length treatment of spatial statistics in archaeology remains Hodder and
Orton’s 1976 Spatial Analysis in Archaeology.

We improve on this situation by considering a crucial issue for survey archae-
ology: how, ultimately, do we identify and make sense of the heterogeneous and
often inter-dependent behaviours and processes responsible for apparent spatial
patterns? We argue that this issue is so fundamental to proper archaeological
inference-building that it should not just reflect the methodological preoccupa-
tions of a statistically-enthusiastic minority, but can offer much wider theoreti-
cal capital. More precisely, we addess two interconnected analytical problems—
spatial heterogeneity and spatial nonstationarity—to illustrate how formal spa-
tial modelling can offer useful insights into archaeological survey data and there-
after generate additional hypotheses about the cultural dynamics that created
the archaeological record. To illustrate our claims, we draw on work produced
by our Antikythera Survey Project (figure 1), where we have adopted explicitly
interdisciplinary working practices, with GIS and spatial analysis prominent

from the outset.

2 Problem definition

Between 2005 and 2007, we directed an intensive archaeological survey that sam-
pled the entire landscape of the small (~20 km?) Greek island of Antikythera
via standard fieldwalking techniques. We also integrated a variety of geoarchae-

ological, botanical and ethno-historical studies in order to develop models of the



long-term human ecology and settlement history of the island. Our aims are not
unique—there have been many surveys in the Mediterranean region that share
similar objectives (e.g., Cherry et al. 1991; Jameson et al. 1994; Barton et al.
2004; Hill 2004; Barker et al. 2007, to name but five from a long list of possi-
ble examples). However, the geographic context of our study is more unusual;
Antikythera is one of the smallest and most remote, yet frequently-inhabited,
islands in the Mediterranean. It thus offers a rare kind of perspective on the var-
ious and variably-integrated ‘microregions’ that characterise the Mediterranean
world (Horden and Purcell 2000: 124-143).!

Our survey, to our knowledge, is the first to have surveyed an entire Mediter-
ranean island with standardised field walking methods. First stage field walking
was followed up by finer-scale second stage reinvestigation of particularly in-
teresting areas: overall, we recorded approximately 100,000 artifacts and made
a permanent collection of about a quarter of these, providing us with a highly
structured and standardised archaeological dataset. In the course of analysis,
it has been obvious, although not unexpected, that the artifact data exhibits
multi-scalar patterning and, furthermore, that certain relationships between ar-
tifacts and environmental variables hold in some parts of the island, but not
in others. This has prompted us to explore the basis of this observation in a
more formal way and to investigate what contributing variables underpin it.
The methods we used to achieve this are the focus of this paper; we believe they
will potentially be of interest for a large number of archaeologists grappling with

complex, artifact-rich, spatial datasets.

LOur study program is also now complete and a final publication is in preparation. Prelim-
inary datasets and results can be found at www.tuarc.trentu.ca/asp or www.ucl.ac.uk/asp.



3 The dataset

The raw data used for this analysis consists of counts of potsherds. These were
recorded along transects walked by surveyors spaced 15 m apart and then stan-
dardised as estimated counts per 100 m?, assuming for the moment that each
surveyor consistently observes about 1 m of ground to either side of them as
they walk (i.e., a “definite detection model”: Banning 2002). Rescaling of these
densities for a different observed corridor would not affect the analysis or meth-
ods discussed here. Slightly more problematic is the likelihood that the real
observation corridor from unit to unit varies depending both on the landscape
covered (e.g. if it is treacherous and requires the surveyor to give less attention
to surface observation) and the idiosyncrasies of the surveyor (and that detec-
tion rates also vary between observers; see Banning et al. 2006; Hawkins et al.
2003). However, for our practical purposes below, we have assumed a consistent
observation corridor throughout. In Mediterranean survey, it is also common
to aggregate individual walker observations into larger, polygonal units called
‘tracts’, which follow local field boundaries or vegetation patches and are often
highly variable in size and shape (although typically sub-hectare). This practice
can cause significant interpretative difficulties, as expressed by the well-known
‘modifiable areal unit problem’ (or ‘MAUP’, Fotheringham and Wong 1991;
Amrhein 1995), which cautions that the type of patterns observable in aggre-
gated datasets are to a greater or lesser extent dependent on both the scale and
choice of aggregation unit (and particularly so for the measurement of correla-
tions between variables). We have sought to reduce the impact of MAUP in
our survey data by prioritising the original transect lines as our primary unit of
recording and analysis, rather than tracts.

Surface pottery distributions are often skewed towards greater numbers of

lower densities and this makes them difficult to represent with a straightforward,



linear colour scale (e.g. Dent 1999: 143-152). It also raises more fundamental an-
alytical problems, not least because descriptive summary statistics such as the
mean, standard deviation, etc., become far less useful and comparable across
different landscape projects when the data do not have a normal, Gaussian,
distribution. Of course, there are both exploratory and confirmatory statisti-
cal methods that are designed to work with skewed data, but many common
techniques such as kriging and ordinary least squares regression are far less re-
liable under such conditions. A common treatment of skewed data thus is to
normalise it by, for example, taking the logarithm (or if there are zero values
present, adding one and then logging) and then later back-transforming the
results if necessary. However, in many cases, artifact distributions resist even
this sort of approach and arguably fall into an especially problematic type of
data known as ‘zero-inflated distributions’ (see Lambert 1992 for the original
discussion, and below for further references to spatial versions).

Second stage collections at finer resolution make it clear that in some cases,
the abundance of zeros are false negatives arising from rapid observation time
and disguise a range of low potsherd counts that would be identifiable if sur-
veyors were to search for longer. From a theoretical standpoint, a clear starting
point is to try to model these counts as one or more Poisson distributions (e.g.
Orton 2008), albeit ones with (i) unusual rounding effects at the lower end and
(ii) patterns of spatial and temporal autocorrelation (see below). Poisson distri-
butions are often used to model the probability of a number of events occurring
with a set temporal or spatial interval. They are also often used as an indication
of complete spatial randomness within a particular distribution (Fotheringham
et al. 2002b: 145). We will return to these issues at several stages in the discus-

sion below.



4 Modelling spatial heterogeneity

In archaeology, spatial interpolation is widely used to model heterogeneous dis-
tributions of natural and cultural data for both visual and analytic purposes.
The most common application of interpolation by archaeologists has tradition-
ally been for the creation of digital elevation models (Conolly and Lake 2006:
100-107), but the technique can also be applied to model a continuous distribu-
tion of cultural data such as artifact densities or event horizons (e.g., Gkiasta
et al. 2003) derived from sampled locations. The apparent complexity in ar-
chaeological spatial datasets arises from such spatial heterogeneity, insofar as
the densities of different phenomena (e.g., artifacts, settlements, field walls, etc.)
vary widely over space and, moreover, relationships that hold true in one area
of a landscape may not hold true in another. To complicate things further,
cultural (and natural) phenomena often also exhibit spatial anisotropy—i.e.,
measurements of a given phenomenon may not vary equally evenly in all direc-
tions, but may have trends that are directionally dependent (e.g., the frequency
of artifacts may decrease evenly in one direction, but more chaotically in an-
other). This complexity does not, however, mean that spatially heterogeneous
and anisotropic phenomena are unable to be investigated quantitatively. In fact,
as we here show, formal spatial analysis can yield a much deeper understanding

of the structure of a dataset and its spatial variability.

4.1 Kriging

Kriging is a common technique in this regard, used extensively in geography and
ecology, but less widely in archaeology (Zubrow and Harbaugh 1978; Robinson
and Zubrow 1999; see also Conolly and Lake 2006: 97-101 and Lloyd and Atkin-
son 2004 for technical background). Kriging is a geostatistical technique that

examines the spatial structure of a dataset to determine its interpolation param-



eters, and often provides more accurate and informative results than more basic
interpolation methods. The essence of the technique is that instead of using a
predefined weighting function that defines the contribution of each neighbour-
ing sample point to the interpolated value, it is necessary to first model the
degree to which the distance between observations is correlated (or not) to their
values. This is established via the construction of a variogram, which provides
information on the relative difference between observations, on average, when
separated by a given distance (or ‘lag’). If this observed patterning can be ac-
curately described by a theoretical model, then the modelling coefficients can
be used to determine the interpolation parameters.

Kriging is thus more sensitive to the structure of the original data than in-
terpolation functions that use an arbitrary distance or pre-defined number of
neighbours to derive interpolated values (e.g., as in inverse-distance weighted
interpolation). As we discussed above, the zero-inflated, Poisson character of our
artifact count data makes traditional kriging analysis and variography problem-
atic, but below we make use of a Poisson kriging approach which recent work
in ecology and epidemiology has highlighted as a useful alternative under such
conditions (Monestiez et al. 2006; Goovaerts 2005, Goovaerts 2008). An impor-
tant additional component of kriging is establishing the degree of anisotropy in
the dataset given that the type and intensity of directional relationships (e.g.,
whether information recovered from the north and south are more useful predic-
tors than information recovered from the east or west) may provide additional
insight into spatial structure of the phenomenon under examination.

The degree of anisotropy in a spatial dataset can be identified via variogram
maps and/or directional variograms, both of which offer ways of visualising the
decrease in spatial correlation at increasing scales of distance. Antikythera’s

pottery counts suggest plenty of heterogeneous effects, but are more strongly



correlated with one another (i.e., showing lower semi-variance, ) in a roughly
NW-SE direction. In light of the larger scale heterogeneity, the directional var-
iograms in figure 2b were calculated over a small spatial range where there is
more consistency (up to ~400 m). Interestingly, both plots suggest the sampling
effect of ASP’s survey lines, most of which were walked in either a N-S or E-W
direction to facilitate easy mapping. This is possibly the source of the striped
patterns in some parts of the variogram map, and as two groups (N-S, E-W
versus NE-SW, SE-NW) of quite different semi-variances at the very shortest
distances in the empirical variograms. Beyond these recovery effects, we can sug-
gest that patterns of spatial autocorrelation are otherwise fairly isotropic over
the first 100-150 m, but becomes far more anisotropic at larger distances with
greater continuity in a NW-SE direction (i.e. over the ~400m radius mentioned
above, which we can describe more prosaically as covering areas 800 m or so
wide).

After fitting a theoretical (spherical) model that describes this directional
bias (Fotheringham et al. 2002a: 172), we can use the model’s coeflicients to
produce a prediction surface (the former shown in figure 3) for which we have
much greater sense of the likely statistical error and a better understanding of
the underlying spatial structure.? In any case, our interpretation of the vari-
ograms above is that their patterning arises from two separate processes: (i) the
propensity for pottery counts on Antikythera to relate to one another at the
level of small dense scatters (i.e. up to ~100 m across) and the emptier areas
between them, and; (ii) at larger scales, for generally higher or lower densities
to concatenate along the prevailing tectonic faultlines that split Antikythera up

into valleys and hills running in similar NW-SE directions (and which encour-

2 Although not explored here directly, the fitting of a separate variogram model for the
very shortest-range variation might be a good way of controlling for the impact of the N-S
or E-W striped, inter-observer variations discussed above (see Hawkins et al. 2003 for a good
discussion of these effects and possible correction methods).



age the spatial dependence of a range of other phenomena as well, such as soils,
slope, elevation, hydrology).

The statistical model of pottery density leads us to a range of more spec-
ulative, but testable hypotheses about artifact patterning, for example: (i) in
one or more of the periods that are known to have produced the bulk of the
surface ceramics on the island, there have been several clusters of activity of
approximately 800 m in size, consisting of smaller sub-clusters, which are the
products of larger, community-scale aggregations of small settlements; (ii) if the
previous claim is correct and these 800 m size clusters do reflect community-
level groupings, then each of the constituent sub-clusters should include similar
types of functional activities, and have much in common in terms of the arti-
facts recovered; (iii) community-level groups will have particular spatial scales
of correlation with other aspects of the environment such as soil, hydrology or
topography, the distribution of which are also largely dictated by the major

NW-SE geomorphological structure of the island.

5 Modelling spatial dependence and nonstation-
arity

Archaeological phenomena exhibit a strong degree of non-random structure both
in time and space, and while this has long been seen as helpful for our taxo-
nomic and chronological efforts (e.g., as in Childean space-time systematics), in
many circumstances, it also can violate one of the key assumptions behind most
ordinary statistical approaches, namely the assumption that individual observa-
tions are independent of one another. In fact such conditions are rarely present
in the archaeological record. For example, the processes that produce surface

artifacts are themselves often non-random—people produce large quantities of



pottery in certain locales (e.g., kiln sites), use sets of pottery in particular places
(e.g., in houses), and often discard broken vessels together in dumps. This leads
to high clustering of potsherds, and when we observe these in a series of ar-
chaeological survey units, the resulting sherd counts exhibit what is known as
spatial dependence—Dbroadly referring to situations where measured phenomena
that are closer together in space tend to be more related than those further
apart (popularly known as Tobler’s ‘First Law of Geography’—Tobler 1970).
This property alone is enough to violate the assumptions behind many tradi-
tional statistical techniques, but is an explicit feature of the kriging analysis
performed earlier. Spatially dependent patterns can have complex causes: some
reflect the influence of exogenous factors, such as, in the pottery example, the
correlation of high counts with land suitable for farming and settlement (itself a
patchy, spatially-structured resource), while others indicate endogenous factors,
such as the propensity for pottery to be discarded in groups and thereafter to
break down from larger to smaller pieces (the proverbial ‘pot-smash’, though the
latter issue might ideally be avoided by considering pottery weights rather than
counts). As Fortin and Dale suggest, we can therefore usefully talk about in-
duced spatial dependence (brought on by interaction with a range of exogenous
influences) and inherent spatial dependence which reflects the self-influence of a
particular property and which is better known as spatial autocorrelation (2005;
see also Legendre 1993). A common example in ecology might be the spatial
dependence in forest stands than results from varying geology on the one hand
(an exogenous influence), and on the other, both seed dispersal mechanisms
and subsequent competition between individual trees (endogenous cases). We
will primarily focus on spatial patterns below, but it is worth noting that we
can also talk about temporal dependence—where measured phenomena that are

closer together in time tend to be more related than those further apart—and
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distinguish between similarities that are induced by exogenous factors (e.g. the
effect of climate change on cultural change) and those that reflect endogenous,
autocorrelated effects (e.g. a classic case being patterns of cultural inheritance
from one generation to the next).

These distinctions bring a greater level of analytical clarity but are insuf-
ficient on their own, because, we must also consider the possibility that the
relationship between two or more variables across space may itself vary, which
is termed spatial nonstationarity. As an example, consider a hypothetical rela-
tionship between two phenomena, z and y. A simple plot of one set of counts
against the other might, for example, suggest a covarying relationship: where
high quantities of z are found, so too are high quantities of y (and vice-versa).
The problem is that, not only might the measured strength and statistical signif-
icance of this relationship vary spatially, but more dramatically, it might even
be entirely different (e.g. negatively rather than positively correlated) in one
part of the study area than in another. In both cases, such spatially varying
relationships violate another key assumption behind most ordinary statistical
approaches, namely the principle of stationarity. Nonstationarity effects mean
that global correlation statistics such as Pearson’s 72 are likely to be inaccurate
estimates of explanatory strength and that global models of the dependence of
one spatial variable on another are likely, at the very least, to miss important
local patterning, but also run the far more serious risk of mixing the effects of
conflicting local relationships and producing an entirely spurious, mis-specified
model (a manifestation of what is known as Simpson’s Paradox). This can have
profound implications for understanding the temporal and spatial relationship
between cultural and ecological phenomena—what in fact we wish to under-
stand is not simply whether x and y covary, but also in what contexts, at what

scales and in what local ways do they covary. Traditional non-spatial statistics
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are poorly-equipped to answer the latter questions, and we must thus look to
advances in spatial statistics for help.

So far we have not made any attempt to model formally what exogenous
environmental variables or endogenous processes might be inducing the spatial
dependence of pottery counts on Antikythera, apart from suggesting that pre-
vailing geology might play a role. In this respect, a more commonly adopted
procedure is multiple regression. Traditional approaches to multiple regression
derive a single set of relationships between one dependent variable and a number
of independent variables. Perhaps the most common archaeological examples are
the logistic regression models used to predict the relationship between the prob-
ability of encountering an archaeological site and several independent variables
(such as distance to water, slope, elevation, etc.) for Cultural Resource Man-
agement purposes (for a well-constructed example, see Warren and Asch 2000).
However, global models applied to geographic data are problematic for a variety
of theoretical and methodological reasons, of which perhaps the most important
but least recognised within archaeology is the fact that they assume a single set
of stationary relationships between dependent and independent variables. In
fact, this is extremely unlikely for many geographical phenomena, where non-
stationary processes are common, or more prosaically, where “the measurement
of a relationship depends in part on where the measurement is taken” (Fother-
ingham et al. 2002a: 9). In the real world, spatially varying relationships may be
due to sampling bias (in the case of survey data, for example, potentially relat-
ing to the places explored by particularly observant or unobservant surveyors),
but more interestingly, can also reflect the influence of a variety of environmen-
tal and cultural factors (e.g., spatially and temporally varying social attitudes,
ecological niches, political structures, economic constraints, etc.).

Fortunately, there is now an increasing number of approaches that confront
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and exploit the nonstationarity and spatial dependence present in multivariate
relationships, which together are part of a general trend in the social sciences
that has seen the decline of ‘general’ models in favour of ‘local’ ones (e.g.,
Lloyd 2007). These spatially-sensitive techniques are particularly common in
ecology and epidemiology, including co-kriging and/or kriging with external
drift, sparse grids, mixed autoregressive/trend models, and various Bayesian
approaches (e.g., Goovaerts 2000; Cressie 1991; Green and Richardson 2002;
Lichstein et al. 2002; Laffan et al. 2005). They are oddly rare, if not entirely

absent, from the archaeological literature.

5.1 Geographically Weighted Regression

Here we introduce just one technique suited to the modelling of local pattern-
ing, known as geographically weighted regression (GWR, Fotheringham et al.
2002a). While a standard regression approach produces a single solution for (i)
the intercept term, (ii) the coefficients that determine the weighting of indepen-
dent variables, and (iii) the model’s goodness-of-fit, a geographically weighted
regression estimates these separately at each sampled location. These estimates
are applied locally within an area defined by a spatial kernel. A key decision
therefore becomes the shape and size of this kernel (e.g. a circular neighbour-
hood of fixed radius or a consistent number of neighbouring sample points), as
well as how the datapoints that fall within it will be weighted. Such a decision
can be made by the user in a manner akin to the varying the focus on a (spatial)
microscope, or can be optimised by iterative model-fitting and automated com-
parison of various goodness-of-fit statistics. The results can be compared to a
global model to consider if there are any spatially varying relationships present
and, if these are significant, the regression parameters and residual error can be

mapped to explore the nature of these spatial patterns.
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To illustrate, we first consider a traditional, global regression analysis and
take the case of pottery counts on Antikythera as the example. As discussed in
section earlier, we are dealing with count data that can be understood as the
result of one or more Poisson processes and therefore modelled with reference
to a Poisson distribution(s), but which show evidence of a greater number of
zero counts than we might expect. An established way of dealing with excess
zero counts is to perform a spatial, zero-inflated Poisson regression (‘spatial
ZIP’—Agarwal et al. 2002; Rathbun and Fei 2006; Ver Hoef and Jansen 2007)
which typically treats the phenomenon as a mixture of two components: (i) a
binary distribution representing whether any counts were detected at a partic-
ular location, and (ii) a Poisson distribution which models the actual artifact
counts. Conceptually, this approach might separate the detection (or not) of
sherds from the measurement of the actual number of sherds present. As an
aside, binary spatial data is amenable to formal statistical modelling (e.g., in
an manner equivalent to that outlined by Rathbun and Fei 2006 for ecological
data) that may help resolve the question of when zero counts in a survey actu-
ally reflect (i) an absence of surface artifacts versus (ii) the inability of surveyors
to see artifacts that are present (e.g., because of vegetative interference), versus
(iii) observer error. For example, spatial analysis of binary patterns may indi-
cate where low frequency and isolated null counts are likely erroneous outliers,
versus where they are clustered and spatially correlated with particular vegeta-
tion densities, which in turn may suggest the pattern reflects problems seeing
surface artifacts.

However, the tendency for surface artifacts to cluster strongly together is
itself a problematic factor as both this spatial clustering and the zero-inflation
lead to count data which is ‘over-dispersed’ (i.e., with a variance larger than

the mean) with respect to strict Poisson model assumptions. A second way of
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addressing both of these problems, that is ultimately less conceptually satis-
fying than a ZIP model, but of much greater use for our purposes below, is
to adjust the Poisson model using an estimated dispersion term (part of the
quasi- family of generalised models; McCullagh and Nelder 1989: 323-371; Ven-
ables and Ripley 2002: 208-10; see also Bae et al. 2005). Although this works
well here, we suggest that future studies should focus on how to manage zero-
inflated distribution patterns in archaeological survey data by first considering
the methodological advances that have been made by ecologists working with
analogous datasets, and with particular attention to ZIP models.

Figure 4 and table 1 follow the simpler, second method suggested above and
shows the setup and results of a quasi-Poisson, global regression when we in-
clude measures of slope, vegetation cover and geological variation as predictor
variables. Slope is commonly known to influence not only settlement strategies
and land use patterns, but also post-depositional factors such as erosion. Vege-
tation, as with slope, ultimately has a complex relationship with surface pottery
distributions, but we can expect it to indicate more and less carefully managed
parts of the modern landscape. For our limited purposes here, we calculated
a Normalised Difference Vegetation Index (NDVI) from a QuickBird satellite
image of Antikythera, which describes the amount of healthy green vegetation
as rough proxy for changing land cover. High NDVI values represent dense veg-
etation, which correlates (albeit imperfectly) with areas of less intensive land
management in the past and has important effects on recovery rates during ar-
chaeological survey. As another brief aside, many modern surveys include an
assessment of percentage ground cover as part of their recording procedures
and this serves primarily to indicate the amount of visual interference encoun-
tered when counting surface artifacts. It is then sometimes used to re-weight

observed artifact counts (e.g., Given and Knapp 2003: 54-5; Bintliff et al. 2007:
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21). However not only is the real relationship between ground cover and recovery
rates extremely complex (see Schon 2000: 109; Bevan and Conolly 2004: 127-8;
Given 2004: 16-17), but there are also fundamental problems associated with
how consistently and accurately surveyors estimate ground surface cover. Our
preferred solution has therefore been always to use raw artifact counts rather
than weighted versions, and in cases where ground surface visibility or cover is
of more general interpretative interest, to develop measures based on a high res-
olution QuickBird satellite imagery taken the year before the survey began (e.g.
either the NDVT used here or a supervised classification of broad vegetation
types).

Finally, we choose a continuous variable for geology which measures ‘distance
into areas of harder limestone’. This allows us to model the influence of geol-
ogy as a continuous field and thereby avoid the misleading edge effects (i.e. pot
counts on either side of mapped geological boundaries) and awkward dummy
regression variables that usually result from treating this parameter at the nom-
inal scale. Antikythera consists of a combination of (i) older, harder limestones
(Cretaceous-Palacogene Gavrovo-Tripolitza unit) and (ii) softer, overlying fly-
sch (probably Eocene), marls and conglomerates (Neogene; Galeos and Dran-
daki 1993; R. Siddall pers. com.) and this crude, binary difference determines
the broad character of agricultural soils in different parts of the island, as well
as the ease with which human structures (e.g. houses, walls, wells and tombs)
could be made.

From the results in table 1, both vegetation and geology appear to be very
significant predictors of pottery density on the surface of the island, with slope
a more borderline case. Unfortunately, both visual mapping (figure 5f) and
a Moran’s I test make it clear that the regression residuals (the remaining

unaccounted-for variation) do not vary randomly across the landscape, but are
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highly correlated. This suggests that the creation of one, global model is inap-
propriate because there are likely to be spatially-varying relationships amongst
the predictors. GWR offers a method for addressing these nonstationarity is-
sues. It is an approach that was first developed for linear regression, but can
also be applied for any family of generalised linear model. Iterative compari-
son of the cross-validation scores for different kernel bandwidths suggests an
optimal kernel with a fixed radius of about 420 m. Although the GWR kernel
has a different form than the variogram model (see above and figure 2), they
are strikingly close to one another in general size and suggest that beyond a
threshold of about 800 m in diameter, spatially-dependent patterns become far
more heterogeneous.

One of the most useful aspects of a GWR approach is the ability to map local
estimates of the intercept, variable coefficients and other regression diagnostics
and see how they vary across space. In figures 5a-f, most of the predictors
seem to respond fairly consistently across the middle portion of the island, but
elsewhere some are more spatially stationary than others. Slope, for example,
has a slightly negative relationship with pottery density across much of the
island, (i.e. as slopes get steeper, slightly fewer potsherds are found, figure 5b).
However, this global relationship shows a much lower level of significance than
the other two predictors (see table 1), and around the two harbours of Potamos
and Xeropotamos in the north, the perceived global pattern potentially reverses
itself, with a possible positive relationship (all other variables kept constant,
and requiring that we confirm by testing for significance in this area alone).
For NDVI, the strong negative correlation between increasing green vegetation
(high NDVT values) and pottery seems most relevant to a limited number of
areas (those in yellow), while much weaker relationships exist elsewhere and in

the more barren areas of the far south and far east, there are again suggested
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positive relationships. For geology, the overall pattern confirms the impression
that human activity (as expressed by pottery discard) becomes less intense
as you proceed further into zones of hard limestone, but the strength of this
relationship varies and in certain key locales—the northern harbours, the far
east and the far south—this relationship again breaks down. Such variation not
only suggests that a global regression is highly misleading, but more positively,
it encourages us to think carefully about how best to break the island into
meaningful analytical regions. The dotted lines in figures 5a—d are a first effort to
suggest some of these sub-regions, based on the varying regression relationships.

The sub-regions identified by GWR make some sense when we consider the
contextual detail of settlement at local scales of analysis. To consider three of
these localities: first, the central core of the island is arguably the most homo-
geneous part of the landscape and the one that is intensively used for farming
in most periods. The stronger negative relationship between high slopes, NDVI
values and limestone surfaces is thus not surprising and reflects a relatively
consistent set of agriculturally-driven relationships in this area. Second, the far
northern and far southern tips of the island are both fairly barren places and
less agriculturally suitable, but while the former is bounded on all sides by
cliffs and ridgelines, the latter has a small cove (with a modern lighthouse) and
ships appear to have regularly harboured, resulting in elevated levels of pot-
tery distributions, probably from the Bronze Age onwards. The determining
relationships between pottery density and environment in this zone have thus
not been adequately accounted for by our predictor variables, because they are
linked to a range of other factors including coastal topography and morphol-
ogy. Finally, the northern harbours require separate treatment not least because
much of the intense activity that has occurred there, and the distinctively dif-

ferent relationships suggested by the regression analysis, reflect the impetus of
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off-island connections. The most striking example of this is the area of extremely
high pottery counts around one of the northern bays (the heavily over-dispersed
distribution shown in red in figure 5e) which comes from the site of a Hellenis-
tic ‘pirate’ community (described as such in at least one contemporary source:
Jacopi 1932) perched in an otherwise unlikely location on a rocky headland,
from which presumably to prey on the shipping lanes between Antikythera and
Kythera to the north. Here too, the agriculturally-driven relationships between
pottery and broad environmental characteristics identified for the central part of
the island do not hold true, as the strategic priority for settling in the northern
harbours area was very different.

GWR potentially therefore offers us a useful way to explore locally sensitive
relationships between dependant and independent variables that are respon-
sive to different sorts of land use patterns and settlement histories. However,
the preceding analysis is meant primarily to demostrate GWR’s promise as
an exploratory technique, rather than as a definitive assessment of its formal
analytical merits, and we would like to conclude by raising three concerns in
this regard. First, there are methodological problems with the fact that GWR/’s
decomposition of the regression process into a series of small kernels can en-
courage much greater levels of multicollinearity between the variables (Wheeler
and Tiefelsdorf 2005). In a sense, this is partly what it is designed to do—i.e.,
select a kernel size that maximises the amount of locally strong covariance—but
consequently and more specifically, there is a very real risk of inducing greater
levels of collinearity among the exogenous, predictor variables themselves and
thereby making local parameter estimates inherently unstable. Second, although
the residuals from this local regression are generally lower than for the global
regression, they still show signs of autocorellation that we would argue is often

likely to be inherent rather than induced and present at smaller spatial scales
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than the GWR kernel. A useful future approach to modelling this might be krig-
ing of the residuals (e.g. Goovaerts 2000). Third and finally, while significance
thresholds can be calculated for standard linear GWR models and should be
presented alongside mapped parameter estimates (see Mennis 2006 for a guide
to good cartographic practice in this regard), the task is problematic for more
complex cases such as quasi-Poisson models and as suggested above, the pa-
rameter variations visible in figure 5 still require formal statistical confirmation
within the proposed analytical sub-units before they can be wholly trusted. As
always therefore, complex and relatively new statistical techniques need to be
used with a degree of caution: in cases where an initial, global regression reveals
only low-levels of spatial autocorrelation in its residuals, then this method (and
for the above case, ideally a ZIP model) should be preferred. Where significant
nonstationarity effects are present however, GWR should be seen as one of
several promising ways of decomposing the study area into smaller, potentially

more reliable units of analysis.

6 Conclusions

This paper has sought to address two under-appreciated issues associated with
the spatial analysis of intensive survey datasets, but with the wider intention of
developing more self-conscious and formal analysis of archaeological landscapes
in general. Stratified sampling strategies have received a great deal of attention
from landscape archaeologists (e.g., Barker et al. 2007 and Bintliff et al. 2007 as
two applied examples; and Banning 2002 and Orton 2000 for theoretical models),
and we would agree with much of this emphasis. In particular, and in the light
of the issues raised in this paper, we would advocate multi-phase, multi-scale
fieldwork methods: each strategic phase should involve collection units whose

size, shape, spatial separation and observation time are as consistent as possible,
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and where feasible, these should reflect some prior knowledge of the likely spatial
scale and distribution of the archaeological phenomena involved (Banning 2002:
75). More tellingly, if intensive surface survey is to address patterns of spatial
dependence effectively, it may be more advantageous to cover smaller study
areas continuously rather than larger ones in many separate patches. However,
it is not only our recovery strategies but also our analytical methods that must
address the impact of spatially heterogeneous landscapes. Before we can consider
more interesting relationships between cultural and environmental variables, we
must seek methods that allow us to: (i) understand the scale at which a variety
of spatial dependencies are operating, and (ii) make sense of spatially-varying
relationships by breaking them down into simpler, more homogeneous units.
Although not addressed directly here, such a perspective has relevance when
we consider the temporal dependencies and temporal relationships present in
archaeological datasets as well. In any case, such issues deserve greater attention

than archaeologists have thus far given them.

Acknowledgements

A particular thanks to Aris Tsaravopoulos (our collaborator in the Greek Ar-
chaeological Service) for his assistance and encouragement. The Antikythera
Survey Project was kindly funded by the Social Science and Humanities Re-
search Council (Canada), the Institute for Aegean Prehistory and the Arts and
Humanities Research Council (UK). We worked under a Greek Ministry of Cul-
ture permit and with the support of the Canadian Institute in Greece. The
archaeological data used in this paper was managed and analysed in ArcGIS,
GRASS, and R (including spgwr, Bivand and Yu 2007), as well as in a bespoke
program for poisson kriging that was kindly supplied by Pierre Goovaerts. Our

thanks also to Jeff Jenness for assistance in developing a semi-automated GIS

21



routine to plot walker lines within their larger tract polygons. An earlier ver-
sion of this routine was first developed as part of the research conducted by
both authors within a larger survey project on the neighbouring Greek island
of Kythera since 1998 (the Kythera Island Project) and, more generally, we are
very grateful to Cyprian Broodbank and Evangelia Kiriatzi (KIP co-directors)
as well as the other KIP contributors for a wide range of advice, support and
discussion. A final thank you to Clive Orton, Pierre Goovaerts and four anony-
mous JAS reviewers for their comments on the manuscript—their suggestions
greatly improved the paper and our descriptions of spatial statistical methods.

Any remaining issues or problems are, of course, our own responsibility.

References

Agarwal, D. K., Gelfand, A. E., Citron-Pousty, S., 2002. Zero-inflated models
with application to spatial count data. Environmental and Ecological Statis-

tics 9, 341-355.

Amrhein, C. G., 1995. Searching for the elusive aggregation effect: evidence from

statistical simulations. Environment and Planning A 27 (1), 105-119.

Bae, S., Famoye, F., Wulu, J. T., Bartolucci, A. A., Singh, K. P., 2005. A rich
family of generalized poisson regression models with applications. Mathemat-

ics and Computers in Simulation 69, 4-11.

Banning, E., Hawkins, A., Stewart, S., 2006. Detection functions for archaeo-

logical survey. American Antiquity 71 (4), 723-740.
Banning, E. B., 2002. Archaeological Survey. Kluwer, New York.

Barker, G., Gilbertson, D., Mattingly, D. (Eds.), 2007. Archaeology and De-

sertification: The Wadi Faynan Landscape Survey, Sourthern Jordan. Wadi

22



Faynan Series 2, Levant Supplementary Series 6. Council for British Research

in the Levant, Oxbow Books, Oxford.

Barton, C. M., Auban, J. B., Puchol, O. G., Schmich, S., Balaguer, L. M., 2004.
Long-term socioecology and contingent landscapes. Journal of Archaeological

Method and Theory 11, 253-395.

Bevan, A., Conolly, J., 2004. Gis, archaeological survey and landscape archaeol-

ogy on the island of kythera, greece. Journal of Field Archaeology 29, 123-138.

Bintliff, J., Howard, P., Snodgrass, A. (Eds.), 2007. Testing the Hinterland: The
Work of the Boeotia Survey (1989-1991) in the Southern Approaches to the
City of Thespiai. McDonald Institute Monographs. McDonald Institute for

Archaeological Research.

Bivand, R., Yu, D., 2007. The spgwr Package. R Foundation for Statistical

Computing.

Cherry, J., Davis, J., Mantzourani, E., 1991. Landscape Archaeology as Long-
term History : Northern Keos in the Cycladic Islands from Earliest Settlement

until Modern Times. UCLA Institute of Archaeology, Los Angeles.

Conolly, J., Lake, M., 2006. Geographical Information Systems in Archaeology.

Cambridge University Press, Cambridge.
Cressie, N. A. C., 1991. Statistics for Spatial Data. John Wiley, New York.
Dent, B. D., 1999. Cartography. Thematic Map Design. McGraw-Hill, Boston.

Flannery, K., 1976. The Early Mesoamerican Village. Academic Press, New
York.

Fortin, M.-J., Dale, M. R. T., 2005. Spatial Analysis: A Guide for Ecologists.

Cambridge University Press, Cambridge.

23



Fotheringham, A., Wong, D. W. S.; 1991. The modifiable area unit problem in

multivariate statistical analysis. Environment and Planning A23, 1025-44.

Fotheringham, A. S., Brunsdon, C., Charlton, M., 2002a. Geographically

Weighted Regression. Wiley, Chichester.

Fotheringham, A. S., Brunsdon, C., Charlton, M., 2002b. Quantitative Geogra-

phy: Perspectives on Spatial Data Analysis. Sage Publications, London.

Francovich, R., Patterson, H. (Eds.), 2000. Extracting Meaning from Ploughsoil
Assemblages. No. 5 in The Archaeology of Mediterranean Landscapes. Oxbow
Books, Oxford.

Galeos, A., Drandaki, E., 1993. Geological map of greece. antikythera island
sheet, (1:50,000). Tech. rep., Institute of Geology and Mineral Exploration.,
Athens.

Given, M., 2004. Mapping and manuring: can we compare sherd density figures.
In: Alcock, S. E., Cherry, J. F. (Eds.), Side-by-Side Survey. Comparative
Regional Studies in the Mediterranean World. Oxbow Books, Oxford, pp.
13-21.

Given, M., Knapp, A. B., 2003. The Sydney Cyprus Survey Project: Social Ap-
proaches to Regional Archaeological Survey. Cotsen Institute of Archaeology,

Los Angeles.

Gkiasta, M., Russell, T., Shennan, S., Steele, J., 2003. Neolithic transition in

europe: the radiocarbon record revisited. Antiquity 77, 45-62.

Goovaerts, P., 2000. Geostatistical approaches for incorporating elevation into

the spatial interpolation of rainfall. Journal of Hydrology 228, 113-129.

24



Goovaerts, P., 2005. Geostatistical analysis of disease data: estimation of cancer
mortality risk from empirical frequencies using poisson kriging. International

Journal of Health Geographics 4 (31), doi:10.1186/1476-072X-4-31.

Goovaerts, P., 2008. Kriging and semivariogram deconvolution in the presence

of irregular geographical units. Mathematical Geosciences 40, 101-128.

Green, P. J., Richardson, S., 2002. Hidden markov models and disease mapping.

Journal of the American Statistical Association 97 (460), 1055-1070.

Hawkins, A. L., Stewart, S. T., Banning, E. B., 2003. Interobserver bias in enu-
merated data from archaeological survey. Journal of Archaeological Science

30, 1503-1512.

Hill, J. B., 2004. Time, scale and interpretation: 10,000 years of land use on the
transjordan plateau, amid multiple contexts of change. In: Athanassopoulos,
E. F., Wandsnider, L. (Eds.), Mediterranean Archaeological Landscapes: Cur-

rent Issues. University of Pennsylvania Museum, Philadelphia, pp. 125-142.

Hodder, 1., Orton, C., 1976. Spatial Analysis in Archaeology. New Studies in

Archaeology. Cambridge University Press, Cambridge.
Horden, P., Purcell, N., 2000. The Corrupting Sea. Blackwell, London.

Jacopi, G., 1932. Nuove epigraphi dalle sporadi meridionali. Clara Rhodos 2,
165-256.

Jameson, M. H., Runnels, C. N., van Andel, T. H., 1994. A Greek Countryside.

Stanford University Press, Stanford.

Laffan, S. W., Nielsen, O. M., Silcock, H., Hegland, M., 2005. Sparse grids: a new
predictive modelling method for the analysis of geographic data. International

Journal of Geographical Information Science 19 (3), 267-292.

25



Lambert, D., 1992. Zero-inflated poisson regression, with an application to de-

fects in manufacturing. Technometrics 34 (1), 1-14.

Legendre, P., 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology

74 (6), 1659-1673.

Lichstein, J. W., Simons, T. R., Shriner, S. A., Franzreb, K. E., 2002. Spatial
autocorrelation and autoregressive models in ecology. Ecological Monographs

72 (3), 445-463.

Lloyd, C. D., 2007. Local Models for Spatial Analysis. CRC/Taylor and Francis,

Boca Raton.

Lloyd, C. D., Atkinson, P. M., 2004. Archaeology and geostatistics. Journal of

Archaeological Science 31, 151-165.

McCullagh, P., Nelder, J. A.; 1989. Generalized Linear Models. Chapman and
Hall, London.

McDonald, W., Rapp, G. (Eds.), 1972. The Minnesota Messenia Expedition:
Reconstructing a Bronze Age Regional Environment. University of Minnesota

Press.

Mennis, C. J., 2006. Mapping the results of geographically weighted regression.
The Cartographic Journal 43 (2), 171-179.

Miller, J., Franklin, J., Aspinall, R., 2007. Incorporating spatial dependence in

predictive vegetation models. Ecological Modelling 202, 225-242.

Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J. P., Guinet, C., 2006. Geo-
statistical modelling of spatial distribution of balaenoptera physalus in the
northwestern mediterranean sea from sparse count data and heterogeneous

observation efforts. Ecological Modelling 193, 615-628.

26



Orton, C., 2000. Sampling in Archaeology. Cambridge Manuals in Archaeology.

Cambridge University Press, Cambridge.

Orton, C., 2008. Horse kicks, flying bombs and potsherds: statistical theory

contributes to archaeological survey. Archaeology International 10, 24-27.

Rathbun, S. L., Fei, S., 2006. A spatial zero-inflated poisson regression model

for oak regeneration. Environmental and Ecological Statistics 13, 409-426.

Robinson, J. M., Zubrow, E., 1999. Between spaces: Interpolation in archaeol-
ogy. In: Gillings, M., Mattingly, D., van Dalen, J. (Eds.), Geographical In-
formation Systems and Landscape Archaeology. Vol. 3 of The Archaeology of

Mediterranean Landscapes. Oxbow Books, Oxford, pp. 65-84.

Schon, R., 2000. On a site and out of site: where has our data gone? Journal of

Mediterranean Archaeology 13, 107-111.

Shennan, S., 1985. Experiments in the Collection and Analysis of Archaeological

Survey Data: The East Hampshire Survey. Academic Press, New York.

Tobler, W. R., 1970. A computer movie simulating urban growth in the Detroit

region. Economic Geography 42 (2), 234-240.

Venables, W. N., Ripley, B. D., 2002. Modern Applied Statistics with S.

Springer, New York.

Ver Hoef, J. M., Jansen, J. K., 2007. Space-time zero-inflated count models of

harbor seals. Environmetrics 18, 697-712.

Warren, R. E., Asch, D. L., 2000. A predictive model of archaeological site loca-
tion in the eastern prairie peninsula. In: Wescott, K. L., Brandon, R. J. (Eds.),
Practical Applications of GIS for Archaeologists: A Predictive Modelling Kit.

Taylor and Francis, London, pp. 3-32.

27



Wheatley, D., Gillings, M., 2002. Spatial Technology and Archaeology. The Ar-

chaeological Applications of GIS. Taylor & Francis, London.

Wheeler, D., Tiefelsdorf, M., 2005. Multicollinearity and correlation among lo-
cal regression coefficients in geographically weighted regression. Journal of

Geographical Systems 7, 161-187.

Zubrow, E., Harbaugh, J., 1978. Archaeological prospecting: kriging and sim-
ulation. In: Hodder, I. (Ed.), Simulation Studies in Archaeology. Cambridge

University Press, Cambridge, pp. 109-122.

28



Table

Parameter Estimate  Standard Er- | p-value
ror

Intercept 2.55 0.14 < 2e-16

Slope -0.01  0.01 0.06

NDVI -4.92  0.57 < 2e-16

Geology -0.002  0.0002 < 2e-16

Estimated dispersion 98.7

Null deviance 192717 (12022 d.f.)

Residual deviance 164784 (12019 d.f.)

Cross-validation score 303.6

Moran’s I test (residuals) 187.6 (p < 2.2e-16)

Table 1: Summary results from a global regression with Slope, NDVI and Geology as
independent variables.
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Figures

Kythera — -

Antikythera
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Figure 1: The south-western Aegean island of Antikythera (ASP intensively surveyed 19 km?
of the island’s total 20 km? extent), with a location map of the eastern Mediterranean.
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Figure 3: A visualisation of ASP surface pottery density, drawing on walker-scale records,
looking south. Pottery densities include original estimated densities in areas densely covered
by walker lines and, in-between, use estimates from poisson kriging with an anisotropic kernel.
Results are draped over a digital elevation model and densities are expressed as sherd counts
per 100 m? (i.e. per 10x10 m raster cell).
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