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Quintessence from the decay of superheavy dark matter
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We investigate the possibility of replacing the cosmological constant with a gradual condensation of a scalar
field produced during the decay of a superheavy dark matter. The advantage of this class of models over
ordinary quintessence is that the evolution of the dark energy and the dark energy are correlated and the
cosmological coincidence problem is solved. This model does not need a special form for the quintessence
potential; even a simple* theory or an axionlike scalar is enough to explain the existence of dark energy. We
show that the model has intrinsic feedback between the energy density of dark matter and the scalar field such
that for a large volume of the parameter space, the equation of state of the scalar field from very early in the
history of the Universe is very close to a cosmological constant. Other aspects of this model are consistent with
recent cosmic microwave background and large scale structure observations.
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I. INTRODUCTION able and puts stringent constraints on their parameters.
Comelli et al. [5] study a model in which the effect of
Quintessence models are alternatives to a cosmologic@fteraction between quintessence scalar and dark matter ap-
constant, i.e., a nonzero vacuum energy density. They angears as time dependence of DM particle mass. This explains
not, however, flawless. Even in models with tracking solu-the extreme adjustment of dark matter and dark energy den-
tions, the potential of the scalar field must somehow be finesities during cosmological evolution. The coupling between
tuned to explain its smallness and its slow variation untiltwo fields increases the parameter space for both and reduces
today. In addition, many of them cannot address the coinciby orders of magnitude the amount of fine-tuning. In this
dence problem, i.e., why the density of dark ma®M)  respect, as we will see below, their model is similar to what
and dark energyDE) evolve in such a way that they become we propose in this work. However, there are a number of
comparable just after galaxy formation. issues that these authors have not addressed. Cosmological
Recently, a number of authors have proposed an interagbservations put strict limits on the variation of fundamental
tion between dark matter and the quintessence field to earameters including the DM mass. In their model, the larg-
plain the coincidence. Chimentt al. [1], based on an ear- est amount of variation happens around and after the matter-
lier work by Chimentoet al. [2] and Zimdahlet al. [3],  domination epoch. The mass variation must leave an imprint
suggest an asymptotic scaling law between the density of Dgn the CMB and large-structure formation which was not
and DM. In their model due to a dissipative interaction be-observed.
tween dark matter and the quintessence scalar fig|d In addition to the lack of explanation for the coincidence
pom/pq—Cte, whereppy andpq are, respectively, DM and in many quintessence models, it is difficult to find a scalar
the scalar field density. Assuming this “strong coincidence”field with necessary characteristics in the frame of known
[1], they find the class of potential,(#,) such that the particle physics models without some fine-tuning of the po-
equation of state has a solution with scaling behavior. Thenential [6]. In general, it is assumed that the quintessence
using constraints from nucleosynthesis, they find that thigield is an axion with high-order, thus nonrenormalizable,
category of models has,=—0.7. This value is marginally interactions with the standard model particles its super-
compatible with the Wilkinson microwave anisotropy probe symmetric extensionwhich is highly suppressed at low en-
(WMAP) data and far from publicly available supernovaergies. However, Chungetal. [7] show that any
type la(SN-la) data which prefew,~—1. In another ver-  supergravity-induced interaction betwegtq and other sca-
sion of the same model, Zimdaht al. [3] consider a non- lars with a vacuum expectation valGéEV) of the order of
static scaling solutionppy/pq>*(ap/a)”. The model with the Planck mass can increase the very tiny mass of the
n=1 solves the coincidence paradigm, but the standard coléb, (mq~Hg~ 10723 eV) expected in many models, unless a
dark matter model with a cosmological constaniCDM) discrete global symmetry prevents their contribution to the
fits the SN-la data better and their best fit hgs~—0.7. mass.
Amendolaet al. [4] have extensively studied the interac-  In a very recent work, Farrar and Peeb8% study mod-
tion of quintessence field and dark matter in models withels with a Yukawa interaction between DM and the quintes-
tracking solutions angv,>—1. They show that these mod- sence scalar field. Like the Comedt al. model, this inter-
els are equivalent to a Brans-Dicke Lagrangian with poweraction affects the mass of the dark matter particles. The
law potential and look like a “fifth force.” Modification of general behavior of these models is closeAGDM with
the CMB anisotropy spectra by such interactions is observsome differences which can distinguish them. One of the
special cases with a two-component CDM imitates the
ACDM very closely. Many aspects of this model is similar to
*Email address: hz@mssl.ucl.ac.uk the model studied in the present work, but without consider-
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ing the source of the intimate relation between DM and DEied in Sec. IV. We show that the perturbation of dark energy
in contrast(we believe to the present work. Moreover, the in this model is very small and very far from the resolution
necessity of having a very special self-interaction potentiabf present or near-future observations. The late-time decoher-

for the quintessence field is not removed. ence of the scalar field is discussed in Sec. Il A. We give a
What we propose here is a model for dark energy somedualitative estimation of the necessary conditions and leave a
how different from previous quintessence modelprelimi-  Proper investigation of this issue as well as the possible can-

nary investigation of this model has been presentef®]p  didates for¢, to future works.

We assume that DE is the result of the condensation of a

scalar field produced during the very slow decay of a mas-4l. COSMOLOGICAL EVOLUTION OF DECAYING DARK

sive particle. In most of the quintessence models, the scalar MATTER AND A QUINTESSENCE FIELD

field is largely produced during inflation or a reheating pe- i , )

riod, such that to control its contribution to the total energy Consider that at a very early epoch in the r1|story” of the
of the Universe, its potential must be a negative exponentiafNiVerse, just after inflation, the cosmological “soup” con-
(in most cases the sum of two exponentials a negative SIStS Of two species: a superheavy dark mat&bM)—X
power function[6]. We show that in the present model, a partlclgs—decoupled from the rest of the. soup” since very
very small production rate of the scalar field replaces th&@ry time, and a second component, which we do not con-
fine-tuning of the potential, and practically any scalar fieldSider in detail. The only constraint we require is that it must
even without a self-interaction has a tracking solution for aCoNsIst of light species including baryons, neutrinos, pho-
large part of its parameter space. tons, and light dark mattéby light we mean with respect to

The main motivation for this class of models is the pos-X)- For simplicity, we assume that is a scalar fielde, .
sibility of a top-down solution{10—17 for the mystery of Consideringey to be a spinor or vector does not change the
ultrahigh energy cosmic ray&JHECR’s) [13—15. If a very gene.ral conc.lusm.ns pf t_hls vyork. We also assume #hais
small part of the decay remnants which make the primariegua5|stable, i.e., its lifetime is much longer than the present
of UHECR's is composed of a scalar fief}, its condensa- 29€ of t.he Universe. A very small part of its (jef:ay remnants
tion can have all the characteristics of a quintessence fieldS considered to be a scalar fiee}, with negligibly weak
We show that in this model the most natural equation of statélteraction with other fields. _
for the quintessence scalar is very close to a cosmological 1he effective Lagrangian can be written as
constant, at least until the age of the Universe is much

smaller than the lifetime of the superheavy dark matter :f 4y, [—4 1 v
(SDM, Wimpzilla) which is the origin of the quintessence £ dxv=g 29 Tubxdvx
field.
S . 1
Another motivat the fact that a dark th v
ofivation 1Is e TacC al a aark energy wi +§gp. aud)q&vd)q_v((bX!d)qﬂ]) +£J- (1)

wg=—1 fits the SN-la data better than a cosmological con-

stant[16—18. Although the sensitivity of CMB data to the

equation of state of the dark energy is much less than SN'sThe field J presents collectively other fields. The term
with 95% confidence WMAP data give the rangel  V(¢x.,#q,J) includes all interactions including the self-
+0.22 for thew, [19,20. Estimation from galaxy clusters interaction potential foks, and ¢,

evolution is also in agreement with this rangdl]. On the

other hand, it has been demonstrated that the cosmologica¥(®y,bq,J) =Va(bg) + Vil dy) +9bg'bg+ Wy, dq,J).
equation of state for decaying dark matter in the presence of 2

a cosmological constant is similar to quintessence with o o _
<—1[18]. Both observations therefore seem to encourage 2he termge;'¢g is important because it is responsible for
top_down solution which exp|ains simu]taneous]y the darkthe annihilation ofX and back reaction of the quintessence
energy and the UHECR's. field by reproducing themW(¢,,¢,J) presents interac-

Like other models with interaction between DM and DE, tions which contribute to the decay Hfto light fields and to
the coincidence in this model is solved without fine-tuning.¢q [in addition to what is shown explicitly in Eq2)]. The
Parameters can be changed by many orders of magnitudery long lifetime of X constraints this term and. They
without destroying the general behavior of the equation ofmust be strongly suppressed. For 2 andm=2, theg term
state or the extreme relation between the energy density gfontributes to the mass @f, and ¢,. Because of the huge
dark energy and the total energy density in the early Unimass of¢, (which must come from another couplingnd its
verse. very small occupation numbef¢2)~2p,/m2, for suffi-

In Sec. Il we solve the evolution equations for dark matterciently smallg the effect of this term on the mass of the
and dark energy. For two asymptotic regimes we find anaSDM is very small. We discuss the role of this term in detail
lytical solutions for the evolution okp,. In Sec. Ill we later. If the interaction of other fields wit#, is only through
present the results of the numerical solution of the evolutiorthe exchange oX (for instance due to a conserved symmetry
equations including baryonic matter, and we show that botishared by botiX and¢,), the huge mass of suppresses the
approaches lead essentially to the same conclusion. We studyteraction and therefore the modification of their mass. This
also the extent of the parameter space. The effect of DMolves the problem of “fifth force” in the dark4] and the
anisotropy on the energy density of the dark energy is studSM sectors.
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In a homogeneous universe the evolution equationgfor an average energy larger then in the local inertial frame.

and ¢, are
bq+3H py+ %z 0, (€)
q
et BHbt ), (4)

I

Only interaction between these particles contributes to the
reproduction of SDMI'g andI'; are, respectively, the decay
width of X to ¢, and to other species. In E() we have
replaced¢, with its classical approximation from Ed6).

The effect of the decay Lagrangia( ¢, ,¢,J) appears as
(I'q+T35)px, which is the decay rate of particles[see Eq.
(A9) in the Appendi}.

At very high temperatures whgn> 7*g?m3I’, the anni-

where a dot denotes the comoving time derivative. In the resﬁiI
of this work, we treaip, andJ as classical particles and deal
only with their density and equation of state. We assume th

ation and reproduction terms in E(L0) are dominantX
aQarticles, however, are nonrelativistic up to temperatures

X particles are nonrelativisti@.e., part of the CDM with
negligible self-interaction, i.e.,

1
Vil ) =5 M5, (5

Under this assumptionp, can be replaced by

2 « 1/2
d’xN( pZ) .

my

(6)

If X is a spinor, the lowest-ordd€lvukawa interaction term
in Eq. (1) is g¢qi¢p. In the classical treatment of,

Y~ —. (7)

close to their rest mass. Quintessence scalar particles at this
time are relativistic and therefore their density falls faster
than SDM density by a factor odi(t). The probability of
annihilation also decreases very rapidly. Consequently, from
a very early time only the decay term in Ed.0) is impor-

tant. The dominance of annihilation/reproduction can happen
only if the production temperature oK particles, i.e.,
preheating/reheating temperature, is very high. Such sce-
narios, however, can make a dangerous amount of gravitinos
[22]. For this reason, presumably the reheating temperature
must be much smaller tham, and annihilation dominance
never happens. This cannot put the production of SDM in
danger because it has been shg2@|] that even with a very
low reheating temperature, they can be produced. It seems,
therefore, reasonable to study the evolution of the fields only
when the annihilation/reproduction is negligible. Another
reason for this simplification is that we are interested in the

The same argument about the negligible effect of the interdecohered modes ob,. When the self-annihilation oK
action on the mass of DM and SM particles is applied. Forparticles is the dominant source gf,, most particles are

simplicity, we consider only the scalar case.
For potentialV,(¢#,) we consider a simple* model,

1 A
Vo(¢a) =5 Mg+ 7 b ®)

highly relativistic and their self-interaction does not have
time to make long-wavelength modes. This claim needs,
however, a detailed investigation of the process of decoher-
ence, which we leave for another work.

The system of equation(®)—(13) is highly nonlinear and
an analytical solution cannot be found easily. There are,

Conservation of energy-momentum, Einstein, and dynamitiowever, two asymptotic regimes which permit an approxi-
equations gives the following system of equations for themate analytical treatment. The first one happens at very early

fields:
- . ) 3 . 2py
¢q[¢q+3H¢q+mq¢q+)\d’q]:_ng’qd’q W +quxv
X
)
p2 p12
) X
Px+3pr:_(Fq+FJ)Px_ 77492(_3_ is), (10
m;  m;
p3+3H(p;+Py)=Tpy, (11
, [&|? 87G
He= a :T(px+PJ+Pq)a (12)
1 . 1 A
Pq=3Madat5Medg+ 7 ba (13

where Eq(10) is the Boltzmann equation fot particles. We
calculate its right-hand side in the Appendix; is the den-
sity of quintessence particl¢sot the classical field) with

time just after the production of (presumably after preheat-
ing [11,12) and the decoherence @f,'s long-wavelength
modes. In this epochh,~0 and can be neglected. The other
regime is when comoving time variation @, is very slow

and one can negleéiq. We show that the first regime leads
to a saturation(tracking solution where¢,—cte. It can
then be treated as the initial condition for the second regime
when ¢, changes slowly.

The effect of the last term on the right-hand side of Eq.
(10) as we argued is negligible. The solution of Efj0) is
then straightforward,

3

alto))* (14

a(t)

px(t)= Px(to)eir(tito)

wherel'=T"4+1I'; is the total decay width oK. We consider
to to be the time after production and decouplingofThese
two times can be very different, but with an extremely long
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lifetime for X and its weak interaction with other species, it

is not important which one of them is selectedtgs
After inserting the solution14) and neglecting all the
terms proportional tap,, Eq.(9) simplifies to

. d }
¢q§(a3¢q)=an3(to)px(to)8‘m‘t°) (15
and can be solved
1.,
SPE(H=Kq()
_[a(ty)|° P
= m [Kq(t0)+rqpx(t0)ft0dta(to)e (t to}
(16)

For axtX, the integral term in Eq(16) decreases with time
(i.e., ¢q< 0). This means that after a relatively short tighg

is saturated and its density does not change, in other words it

PHYSICAL REVIEW D69, 063512 (2004

In Eq. (19) the initial valuesty and ¢4(ty) are different
from Eq. (16). They correspond to the time and to the value
of ¢, in the first regime when it approaches saturation. Simi-
lar to Eqg.(16), the time dependence @f, in Eq. (19) van-
ishes exponentially and the behaviordyf approaches a cos-
mological constant.

To estimate the asymptotic value @f,, we assume that
a(t)t*. Using Eq.(19) with the additional assumption that
ts—t{<1T (i is the saturation time we find

T x(t’) t! (3k—1)
V(do)~VIda(t)]~ 3t 1—({’) } (20

If we define the saturation time as the time whé(,)
—V[ ¢q4(to)] has 90% of its final value, fory<teq with te,
the matter-radiation equilibrium timé&= 3 and

t~ 100, (22)
0
Fort>teq, k=5 and

te~10t) . (22)

behaves like a cosmological constant. The numerical simulafhe interesting conclusion one can make from Ezf) is

tion in the next section confirms this result. #, was a

that the initial density of SDM, its production time, and its

classical field, the natural choice for the initial value of thedecay rate tap,, which are apparently independent quanti-
kinetic energyK4(to) wasK(to) =0 assuming a very rapid ties, determine together the final value of the dark energy

production ofX. However, in reality¢, is a quantum field

density. The long lifetime of SDM is expected to be due to a

and it gets time to decohere and to settle as a classical fieldymmetry which is broken only by nonrenormalizable high-
The initial value ofi4(to) can therefore be nonzero. Its ex- Order weak-coupling operators. They become important only

act value can only be determined by investigating the procesi Very large energy scales. These conditions are exactly

of decoherence. In any case with the expansion of the Un
verse, its effect orp, decreases very rapidly because of the

a~8(t) factor in Eq.(16).
Next we consider the regime wheig, changes very

slowly and we can negleoiibq and higher orders ofp,.
Equation(9) gets the following simplified form:

+lgox.  (17)

| (2
Dol by N ) = —29¢q¢q(§

We expect that self-interaction @f, is much stronger than

its coupling toX. Neglecting the first term in the right-hand

side of Eq.(17), its ¢4-dependent part can be integrated,

d(1 2.2 A 4 dv
dt 2Ma®at 7 b4 :a(cﬁq):qux, (18)
which is then easily solved,
, (L fatgd
Vq(¢q)=Vq[¢q(t0)]+rqpx(t0)Jt/dt Tto) e T(t—ty)
0
(19

HereV, is the potential energy ob,. From Egs.(18) and

what is needed to have a small dark energy density according
to Eq. (20). In Sec. lll we see that numerical calculation
confirms these results.

We can also observe here the main difference between
this model and other quintessence modelsfis produced
during, e.g., the decay of inflation or from the decay of a
short-lived particle in the early Universe, its final density
should be much larger than observed dark energy unless ei-
ther its production width was fine-tuned to unnaturally small
values or its self-interaction was exponentially suppressed
with some fine-tuning of its rate.

A. Decoherence

Decoherence of scalar fields has been mainly studied in
the context of phase transiti¢@4] in a thermal system. Ex-
amples are phase transition in condensed mg2#R5 and
before, during, and after inflation in the early Universe
[26,27. In the latter case, the aim is to study the inflation
itself, production of defects, and reheating. Decoherence is
the result of self-interaction as well as interaction between a
field (regarded as the order parameter after decoheramce
other fields in the environment. Long-wavelength modes be-
have like a classical field, i.e., they do not show “particle-
like” behavior if quantum correlation between modes is neg-
ligible. More technically this happens when the density
matrix for these modes is approximately diagonal. It has

(19 it is clear that the final value of the potential and there-been shown[26] that interaction with higher modes is
fore ¢, energy density is driven by the decay term and notenough to decohere long-wavelength modsse Calzetta

the self-interaction. Therefore, the only vital condition for et al. [27] for a review. The classical order parameter cor-
this model is the existence of a long life SDM and not theresponds to these modes after their decoherence. One can

potential of ¢, .

consider a cutoff in the mode space which separates the sys-
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<L | ! FIG. 1. Evolution of quintes-
‘ . « ‘ ‘ sence fieldtop left), its derivative
5 2 T o T3 2 1 0 (top righ, and its total energy
Log ((1 + 2)/(1 + z_5)) Log ((1 + 2)/(1 + z_s)) density (bottom): from bottom to

top (dark to light gray, T’y

[ — & El“qll“:lofle, 5[, 100,
50"y, 10d7,. The dashed line is
the observed value of the dark en-
ergy.my=10"% eV, \=10"2.

Log Quintessence Density eV4

~
|

Log ((1 + 2)/(1 + z_s))

tem (i.e., long-wavelength modgdrom the environment small dark energy density. If the preheating/reheating had
(short wavelengths The cutoff can be considered as anhappened when the Hubble constant was smaller, timgm
evolving scale which determines at each cosmological epocllso must be smaller to have long-wavelength modes which
the decoherent/coherent modes]. can decohere. We will see in the next section that in this case
It has been shown25] that the decoherence time in a the main term in the/(¢,) potential is the self-interaction.
thermal phase transition is shorter than the spinodal timeMoreover,\ can be larger, which helps a faster decoherence
i.e., the time after the beginning of the phase transition whemwf long-wavelength modes.
the scalar field or more preciselyb?) settles at the mini- The argument given here is evidently very qualitative and
mum of the potential. The decoherence time in the presenaeeeds much deeper investigation. In the present work, we
of external fields(with couplings of the same order as self- take the possibility of decoherence as granted and study the
interaction is evolution of ¢, as a classical scalar field.

ty~ = (23 IIl. NUMERICAL SOLUTION

To have a better understanding of the behavior and the
By replacing Minkovski time with conformal time and con- parameter space of this model, we have solved B)s(13)
sidering a time-dependent cutdi26,27,23 one can show numerically. We have also added the interaction between
that modes with various species of the standard model particles to the simu-
lation to be closer to real cosmological evolution and to ob-
tain the equation of state of the remnants. This is especially
important for constraining the lifetime of SD\8]. Without
considering the interaction between high-energy remnants
decohere and behave like a classical scalar field. The effeénd the rest of the SM particles, especially the CMB, the
of the coupling constant is logarithmic and less important. lifetime of SDM must be orders of magnitude larger than the

If the SDM exists, it is produced during preheatifi] ~ present age of the Universe.

k2
2 m?<H? (24)

just after the end of the inflation presumably &t Details of interaction simulation are discussed28] and
~10“-10' eV, which corresponds to we do not repeat them here. The Boltzmann equation for SM

specieg Eqg. (1) in [28]] replaces Eq(11). Because of nu-

H~10"%-10"% eV. (250  merical limitations we switch on interactions only from

=10’ downward. For the same reason, we had to begin the
From Eq.(21) this time range permits scalars with mass simulation ofX decay fromz~ 10, which is equivalent to a
<10 % eV to decohere. When the size of the Universe getemperature of =10 eV. The expected reheating tempera-
larger, ¢ stops decohering. This also helps having a veryture is model-dependent and varies from10?% eV to
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FIG. 2. Evolution of the con-
tribution to the total energy den-
sity of ¢ for [y=Igq/I'=10""¢.
Top left: my=10"%eV and A
=10"? top right: my=10"° eV

— T —] and A=10"%; bottom: m,
r 5 =10"%eV and A=10"1° From
L ] dark to light gray curves are:
mass, self-interaction, interaction
with SDM, and kinetic energy.
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~10" eV. For the time being no observational constraint onimportant parameters of the model: The fraction of energy of
this large range is available. The change in the initial temthe remnants, which changesdg; the fraction of energy in
perature, however, does not modify the results of the simuthe long-wavelength modes, which can decohere; and the
lation significantly iff =TIy /T" is rescaled inversely propor- coupling of these modes to the environment, which contrib-
tional to redshift and to the total decay width, and utes tog, yield and to the effective formation redshift of the
proportional tom, . In other words, two models lead to very classical quintessence fieltl,. Therefore, the effective vol-

similar results for the quintessence field if ume of the parameter space presented by this simulation is
much larger and the fine-tuning of parameters is much less
fq Z2'I'"'my than what is expected from just one parameter.
ﬂ o m, (26) Figure 2 shows the evolution in the contribution of differ-

ent terms of the Lagrangiafi) to the total energy ofp,,.

For the lifetime ofX we use the results frof28] and[18],  Very soon after beginning production of the quintessence
which show that a lifetime=57,— 507, (7, the present age field, the potential takes over the kinetic energy and the latter
of the Universg can explain the observed flux of UHECR’s begins to decrease. The relative contribution of each term
as well as the cosmic equation of state with=<— 1. In the and their time of dominance, as this figure demonstrates,
following, we considerr=57,. Our test shows that increas- depend on the parameters, especiailyandX. Another con-
ing 7 to 507, does not significantly modify the extent of the clusion from this plot is that changing these parameters by
admissible parameter space or other main characteristics 8fders of magnitude does not change the general behavior of
the dark energy model. We consider only the models witihe model significantly, and for a large part of the parameter
m=2, n=2, andg=10"%in Eq. (2). The results for 1020  space the final density of quintessence energy is close to the
<g=10"° are roughly the same as what we present in thiobserved value. 'I_'hls can glso be seen in Fig. _3 and Fig. 4,
section, and therefore they are not shown. The discussion ifhere the evolution of quintessence energy is shown for
Sec. Il as well as Fig. 2 show that the contribution of thevarious combinations of parameters.
interaction with the SDM in the total energy density¢f is
much smaller than other terms.

Figure 1 shows the evolution ab,, its time derivative,
and its total energy density from the endXfroduction to Large- and medium-scale observations show that the dark
saturation redshifts. Here we have used ag the redshift energy is quite smooth and uncorrelated from the clumpy
after which up to simulation precision the total energy den-dark matter{29]. If the DE origin is the decay of the dark
sity of ¢, does not change anymore. The result of the simumatter, the question arises whether it clumps around dark
lation is quite consistent with the approximate solutions dis-matter halos or has a large-scale perturbation which is not
cussed in Sec. II. The final density energydgfis practically — observed in the present data. In this section, we investigate
proportional tol' /T". The latter quantity encompasses threethe evolution of spatial perturbations #, and show that

IV. PERTURBATIONS
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2

FIG. 3. Left: evolution of the
total density with redshift: from
bottom to top(dark to light gray,
[o=Iy/T=10"1¢ 5T, 100,
50y, 10d7,. The dashed line is
| the observed value of the dark en-
‘ p—i ergy. mg=10"°eVv, A=10"%.
Right: relative density of dark en-
ergy and CDM as a function of
- e s : - ] I'4/T". The x-axis is normalized to
2 145 1 0.5 0 0 0.5 1 1.5 2 FOEFq/F=1O_16.
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they decrease with time. Another area of interest in doing 1. a. L
such an exercise is to investigate any imprint of the model on —h+—-h=47G[4¢6dq—26V(¢q,px)
the power spectrum of matter and the CMB anisotropy. 2 a
We use the synchronous gauge metric,
+ Spy+ dpy+36P;,], (28
dg:dtz_az(t)(@j_hij)dxldxl- (27) where Sp, is the fluctuation ofX particle density, andp;
and 6P are, respectively, the collective density and pressure

For small spatial fluctuationgbq(x,t)= ¢q(t) + 5¢q(X1),  fluctuation of other fields. From the Lagrangiéb), the dy-
where from now on barred quantities are the homogeneous,mic equation ofp, is

component of the field depending only énWe define the
same decomposition for other fields. _ ’ 3,,(+ [— 99”79, bq) + 1 [ gV' (g, ¢y, 1)=0. (29

We consider only scalar metric fluctuations: 6" h;; and
neglect vector and tensor components. The Einstein equatioFhis equation and the energy momentum conservation deter-
gives the following equation for the evolution bf mine the evolution ol¢,(X,t),

o 4 - 2p a . 29| P — &
bo| 3bq+ i (8bg) +Vi(bg) b+ 29| — | Sbq+3—8bg| + —5| 2= S¢pg+ b—
my a my X Px
al (1. — , 29 ¢apx — Spy h.
_;[h<§¢§—V(¢q) —6| Vdhg+ > 25¢q+¢q3—) ]—5¢§
X X
Sbq_
=Fq( Opy— qux) . (30
¢q

Like the homogeneous case, we assume that SDM behav@$e effect of interactions in the right-hand side of E8pR)
like a pressureless fluid, is, however, very small, first becauXeparticle mass is very
_ _ B large and then because only high-eneggly particles con-
TO=p +6py, ToU=pdul, Ti=0(8%)~0, (31) tribute to this term, and their energy decreases with expan-
sion of the Universe much faster than the SDM. The evolu-
where 5'»'1( is the velocity of SDM fluctuations with respect tion of matter fluctuations is then practically the same as the
to homogeneous Hubble flow. Interaction terms are explicitlySt2ndardACDM case. ,
included in the energy-momentum conservation equation, Using the conservation relation foréother components of
the energy momentum in the limit whef,— 0, we find the

Sp _ h following relation between spatial fluctuation @fp, and
r70<:x +ai(ou) — 5 Suy:
X
IRV Y] T sy
i 38p, Zﬁéé‘pé 3&25Px \4 (¢q1px)§(5¢q) quxﬁux' (33
=-7g 33— 33| (32 _ _ . . _
my Mg Px MgPx Equation(30) has a meaningful limit whemb,—0 only if
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Log Quintessence Density eV4
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Log Quintessence Density eV4

—14
—14

Log ((1 + 2)/(1 + z_s)) Log ((1 + 2)/(1 + z_s))

FIG. 4. Variation of quintessence energy density with mass and self-interaction. From bottom (aatlhpo light gray, left: m,
=10%eV, my=10"°%eV, my=10°eV, andmy=10%eV, A=102% right: A=10"%, A=10"2% A=10""°, and A=10'° m,
=10 eV. The difference between quintessence density for the first three valids sfmaller than the resolution of the plot. The dashed
line is the observed energy density of the dark energy.

5¢qﬁo_ On the other hand, E433) shows that the diver- than the sensitivity of present and. near-future measurements.
gence of quintessence field fluctuatiofi$¢, follows the ~AS for the expected anisotropy in the arrival direction of
velocity dispersion of the dark matter with the opposite di-UHECR'S, the data are still too scarce to give any conclusive
rection. Their amplitude, however, is largely reduced due t@nswer. In the next few years, the Auger ObservafGg
the very small decay width,. In addition, with the expan- Will be able to test top-down models for UHECR's, which is
- one of the principal motivations for the quintessence model
proposed here.
Although the limit on the amount of hot DM cannot con-
train this model, a better understanding of its contribution to
e total density and its content can help to understand the
Rhysics and the nature of SDM if it exists.
Evidently, the observation oW, and its cosmological
olution is crucial for any model of dark energy. Observa-
tion of small anisotropy in the DE density and its correlation
with matter anisotropy also can be used as a signature of the
V. CLOSING REMARKS relation/interaction between DM and DE.
For the range of expected massesdgrin this model, the
Since the original works on the production of superheavyhigh-energy component of the quintessence field is still rela-
particles after inflatiori12], a number of investigationi3] tivistic. As we have discussed in Sec. Il, the production of
have demonstrated that even with a reheating temperature #is component from annihilation has been stopped very
low as a few MeV, the production of superheavy particles isearly in the history of the Universe, and the contribution
possible. We do not discuss here the particle physics candirom the decay ofX is much smaller than the limits on the
dates forg,, but for the sake of completeness we just men-amount of hot dark mattéas has been shown @8] for hot
tion that axionlike particles are needed or at least can exist iSM remnants The small coupling ofp, with SM particles
a large number of particle physics modedse[31] for some  also suppresses the probability of its direct detection. How-
examples The fact thatp, does not need to have very spe- ever, the detection of an axionlike particle, e.g., the QCD
cial potential is one of the advantages of this model withaxion, can be a positive sign for the possibility of the exis-
respect to others, and opens the way to a larger number @nce of¢-like particles in Nature.
particle physics models as candidates for the quintessence
field. APPENDIX
One of the arguments that is usually raised in the litera-
ture against a decaying dark matter is the observational con- Here we calculate the right-hand side of the Boltzmann
straints on the high-energy gamma-ray and neutrino backequation at lowest order of tlgecoupling constant for anni-
ground. In[28], it has been shown that if,=10?? eV and hilation and reproduction oX particles.
its lifetime 7=57,, and if simulations correctly take into ~ The Boltzmann equation foX particles is the following:
account the energy dissipation of the high-energy remnants,
the present observational limits are larger than the expected wa £(X) _TH A¥np
. ; pra, 7 (x,p) =T, p P ——
flux from a decaying UHDM. Consequently, the model is p
consistent with the available data.
The same fact is applied to the CMB and its anisotropy. =L[f]=~[ACCP)+ B(x,p) ]I p) +Cx,p),
The expected CMB distortion is of order 18) much smaller (A1)

sion of the UniverseY'(¢q,py) varies only very slightly—
just the interaction between SDM amﬂ% will change. In
contrast,p, decreases by a factor @ °(t), and even a
gradual increase of the dark matter clumping and therefor
the velocity dispersioru, [29] cannot eliminate the effect
of decreasing density. We conclude that the spatial variatio
of ¢4 is very small from the beginning and is practically eV
unobservable.

af >
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A(x,p)=Tp*u,, (A2)  and the differential cross section
o o f ()
B(x,p)= (27T)3gxzi dp, (X, py)Aayi, ~ 2mP%2sd(zp) . d®p,
o= 2 2 2dp3dp4v dpi=—3_7
- 16V(p1p2)°—mim3 (2m)%gip;

1 R
C(x,p)= f dpqdqu(q)(xypq)

~(27)%g, whereg; is the number of internal degrees of freedom. Here

we assume thad,=g,= 1. Using the relation

dog+ gq—x+x
Dy n/ VA —a Pa?T7
XHEVpA—— 5 (A4)
mpkt o (x dﬂ
A=(p1p)>—mim. (A5) U pp*---p* f(x,p)dp|

o

The functionf ®)(x, p) is the distribution ofX particles. The 1 n _

terms.A, B, andC are, respectively, the decay, the annihila- :f pr---p LITI(x,p)dp (A8)
tion (self or in interaction with other speciesind production

rates. We assume that the interactionXofvith other fields

except¢, is negligible. According to Lagrangiafl) with  and the definition of the energy-momentum ten$6t and
n=2 andm=2, the lowest Feynman diagrams contributing the number density of particles, one obtains

to annihilation and production are

X ¢q
W Th=—TT#u,~ w“gz(nf;E f dpf " (x,p2)
1
P2 4
<N - [ ddmpg @0 py 9 xp,)
Annihilation ><9(p(1)+p(2)—2mx)). (A9)
®q X
1 D3
P2 . Both f®) and @ have a large peak around the energies
close to the mass of. Therefore,
bq %4
i , n’u,
Production f dptV(xp)~——, i=Xa.  (A10)
The S matrix for these diagrams is very simple, '
—i(27r)4g(5(4)(2 ipi) In the case of¢,, the densityn, is only the density of
S= (A6) particles with an average energy larger thap. Finally
H % 2p° from Eqg.(A1), one can obtain the evolution equationggfin
i<Pi

a homogeneous cosmology, i.e., Efj0) in Sec. II.
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