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ABSTRACT

The  distribution of  certain test statistics for  non-nested
regressions can be so grossly non-normal that p-values computed on the
assumption of approximate normality cannot be safely used for routine
inference. This paper presents results on the quality of a new more
accurate yet still user-friendly p-value approximation which embodies
an inverse measure of the strength of relationship between regressors
of competing models. This easily-computed measure is equivalent to
the sum of eigenvalues which have recently been shown to characterize

the exact finite-sample distribution of the test statistic.



1. INTRODUCTION

Suppose an observable random n-vector y 1is ascribed an N(L, Gzln)
distribution subject to the competing non-nested hypotheses

H : = XB versus H . n=2Zy
where P, Y denote parameter vectors of dimensions k, g and X, Z

denote observable nonrandom matrices such that  rank[X] = k , rank[Z]

=g, rank[X, Z] = r with n > r > max{k g} .

It has been shown by Szroeter (1996) that the critical region for
the most powerful test of H0 Versus H1 applicable when J, 7, o are
of specified value turns into the following region when J, 7, o> are

unknown and replaced by least squares estimates :

0>cC (1.1)

where C is an appropriate constant and

0 = [CZM 2 "YZM )] (1.2)
Y=(Z2'Zy (1.3)
M, =1 -S[X] , (1.4)
& = yil - SIXZI\An - 1) (1.5)

where S/A] denotes the orthogonal projection operator onto the space
AWAY

spanned by the columns of matrix or matrices A . The value of ©Q is

equal to the routinely-computed least squares estimate of the scalar Vv

in the artificial regression model

N
y = XB + v(Zy) + error.



The statistic é itself only differs from the Davidson-Mackinnon (1981)
N
J statistic in small detail : In the formula (1.5) for >, the J
N
statistic uses [X,Zy] and (k + I) instead of [X,Z] and r . For

connections with the Cox (1961, 1962) statistic, see McAleer (1987).

A characterization of the unknown exact finite-sample distribution
of é has been obtained by Szroeter (1996). The shape and structure of
that distribution depends critically on certain eigenvalues to such an
extent that location-scale adjustments (see Godfrey and Pesaran (1983))
need not in general reduce é to reliably approximate normal or Student
T form. More fundamental adjustments to the components of the statistic
may lead to undesirable side-effects. For example, the Fisher-McAleer
(1981) and Godfrey (1983) adjustment based on Atkinson (1970) gives an
exact test whose power function cuts below size (see Szroeter (1995)).
We therefore focus our research here on the unadjusted form of é . Of
particular concern are tail-probability approximations of the following

type based on Szroeter’s (1996) characterization :

(I-MPr{T >C} + APr{F™ > C/r-k ) (1.6)

k

where T , F'™° denote Student 7, F variates and
n-r n-r

A= tmce{(Z'Z)"z’MXZ}/(r -~ k). (1.7)

The purpose of the present paper is to derive integral bounds on
the true finite-sample size of test region (1.1) and to assess the
quality of the approximation (1.6) in the light of these. Of special
interest is the case where the upper and lower bounds coincide, giving
a precise value for true size. Sections 2 and 3 of the paper set out

the theory. Section 4 reports the results of numerical computations.



2. BOUNDS ON TRUE FINITE-SAMPLE SIZE

Let Hb( ), hb( ) denote the cdf , pdf respectively of a central
chi-squared variate with b degrees of freedom. Let &(), ¢() be
the cdf , pdf of a unit normal variate. Let FZ( ) denote the cdf of
a central F variate having « , b numerator , denominator degrees of

freedom. Let the scalar m be defined as
m = n-r. (2.1)

Define the function S(Cie,y) on 0 < C 0<e< [, 0<wy <] as

oo o0

SCew) = 1-[ | h(wh @1 - "W
0 0
- (1 - 8)'”28”21:”2]dtdw . (2.2)

Define the function R(C,e,yy) on 0 < C, 0<e<I, 0<wy <1 as

R(Cey) =
S L)
1- hm(w){ [ owh &' "W - (1 - ) uP)du
0 0
0
+ JF O(wH (" [m *w'™C - (1 - e)llzu]z)du]}dw (2.3)
_oo - J
where
wy) = ([ -ym'w?Cc if y<1,
L(Y) = oo otherwise . (2.4)
Define

d=(k+g+1-71). (2.5)



Now let kd < de <. < kg denote the (possibly repeated) nonzero

eigenvalues of the matrix product (Z’Z)'IZ’MXZ

Following Lehmann (1986, p.69), the size o(C) of critical region
(1.1) is defined as

N
o(C) = sup Pr{ Q > C} (2.6)
where the supremum is taken over the set { (P, o) : B e R, o > 0 .
Test p-value is the size function (C), C € R, evaluated at the point

AN
C = g where ¢ is the realized value of the variate Q . The results

which follow give integral upper and lower bounds for o(C) .

THEOREM 1 : For kg <1, S(C,?ud,kg) < oC) < S(C,?ng,?ud).

IA

a(C)

IA

THEOREM 2 : For A <1, R(C,?ud,k) R(C,?\.,?\.d) .
g g g

COROLLARY : For xg =LA =1, oC = 1- Fr;'k[Cz/(r -~ k)] .

3. PROOFS

The proofs of Theorems 1 and 2 depend on the following Lemma which is a

special case of Theorem 1 of Szroeter (1996, p.11) :

LEMMA 1 : Let US {s =1 2, .. (g + 1)} be independent unit normal
variates which are also jointly independent of the central chi-square

variatet W having m degrees of freedom. Let B , D be the variates



g -172 g
B = Yav+02] [ aww +o0w |, (3.1)
|—s:ds S S J |—s:ds S S SJ
p = [ vaw 021 $2v +022] . (3.2)
|-s=ds s s J |-s=ds s s J

where GS = G'lp;Z'XB for a right-hand eigenvector p, associated with
the eigenvalue ks of the matrix (Z'Z)'IZ'MXZ ,  given normalization
conditions p;Z'ZpS = 1, p;Z'Zpt =0 for s #t Ti/t\en, under H
the exact finite-sample distribution  of the statistic 0 defined by

)

equation (1.2) is the same as the distribution of

*

0 = m"*W"B + (1 - D)I/ZUgH] . (3.3)

We are now in a position to prove Theorems 1 and 2.

PROOF OF THEOREM 1 :

From (3.1) we obtain the inequality

Bl < [ $a0r] <] £02] (34)
s=d s=d

Using (3.3) and (3.4) we find that

Pr{Q >C) <

1/2
2

S

U
d

Pri A2
e |

i Poe

+ (1 - D)l/ng+1] > m-l/ZWI/ZC} _

—_

S

1/2

1 - Prf [x;/z[ Xg:UZ] + (1 - D)I/ZUg 1] < m"2w"c N (3.5)
s=d S +



Now observe from (3.2) that
0<deD£kg<I. (3.6)
Given (3.6), we see that from (3.5) that
*
Pr{ 9 >C)} <
12 172 g 172
1-PrU_ < (1- D)W A2l Lot ]y <

e | T, -
172

] - Pr{Ug+1 < (I - kd)'”zm'”zW”zC (1 - k)l/zkl/z[ Zg:Uz ] ))
s=d

= S(C,?»g,?»d) (3.7)

where the function §(-) is defined by (2.2). Expression (3.7) is an
upper bound on the probability Pr{Q>l< > (C} for each value of (B, o),
hence is an upper bound on «(C) as defined by (2.6).

The basic lower bound on o(C) is (3.7) with k and k inter-
changed. The justification, however, differs from that for the upper
bound. By (2.6) and Lemma 1,

oaC) = Pr{ m"W"B" + (I - D*)I/ZUgH] > C ) (3.8)
where
N 2-|1/2 [ & 2-|1/2
B = LEdKSUsJ > 17| EdUsJ , (3.9)
e 2T 222 ]
p’ = | xav| | xut] (3.10)

Since equation (3.6) also holds with D replaced by D*, we see from
(3.8), (3.9) and (3.10) that



o«C)z1-Prf U  <(I- D P 7L1/2[ Z U% ]1/2)}

> [ -Pr{U_ < (I-Ax)"m"W"”C -
g+l g

124 12[ 2]1/2
(12" ZU‘J )

= S(C,?»d,kg)

PROOF OF THEOREM 2 :

Given (3.2), observe that

12
Pr{ [7\’1/2[ Z 2 ] + (1 - D)l/ng 1] < m'I/ZWUZC} >
s =d s *

Pr{ [[ Z Uz ] + 7»;1/2(1 i kd)l/ngH] < kél/zm-l/zwl/zc ’

Ug+1>0} +

Pr{ [[ Z UZ ] + 7»;1/2(1 i kg)l/ngH] < kél/zm-l/zwl/zc ’

©»

Jr ¢(u)H (7»[ 1/2 1/2 - (1 - kd)”zu]z)du +

Jr O(wH (x [m"Pw'Pc - (1 - kg)”zujz)du]}dw (3.11)
)



where 1L(-) is the function defined by (2.4). Now, relation (3.5) of
the proof of Theorem 1 continues to hold even when the assumption that
kg <1 is relaxed to A <1 . From (2.6), (3.5), (3.11) and Lemma 1,

g
we then obtain the upper bound of Theorem 2 .
As for the lower bound on o(C) , equations (3.8) to (3.10) of the

proof of Theorem 1 also continue to hold when the assumption kg <1

is weakened to kg < 1 . Therefore,

Xg: U2 -|1/2+ 7\’(—11/2(1 _ D*)I/ZU +1] > 7\.(;1/21’1’1_1/2W1/2C )
_ g

s =d SJ
Ungl >0} +
Pr{ [F f‘,UZ ]1/2+ A1 D*)l/zU 7> AP P
' | s=d s ] d ) g+l a M ’
Ungl <0}
> Prf [|' fUz '|”2+ V210U ] s AP PR
- ' Ls—d s ] d e g+l a ’
Ungl >0} +

g 1/2
Pr{ [[ Z U2 ] + 7\‘(—11/2(1 _ kd)llegH] S x(—iI/Zm—l/ZWI/ZC )
s=d

S

U <0} . (3.12)
We now note that

1/2
> 1 + 7»(;1/2(1 ) k)l/zU ] < x-l/zm-l/zwl/zc’ U >0
g g+l d g+l

Prif| LU |

[ a3

S
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° (L) A, 2 12 12 2 |

[ h o[ Cowr W'\ w?C - (1-0)"ul)dutdw (3.13)
JO m LJO -k d g J

where 1(-) is the function defined by (2.4).  Similarly,

Prii|

[ a3

172
e 1 4 x-l/z(] i k)l/zU ] < V2 W e U < 0)
| d d g+l d ’

S g+1

s=d

0
Jr O(wH_ (X' [mw'?C - (I - kd)llzujz)du]}dw : (3.14)
) r J

Given the definition (2.3), relations (3.12), (3.13), (3.14) imply that
AC) 2 RCA M)

which is the lower bound of Theorem 2.

u
4. NUMERICAL COMPUTATIONS AND COMPARISONS
By Theorems 1 and 2,
oC) = S(CALN) = R(CAN)  for kd = kg =A< 1, (4.1)
hence exact size o(C) for the equal eigenvalue case is known. This

enables a precise baseline assessment of the quality of the " 7, root-F
mixture" approximation (1.6). In evaluating S(C,ALA) = R(C,A,A) when
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(r - k) > 2, double integration cannot be avoided but, when (r - k) = 2,

R(C,AMA) can be rewritten in the single integral form

(Se]

R(C,?\.,?\,) = ] - Jr hm(w){ q)[(] _ 7\’)-1/2m—1/2W1/2C] )
0

A exp[-wC/2m) ] - M) W C) ]}dw :

(4.2)

We therefore compute o(C) , to a numerical accuracy of =+ 0.001, using
o(C) = R(C,AA) with R(-) as given by (4.2) for (r - k) = 2, but using
o(C) = S(C,LA) with S(-) as given by (2.2) for (r - k) = 4, 8 . This
This is done for each A = 0.25, 0.5, 0.75 across the range C = 1.3,
1.7, 2.1, 2.5, 2.9, 3.3, 3.7. We use the typical figure of 30 for m .
Alongside each value of o(C) we place for comparison the values of

TC) = P{T >C], (4.3)
F(C) = Pr{ F:‘ > CHr -k}, (4.4)
M(C) = (1 - MT(C) + AF(C), (4.5)

where Tm , Fr;'k denote central Student 7, F variates and M(C) is the

" T, root-F mixture " approximation (1.6) described in Section 1.

The results of the computations are presented in Tables I, II, IIIL
The general gross understatement by 7(C) and overstatement by F(C) of
the tail probability o(C) is striking. For example, if we take C = 1.7
for a nominal size of 0.05 on the T distribution, then the actual size
for the case A = 0.5 ranges over 0.18 (when r = k + 2) , 0.34 (when
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TABLE 1

Comparison of Student T, Root-F and Mixture Approximations
for the Exact P-Value of a Test of Non-Nested Regressions

The Case A = 0.25

r=k + 2
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.187 0.101 0.049 0.022 0.009 0.003 0.001
a(C) 0.240 0.133 0.066 0.030 0.013 0.005 0.002
F(C) 0.440 0.252 0.128 0.059 0.025 0.010 0.004
r=k + 4
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.274 0.183 0.110 0.059 0.029 0.013 0.005
a(C) 0.355 0.218 0.120 0.060 0.027 0.012 0.005
F(C) 0.791 0.583 0.374 0.210 0.105 0.048 0.020
r=k + 8§
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.323 0.271 0.219 0.162 0.108 0.064 0.034
a(C) 0.534 0.371 0.232 0.131 0.067 0.032 0.014

F(C) 0.986 0.933 0.808 0.622 0.422 0.253 0.137
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TABLE 1II

Comparison of Student T, Root-F and Mixture Approximations
for the Exact P-Value of a Test of Non-Nested Regressions

The Case A = 0.5

r=k + 2
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.271 0.151 0.075 0.034 0.014 0.006 0.002
a(C) 0.315 0.179 0.091 0.042 0.018 0.007 0.003
F(C) 0.440 0.252 0.128 0.059 0.025 0.010 0.004
r=k + 4
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.447 0.317 0.198 0.110 0.054 0.025 0.010
a(C) 0.514 0.340 0.200 0.105 0.050 0.022 0.009
F(C) 0.791 0.583 0.374 0.210 0.105 0.048 0.020
r=k + 8§
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.544 0.492 0.415 0.316 0.213 0.127 0.069
a(C) 0.769 0.609 0.434 0.277 0.159 0.083 0.040

F(C) 0.986 0.933 0.808 0.622 0.422 0.253 0.137
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TABLE III

Comparison of Student T, Root-F and Mixture Approximations
for the Exact P-Value of a Test of Non-Nested Regressions

The Case A = 0.75

r=k + 2
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.356 0.202 0.102 0.047 0.020 0.008 0.003
a(C) 0.381 0.218 0.111 0.051 0.021 0.008 0.003
F(C) 0.440 0.252 0.128 0.059 0.025 0.010 0.004
r=k + 4
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.619 0.450 0.286 0.160 0.080 0.036 0.015
a(C) 0.657 0.461 0.284 0.155 0.076 0.034 0.015
F(C) 0.791 0.583 0.374 0.210 0.105 0.048 0.020
r=k + 8§
C 1.3 1.7 2.1 2.5 2.9 3.3 3.7
T(C) 0.102 0.050 0.022 0.009 0.003 0.001 0.000
M(C) 0.765 0.712 0.612 0.469 0.317 0.190 0.103
a(C) 0.915 0.800 0.632 0.445 0.279 0.157 0.080

F(C) 0.986 0.933 0.808 0.622 0.422 0.253 0.137
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r =k + 4), 0.61 (when r = k + 8). F(C) overestimates these figures as
0.25, 0.58 and 0.93 respectively. The mixture approximation M(C) gives
figures of 0.15, 0.32, and 0.50. These are undoubtedly a considerable
improvement on T7(C) and F(C).

In all cases, the inequality 7(C) < min{ M(C), o(C) } < max{ M(C),
o(C) } < F(C) holds. When r = (k + 2), the inequality M(C) < o(C)
holds throughout the computed range of C but, when r = (k + §), it
holds only for the lower C wvalues of 1.3, 1.7, 2.1. It switches to
M(C) > oC) at C values of 2.5, 2.9, 3.3, 3.7. Switching also occurs
for r = (k + 4) , but in that case the switch point C depends on the
value of A .

The approximation M(C) seems to be most effective at size levels
from 0.2 down. For example, in the case A = 0.25, when M(C) indicates
levels of 0.10, 0.11, 0.16 for r = (k + 2), (k + 4), (k + 8) , then
the true level o(C) equals 0.13, 0.12, 0.13 respectively. In the case
A = 0.50, for the same values of r, when M(C) indicates levels of 0.08,
0.11, 0.13 , then o(C) equals 0.09, 0.11, 0.08. In the final case A
= 0.75 , for the same values of r, when M(C) equals 0.10, 0.16, 0.10,
then o(C) equals 0.11, 0.16, 0.08. The approximation M(C) performs
less well at higher p-values than 0.2, but it remains considerably more

informative than the very misleading undervaluation 7(C).
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