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A V1 model of pop out and asymmetry invisual sear
hZhaoping LiUniversity College London, z.li�u
l.a
.ukAbstra
tVisual sear
h is the task of �nding a target in an image against aba
kground of distra
tors. Unique features of targets enable themto pop out against the ba
kground, while targets de�ned by la
ks offeatures or 
onjun
tions of features are more diÆ
ult to spot. It isknown that the ease of target dete
tion 
an 
hange when the rolesof �gure and ground are swit
hed. The me
hanisms underlyingthe ease of pop out and asymmetry in visual sear
h have beenelusive. This paper shows that a model of segmentation in V1 basedon intra
orti
al intera
tions 
an explain many of the qualitativeaspe
ts of visual sear
h.1 Introdu
tionVisual sear
h is 
losely related to visual segmentation, and therefore 
an be used todiagnose the me
hanisms of visual segmentation. For instan
e, a red dot 
an pop-out against a ba
kground of green distra
tor dots instantaneously, suggesting thatonly pre-attentive me
hanisms are ne
essary (Treisman et al, 1990). On the otherhand, it is mu
h more diÆ
ult to sear
h for a red `X' among green `X's and red`O's { the time it takes to dete
t the target's presen
e in
reases with the number ofba
kground distra
tors, suggesting some form of attentive serial sear
h. Sometimes,the sear
h times 
hange when the role of the �gure (target) and ground (distra
tors)are swit
hed | asymmetry in visual sear
h. For instan
e, it is easier to �nd a longerbar in a ba
kground of shorter bars than vi
e-versa.It has been un
lear whi
h visual areas or neural me
hanisms are responsible forthe pop out and asymmetry in visual sear
h. There are, however, psy
hophysi-
al theories (Treisman et al 1990, Treisman and Gormi
an 1988) whi
h argue thatvisual inputs are 
oded in a number of primitive or basi
 feature dimensions: ori-entation, 
olor, brightness, motion dire
tion, disparity, line ends, line interse
tions,and 
losure. A target 
an pop-out preattentively if it has a feature in one of thesedimensions, su
h as a parti
ular 
olor or orientation, whi
h is absent in the distra
-



tors. Hen
e, a red dot pops out among green ones. However, red `X' is diÆ
ultto spot among green `X's and red `O's be
ause neither being red nor being `X' isunique for the target, and therefore serial sear
h is required. While a verti
al linepops out of horizontal ones and vi
e versa without any sear
h asymmetry, sear
hasymmetry will arise when a single feature in whi
h target and distra
tors di�er ispresent in one of the two and absent or redu
ed in the other. Hen
e, a long line ismore easily spotted among short lines than the reserve. This theory has been veryhelpful in understanding sear
h phenomena. However, it has to make assumptionsabout what are the primitive feature dimensions, as well as what 
onstitutes largeror smaller values along a given dimension. For instan
e, to explain that a 
urvedline is more easily spotted among straight lines than the reverse, the theory hasto de�ne straightness as the default or standard, and 
urva
iousness as the devi-ation from this standard and thus an added feature. Empiri
ally, other pairs ofstandard and deviant properties in
lude verti
al versus tilted, parallel versus 
on-vergent, short vs long lines, 
ir
le vs ellipse, and 
omplete versus in
omplete 
ir
les.The basis behind these assumptions are not 
ompletely 
lear. Other related theorieshave similar problems. For instan
e, Julesz's texton theory (Julesz 1981) for visualsegmentation or pop out starts o� by assuming a 
omplete set of spe
ial featuresthat 
onstitute textons.This paper proposes and demonstrates in a model that pre-attentive me
hanismsin V1 
an qualitatively explain many of the phenomena of visual sear
h. It isassumed that the ease of sear
h is determined by the relative salien
ies of the targetand distra
tors. Intra
orti
al intera
tions in V1 alter the salien
ies of targets anddistra
tors a

ording to their own image features as well as those of the distra
toror targets images that form the 
ontext. Hen
e, the relative salien
y depends onthe parti
ular target-distra
tor pair involved. In parti
ular, asymmetry is a natural
onsequen
e of 
ontextual in
uen
es.2 The V1 modelWe use a V1 model of pre-attentive visual segmentation whi
h has been shown tobe able to dete
t and highlight smooth 
ontours in noisy ba
kgrounds and �ndboundaries between texture regions in images (Li 1998a, 1998b). Its behavioragrees with physiologi
al observations (Knierim and van Essen 1992, Kapadia etal 1995). Without loss of generality, the model ignores 
olor, motion, and stereodimensions, in
ludes mainly layer 2-3 orientation sele
tive 
ells, and ignores theintra-hyper
olumnar me
hanism by whi
h their re
eptive �elds are formed. Inputsto the model are images �ltered by the edge- or bar-like lo
al re
eptive �elds (RFs)of V1 
ells.1 The 
ells in
uen
e ea
h other 
ontextually via horizontal intra-
orti
al
onne
tions (Ro
kland and Lund 1983, Gilbert, 1992), transforming patterns of in-puts to patterns of 
ell responses. Fig. 1 shows the elements of the model and theirintera
tions. At ea
h lo
ation i there is a model V1 hyper
olumn 
omposed of Kneuron pairs. Ea
h pair (i; �) has RF 
enter i and preferred orientation � = k�=Kfor k = 1; 2; :::K, and is 
alled (the neural representation of) an edge segment.Based on experimental data (White, 1989, Douglas and Martin 1990), ea
h edgesegment 
onsists of an ex
itatory and an inhibitory neuron that are inter
onne
ted,and ea
h model 
ell represents a 
olle
tion of lo
al 
ells of similar types. The ex
i-tatory 
ell re
eives the visual input; its output is used as a measure of the responseor salien
e of the edge segment and proje
ts to higher visual areas. The inhibitory
ells are treated as interneurons. Based on observations by Gilbert, Lund and their
olleagues (Ro
kland and Lund, 1983, Gilbert 1992) horizontal 
onne
tions Ji�;j�01The terms `edge' and `bar' will be used inter
hangeably.
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receptive fields, to the excitatory cells.Figure 1: A: Visual inputs are sampled in a dis
rete grid of edge/bar dete
tors.Ea
h grid point i has K neuron pairs (see C), one per bar segment, tuned todi�erent orientations � spanning 180o. Two segments at di�erent grid points 
anintera
t with ea
h other via monosynapti
 ex
itation J (the solid arrow from onethi
k bar to anothe r) or disynapti
 inhibition W (the dashed arrow to a thi
kdashed bar). See also C. B: A s
hemati
 of the neural 
onne
tion pattern from the
enter (thi
k solid) bar to neighboring bars within a few sampling unit distan
es.J 's 
onta
ts are shown by thin solid bars. W 's are shown by thin dashed bars. The
onne
tion pattern is translation and rotation invariant. C: An input bar segmentis dire
tly pro
essed by an inter
onne
ted pair of ex
itatory and inhibitory 
ells,ea
h 
ell models abstra
tly a lo
al group of 
ells of the same type. The ex
itatory
ell re
eives visual input and sends output gx(xi�) to higher 
enters. The inhibitory
ell is an interneuron. Visual spa
e is taken as having periodi
 boundary 
onditions.(respe
tively Wi�;j�0) mediate 
ontextual in
uen
es via monosynapti
 ex
itation(respe
tively disynapti
 inhibition) from j�0 to i� whi
h have nearby but di�erentRF 
enters, i 6= j, and similar orientation preferen
es, � � �0. The membranepotentials follow the equations:_xi� = ��xxi� �X��  (��)gy(yi;�+��) + Jogx(xi�) + Xj 6=i;�0 Ji�;j�0gx(xj�0) + Ii� + Io_yi� = ��yyi� + gx(xi�) + Xj 6=i;�0 Wi�;j�0gx(xj�0) + I
where �xxi� and �yyi� model the de
ay to resting potential, gx(x) and gy(y) aresigmoid-like fun
tions modeling 
ells' �ring rates in response to membrane poten-tials x and y, respe
tively,  (��) is the spread of inhibition within a hyper
olumn,Jogx(xi�) is self ex
itation, I
 and Io are ba
kground inputs, in
luding noise andinputs modeling the general and lo
al normalization of a
tivities (see Li (1998b)for more details). Visual input Ii� persists after onset, and initializes the a
tivitylevels gx(xi�). The a
tivities are then modi�ed by the 
ontextual in
uen
es. De-pending on the visual input, the system often settles into an os
illatory state (Gray



and Singer, 1989, see the details in Li 1998b). Temporal averages of gx(xi�) overseveral os
illation 
y
les are used as the model's output. The nature of the 
ompu-tation performed by the model is determined largely by the horizontal 
onne
tionsJ and W , whi
h are lo
al (spanning only a few hyper
olumns), and translation androtation invariant (Fig. 1B).A: Pop outInput (Îi�)
Output

(r; z) = (2:5; 3:3)

B: No pop outInput (Îi�)
Output

(r; z) = (0:38;�0:9)

C: Cross among barsInput (Îi�)
Output

(r; z) = (2:4; 7:1)

D: Bar among 
rossesInput (Îi�)
Output
(r; z) = (1:5; 0:8)Figure 2: Visual sear
h examples plotted by the model inputs and outputs. A: A singledistin
tive feature, the horizontal bar in the target, enables pop out. This target is themost salient (measured as the salien
y of the horizontal bar in target) spot in the image.B: The target does not pop out sin
e neither of its features, a horizontal and a 45o bars,is unique in the image. The target is less salient than average in the image. C and Ddemonstrate the asymmetry in a target-distra
tor pair. C: The 
ross is the most salient(measured by the salien
y of the horizontal bar) spot in the image. The popout strengthis stronger than in A. D: The target bar does not pop out,The model was applied to a variety of input patterns, as shown in examples in the�gures. The input values Îi� are the same for all visible bars in ea
h example. Thedi�eren
es in the outputs are 
aused by intra
orti
al intera
tions. They be
omesigni�
ant about one membrane time 
onstant after the initial neural response (Li,1998b). The widths of the bars in the �gures are proportional to input and outputstrengths. The plotted region in ea
h pi
ture is often a small region of an extendedimage. The same model parameters (e.g. the dependen
e of the synapti
 weightson distan
es and orientations, the thresholds and gains in the fun
tions gx() andgy(), and the level of input noise in Io) are used for all the simulation examples.We de�ne the net salien
y Si at ea
h grid point i as that of the most a
tivated bar.De�ne �S and �s be the mean and standard deviation of the salien
ies of all gridpoints with visible stimuli. Let ri � Si= �S and zi � (Si � �S)=�s. A highly salientpoint i should have large values of (ri; zi) { in parti
ular, both ri and zi should belarger than 1. For larger targets that o

upy more than one grid point, the relativesalien
y measure of the target is that of the most salient grid point on the target.Fig. (2)A,B 
ompare the state of the target ` ' in two di�erent 
ontexts. Against atexture of ` ' it is highly salient be
ause of its unique horizontal bar. Against ` ' and` ' it is mu
h less salient be
ause only the 
onjun
tion of ` ' and ` ' distinguishesit. Fig. (2)C,D exhibit sear
h asymmetry. The horizontal bar in the target is uniquein the image of Fig. (2)A,C, whi
h leads to pop out, and ea
h target sits at the mostsalient lo
ation in the respe
tive images. On the other hand, no feature in the targetsof Fig. (2)B,D is unique. These examples are 
onsistent with the psy
hophysi
al
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Figure 3: Five typi
al examples, one 
olumn ea
h, of visual sear
h asymmetry as sim-ulated in the model. The input stimuli are plotted, the target salien
y r; z s
ores areindi
ated below ea
h of them. All input bars are of the same intermediate input 
ontrast.The role of �gure and ground is swit
hed from the top to the bottom rows.theories mentioned in introdu
tion. Further, we note that be
ause intra
orti
alintera
tions link mostly neurons preferring similar orientations, two very di�erentorientations 
an be viewed as independent features. The pop out is stronger in Fig.(2)C than Fig. (2)A sin
e horizontal di�ers more from verti
al (90o) than from 45o.The V1 orientation sele
tive RFs and orientation spe
i�
 horizontal 
onnne
tionsprovide the neural basis for orientation as one of the primitive feature dimensions.In fa
t, the 
ontextual in
uen
es between image features imply that salien
y valuesdepend on detailed geometri
al relationships between features within and between atarget or distrator and its nearby target or distra
tors (see Fig. (2)B). The relativeease in sear
hes varies 
ontinuously from extreme pop out to slow serial sear
hesdepending on the spe
i�
 stimuli, as suggested by Dun
an and Humphreys (1989).Further interesting examples of sear
h asymmetry in
lude 
ases for whi
h neithertarget nor distra
tors have a primitive feature (su
h as 
olor or orientation) thatis absent in the other. Asymmetry is mu
h weaker but still present. Figure 3shows some typi
al examples. Although the salien
ies of the more salient targetsare only fra
tionally higher than the average feature salien
y in rest of the image,this fra
tion is signi�
ant when the standard deviation �s of the salien
ies is smallor when z is large enough, thus making the sear
h task easier.3 Summary and Dis
ussionEarly psy
hophysi
al studies (Treisman et al 1990) suggested that most aspe
ts ofvisual sear
h involve me
hanisms of early vision. However, it has never been 
learwhi
h visual areas or neural me
hanisms might be responsible. To the best of myknowledge, this model is the �rst non-phenomenologi
al model to understand the
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Figure 4: Four examples of model performan
e under various inputs. Ea
h plots the visualinput image at the top and the most a
tivated bars in V1 
ell outputs (using a threshold)at the bottom. Every visible bar in a given input image has the same input strength. A, B,and C demonstrate that the texture region boundaries have the highest output salien
ies.D shows that the smooth 
ontours are dete
ted as the most salient against a ba
kgroundof noise.neural bases of visual sear
h phenomena (see Rubenstein and Sagi (1990) for amodel of asymmetry using varian
es of the lo
al image �lter responses). This pa-per has shown that intra-
orti
al intera
tions in V1 
an a

ount for the qualitativephenomena of pop-out and asymmetry in visual sear
h, assuming that the ease ofdete
tion is dire
tly determined by the salien
ies of targets. Of 
ourse, the taskof sear
h requires de
ision making and often visual attention, espe
ially when thetarget does not spontaneously pop-out. The quantitative sear
h times 
an only bemodeled on the basis of an assumption of spe
i�
 me
hanisms for attention and de-
ision making. Our model suggests, nevertheless, that pre-attentive V1 me
hanismsplay a signi�
ant and 
ontrolling role in su
h tasks. Furthermore, it suggests thatsome otherwise intra
table phenomena 
an be understood without resorting to ad-ditional 
on
epts su
h as textons (Julesz 1981) or de�ning 
ertain image properties(su
h as 
losure and straightness) as having standard or referen
e values.Our 
urrent implementation of V1 is still very simplisti
. We have not yet in-
luded 
olor, motion, or stereo inputs, nor multis
ale sampling. Further, our inputsampling density is very low. Consequently, the model 
annot simulate many ofthe more 
omplex input stimuli used in psy
hophysi
al experiments (Treisman andGormi
an, 1988). An extended implementation is needed to test whether V1 me
h-anisms alone 
an qualitatively a

ount for all or most types of sear
h pop-out andasymmetries. Physiologi
al eviden
e (Gilbert 1992) suggests that intra
orti
al 
on-ne
tions tend to link neurons with similar sele
tivities in other dimensions, su
h as
olor and stereo, in addition to orientation. This supports the idea that 
olor, mo-tion, and disparity are also primitive visual 
oding dimensions like orientation. We



believe that the example in Fig. 2A,B demonstrating pop-out versus serial sear
hwould be more 
onvin
ing if 
olor were in
luded to simulate, for instan
e, a red`X' among green `X's with and without red `O's in the ba
kground. Our 
urrentmodel does not explain why a slightly tilted line pops out more readily from ver-ti
al line distra
tors than the reverse. This is be
ause our V1 model idealisti
allyassumes rotational symmetry, and so verti
al is not distinguished from other orien-tations. Neither our visual environment nor our visual system is in fa
t rotationallyinvariant.The V1 model was originally proposed to a

ount for pre-attentive 
ontour en-han
ement and visual segmentation (Li 1998a, 1998b). The 
ontextual in
uen
esmediated by the intra
orti
al intera
tions enable ea
h V1 neuron to pro
ess inputsfrom a lo
al image area larger than its 
lassi
al re
eptive �eld. This enables 
orti
alneurons to dete
t image lo
ations where translation invarian
e in the input imagebreaks down, and highlight these image lo
ations with higher neural a
tivities, mak-ing them 
onspi
uous. These highlights mark 
andidate lo
ations for image region(or obje
t surfa
e) boundaries, smooth 
ontours and small �gures against ba
k-grounds, serving the purpose of pre-attentive segmentation. Fig. 4 demonstratesthe performan
e of the model for pre-attentive segmentation. In ea
h example, thevisual inputs and the most salient outputs are shown. All examples are simulatedusing exa
tly the same model parameters as those used in examples of visual sear
h.It is not too surprising that a model of pre-attentive segmentation in V1 
an ex-plain visual sear
h phenomena. Indeed, pop out has been 
ommonly understood asa sign of pre-attentive segmentation. Our model further suggests that asymmetryin visual sear
h is partly a side-e�e
t of pre-attentive segmentation. Our V1 model
an in turn be improved using visual sear
h as a diagnosti
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